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Abstract. Lossy compression has been applied to large-scale experimental model data compression due to its advantages of a 12 

high compression ratio. However, few methods consider the uniform distribution of compression errors. Here we develop an 13 

adaptive lossy compression method with uniform distribution of compression error for earth system model data based on 14 

Blocked Hierarchical Geospatial Field Data Representation (Blocked-HGFDR). The original Blocked-HGFDR method is 15 

improved from the following perspectives. Firstly, the original data are divided into a series of data blocks with more balanced 16 

size. After that, from the mathematical model of the Blocked-HGFDR, the relationship between the compression parameter 17 

and compression error in Blocked-HGFDR for each data block is conducted. Finally, our method, the Adaptive-HGFDR, 18 

achieves the data compression with the uniform distribution of compression error through designing an optimal compression 19 

parameter control mechanism and a fast search method. Experiments concerning model data compression are carried out based 20 

on the Community Earth System Model (CESM) data. The results show that our method has higher compression ratio and 21 

more uniform error distributions, compared with other commonly used lossy compression methods, and can be well applied 22 

to multiple climate model variables. 23 

1 Introduction  24 

Earth System Model Data (ESMD), which comprehensively characterize the Earth system over space-time dimensions, are 25 

presented as multidimensional arrays of floating-point numbers (Kuhn et al., 2016; Wulder et al., 2012). With the rapid 26 

development of earth system models and growing multi-scenario earth system simulation experiments, ESMD has shown an 27 

exponential increase in data volume and data complexity (Anon, 2011; Of and Acm, 2000). Lossless compression methods, 28 

which could reduce the data volume without affecting the data quality, are commonly used in compressing ESMD data. 29 

However, their compression ratios  grow much slower than the increment of data volume (Kumar et al., 2008; Tao et al., 2017c; 30 

Baker et al., 2016). Thus, the compression performance of the lossless compression will be relatively reduced. Lossy 31 
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compression methods, which focus more on saving space over preserving the data accuracy, are achieved more and more 32 

attention in ESMD compression. However, the reduction of data accuracy may lead to the deviation in calculating the long-33 

term trend, change rate, inflection point and abrupt change, and further affect the data quality as well as the subsequent analysis 34 

of ESMD, especially for the variables with strong spatial heterogeneity like temperature or fluxes (Zabala and Pons, 2011; 35 

Feng et al., 2014; Baker et al., 2014; Berres et al., 2017). The heterogeneity of original data distribution could lead to the 36 

uneven distribution of compression errors, and make it difficult to separate the compression error from the spatial-temporal 37 

characteristics of original ESMD.  Therefore, keeping the distribution of compression error as uniform as possible can improve 38 

the data quality of ESMD lossy compression. 39 

The main idea of ESMD lossy compressions is to eliminate unnecessary or redundant information in data to reduce the data 40 

size. There are two different kinds of information that can be considered as unnecessary or redundant in ESMD: information 41 

of data descriptions and information of data features. Therefore, there are two major different types of ESMD lossy 42 

compression methods: the description-based lossy compression and feature-based lossy compression. The description-based 43 

lossy compression attempts to transform or simplify data descriptions to reduce data size. One subcategory of the description-44 

based lossy compression is the file-based compression method, which compresses ESMD files using general file compression 45 

methods, such as GRIB2 and NetCDF (Bing et al., 2014; Hübbe et al., 2013). Another subcategory is the error truncation-46 

based compression, which assumes the high-precision float point expression in ESMD is not necessary. Typical error 47 

truncation-based compression, such as FPZIP (Lindstrom and Isenburg, 2006) and APAX (Hübbe et al., 2013), implements 48 

the data compression through controlling the precision of a floating-point expression of the original data, and eliminating 49 

redundant floating-point precision. Recently, statistical or sparse data coding are introduced to produce better compact data 50 

descriptions (Papaioannou et al., 2011; Tao et al., 2017a; Akbudak et al., 2017). For example, vector quantization (VQ) (Vector 51 

Quantization) (Guinness and Hammerling, 2016) organize the data as a simple one-dimensional array and use a dictionary (or 52 

code table) to compose the common patterns of the data. Although the description-based lossy compression is typically easy 53 

to implement, it is not flexible enough to control the distribution of compression error. For the file-based compression method, 54 

it is difficult to arbitrarily adjust the compression parameter according to the given compression error. For the error truncation-55 

based compression, the distribution of floating-point precision of ESMD is not uniform, which could lead to the unevenly 56 

distribution of compression errors. For VQ method, the use of a dictionary or code table enlarges the complexity of the data 57 

structure, which requires the additional operations to control the compression error. For example, when the data volume is 58 

large, the change of compression error control conditions could lead to significant time cost due to frequent compression and 59 

decompression of data (Anon, 2013; Liu et al., 2014; Mummadisetty, 2015). To summarize, it is hard to achieve flexible 60 

control of the compression ratio and errors for the description-based lossy compression methods.  61 

