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Dear Editor and Reviewers：1

This is a major reversion of manuscript gmd-2020-124. Thank you for your interest and helpful comments on our paper.2

In the revised version, we reorganized our contents, added several important technological details, and extended the3
experiments and evaluations. The most significant differences of the reversion and original version are listed as follow:4

1.Title: The title of the paper was changed from “Adaptive lossy compression of climate model data based on5

hierarchical tensor with Adaptive-HGFDR (V1.0) ” to “ Lossy compression of earth system model data based on6

hierarchical tensor with Adaptive-HGFDR (V1.0)”.7

2.Research Motivation: We rewrote the introduction and basic idea part. In the revise manuscript, we removed the8

discussion on the uniform distribution of compression error, and focus the topic on adequately exploring the spatio-temporal9

coupling correlations to reduce the compression error. To make this motivation more clear, we reclassify the existing lossy10
methods as the predictive and transform methods from the perspective of how the data is approximated. We reviewed the11

hierarchical-tensor based methods have advantages in utilizing the spatio-temporal coupling correlations to approximate the12

original data, because they treat all dimensions as a whole, largely reducing the information loss in compression.13

Additionally, assign each data block is assigned the independent compression parameter to better capture the local variation14
of the coupling correlations to improve the approximation accuracy.15

3.Basic Idea: We developed our method based on the comprehensive consideration of ESMD characteristics. ESMD16

have multiple variables with multidimensional structures and the coupling relation, the data distributions along different17

dimensions of the ESMD are always unbalanced, and the acceptable error of different variables in ESMD is different. Thus,18
we develop our method form the following perspectives. Firstly, an ideal lossy compression should have the simple19

parameter and the parameter should be selected adaptively for the acceptable error range of different variables. Secondly, the20

original data should be divided into a series of local data with more balanced size to reduce the effect of the dimensional21

unbalance of ESMD. Additionally, the local data in ESMD should have the independent compression parameter to capture22
the local variation of the multidimensional coupling correlation to improve the approximation accuracy. With these ideas, we23

developed Lossy compression of earth system model data based on hierarchical tensor with Adaptive-HGFDR.24

5.Experiments: In the experiments section, we added additional experiments with the method SZ, considering that SZ25

may cause the data inconsistency of compression methods, when the data are extracted and analyzed through different orders26
of dimension combinations. Thus, to verify that the proposed compression method is unrelated to the data organization order,27

different variables are selected and organized with different orders. Then the advanced predict method SZ and the proposed28

method are applied to these reorganized data to realize the lossy compression, and the dimensional distributions of29

compression errors are used to explore the relevance of the method to the data organization order.30
31
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To improve the language expressions, we have carefully checked and modified the manuscript accordingly, we also32
provide a detailed response as follow. We hope this time our paper will meet the high standard criteria of the Geoscientific33

Model Development.34

We have highlighted the changes in the revised manuscript in MS Word, and detailed responses to the comments are35
listed as follow:36

37

Referee 238

This paper presents a method that extends previously published work on Blocked-HGFDR to achieve better lossy39

compression–both in terms of the distribution of residuals as well as compression ratios. This new method is called40

Adaptive-HGFDR. The paper includes results from compression experiments to justify the claims about the method.41
Although the manuscript has improved since the last revision, many of the previously pointed-out issues remain, and I also42

have some concerns not previously raised. Previously pointed-out issues that were not convincingly addressed yet, in my43

opinion:44

45
(1). References still seem off: e.g. Anon, 2011; Of and Acm, 2000; Anon, 2013; None, 1970; Text contains (Springer,46

2011) but not the References section; Diffenderfer (2019 a) vs Diffenderfer (2019 b) in the text when there is only one47

Diffenderfer et al. in the References section.48

49
We have carefully corrected all the references.50

51

(2). An exhaustive list of all outstanding language issues would be too big to list out here. I have included a subset of52
minor language-related corrections in minor issues, but perhaps the authors should use an “autocorrect tool” to list53

out all the issues (e.g. I use Grammarly for this purpose).54

55

To improve the language expressions, we have carefully checked and modified the manuscript accordingly.56

57

(3). Line 54: “For the file-based compression method, it is difficult to arbitrarily adjust the compression parameter58

according to the given compression error.” This is related to something previously pointed out as not true - I still59
think this is not true - see e.g. https://github.com/LLNL/H5Z-ZFP60

