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Abstract. Lossy compression has been applied to the data compression of the large-scale earth system model data (ESMD)12

due to its advantages of a high compression ratio. However, few lossy compression methods consider both the global and13
local multidimensional coupling correlations, which could lead to the information loss in data approximation of lossy14

compression. Here, an adaptive lossy compression method, Adaptive-HGFDR is developed on the foundation of a stream15

compression method for geospatial data, Blocked Hierarchical Geospatial Field Data Representation (Blocked-HGFDR). Yet,16

the original Blocked-HGFDR method is improved from the following perspectives. Firstly, the original data are divided into17
a series of data blocks with more balanced size to reduce the effect of the dimensional unbalance of ESMD. Then based on18

the mathematical relationship between the compression parameter and compression error in Blocked-HGFDR, the control19

mechanism is developed to determine the optimal compression parameter for the given compression error. By assigning each20

data block independent compression parameter, Adaptive-HGFDR can capture the local variation of multidimensional21
coupling correlations to improve the approximation accuracy. Experiments are carried out based on the Community Earth22

System Model (CESM) data. The results show that our method has higher compression ratio and more uniform error23

distributions, compared with ZFP and Blocked-HGFDR. For the compression results among 22 climate variables, Adaptive-24

HGFDR can achieve good compression performances for most flux variables with significant spatio-temporal heterogeneity25
and fast changing. This study provides a new potential method for the lossy compression of the large-scale earth system26

model data.27

1 Introduction28

Earth System Model Data (ESMD), which comprehensively characterize the spatio-temporal changes of earth system with29
multiple variables, are presented as multidimensional arrays of floating-point numbers (Kuhn et al., 2016;Simmons, 2016).30

With the rapid development of earth system models in finer computational grids and growing ensembles of multi-scenario31
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simulation experiments, ESMD have shown an exponential increase in data volume (Nielsen et al., 2017; Sudmanns et al.,32
2018). The huge data volume brings considerable challenges to the data computation, storage, and analysis on ordinary PCs,33

which will further limit the research and application of ESMD. Lossy compression, which focuses on saving large amounts34

of data space by approximating the original data, is considered as an alternative solution to meet the challenge of the large35
data volume(Baker et al., 2016; Nathanael et al., 2013). However, ESMD, as a comprehensive interaction of earth system36

variables at different aspects of space, time, and attributes, show the significant multidimensional coupling37

correlations(Runge et al., 2019; Mashhoodi et al., 2019; Shi et al., 2019). The mixture of different coupling correlations then38

leads to complex structures, such as the uneven distribution, spatially nonhomogeneity and temporally nonstationary, which39
increases the difficulties in accurately approximating data in lossy compression. Thus, developing a lossy compression40

method that could adequately explore the multidimensional coupling correlations is an important way to reduce the41

compression error(Moon et al., 2017).42

Predictive and transform methods are two of the most widely used lossy compression approaches in terms of how the data is43
approximated. Predictive lossy compression predicts the data with parametric functions, and the compression is achieved by44

typically retaining (and encoding) the residual between the predicted and actual data value. For example, NUMARCK learns45

emerging distributions of element-wise change ratios and encodes them into an index table to be concisely46

represented(Zheng et al., 2016). ISABELA applies a preconditioner to seemingly random and noisy data along spatial47
resolution to achieve an accurate fitting model for the data compression(Lakshminarasimhan et al., 2013). In these methods,48

the multidimensional ESMD are processed as low dimensional sequences or series without considering the multidimensional49

coupling correlations. SZ, one of the most advanced lossy compression methods, features adaptive error-controlled50

quantization and variable-length encoding to achieve the optimized compression (Ziv and Lempel, 2003). In SZ, a set of51
adjacent quantization bins are used to convert each original floating point data value to an integer along the first dimension52

of the data based on its prediction error (Di et al., 2019). With a well-designed error control mechanism, SZ can achieve the53

uniform compression error distribution. However, SZ predicts the data point only along the first dimension, and it is not54

designed to be used along the other dimensions or use a dynamic selection mechanism for the dimension (Tao et al., 2017).55
This makes the data inconsistency problem of SZ, where the same ESMD with different organization orders can capture56

different multidimensional coupling correlations, and further produce different compressed data.57

Transform methods, reduce data volumes by transforming the original data to another space where the majority of the58

generated data are small, such that the data compression can be achieved by storing a subset of the transform coefficients59
with a certain loss in terms of the user’s required error (Diffenderfer et al., 2019; Andrew et al, 2020). One example is the60

image-based method, which slices ESMD from different dimensions into separate images, and each image is then61

compressed by feature filtering with wavelet transformation or Discrete Fourier Transform (Taubman and Marcellin, 2002).62