As for the feature-based lossy compression, it assumes that the original data are a mixture of various features, and some features 62 

of the data can be eliminated. Based on how to deal with the feature of the original data, the feature-based lossy compression 63 

can be further classified into two subcategories: feature filtering-based compression and feature prediction-based compression. 64 

The feature filtering-based compression defines certain rules to extract and filter features from the original data and remove 65 
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unnecessary features to reduce the data volume. One example is the image-based method, which slices ESMD from different 66 

dimensions as separate images, and each image is then compressed by feature filtering with wavelet transformation or Discrete 67 

Fourier Transform (Taubman and Marcellin, 2002). As the compression is applied to single image slice, the correlations 68 

between different image slices are not always well utilized during different compression processes. Therefore, the compression 69 

error control between different image slices is not uniform (Castruccio and Genton, 2016; Guinness and Hammerling, 2016).  70 

For the feature prediction-based method, it use parametric functions to fit the data and predict the structure of data (Adhianto 71 

et al., 2010; Cui et al., 2007). Then the function parameters are used to represent the original data in a compact form, reducing 72 

the data volume. NUMARCK (Zheng et al., 2017), SSEM (Wilczyñski, 2001), SPECK (Wang and Li, 2006), and ZFP 73 

(Diffenderfer et al., 2019b) are typical methods that use the feature prediction to achieve lossy compression. It is worth 74 

mentioning that the feature prediction-based compression method is highly dependent on the parametric function and the 75 

prediction model. If the parametric function and the distribution of original data does not fit well, the performance of the 76 

compression may poor. Furthermore, the parametric function and prediction model are typically data-adaptive, which means 77 

it is difficult to adjust the compression parameters according to different constraints. To summarize, the performance of feature-78 

based lossy compression is heavily depended on the rules of feature extraction/filtering or feature prediction. However, we 79 

have rare knowledge on how to define the rules of feature extraction/filtering or feature prediction to make the distribution of 80 

compression error uniform, which is important for ESMD (Carmel, Y.,2004; Lyre, H. (2004). Linton, O.,2007).  81 

Both description-based and feature-based lossy compression methods are mostly inherited from low dimensional data 82 

compression methods (e.g. one-dimensional vector or two-dimensional images). None of these methods considers ESMD as 83 

the high dimensional data with the heterogeneous correlation between different dimensions. For some ESMD variables like 84 

temperature, solar and longwave flux, there are significant correlations between different dimensions, i.e., values in 85 

neighboring ranges tend to be numerically close to each other. As the dimension of ESMD is commonly high (e.g. even an 86 

ESMD with only one attribute and three spatial dimensions forms a four-dimensional data), the ignorance of the 87 

multidimensional correlation structure results in low compression performance in terms of efficiency (Diffenderfer et al., 88 

2019a; Schoellhammer et al., 2004). Ignoring the control of such high dimensional correlation structure also makes it difficult 89 

to keep the error distribution uniform in different dimensions. When there are the correlation structures in higher dimensions, 90 

the uneven distribution of compression error enlarged and the impacts on the data quality becomes larger. So, it is urgent to 91 

develope high dimensional lossy compression method to avoid uneven distribution in different dimensions (Tao et al., 2017b).  92 

 93 

Tensors are well used to represent the multidimensional data. The corresponding tensor decomposition method eliminates 94 

inconsistent, uncertain, and noisy data without destroying the intrinsic high dimensional correlation structures. With the small 95 

sets of decomposed features from tensor decomposition, tensor reconstruction can approximate the original data as accurate 96 

as possible (Li et al., 2018). Therefore, the tensor decomposition-based compression methods, with the only parameter “rank” 97 

controlling the compression ratio and relative compression errors, has been gradually introduced into data compression in 98 

recent years (Yuan et al., 2015).  Among exiting tensor-based compression methods, the hierarchical tensor approximation, 99 
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could achieve higher quality at large compression ratios than traditional tensor methods through extracting data features level 100 

by level (Linton and Xiao, 2001; Lyre, 2004). Yuan et al (2015) designed an improved hierarchical tensor method Hierarchical 101 