61

The review about the existing methods in introduction part has been rewrote. These lossy methods have been classified as62

the predictive and transform methods from the perspective of how the data is approximated. The improper statement about63
the file-based compression method has been deleted.64
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65
(4)Line 73: “...ZFP (Diffenderfer et al., 2019b) are typical methods that use the[sic] feature prediction to achieve lossy66

compression.” Also pointed out in previous reviews that it is not clear why this is being called feature prediction. I67

looked up the cited paper and it doesn't mention the word "feature". So where is this insight from?68
69

The review about the existing methods in introduction part has been rewrote. These lossy methods have been classified as70

the predictive and transform methods from the perspective of how the data is approximated. The ZFP is classified as the one71

of the advanced predictive methods.72

73

(5)The captions for all figures should be expanded so that the reader can answer the questions of “What is going on in74

this figure?”, “What does that mean?”, “Why should I care?” are answered right there in the caption, i.e. without75
having to read the full text.76

77

All figures have been reproduced, and the detailed captions for all figures have be expanded.78

79

(6)Repeating a previous reviewer’s comment: “Not all ESMD data is high-precision. In fact, it is typical that80

calculations are done in double precision, but that data is output in single precision (e.g., for CESM). What is the81

precision of the data that you are compressing?” While this was answered in the rebuttal document, but the82
manuscript was not updated correspondingly (I did a quick Ctrl+F for the word “precision”)83

84

Yes. The original data we used is double precision. We first process the data into single precision, and then compress it with85
the proposed method. We have added the corresponding explanation in page 8 line 219.86

87

(7)The above is one example where the authors responded to a comment in the rebuttal but the manuscript was not88

updated correspondingly, but there are many more. I would advise the authors to go through all the comments from89
the previous round and make sure the comments are addressed in the manuscript text and not just the rebuttal90

document. Issues not previously pointed out but would be nice to fix regardless: The motivation for why a uniform91

distribution of compression errors is something to strive for is not convincing for me. I understand that lines 36-3992

are attempting to do this but I honestly can’t follow the line of reasoning. Since this is the core “Why should I care?”93
of this paper, I think the authors would do well to explain this better.94

95

In this revised version. We totally rewrote the motivation. The spatio-temporal coupling correlations exist in ESMD, which96

increases the difficulties in accurately approximating data in lossy compression, thus reduces the compression performance.97



4

Therefore, we removed the discussion on the uniform distribution of compression error, and we focuses on adequately98
exploring the spatio-temporal coupling correlations to reduce the compression error. Since the multidimensionality and99

heterogeneity are the natural attributes of ESMD, we further focus on constructing the lossy compression method that100

integrates both global and local spatio-temporal coupling correlations from the perspective of multiple dimensions. With this101
idea, we developed Lossy compression of earth system model data based on hierarchical tensor with Adaptive-HGFDR.102

103

104

(8)The paper would be easier to read if it had a clear “Contributions” section. As I understand it, the delta of the105

method described here, as compared to Blocked HGFDR is that a) each block can have its own rank b) a proposed106

method for calculating the optimal rank per block. I think the readers would appreciate having this spelled out107

towards the beginning of the paper.108
109

We have strengthened the contribution in the abstract, introduction and conclusion parts.110

We developed an adaptive lossy compression method based on Blocked-HGFDR and improve Blocked-HGFDR from the111

following perspectives. Firstly, the original data are divided into a series of data blocks with more balanced size to reduce the112
effect of the dimensional unbalance of ESMD. Then based on the mathematical relationship between the compression113

parameter and compression error in Blocked-HGFDR, the control mechanism is developed to determine the optimal114

compression parameter for the given compression error. By assigning each data block independent compression parameter,115

Adaptive-HGFDR can capture the local variation of multidimensional coupling correlations to improve the approximation116
accuracy.117

118

119

(9). The “fast search algorithm” described in Definition 4 (line 194) appears to be stated as an original contribution in120

this paper. To me, this appears to be a rephrasing of “Binary Search”, a method that is commonly used in this space.121

In fact, Grasedyk et al, cited here, also uses this algorithm. The authors would do the reader a favour by making this122
clearer – either by clearly stating that this is a description of Binary Search, or by clarifying the difference between123

the stated method and Binary Search.124

125

With the constructed controlling mechanism, the binary search algorithm is adopted to find the optimal parameter for the126
data block. We have corrected the corresponding expression in page 7 line 203~206.127

128

129
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(10)Assuming that I’m not mistaken in the above comment, I’m not convinced that Rouillier et. al. is the best article130
to cite for the log(n) complexity of Binary Search.131