As the compression is applied to the single image slice, the coupling correlations among multiple dimensions are not always63
well utilized. More advanced method like ZFP splits the original data into small blocks with an edge size of 4 along each64

dimension, and compresses each block independently via a floating-point representation with a single common exponent per65
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block, an orthogonal block transform, and embedded encoding(Tao et al., 2018). In ZFP, the multidimensional coupling66
correlations are integrated by treating all dimensions as a whole through multidimensional blocking. In each block, ZFP67

converts the high dimensional data into matrics, which yet flattens the data and partially destroys the internal correlations68

among multiple dimensions. Additionally, with only a single common exponent used in each block, it is inadequate to69
capture the local variation of the correlations. Thus, the ZFP method is extremely effective in terms of data reduction and70

accuracy for smooth variables, but are unsurprisingly challenged by variables with abrupt value changes and ranges spanning71

many orders of magnitude, both of which are common in ESMD outputs (Baker et al., 2014).72

Most of the current existing lossy compression methods, including predictive and transform lossy compression methods,73
integrate the multidimensional coupling correlations to the process of data approximation on the foundation of mapping74

multidimensional data into low dimensional vector or matrics(Wang et al., 2005). Few of these methods directly process75

multidimensional ESMD as a whole. For instance, current predictive methods usually split the original data into a series of76

local low-dimensional data, then predict each local data respectively. In this way, the splitted data obtained by different split77
strategies could capture the different coupling correlations, which further lead to the inconsistent compressed results for the78

same data. Transform methods map the original data to the small space by removing the redundant coupling correlations.79

Most of these methods have already considered the coupling correlations in the global region. However, each local region80

still utilizes the data splitting that destroys the local coupling correlations, which result in the weak compression performance81
for the ESMD with strong local variations. Therefore, constructing the lossy compression method that integrates both global82

and local coupling correlations from the perspective of multiple dimensions, is helpful to improve the performance of lossy83

compression for ESMD.84

Recently, the tensor-based decomposition methods, such as the Canonical Polyadic (CP) , Tucker and hierarchical tensor85
decomposition, have been introduced to the compression of the multidimensional data(Bengua et al., 2016; Jing et al., 2014).86

The tensor decomposition, which exploits the data features along with each mode and the corresponding coupling87

relationship by considering the multidimensional data as a whole, can estimate the intrinsic structure of ESMD ignored in the88

metric model. The core motivation behind the tensor-based decomposition is to eliminate the inconsistent, uncertain, and89
noisy data without destroying the intrinsic multidimensional coupling correlation structures (Kuang et al., 2018; Du et al.,90

2017). Among these methods, the hierarchical tensor decomposition could achieve higher quality at large compression ratio91

than traditional tensor methods through extracting data features level by level (Wu et al., 2008). Yuan et al (2015) designed92

an improved hierarchical tensor method (Blocked-HGFDR) to compress geospatial data with a hierarchical tree structure,93
showing the obvious advantages in the compression accuracy and compression efficiency. This hierarchical-tensor based94

method utilizes the multidimensional coupling correlations to approximate the original data by treating all dimensions as a95

whole, which can largely reduce the information loss in lossy compression. In Blocked-HGFDR, each local data own the96

same compression parameter and the global average error is used to control the capture of the global multidimensional97
coupling correlation. Since ESMD are always spatio-temporal heterogeneous where the coupling correlations are various in98

each local region, the same compression parameter applied to each local data results in the insufficient capture of the local99
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coupling correlation. Although the global average error is relatively small, the obtained results tend to a certain “average”100
within the each local data, which may make the local compression error very large so as to bring the bias to the data101

approximation.102

In this paper, the lossy compression for ESMD is developed based on the Blocked-HGFDR. We firstly construct a division103
strategy that divides the original data into a series of data blocks with relatively balanced dimension. Then the parameter104

control mechanism is designed to assign each data block the independent compression parameter under the given105

compression constraint. After that, Blocked-HGFDR is applied to each data block to achieve the lossy compression.106

Experiments on climate simulation dataset with 22 variables are carried out to evaluate the performance and applicability of107
the methods in ESMD compression. The remainder of this paper is organized as follows. Section 2 introduces the basic ideas108

about developing Adaptive-HGFDR. Section 3 discusses the block mechanism, the relationship between the compression109

parameter and compression error, and the fast search algorithm. Section 4 uses the temperature data to verify that the method110

can obtain adaptive rank under the accuracy constraint. Section 5 discusses the effectiveness and computational efficiency of111
the method, as well as the results.112