Geospatial Field Data Representation (Blocked-HGFDR) to compress geospatial data in a hierarchical tree structure, showing 102 

obvious advantages in compression ratio and error distribution than traditional methods like NetCDF-based data compression. 103 

Nevertheless, Blocked-HGFDR only pays attention to global average error when assessing the compression quality. However, 104 

it is possible the global average error is relatively small when the local error is large. Therefore, we need to work out how to 105 

control the uniform distribution of local compression error of the Blocked-HGFDR method. In addition, Blocked-HGFDR is 106 

only evaluated with eight climate variables, so research on the adaptivity and universality of Blocked-HGFDR to more 107 

variables of ESMD is also required.  108 

In this paper, we extend the study of Blocked-HGFDR by discussing the factors and constraints that affect the application of 109 

Blocked-HGFDR in ESMD compression. We study the empirical quantitative relationship between compression errors and 110 

compression parameters, and develop an Adaptive-HGFDR method based on an adaptive data block and rank adjustment 111 

mechanism under accuracy constraints. Experiments on climate simulation dataset with 22 variables are carried out to evaluate 112 

the performance and applicability of the methods in ESMD compression. 113 

The remainder of this paper is organized as follows. Section 2 introduces the basic ideas about developing Adaptive-HGFDR. 114 

Section 3 discusses the block mechanism, the relationship between the compression parameter and compression error, and the 115 

fast search algorithm. Section 4 uses temperature data to verify that the method can obtain adaptive rank under accuracy 116 

constraint. Section 5 discusses the effectiveness and computational efficiency of the method, as well as the results. 117 

2 Basic idea 118 

To adaptively control the compression error of Blocked-HGFDR, there are mainly three issues to consider. The first issue is 119 

the dimensional imbalance of ESMD data. For example, the data in the temporal dimension is typically longer than that in the 120 

spatial dimension for a spatio-temporal series with long observations. This dimensional imbalance not only enlarges the overall 121 

fitting error during the data fitting process for tensor decompression, but also makes it difficult to achieve fine control of the 122 

compression ratio and error distribution. Therefore, it is better to split the original data into small local data blocks, achieving 123 

a more balanced dimension structure in each local data block. Then processing each local data block will make accurate 124 

approximation and fine control of the compression error much easier.  The second issue is the heterogeneity characteristics of 125 

different variables or data blocks of ESMD. As the data distribution is different, the compression parameter of different 126 

variables or data blocks should also be different. Therefore, conducting the relations between the compression error distribution 127 

and the compression parameters with the consideration of data heterogeneity is in a high propriety. The third issue is that the 128 

compression should meet different degrees of accuracy. Therefore, a feedback control mechanism which could modify the 129 

compression parameter according to the accuracy demands should be developed.  130 
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Based on the above considerations, Our methods, Adaptive- HGFDR, is developed according to the following three procedures 131 

(Figure 1). Procedure 1: Splitting the original ESMD into small data blocks. In this procedure, the dimension to split the data 132 

and the optimized size of the data block is determined by conducting different combinations of data blocking in terms of the 133 

dimension and block counts. Procedure 2: Conducting the relationship between compression errors and compression 134 

parameters. In order to obtain a uniform distribution of the compression error for each data block, an empirical relationship 135 

between the compression error and the rank value is established, where the rank value for each data block can be adjusted at 136 

any given compression error. Procedure 3: Adaptive searching for the optimized compression parameters. A binary search 137 

method is used to search the optimal compression parameter, which is updated with a feedback control mechanism until the 138 

compression error meet the accuracy.  139 

Original data

 Divide to the data 
blocks

Build empirical 
relationships

 Tensor 
decomposition and 

reconstruction

Obtain the optimal 
rank

Develop the control 
mechanism

Adaptive Searching 
and feedback 

control  

Obtain compressed 
results

 140 

Figure 1: . Overall framework of the basic idea..  141 

3 Method 142 

3.1 Block hierarchical tensor compression 143 

EMSD is a multidimensional array. It can be seen as a tensor with the spatio-temporal references and the associated attributes. 144 

Without loss of generality, a three-dimensional tensor can be defined as I J KZ    (None, 1970; Suiker and Chang, 2000), 145 

where I , J , and K are values that represent the number of grids along the dimensions of longitude, latitude, and time (or 146 

height), respectively.  These dimensions are always unbalanced due to the different spatial and temporal resolution. So the 147 

data block is introduced to reduce the impact of dimension unbalance on the data compression. 148 