132

The reference article has been replaced.133

134

(11) Line 55: “For the error truncation-based[sic] compression, the distribution of floatingpoint precision of ESMD135

is not uniform, which could lead to the unevenly[sic] distribution of compression errors.” Either I misunderstood the136
statement or this is not true. That rounding/truncation errors are approximately uniformly distributed is a well-137

known result and used in fields from signal processing to machine learning (e.g. https://arxiv.org/pdf/1802.01436.pdf -138

this paper refers to it as quantization error). Line 60: “To summarize, it is hard to achieve flexible control of the139

compression ratio and errors for the description-based lossy compression methods.” Perhaps as a result of the other140
concerns I raise elsewhere, but there doesn’t seem to be enough justification provided to make this claim.141

142

The review of the existing methods has been rewrote. The inappropriate expression has been revised.143

144

(12) Line 83: “None of these methods considers ESMD as the[sic] high dimensional data with the heterogeneous145

correlation between different dimensions.” I’m not sure about the other methods but ZFP and SZ surely consider146
higher-dimensional data. In fact, Tao et. al (2017), cited here, talks specifically about multidimensional prediction.147

Can the authors please clarify why this does not meet their definition of considering ESMD as high dimensional data?148

149

Generally, ESMD is the spatio-temporal data with coupling correlations among multiple dimensions. However, most of the150

current existing lossy compression methods, including both predictive and transform lossy compression methods, integrate151

the spatio-temporal coupling correlations to the data approximation on the foundation of mapping multidimensional data into152

low dimensional vector or matrics. Few of these methods directly process multidimensional ESMD as a whole, which may153
destroy the multidimensional coupling correlations that largely affect the approximation accuracy in lossy compression. We154

have corrected the corresponding expression in the introduction and conclusion sections.155

156

(13). Equation 3 is from Yuan et al (2015) and should be cited as such157

We have added the corresponding reference in page 7 line 189.158

159

(14). As I understand it, the hardware used here (HP Compaq Elite 8380 219 MT with Intel Core i7-3770 3.4 GHz160

processors and 8 GB of RAM) is really small compared to what would be used in realistic runs of this problem. I161

think this should be pointed out since the compression times are an essential result being reported.162
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163
The proposed compression method is for the model analysis for the end-user, more than the model developer, this is why we164

choose to conduct the experiment on PC. The experimental results also show that the proposed method can support the lossy165

compression of ESMD on the ordinary PCs both in terms of the space occupation and compression time. We have added the166
corresponding expression in introduction and conclusion section.167

168

(15). It's not clear how the data for Figure 3 was obtained. e.g. text says "… zfp algorithm are affected by the169
tolerance parameter, which is set to 0.5 ". Does that mean all the data points in Fig 3 for zfp were obtained by the170

same setting? Then what was varied to get a variation of compression ratios?171

In ZFP, the key parameter is the tolerance. For the given compression error, we conduct the simulation experiments with172

many random tolerances, and then the ideal tolerances is achieved when the corresponding compression errors are close to173
the given compression errors. Thus, the tolerance parameters are 0.05, 0.3, 0.5, 3.8 and 10. The detail statement about the174

parameter of ZFP are added in page 12 line 300~302.175

176

(16). When I attempted to answer the above question myself by looking at the provided code, I realised that the code177

does not include ZFP anywhere. Please correct me if I’m mistaken in this conclusion. I think the authors should178

provide the code to reproduce all of the plots in the paper.179

The code of the algorithm in this work is provided in the form of hyperlink in page 19 line 447~448.180

181

(17)Minor issues:182

Line 40: “The main idea of ESMD lossy compressions is to eliminate unnecessary information in data to reduce the183
data size.” This is true of any compression, not just ESMD184

lossy compression. Also compressions->compression.185

develope -> develop186

exiting -> existingunbalance -> imbalance187
prominent components -> principal components?188

we have corrected the corresponding expression.189

190

191
192

193

194

195
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Referee 2196

197

The paper is in good shape, it just needs some light editing:198
Line 205: typo "coressponding"199

Line 214-215: is this supposed to be an in-line reference?200

Line 235: typo "whcih"201

Line 245: "and" in odd position in "4, 16, 64, and 128, 256"202
Line 253: typo "Bedsides"203