2 Basic idea113

The lossy compression of ESMD should comprehensively consider the characteristics of ESMD. Firstly, since ESMD114

have multiple variables, the compression parameter of an ideal lossy compression should be simple and can be flexibly115

adjusted according to the corresponding variables of ESMD. Secondly, since the acceptable error of different variables116

in ESMD is different, for example, the error of wind speed is very different from that of temperature. So an ideal lossy117

compression should be able to select adaptively compression parameters for the acceptable error range of different118

variables. Considering that Blocked-HGFDR has simple compression parameter, it can be used for the lossy119

compression of ESMD. Thirdly, since many variables of ESMD have spatio-temporal heterogeneity, the corresponding120

coupling correlations are variate within the local region. Thus, the correlations in both global and local region should121

be well integrated in lossy compression to improve the approximation accuracy.122

In order to adequately integrate the multidimensional coupling correlations and adaptively select the compression123

parameter in Blocked-HGFDR, there are two issues to be considered. The first issue is the dimensional unbalance of124

ESMD. For instance, the data accumulated in the temporal dimension is typically longer than that in the spatial125

dimension for a spatio-temporal series with long observations. Since the tensor decomposition method treats each126

dimension equally that ignores the dimensional unbalance, it is difficult to accurately approximate data with127

unbalanced dimensions. Thus, it is better to split the original data into small local data blocks with the more balanced128

dimension structure, and then applying the tensor decomposition to each local data individually can reduce the129

approximation bias caused by the dimensional unbalance. The second issue is the parameters selection under the given130
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compression constrains. Since the coupling correlations of ESMD vary within local regions, for the given compression131

constrains such as the maximum compression error, the compression parameter of different variables or data blocks132

should be selected flexibly according to the corresponding data characteristic, so as to well capture the local variation133

of the coupling correlation to improve the approximation accuracy. Therefore, based on the mathematical relationship134

between the compression error and the compression parameter in Blocked-HGFDR, a control mechanism, which can135

adjust the compression parameter according to the accuracy demands should be developed.136

Based on the above considerations, our methods, Adaptive-HGFDR, is developed according to the following three137

procedures (Figure 1). Procedure 1: Splitting the original ESMD into small data blocks. In this procedure, the138

dimension to split the data and the optimal size of the data block is determined by conducting different combinations139

of data blocking in terms of the dimension and block counts. Procedure 2: Conducting the relationship between140

compression error and compression parameter. In order to obtain a uniform distribution of the compression error for141

each data block, an empirical relationship between the compression error and the rank value is established, where the142

rank value of each data block can be adjusted at any given compression error. Procedure 3: Adaptive searching for the143

optimal compression parameter. A binary search method is used to search the optimal compression parameter, which is144

updated with a parameter control mechanism until the compression error meets the given constraint.145

146

147
148

Figure 1. Overall framework of the basic idea.149

3 Method150

3.1 Block hierarchical tensor compression151

EMSD is a multidimensional array. It can be seen as a tensor with the spatio-temporal references and the associated152

attributes. Without loss of generality, a three-dimensional tensor can be defined as (Suiker and Chang, 2000),153

where , , and are values that represent the number of grids along the dimensions of longitude, latitude, and time (or154
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height), respectively. These dimensions are always unbalanced due to the different spatial and temporal resolutions. So, the155
data block is introduced to reduce the impact of dimension unbalance on the data compression.156

157

158
Definition 1 Data block159

For the spatio-temporal data , it can be considered as composed of a series of local data with the same spatio-160

temporal reference. Here, each local data is defined as the data block as follow:161

(1)162

Here, part( ) is the function that divides the original tensor into a series of data block , each data block includes163

local spatial and temporal information, and n is the number of data blocks. Compared with the original data, the dimensions164
of these data blocks are smaller and more balanced. For the divided data blocks, in order to adequately capture the165

multidimensional coupling correlation, the key point is how to determine the compression parameter according to the given166

compression error.167

168
Definition 2 Blocked-HGFDR169

Based on the divided data blocks, Yuan et al.(2015) proposed the Blocked-HGFDR method based on the hierarchical tensor170

compression. In this method, the hierarchical tensor compression is applied to each block, then the hierarchical tensor171

compression of each data block is obtained by selecting the prominent feature components and filtering out the residual172
structure. This method utilizes the hierarchical structure of data features, greatly reducing data redundancy, and thereby173

achieving the efficient compression of the amount of spatio-temporal data (Yuan et al., 2015). The overall compression of174