 149 

Definition 1 Data block. For the spatio-temporal data I J KZ   , it can be seen that it is composed of a series of local data 150 

with the same spatio-temporal reference. Here, each local data is defined as the data block as follow: 151 

1 2( , ) { , , , }npart Z n C C C=                                                                                                                                                    (1) 152 
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Here, part( ) is the function that partitions the original tensor Z  to a series of data block 1{ }m

i iC = , and each data block iC  153 

includes local spatial and temporal information, and n is the number of data blocks. Compared with the original data, the 154 

dimensions of these data blocks are smaller that tend to be more balanced. For the divided data blocks, in order to construct a 155 

data compression with uniform error distribution, the key problem to be solved is how to compress each block data so that the 156 

error of each block data is close.  157 

 158 

Definition 2 Blocked-HGFDR. Based on the divided data blocks, Yuan (Yuan et al., 2015) proposed the Blocked-HGFDR 159 

method based on the hierarchical tensor compression. In this method, the hierarchical tensor compression is applied to each 160 

block, then the hierarchical tensor compression of each data block is obtained by selecting the dominant feature component 161 

and filtering out the residual structure. This method utilizes the hierarchical structure of data features, greatly reducing data 162 

redundancy, and thereby achieving the efficient compression of the amount of spatiotemporal data (Yuan et al., 2015). The 163 

overall compression of the Blocked-HGFDR can be formulated as: 164 

 
1 1 1 1 12( ) ( ) +r

        1,2, ,
L Lj

R R L L R

j p p

H A U U U B B B B es

B B B j L

− −
 =   


=   =


                                                                                                                         (2) 165 

Similar to the prominent components obtained by SVD (Lathauwer et al., 2000; Springer, 2011) for two-dimensional data, the 166 

matrix RU  and the sparse transfer tensor RB  are considered to be the r-th component of a third-order tensor in each dimension, 167 

respectively, where R  denotes the number of multi-domain features. The residual tensor, res , in Eq. (2) denotes information 168 

not captured by the decomposition model, and 
1 1 1 1 12( )R R L L RU U U B B B B− −    in Eq. (2) is the reconstructed r-th core 169 

tensor and feature matrix (Matrices, 2006; Oseledets and Tyrtyshnikov, 2009). 170 

3.2 Adaptive parameter selection and solution 171 

Since the feature structure of each divided data block is different (Hackbusch and Kühn, 2009), the key to control the stable 172 

distribution of compression error in Blocked-HGFDR is to adaptively select the compression parameter for each local data 173 

according to the given compression error. So the key step is to construct controlling mechanism based on the relationship 174 

between the compression error and compression parameter. Thus, the following terms are defined. 175 

 176 

Definition 3 The controlling mechanism.  Lars Grasedyck defines a hierarchal tensor SVD algorithm, and the approximate 177 

accuracy is determined by rank ( Grasedyck, 2010). In Blocked-HGFDR, the relationship between the compression error and 178 

compression parameter (Rank) is given as Rank   −= , thus the controlling mechanism to determine the compression 179 

parameter of each block data should be the rank value closest to the given error as follows: 180 

    GivenRank   −=                                                                                                                                                                        (3) 181 
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Given  is the given compression error that depends on different application scenarios; ,  are the coefficients depended on the 182 

structure and complexity of the data, which can be obtained by the simulation experiment for actual data.  183 

In Blocked-HGFDR，the relationship between the compression ratio ( ) and compression parameter  (Rank) are given as 184 

follows： 185 

3 2

datasize

aRank bRank cRank d
 =

+ + +
                                                                                                                                                (4) 186 

As shown in Eqs. (2), (3), and (4), in Blocked-HGFDR, with rank decreasing, the data compression ratio of Blocked-HGFDR 187 

increases, and the compression error also increases. In Blocked-HGFDR, the rank value of different blocks is fixed, it results 188 

in the fluctuation of the compression error in specific dimension. Since the structure of each block is different, to achieve a 189 

stable error distribution of compressed data for the given compression error, the key is to select the rank for each block of data 190 

separately. We can select the optimum parameter when the minimum Rank is reached to make the compression error close to 191 

the given compression error. 192 

 193 

Definition 4 The fast search algorithm for the optimal rank.  194 

For Blocked-HGFDR, the rank value on each data block is the main parameter, which represents the number of the feature 195 

component in each block data. So the rank value can influence the data fitting performance as well as the compression ratio 196 

for each data block. Although we have empirical observation that large rank will lead to worse compression ratio and smaller 197 