Line 310: space in wrong position in "slices( the"204

Line 332: typo "Form"205

Line 339: "figure" should be capitalized206
we have corrected the corresponding expression.207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222
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Lossy compression of earth system model data based on hierarchical223

tensor with Adaptive-HGFDR (V1.0)224

Zhaoyuan Yu1,2, Dongshuang Li3,4, Zhengfang Zhang1, Wen Luo1,2, Yuan Liu1, Zengjie Wang1,225
Linwang Yuan1,2,*226
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4Jiangsu Co Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China232

Correspondence to: Linwang Yuan (email: yuanlinwang@njnu.edu.cn)233

Abstract. Lossy compression has been applied to the data compression of the large-scale earth system model data (ESMD)234

due to its advantages of a high compression ratio. However, few lossy compression methods consider both the global and235
local multidimensional coupling correlations, which could lead to the information loss in data approximation of lossy236

compression. Here, an adaptive lossy compression method, Adaptive-HGFDR is developed on the foundation of a stream237

compression method for geospatial data, Blocked Hierarchical Geospatial Field Data Representation (Blocked-HGFDR). Yet,238

the original Blocked-HGFDR method is improved from the following perspectives. Firstly, the original data are divided into239
a series of data blocks with more balanced size to reduce the effect of the dimensional unbalance of ESMD. Then based on240

the mathematical relationship between the compression parameter and compression error in Blocked-HGFDR, the control241

mechanism is developed to determine the optimal compression parameter for the given compression error. By assigning each242

data block independent compression parameter, Adaptive-HGFDR can capture the local variation of multidimensional243
coupling correlations to improve the approximation accuracy. Experiments are carried out based on the Community Earth244

System Model (CESM) data. The results show that our method has higher compression ratio and more uniform error245

distributions, compared with ZFP and Blocked-HGFDR. For the compression results among 22 climate variables, Adaptive-246

HGFDR can achieve good compression performances for most flux variables with significant spatio-temporal heterogeneity247
and fast changing. This study provides a new potential method for the lossy compression of the large-scale earth system248

model data.249

1 Introduction250

Earth System Model Data (ESMD), which comprehensively characterize the spatio-temporal changes of earth system with251
multiple variables, are presented as multidimensional arrays of floating-point numbers (Kuhn et al., 2016;Simmons, 2016).252

With the rapid development of earth system models in finer computational grids and growing ensembles of multi-scenario253

simulation experiments, ESMD have shown an exponential increase in data volume (Nielsen et al., 2017; Sudmanns et al.,254
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2018). The huge data volume brings considerable challenges to the data computation, storage, and analysis on ordinary PCs,255
which will further limit the research and application of ESMD. Lossy compression, which focuses on saving large amounts256

of data space by approximating the original data, is considered as an alternative solution to meet the challenge of the large257

data volume(Baker et al., 2016; Nathanael et al., 2013). However, ESMD, as a comprehensive interaction of earth system258
variables at different aspects of space, time, and attributes, show the significant multidimensional coupling259

correlations(Runge et al., 2019; Mashhoodi et al., 2019; Shi et al., 2019). The mixture of different coupling correlations then260

leads to complex structures, such as the uneven distribution, spatially nonhomogeneity and temporally nonstationary, which261

increases the difficulties in accurately approximating data in lossy compression. Thus, developing a lossy compression262
method that could adequately explore the multidimensional coupling correlations is an important way to reduce the263

compression error(Moon et al., 2017).264

Predictive and transform methods are two of the most widely used lossy compression approaches in terms of how the data is265

approximated. Predictive lossy compression predicts the data with parametric functions, and the compression is achieved by266
typically retaining (and encoding) the residual between the predicted and actual data value. For example, NUMARCK learns267

emerging distributions of element-wise change ratios and encodes them into an index table to be concisely268

represented(Zheng et al., 2016). ISABELA applies a preconditioner to seemingly random and noisy data along spatial269

resolution to achieve an accurate fitting model for the data compression(Lakshminarasimhan et al., 2013). In these methods,270
the multidimensional ESMD are processed as low dimensional sequences or series without considering the multidimensional271

coupling correlations. SZ, one of the most advanced lossy compression methods, features adaptive error-controlled272

quantization and variable-length encoding to achieve the optimized compression (Ziv and Lempel, 2003). In SZ, a set of273

adjacent quantization bins are used to convert each original floating point data value to an integer along the first dimension274
of the data based on its prediction error (Di et al., 2019). With a well-designed error control mechanism, SZ can achieve the275

uniform compression error distribution. However, SZ predicts the data point only along the first dimension, and it is not276

designed to be used along the other dimensions or use a dynamic selection mechanism for the dimension (Tao et al., 2017).277