Blocked-HGFDR can be formulated as:175

(2)176

Similar to the prominent components obtained by SVD for two-dimensional data(Yan et al., 2019), the matrix and the177

sparse transfer tensor are considered to be the r-th component of a third-order tensor in each dimension, respectively,178

where denotes the number of multi-domain features. The residual tensor, , in Eq. (2) denotes the information not179

captured by the decomposition model, and in Eq. (2) is the reconstructed r-th core180

tensor and feature matrix(Grasedyck, 2010; Song et al.,2013).181

3.2 Adaptive selection of parameter and solution182

Considering that the distribution characteristic of each divided data block is different (Hackbusch and Kühn, 2002), the key183

to adequately capture the multidimensional coupling correlations in Blocked-HGFDR is to adaptively select the compression184
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parameter for each local data respectively according to the given compression error. So the key step is to construct185
controlling mechanism based on the relationship between the compression error and compression parameter. Thus, the186

following terms are defined.187

188
Definition 3 The controlling mechanism.189

In Blocked-HGFDR, the relationship between the compression error and compression parameter (Rank) is given as190

(Yuan et al., 2015), thus the controlling mechanism to determine the compression parameter of each block data191

should be the rank value closest to the given compression error as follows:192

(3)193

is the given compression error that depends on different application scenarios; are the coefficients depended on the194

structure and complexity of the data, which can be obtained by the simulation experiment for actual data.195

In Blocked-HGFDR, the relationship between the compression ratio and compression parameter (Rank) is given as196

follows：197

(4)198

As shown in Eqs. (2), (3), and (4), in Blocked-HGFDR, with rank decreasing, the compression ratio of Blocked-HGFDR199
increases, and the compression error also increases. In Blocked-HGFDR, the rank value of different blocks is fixed, which200

results in the fluctuation of the compression error in the specific dimension. Since the structure of each block is different, the201

compression parameter of each data block should be determined independently according to the given compression error.202

Considering that the actual compression error may not strictly satisfy the given value, the optimal parameter is selected as203
the minimum in which the obtained compression error is close to the given one.204

205

To find the optimal parameter for data block , with the above constructed controlling mechanism, the binary search206

algorithm based on dichotomy is constructed. That means before adjusting the rank each time, the optimal rank207
corresponding to the given compression error is constantly approached in half by reducing the selection interval by half of208

the rank. The algorithm is implemented as follows:209

210

Algorithm: the optimal parameter search algorithm based on dichotomy

Input: data block ; given compression error ;

Output: the optimal parameter

Function Description: is used to calculate the error of hierarchical tensor SVD of at rank based
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on Eqs. (4) and (6). is the rounding function; is the function which taking the maximum value

1: ,

2:

3:

4: While ( && )

5: If ( )

6:

7: Else

8:

9: End If

10:

11:

12: End While

13: Return ( )

211

During the whole algorithm, the function is the computing intensive function that could be the performance212

bottleneck. If we consider a calculation of as one meta calculation, the complexity of the traditional traversal213

method is . When introducing the dichotomy optimization, the complexity can be reduced to (Cai et al., 2012).214

4 Case study215

4.1 Data description and experimental configuration216

In this paper, data produced by Community Earth System Model are used as the experimental data to evaluate the217

compression performance of Adaptive-HGFDR, which can be obtained from Open Science Data Cloud in NetCDF (Network218

Common Data Form) format (http://doi.org/10.5281/zenodo.3997216). The data set includes air temperature data (T) stored219

as a (latitude longitude height) tensor and other 22 variables stored as220

a (latitude longitude time) tensor from 1980/01 to 1998/05. When reading the NetCDF data, a total of221

48GB memory will be occupied. The original data we used is double precision, we first process the data into single precision,222

and then the existing methods (SZ, ZFP, Blocked-HGFDR) and the proposed method are applied to compare the223
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compression performances. Research experiments were performed by the MATLAB R2017a environment on a Windows 10224
Workstation (HP Compaq Elite 8380 MT) with Intel Corei7-3770 (3.4 GHz) processors and 8 GB of RAM.225