compression error. The quantitative relations of different variables and data blocks are still unknown. With the empirical 198 

relationship between the compression error and the rank value, it is possible to calculate the optimal compression parameters 199 

for each data block at any given accuracy constraints to achieve uniform distribution of the compression errors. However, the 200 

heterogeneity of real data and the constraints of the compression require dynamic search and update of the optimized 201 

compression parameters. 202 

To find the optimal parameter for data block 
iC , with the above constructed controlling mechanism, the fast search algorithm 203 

based on dichotomy is constructed. That means before adjusting the rank each time, reduce the selection interval by half of the 204 

rank, the optimal rank coressponding to the given error is constantly approached in half. The algorithm is implemented as 205 

follows: 206 

Algorithm: optimal parameter search algorithm based on dichotomy 

Input: data block 
Q W E

iC   ; given data error std _ err ;  

Output: the optimum rank R _Opt  

Function Description: iEvalErr(C ,r)  is used to calculate the error of hierarchal tensor SVD of iC  at rank r  based on Eqs. 

(4) and (6). Round()  is the rounding function; Max()  is the function which taking the maximum value 
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1: R _ Max Max( Q,W ,E )= , R _ M in 0=  

2: 
R _ Max R _ Min

R _ Mid Round( )
2

+
=  

3: ( , _ )ierr EvalErr C R Mid=  

4: While ( ! _err std err=  && _ _R Max R Min ) 

5:        If ( _err std err ) 

6:                _ _ 1R Min R Mid= +  

7:        Else 

8:                _ _ 1R Max R Mid= −  

9:        End If 

10:      
R _ Max R _ Min

R _ Mid Round( )
2

+
=  

11:       ( , _ )ierr EvalErr C R Mid=  

12: End While 

13: Return ( R _Opt R_Mid= ) 

During the whole algorithm, the function iEvalErr(C ,r)  is the computing intensive function that could be the performance 207 

bottleneck. If we consider a calculation of iEvalErr(C ,r)  as one meta calculation, the complexity of the traditional traversal 208 

method is ( )O n , when intorducing the dichotomy optimization, the complexity can be reduced to (log )O n209 

( Rouillier, F. et al. 2004). 210 

4 Case study 211 

4.1 Data description and experimental configuration  212 

In this paper, data produced by Community Earth System Model are used as experimental data to evaluate the compression 213 

performance of Adaptive-HGFDR, which can be obtained from Open Science Data Cloud in NetCDF (Network Common Data 214 

Form)format(http://doi.org/10.5281/zenodo.3997216). The data set includes air temperature data (T) stored as a215 

 1024 512 26 (latitude longitude height) tensor and 22 other attributes stored as a  1024 512 221 (latitude longitude216 

 time) tensor from 1980/01 to 1998/05. When reading the NetCDF data, a total of 48GB memory will be occupied. Research 217 

experiments were performed by the MATLAB R2017a environment on a Windows 10 Workstation (HP Compaq Elite 8380 218 

MT) with Intel Corei7-3770 (3.4 GHz) processors and 8 GB of RAM. 219 
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 220 

The following experiments were performed: 1) simulations with different block counts were carried out to find the optimal  221 

block counts ; 2) comparison of the compressed performance between the proposed method and the commonly used 222 

compression methods was performed; 3) to show the applicability of the method, the compressions with the multiple variables 223 

are performed. Two key indices are used to benchmark the performances: the relative compression error ratio and compression 224 

ratio. The relative compression error ratio is calculated as: 225 

 226 

（4） 227 

 228 

Here, the 
2

is the F norm. 
OriginalT  is the original tensor data, ReconstructionT  is the compressed tensor data. 229 

The compression ratio   is calculated as： 230 

original

c

 = 
ompression

D

D


                                                                                                                                                                 （5） 231 

Here,
originalD   is the memory size of original data before compression, 

compressionD   is the memory size of Compressed 232 

reconstructed data. 233 

4.2 Optimal block count selection  234 

The block counts denotes the number of block data, whcih will affect the data fitting performance, the compression ratio and 235 

the complexity of file system I/O (input/output). More blocks may achieve smaller rank for accurate fit of each block and finer 236 

control of the error distribution of overall compression but may lead to more parameters and file system I/O. On the contrary, 237 

if the block counts is small, the heterogeneity in one data block may be large, which will result in a low accuracy of data fitting 238 

and may require higher rank for the compression. Therefore, selection an optimal block counts to meet the largest compression 239 

ratio. Here, we randomly divide original data into a series of data blocks with different block counts. The data with different 240 

block counts are then compressed to meet the demand of the given compression error. By comparing the compression ratios, 241 

the optimal block count is determined at the largest compression ratio.  242 

We demonstrate the selection of the optimal block count with the temperature data (T). Firstly, the data for each block is better 243 

to have the same size. And the block counts with a power of 2 will be best to fit as the near balanced data blocking. Therefore, 244 

a series of block counts of 4, 16, 64, and 128, 256 are generated as potential block counts. Secondly, the given compression 245 

error may affect the optimal block count, we will setup an initial given compression error of 10-4 to conduct the experiments.  246 