This makes the data inconsistency problem of SZ, where the same ESMD with different organization orders can capture278
different multidimensional coupling correlations, and further produce different compressed data.279

Transform methods, reduce data volumes by transforming the original data to another space where the majority of the280

generated data are small, such that the data compression can be achieved by storing a subset of the transform coefficients281

with a certain loss in terms of the user’s required error (Diffenderfer et al., 2019; Andrew et al, 2020). One example is the282
image-based method, which slices ESMD from different dimensions into separate images, and each image is then283

compressed by feature filtering with wavelet transformation or Discrete Fourier Transform (Taubman and Marcellin, 2002).284

As the compression is applied to the single image slice, the coupling correlations among multiple dimensions are not always285

well utilized. More advanced method like ZFP splits the original data into small blocks with an edge size of 4 along each286
dimension, and compresses each block independently via a floating-point representation with a single common exponent per287

block, an orthogonal block transform, and embedded encoding(Tao et al., 2018). In ZFP, the multidimensional coupling288
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correlations are integrated by treating all dimensions as a whole through multidimensional blocking. In each block, ZFP289
converts the high dimensional data into matrics, which yet flattens the data and partially destroys the internal correlations290

among multiple dimensions. Additionally, with only a single common exponent used in each block, it is inadequate to291

capture the local variation of the correlations. Thus, the ZFP method is extremely effective in terms of data reduction and292
accuracy for smooth variables, but are unsurprisingly challenged by variables with abrupt value changes and ranges spanning293

many orders of magnitude, both of which are common in ESMD outputs (Baker et al., 2014).294

Most of the current existing lossy compression methods, including predictive and transform lossy compression methods,295

integrate the multidimensional coupling correlations to the process of data approximation on the foundation of mapping296
multidimensional data into low dimensional vector or matrics(Wang et al., 2005). Few of these methods directly process297

multidimensional ESMD as a whole. For instance, current predictive methods usually split the original data into a series of298

local low-dimensional data, then predict each local data respectively. In this way, the splitted data obtained by different split299

strategies could capture the different coupling correlations, which further lead to the inconsistent compressed results for the300
same data. Transform methods map the original data to the small space by removing the redundant coupling correlations.301

Most of these methods have already considered the coupling correlations in the global region. However, each local region302

still utilizes the data splitting that destroys the local coupling correlations, which result in the weak compression performance303

for the ESMD with strong local variations. Therefore, constructing the lossy compression method that integrates both global304
and local coupling correlations from the perspective of multiple dimensions, is helpful to improve the performance of lossy305

compression for ESMD.306

Recently, the tensor-based decomposition methods, such as the Canonical Polyadic (CP) , Tucker and hierarchical tensor307

decomposition, have been introduced to the compression of the multidimensional data(Bengua et al., 2016; Jing et al., 2014).308
The tensor decomposition, which exploits the data features along with each mode and the corresponding coupling309

relationship by considering the multidimensional data as a whole, can estimate the intrinsic structure of ESMD ignored in the310

metric model. The core motivation behind the tensor-based decomposition is to eliminate the inconsistent, uncertain, and311

noisy data without destroying the intrinsic multidimensional coupling correlation structures (Kuang et al., 2018; Du et al.,312
2017). Among these methods, the hierarchical tensor decomposition could achieve higher quality at large compression ratio313

than traditional tensor methods through extracting data features level by level (Wu et al., 2008). Yuan et al (2015) designed314

an improved hierarchical tensor method (Blocked-HGFDR) to compress geospatial data with a hierarchical tree structure,315

showing the obvious advantages in the compression accuracy and compression efficiency. This hierarchical-tensor based316
method utilizes the multidimensional coupling correlations to approximate the original data by treating all dimensions as a317

whole, which can largely reduce the information loss in lossy compression. In Blocked-HGFDR, each local data own the318

same compression parameter and the global average error is used to control the capture of the global multidimensional319

coupling correlation. Since ESMD are always spatio-temporal heterogeneous where the coupling correlations are various in320
each local region, the same compression parameter applied to each local data results in the insufficient capture of the local321

coupling correlation. Although the global average error is relatively small, the obtained results tend to a certain “average”322
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within the each local data, which may make the local compression error very large so as to bring the bias to the data323
approximation.324

In this paper, the lossy compression for ESMD is developed based on the Blocked-HGFDR. We firstly construct a division325

strategy that divides the original data into a series of data blocks with relatively balanced dimension. Then the parameter326
control mechanism is designed to assign each data block the independent compression parameter under the given327

compression constraint. After that, Blocked-HGFDR is applied to each data block to achieve the lossy compression.328