226

The following experiments were performed. (1) In order to transform the original data to data blocks with the balanced227
dimension, the dimensions of these data blocks are better to have the same size. Thus, the optimal counts of data blocks228

should be determined. For the given compression error, we randomly divide the original data into a series of data blocks with229

different block counts, Adaptive-HGFDR is then applied to these data blocks, and the corresponding compression ratios are230

calculated. The optimal block count is achieved at the largest compression ratio. (2) Since ESMD have multiple dimensions231
and these dimensions may have different organization orders, to verify that the proposed compression method is unrelated232

with the data organization order, different variables are selected and organized with different orders. Then the advanced233

predict method SZ and the proposed method are applied to these reorganized data to realize the lossy compression, and the234

dimensional distributions of compression errors are used to explore the relevance of the method with the data organization235
order. (3) To verify the advantages of the proposed method for ESMD, the proposed method was compared with the236

advanced transform method ZFP and Blocked-HGFDR. (4) To show the applicability and the aadvantages of the proposed237

method for the data with different characteristics, we select 22 variables in ESMD, then the proposed method, ZFP and the238

Blocked-HGFDR are applied to compare the compression performances. In these experiments, two key indices are used to239
benchmark the performances: the compression error and compression ratio. The compression error is calculated as:240

241

(5)242

243
Here, the is the F norm. is the original tensor data, is the compressed tensor data.244

The compression ratio is calculated as：245

(6)246

Here, is the memory size of original data before compression, is the memory size of the compressed247

reconstructed data.248

4.2 Optimal block count selection249

The selection of the optimal block count is carried out using the temperature data (T). Here, the block count with a power of250

2 will be the best to fit as the near balanced data blocking. Therefore, a series of block counts of 4, 16, 64, and 128, 256 are251

generated as the potential block counts. For the compression constraint, 10-4 is used as an initial given compression error.252
The relationships between the block count (BC) and the compression ratio are shown in Figure 2.253
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Clearly, the highest compression ratio is reached when the block count equals 16 (BC=16). Hence, the optimum block count254
is 16, and the corresponding block size is . It is interesting to find that the overall compression ratio presents a255

downward trend with BC in the range 16 and 64. When BC is larger than 64, the data volume of each block becomes smaller,256

and the number of feature components required to achieve the same compression error significantly decrease, so the data257
volume of each block after compression significantly decreases. Although the number of blocks is increased (BC=128 and258

BC=256), the significant reduction of local block data volume makes the overall compression ratio show an upward trend.259

Besides that, the relationship between the block count and the compression ratio is related to the structure and complexity of260

the data itself, which is different for the data with different distribution characteristics. For the temperature data (T), the261
compression ratio reaches a maximum when the block count is equal to 16.262

263
264

Figure 2. The relationship between the block count and the compression ratio265
266

Figure 3 show the original data and the compressed data with different block counts. It can be seen there is no267

significant difference between the original data (Figure 3(a)) and the compressed data (Figure 3(b)-Figure 3(f)), and the268

distribution characteristics of the compressed data (Figure 3(b)-Figure 3(f)) are consist with the original data (Figure 3(a)).269

This may because that the prominent feature components are gradually added to approximate the original data to affect270

the compression error, no matter how many blocks are, the proposed method can approach the given compression error271

by controlling the rank value to provide the accurate compression results.272
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273
274

Figure 3. Original data and compressed data with different block counts. (a) The original data; (b) the compressed data when data275
count is 4; (c) the compressed data when data count is 16; (d) the compressed data when data count is 64; (e) the compressed data276
when data count is 128;(f) the compressed data when data count is 256.277

278

4.3 Comparison with traditional methods279

4.3.1 Comparison with SZ280

In order to verify that the proposed compression method is unrelated with the data organization order, we select three281

variables in ESMD. For each variable, we organize the data with282

different orders as . Then, the SZ and the proposed method are applied283

to the data to realize the lossy compression. The error distributions of different compression results in the corresponding284

dimension are shown in the Figure 4.285

286
287
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Figure 4. The compression error distribution along different dimensions. (a) The compression error distribution along latitude for288
SOLIN. (b) The compression error distribution along latitude for TREFMXAV. (c) The compression error distribution along289
latitude for FSNTC.290

291
Figure 4 shows that the dimensional distribution of the compression error in SZ is quite different with the different292

organization orders of data. This may because the SZ predicts the data point only along the first dimension but not293

along the other dimensions, thus the compression result varies depending on the order of organization. Since the same294

ESMD may have the different organization orders, this makes a critical data inconsistency problem of SZ. While,295

because the proposed method processes the multidimensional data as a whole, the error distribution is independent296

with the data organization order, thus the dimensional distribution of the error remains consistent.297

4.3.2 Comparison with ZFP and Blocked-HGFDR298

To verify the advantage of the proposed method for ESMD, we compare Adaptive-HGFDR with the Blocked-HGFDR and299

the ZFP method for the given compression error. Without loss of generality, the relative compression error ratios are set as300