The effect of block counts (BC) on the compression ratio is shown in Figure 2(a). Clearly, the highest compression ratio is 247 

reached when block counts equals to 16 (BC=16). Hence, the optimum block count is 16, and the corresponding block zize is248 

2

Original Reconstruction

2

Original

T  -T  
 = 

T

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 256 128 26 .  Interesting things can be revealed that the overall compression ratio presents a downward trend with BC in 249 

the range 16 and 64. When BC is larger than 64, the data volume of each block becomes smaller, and the number of feature 250 

components required to achieve the same compression error significantly decrease, so the data volume of each block after 251 

compression significantly decreases. Although the number of blocks is increasing (BC=128 and BC=256), the significant 252 

reduction of local block data volume makes the overall compression ratio show an upward trend. Bedsides that, the relationship 253 

between the block counts and compression ratio is related to the structure and complexity of the data itself, which is different 254 

for the data with different distribution characteristics. For the temperature data (T), the compression ratio reaches a maximum 255 

when the block count is set to 16. 256 

Figures 2(b) show the comparison between the original data and the compressed data with different block counts. It can be 257 

seen there’s no significant difference. This may because that the prominent feature components are gradually added to 258 

approximate the original data to affect the compression error, no matter how many blocks are, the proposed method can 259 

approach the given compression error by controlling the rank value to provide the accurate compression results.  260 

 261 

Figure 2. Original data and compression with different block counts: (a) The compression ratio change with different number of 262 

blocks; (b) original and reconstruction data of temperature (T) with different blocks  263 

4.3 Comparison with traditional methods 264 

To verify the advantage of the proposed compression method for ESMD, we compare Adaptive-HGFDR with the Blocked-265 

HGFDR and the classical ZFP method. Here, the block counts in the proposed method and Blocked-HGFDR method are both 266 

set as 16, and the rank in Blocked-HGFDR is selected as the average of the adaptive rank in each divided block data. The 267 

compression error and compression ratio of the zfp algorithm are affected by the tolerance parameter, which is set to 0.5. 268 

Without loss of generality, the relative compression error ratios are set as 10-5, 5×10-5, 10-4, 5×10-4, 10-3 respectively. The 269 

compression ratios of different compression methods are shown in Figure 3. 270 
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Figure 3. Compression ratio versus compression error for different methods.   272 

Figure 3 shows that as the relative compression error ratio grows, the compression ratio of all three methods becomes larger 273 

and larger. However, the growth rate of ZFP is much slower than that of Blocked-HGFDR and Adaptive-HGFDR. When the 274 

compression error is less than 0.0001, the compression ratio of ZFP is a little higher than that of Adaptive-HGFDR and 275 

Blocked-HGFDR. This may because the fitting of original data with high accuracy may request higher rank, which limits the 276 

improvement of compression ratio. When the compression error is 0.001, which is also acceptable for most ESMD data 277 

application, the compression ratio of Adaptive-HGFDR increase to 68.16, which means the compressed data size is 68.16 278 

times smaller than that of original data. At the compression error of 0.001, the compression ratio of Adaptive-HGFDR, ZFP 279 

and Blocked-HGFDR are 68.16, 13.42 and 50.78, respectively. The compression ratio of Adaptive-HGFDR is 5.07 times and 280 

1.34 times larger than that of  ZFP and Blocked-HGFDR. These may because the Adaptive-HGFDR can adaptively adjust the 281 

compression parameter (rank value) according to the actual data complexity, and thus better capture data features to improve 282 

the compression ratio.  283 

As the heterogeneity of compression error distribution is important for the data quality of lossy compression, we summarize 284 

the error distribution along the longitude dimension as well as the mean value and standard deviation of each method in Figure 285 

4. It is clearly seen that the error distribution of both Adaptive-HGFDR and ZFP are nearly uniform among different longitude 286 

dimensions. However, the Blocked-HGFDR shown significant four segments of abrupt changes at different longitude slices. 287 