10-5, 5×10-5, 10-4, 5×10-4 and 10-3 respectively. Here, the block count in the proposed method and the Blocked-HGFDR301

method are both set as 16, and the rank of Blocked-HGFDR is selected as the average of the adaptive rank in each divided302
block data. In ZFP, the key parameter is the tolerance. For the above given compression errors, we conduct the simulation303

experiments with many random tolerances, then find the ideal tolerances in these cases the corresponding compression errors304

are close to the given compression errors. Thus, the tolerance parameters are 0.05, 0.3, 0.5, 3.8 and 10. The compression305
ratios of different compression methods under the condition of different compression errors are calculated and shown in306

Figure 5.307

308
309

Figure 5. The relationship between the compression error and compression ratio for different methods.310
311
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Figure 5 shows that as the compression error ratio grows, the compression ratio of all three methods becomes larger and312
larger. However, the growth rate of ZFP is much slower than that of Blocked-HGFDR and Adaptive-HGFDR. When the313

compression error is less than 0.0001, the compression ratio of ZFP is a little higher than that of Adaptive-HGFDR and314

Blocked-HGFDR. This may be because that the approximating of the original data with high accuracy requests higher rank,315
which limits the improvement of compression ratio. When the compression error is 0.001, which is also acceptable for most316

ESMD data application, the compression ratio of Adaptive-HGFDR increases to 68.16, which means that the compressed317

data size is 68.16 times smaller than that of the original data. At the compression error of 0.001, the compression ratio of318

Adaptive-HGFDR, ZFP and Blocked-HGFDR are 68.16, 13.42 and 50.78, respectively. The compression ratio of Adaptive-319
HGFDR is 5.07 times and 1.34 times larger than that of ZFP and Blocked-HGFDR. These may be because that the Adaptive-320

HGFDR can adaptively adjust the compression parameter (rank value) according to the actual data complexity, and thus321

better capture data features to improve the compression ratio.322

We summarize the error distribution along the longitude dimension of each method in Figure 6. It is clearly seen that the323
error distributions of both Adaptive-HGFDR and ZFP are nearly uniform among different longitude dimensions. However,324

the Blocked-HGFDR method shows significant four segments of abrupt changes at different longitude slices. The oscillation325

characteristics of the three methods are different. For Adaptive-HGFDR, the error distribution is more acted as low-326

frequency fluctuations while ZFP method is more as higher frequency fluctuations. The Blocked-HGFDR method has very327
different fluctuations characteristics. For the first 1-230 longitude slices, the error distribution of Blocked-HGFDR is of high328

frequency fluctuations with relatively high frequency, which is similar to ZFP, while in the rest three segments, it has low329

amplitude, which has similar fluctuations as Adaptive-HGFDR. For the comparison of the mean value and standard330

deviation of the error distribution among the three methods, the Adaptive-HGFDR has much smaller standard deviation331
(6.89×10-6), compared with ZFP (2.94×10-5) and Blocked-HGFDR (2.80×10-5). The Blocked-HGFDR method has the smallest332

mean compression error (9.35× 10-5), slightly lower than Adaptive-HGFDR (9.83× 10-5), while ZFP has the largest mean333

compression error (1.29×10-4).334

Both Blocked-HGFDR and Adaptive-HGFDR show the small difference between the adjacent slices and the big difference335
among the different local block data. Due to the spatio-temporal heterogeneity, the feature distributions of each local ESMD336

are significantly different, but the feature distributions of adjacent slices have a small difference because of the spatio-337

temporal similarity. Meanwhile, since the adjacent compressed slice data have similar characteristics, the error fluctuation of338

these slices is small. On the contrary, the structure difference of each compressed local block data is large, and the error339
fluctuation is also large. In Blocked-HGFDR, the compression parameter of each block are fixed, and the characteristic340

difference of data in each block is ignored. This weakness is improved in Adaptive-HGFDR by adjusting the compression341

parameter of each block adaptively according to the compression error to achieve the balanced distribution of error.342

Although Blocked-HGFDR performs substantially better for several slice numbers, Adaptive-HGFDR shows less variations.343
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344
345

Figure 6. The distributions of compression error along the longitudinal slices ( the slice means the partial data that divided along346
specific dimensions).347

348
To better reveal the characteristics of the compression error distributions, the distributions of the spatial error for three349

random spatial pieces (Height 2,8 and 16) are depicted in Figure 7. From Figure 7, we can see that the spatial structure of the350

data is different at different height, there are both continuous and abrupt structure changes at different levels. Specifically,351

the compression error in the Blocked-HGFDR method and the ZFP method fluctuates dramatically, forming multiple peaks352
and valleys. The error distributions of ZFP suggest that there are high frequency stripes. There are irregular spatial patterns353

for Blocked-HGFDR. The Adaptive-HGFDR method is more stable where the error distribution is nearly random.354

Additionally, the spatial structure of the data is different at different height, and there are both continuouss and abrupt355

structure changes at different levels.356



15

357
358

Figure 7. The spatial distribution of compression error of different compression methods. (a)The spatial distribution of359
compression error with height as 2 in ZFP; (b)the spatial distribution of compression error with height as 8 in ZFP; (c) the spatial360
distribution of compression error with height as 16 in ZFP; (d) the spatial distribution of compression error with height as 2 in361
Blocked-HGFDR; (e) the spatial distribution of compression error with height as 8 in Blocked-HGFDR; (f) the spatial distribution362
of compression error with height as 16 in Blocked-HGFDR; (g) the spatial distribution of compression error with height as 2 in363
Adaptive-HGFDR; (h) the spatial distribution of compression error with height as 8 in Adaptive-HGFDR; (i) the spatial364
distribution of compression error with height as 16 in Adaptive-HGFDR;365

366

4.4 Evaluation with multiple variables367

For a comprehensive comparison of the different methods, 22 monthly climate model data were used as the experimental368
data. Here, we focus on the variables with flux information and fast changing. Among these variables, there are variables369

with weak spatio-temporal heterogeneity such as the temperature, and the variables with strong spatio-temporal370

heterogeneity, which will help to better investigate the applicability of the method. The dimension of the experimental data is371

1024×512×221. Here, considering that the compression error and compression performance of each variable can be372
comparable, the compression error should not be too big or too small for all the 22 variables, the given error is 0.01, the373

block size is 256×128×26, and the block count is 144. For the tolerance parameter settings in ZFP, we conduct the374

simulation experiments with many random tolerances, then find the ideal tolerances in these cases the corresponding375

compression errors are close to the given compression errors. A detailed description of the variables is shown in Table 1.376
377

378
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Table 1: 22 Descriptions of climate model data variables.379
Variable
name Variable description Variable

name Variable description

FLDS Downwelling longwave flux at the surface PCONVT Convection top pressure

FLDSC
Clearsky downwelling longwave flux at
surface RHREFHT

Reference height relative humidity

FLNSC Clearsky net longwave flux at surface SOLIN Solar insolation
FLNT Net longwave flux at top of model SRFRAD Net radiative flux at surface

FLNTC
Clearsky net longwave flux at top of model

TMQ
Total (vertically integrated) precipitable
water

FLUT Upwelling longwave flux at top of model TREFHT Reference height temperature

FLUTC
Clearsky upwelling longwave flux at top of
model TREFMNAV

Average of TREFHT daily minimum

FSDSC Clearsky downwelling solar flux at surface TREFMXAV Average of TREFHT daily maximum
FSNSC Clearsky net solar flux at surface TS Surface temperature (radiative)

FSNTC
Clearsky net solar flux at top of model

TSMN
Minimum surface temperature over output
period

FSNTOAC
Clearsky net solar flux at top of atmosphere

TSMX
Maximum surface temperature over output
period

380

The Adaptive-HGFDR, Blocked-HGFDR, and ZFP method were applied to the 22 variables. The compression ratio, time,381
and standard deviation of the slice error were calculated and shown in Figure 8. Form Figure 8(a), it can be seen that382

compared with the other two methods, the compression ratio of Adaptive-HGFDR is the largest. This may be because383

Adaptive-HGFDR considers the coupling relationship among the spatial-temporal dimensions and searches for the optimal384
compression parameter at each data blocks. This not only makes the number of features required by each data block small,385

but also makes the effect of data heterogeneity on the compression ratio least. Adaptive-HGFDR captures the data features386

more accurate than the other two methods. The adaptive adjustment of parameter makes Adaptive-HGFDR yield the uniform387

error distribution for the multiple variables shown in Figure 8(c). In summary, Adaptive-HGFDR provides good adaptability388
for ESMD.389

390

Additionally, Figure 8(a) also shows that the tensor-based compression methods (Adaptive-HGFDR, Blocked-HGFDR) have391

the high compression ratios for some variables, it may be because for tensor-based compression, the relationship between392
data volume and dimensions is transformed from exponential growth to nearly linear growth by defining the tensor product393

of tensors, which is essentially the displacement of space by calculating time, so the compression ratio is very high. Also, we394

can see that with the given compression error, the compression rates of different variables are significant different. It may be395

because different climate model variables have different distribution features. Generally speaking, for the variables with396
weak spatio-temporal heterogeneity, a small number of feature components can well achieve the accurate approximation that397

have the high compression rate. While, the variables with strong spatio-temporal heterogeneity may need a large number of398

feature components that have the low compression rate. Due to the continuous adjustment of compression parameter to399

search for the optimal rank, Adaptive-HGFDR is the most time consuming [Figure 8 (b)]. Despite this, some optimization400
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strategies, such as the spatio-temporal indexes and the unbalanced block split, can help improve the efficiency of Adaptive-401
HGFDR.402