The oscillation characteristic of the three methods are different. For Adaptive-HGFDR, the error distribution are more acted 288 

as low-frequency fluctuations while ZFP method are more as higher frequency fluctuations. The Blocked-HGFDR has very 289 

different fluctuations characteristics. For the first 0-230 longitude slices, the error distribution of Blocked-HGFDR is of high 290 

frequency fluctuations with relatively high frequency, which is similar to ZFP, while in the rest three segments, it has low 291 

amplitude, which has similar fluctuations as Adaptive-HGFDR. The error distribution of Adaptive-HGFDR is nearly 292 

symmetrical above and below the mean value, while the other two methods are not.  To numerically comparison of the mean 293 
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value and standard deviation of the error distribution among the three methods. The Adaptive-HGFDR has much smaller 294 

standard deviation (6.89×10-6), compared with ZFP (2.94×10-5) and Blocked-HGFDR (2.80×10-5). The Blocked-HGFDR has 295 

the smallest mean compression error  (9.35×10-5), which slightly lower than Adaptive-HGFDR  (9.83×10-5). While ZFP has the 296 

largest mean compression error (1.29×10-4).  297 

Both Blocked-HGFDR and Adaptive-HGFDR show the small difference between the adjacent slices and the big difference 298 

among the different local block data. Due to the spatio-temporal heterogeneity, the feature distributions of each local ESMD 299 

are significantly different, but the feature distributions of adjacent slices have a small difference because of the spatio-temporal 300 

similarity. Meanwhile, since the adjacent compressed slice data have similar characteristics, the error fluctuation of these slices 301 

is small. On the contrary,  the structure difference of each compressed local block data is large, the error fluctuation is also 302 

large. In Blocked-HGFDR, the compression parameters of each block are fixed, and the characteristic difference of data of 303 

each block is ignored. This weakness is improved in Adaptive-HGFDR by making each block adjust the compression 304 

parameters adaptively according to the compression error to achieve the balanced distribution of error. Although the Blocked-305 

HGFDR performs substantially better for several slice numbers, the adaptive HGFDR shows less variations. 306 

 307 

 308 

 309 

Figure 4. Compression error distribution of three compression methods on longitudinal slices( the slice means the partial data that 310 

divided along specific dimensions)  311 

 312 

To better reveal the characteristics of the compression error distributions, three random spatial pieces (Height 2,8 and 16) of 313 

the detailed distributions of spatial error are depicted in Figure 5. From Figure 5, we can see that the spatial structure of the 314 

data is different at different height, there are both continues and abrupted structure changes at different levels. Specifically, the 315 

compression error in the Blocked-HGFDR method and the ZFP method fluctuates dramatically, forming multiple peaks and 316 
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valleys. The error distributions of ZFP suggest there are high frequency stripes. There are irregular spatial patterns for Blocked-317 

HGFDR. The Adaptive-HGFDR method is more stable where the error distribution is nearly random. Additionally,  for spatial 318 

structure of the data is different at different height, there are both continues and abrupted structure changes at different levels. 319 

 320 

Figure 5. Spatial compression distribution of compression error for three compression methods.  321 

4.4 Evaluation with multiple variables 322 

For a comprehensive comparison of the different methods, 22 monthly climate model data were used as experimental data. 323 

Here, we focus on the variables with flux information and fast changing. Among these variables, there are variables with weak 324 

spatio-temporal heterogeneity such as the temperature, and the variables with strong spatio-temporal heterogeneity, which will 325 

help to better demonstrate the applicability of the method. The dimension of experimental data is 1024×512×221. Here, 326 

considering that the compression error and compression performance of each variable can be comparable, the compression 327 

error should be not too big or too small for all the 22 variables, the given error is 0.01, the block counts is 256×128×26, and 328 

the block count is 144. A detailed description of the variables is shown in Table 1. 329 

Table 1: 22 Descriptions of climate model data variables.  330 

Variable 

name 
Variable description 

Variable 

name 
Variable description 

FLDS Downwelling longwave flux at the surface PCONVT Convection top pressure 

FLDSC 
Clearsky downwelling longwave flux at 

surface 
RHREFHT Reference height relative humidity 

FLNSC Clearsky net longwave flux at surface SOLIN Solar insolation 

FLNT Net longwave flux at top of model SRFRAD Net radiative flux at surface 

FLNTC Clearsky net longwave flux at top of model TMQ 
Total (vertically integrated) precipitable 

water 
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FLUT Upwelling longwave flux at top of model TREFHT Reference height temperature 

FLUTC 
Clearsky upwelling longwave flux at top of 

model 
TREFMNAV Average of TREFHT daily minimum 

FSDSC Clearsky downwelling solar flux at surface TREFMXAV Average of TREFHT daily maximum 

FSNSC Clearsky net solar flux at surface TS Surface temperature (radiative) 

FSNTC Clearsky net solar flux at top of model TSMN 
Minimum surface temperature over output 

period 

FSNTOAC Clearsky net solar flux at top of atmosphere TSMX 
Maximum surface temperature over output 

period 

The Adaptive-HGFDR, Blocked-HGFDR, and ZFP method were applied to the 22 variables. The compression ratio, time, and 331 

standard deviation of the slice error were calculated and shown in Figure 6. Form Figure 6(a), it can be seen that, compared 332 

with the other two methods, the compression ratio of Adaptive-HGFDR is the largest. This may because Adaptive-HGFDR 333 

considers the coupling relationship among the spatial-temporal dimensions and search for optimal compression parameters at 334 

each data blocks. This not only makes the number of features required by each data block is small, but also makes the effect 335 

of data heterogeneity on the compression ratio least.  Adaptive-HGFDR captures the data features more accurate than the other 336 

two methods. The adaptive adjustment of parameters makes Adaptive-HGFDR yield the uniform error distribution for the 337 

multiple variables shown in Figure 6(c). In summary, Adaptive-HGFDR provides good adaptability for ESMD. Additionally,  338 

the figure 6(a) also shows that the tensor-based compression methods (Adaptive-HGFDR, Blocked-HGFDR) have the high 339 

compression ratios for some variables, it may because for tensor-based compression, the relationship between data volume and 340 

dimensions is transformed from exponential growth to nearly linear growth by defining the tensor product of tensors, which is 341 

essentially the displacement of space by calculating time, so the compression ratio is very high.  Also, we can see that with the 342 

given compression error, the compression rates of different variables are significant different. It may because different climate 343 

model variables have different distribution features. Generally speaking, for the variables with weak spatio-temporal 344 

heterogeneity, a small number of feature components can well achieve the accurate approximation that have the high 345 

compression rate. While, the variables with strong spatio-temporal heterogeneity may need a large number of feature 346 

components that have the low compression rate. Due to the continuous adjustment of compression parameters to search for the 347 

optimal rank, Adaptive-HGFDR is the most time consuming [Figure 6 (b)]. Despite this, some optimization strategies, such as 348 

the spatiotemporal indexes and the unbalanced block split, can help improving the efficiency of Adaptive-HGFDR. 349 
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 350 

Figure 6. Comparison of the compression results of three compression methods for 22 variables: (a) Compression ratio comparison; 351 

(b) compression time comparison; (c) standard deviation comparison of slice error.  352 

5 Conclusion  353 

In this paper, the Adaptive-HGFDR method is developed for ESMD compression. Adaptive-HGFDR achieves the uniform 354 

distribution of compression error through blocking data, conducting empirical relationship and searching optimal compression 355 

parameters.  With the adaptive adjustment of the local compression parameters, our proposed method has better compression 356 

performance compared with the traditional methods. Specially, Adaptive-HGFDR can not only maintain a larger compression 357 

ratio under the same overall compression error, but can also make the compression error distribution more uniform in all 358 

dimensions of the data. Our method is also evaluated with multiple variables. The results show that Adaptive-HGFDR performs 359 

well for all 22 variables, indicating the method has large potential to be a universal compression method for high-dimensional 360 

data. Additionally, the tensor method can also suitable for in situ observation data, even the data is sparse (Li, D. et al. 2020a), 361 

and the data fusion and data synthesis (Wang, P. et al. 2019; Akl, A. et al. 2015). The proposed method can be also applied to 362 

sensor data time series. With any data that can be represented as a tensor, it can be compressed with this method. We have also 363 

tried to extend the method to be fit for the irregular data that has arbiter boundaries or sparse data (Li, D. et al. 2019). From 364 

the perspective of mathematical foundation, tensor can not only support the multidimensional structure but also detect the 365 

multidimensional coupling feature. Besides that, the tensor can support many kinds of unstructured multidimensional data with 366 

a strict mathematical theory (Li, D. et al. 2020). The current main problem is how to construct the concise and efficient 367 
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algorithm, and found, validation, and solve the core science and technology problem of tensor compression in the practical 368 

application. we believe that tension-based spatiotemporal data compression must be an important research direction in the 369 

future data management of earth system models. 370 
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