403
404

Figure 8. Comparison results of compression ratio, compression time and standard deviation. (a) The comparison results of405
compression ratio; (b) The comparison results of compression time; (c) The comparison results of standard deviation.406

5 Conclusion407

In this study, we propose a lossy compression method, Adaptive-HGFDR, for ESMD based on the blocked hierarchical408
tensor decomposition by integrating multidimensional coupling correlations. In Adaptive-HGFDR, to achieve the lossy409

compression, ESMD is divided into nearly balanced data blocks, which are then approximated by the hierarchical tensor410

decomposition. This compression method is applied to all the dimensions of the data blocks rather than mapping the data411

into low dimensions to avoid the destruction of coupling correlations among different dimensions. This also avoids the412
possible data inconsistency of compression methods like SZ, when the data are extracted and analyzed with different413

Input/Output (IO) orders. Thus, this method provides the potential advantage in multidimensional data inspection and414

exploration. Additionally, the compression parameter is simple and adaptively calculated for each data block independently415

for a given compression error. Therefore, the compression well captures both the global and local variation of the coupling416
correlations to improve the approximation accuracy. The simulated experiments demonstrated that, the proposed method has417

higher compression ratio and more uniform error distributions than ZFP and Blocked-HGFDR under the same condition, and418
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can support the lossy compression of ESMD on the ordinary PCs both in terms of the memory occupation and compression419
time. Additionally, the comparison results among 22 climate variables show that the proposed method can achieve good420

compression performance for the variables with significant spatio-temporal heterogeneity and fast changing.421

422
The application of the hierarchical tensor in this paper provides several new potentials for developing more advanced lossy423

compression methods. With the hierarchical tensor, both the representation model and computational model can support the424

complex multidimensional computation and analysis(Kressner and Tobler, 2014). For example, commonly used signal425

analysis methods like (Singular Value Decomposition)SVD and (Fast Fourier transform)FFT can achieve efficient stream426
computing with the hierarchical tensor representation, thus can inherently support efficient on-the-fly computation and427

analysis. Other interesting topics focusing on the tensor-based compression, includes the compression for unstructured data428

or extremely sparse data (Li, D. et al. 2019). Moreover, comprehensive tensor methods, like Partial Differential Equation429

(PDE) are also recently been introduced to the hierarchical tensor, Thus, it is even possible to integrate some dynamic430
models of earth systems directly on the compressed data. With the rapid development of the tensor theory and applications, it431

may provide more and more potentials for tensor-based spatio-temporal data compression for the modelling and analyzing of432

ESMD.433

434
Multiple dimensionality and heterogeneity are the natural attributes of ESMD. In ESMD, there are various spatio-temporal435

structures with gradual/sudden change and fast/slow change, which also show the significant regularity and randomness.436

From the perspective of the rules of ESMD distribution, constructing the data compression method based on437

multidimensional coupling correlations may be the key to improve ESMD compression performance in the future. For438
example, for static or slow-varying variables, large block and small Rank can be used to achieve large compression, while439

for fast-changing variables, small block and large Rank may be needed. The data coupling correlations obtained by440

dynamically adjusting the block count and Rank, can not only be used to the data compression, but also are helpful to realize441

the data organization and compressed storage based on the data characteristics. Additionally, in the large-scale simulation442
experiment with long time sequence and multi-mode integration, this characteristic-based data organization and storage of443

multidimensional ESMD make it possible to only retain the prominent components, so as to achieve efficient comparison of444

large-scale data and can help to promote the ability of ESMD application service. For instance, for the major natural445

disasters, this multidimensional tensor compression can support the progressive transmission with the limited bandwidth by446
using only the prominent components, which can help to promote the depth and breadth of ESMD application.447

Code and data availability. The Adaptive-HGFDR lossy compression algorithm proposed in this paper was conducted out448

in MATLAB R2017a. The exact version of Adaptive-HGFDR and experimental data used in this paper is archived on449

Zenodo(AndyWZJ, 2020). The experimental data are Large-scale Data Analysis and Visualization Symposium Data450
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