Experiments on climate simulation dataset with 22 variables are carried out to evaluate the performance and applicability of329

the methods in ESMD compression. The remainder of this paper is organized as follows. Section 2 introduces the basic ideas330
about developing Adaptive-HGFDR. Section 3 discusses the block mechanism, the relationship between the compression331

parameter and compression error, and the fast search algorithm. Section 4 uses the temperature data to verify that the method332

can obtain adaptive rank under the accuracy constraint. Section 5 discusses the effectiveness and computational efficiency of333

the method, as well as the results.334

2 Basic idea335

The lossy compression of ESMD should comprehensively consider the characteristics of ESMD. Firstly, since ESMD336

have multiple variables, the compression parameter of an ideal lossy compression should be simple and can be flexibly337

adjusted according to the corresponding variables of ESMD. Secondly, since the acceptable error of different variables338

in ESMD is different, for example, the error of wind speed is very different from that of temperature. So an ideal lossy339

compression should be able to select adaptively compression parameters for the acceptable error range of different340

variables. Considering that Blocked-HGFDR has simple compression parameter, it can be used for the lossy341

compression of ESMD. Thirdly, since many variables of ESMD have spatio-temporal heterogeneity, the corresponding342

coupling correlations are variate within the local region. Thus, the correlations in both global and local region should343

be well integrated in lossy compression to improve the approximation accuracy.344

In order to adequately integrate the multidimensional coupling correlations and adaptively select the compression345

parameter in Blocked-HGFDR, there are two issues to be considered. The first issue is the dimensional unbalance of346

ESMD. For instance, the data accumulated in the temporal dimension is typically longer than that in the spatial347

dimension for a spatio-temporal series with long observations. Since the tensor decomposition method treats each348

dimension equally that ignores the dimensional unbalance, it is difficult to accurately approximate data with349

unbalanced dimensions. Thus, it is better to split the original data into small local data blocks with the more balanced350

dimension structure, and then applying the tensor decomposition to each local data individually can reduce the351

approximation bias caused by the dimensional unbalance. The second issue is the parameters selection under the given352

compression constrains. Since the coupling correlations of ESMD vary within local regions, for the given compression353
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constrains such as the maximum compression error, the compression parameter of different variables or data blocks354

should be selected flexibly according to the corresponding data characteristic, so as to well capture the local variation355

of the coupling correlation to improve the approximation accuracy. Therefore, based on the mathematical relationship356

between the compression error and the compression parameter in Blocked-HGFDR, a control mechanism, which can357

adjust the compression parameter according to the accuracy demands should be developed.358

Based on the above considerations, our methods, Adaptive-HGFDR, is developed according to the following three359

procedures (Figure 1). Procedure 1: Splitting the original ESMD into small data blocks. In this procedure, the360

dimension to split the data and the optimal size of the data block is determined by conducting different combinations361

of data blocking in terms of the dimension and block counts. Procedure 2: Conducting the relationship between362

compression error and compression parameter. In order to obtain a uniform distribution of the compression error for363

each data block, an empirical relationship between the compression error and the rank value is established, where the364

rank value of each data block can be adjusted at any given compression error. Procedure 3: Adaptive searching for the365

optimal compression parameter. A binary search method is used to search the optimal compression parameter, which is366

updated with a parameter control mechanism until the compression error meets the given constraint.367

368

369
370

Figure 1. Overall framework of the basic idea.371

3 Method372

3.1 Block hierarchical tensor compression373

EMSD is a multidimensional array. It can be seen as a tensor with the spatio-temporal references and the associated374

attributes. Without loss of generality, a three-dimensional tensor can be defined as (Suiker and Chang, 2000),375

where , , and are values that represent the number of grids along the dimensions of longitude, latitude, and time (or376
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height), respectively. These dimensions are always unbalanced due to the different spatial and temporal resolutions. So, the377
data block is introduced to reduce the impact of dimension unbalance on the data compression.378

379

380
Definition 1 Data block381

For the spatio-temporal data , it can be considered as composed of a series of local data with the same spatio-382

temporal reference. Here, each local data is defined as the data block as follow:383

(1)384

Here, part( ) is the function that divides the original tensor into a series of data block , each data block includes385

local spatial and temporal information, and n is the number of data blocks. Compared with the original data, the dimensions386
of these data blocks are smaller and more balanced. For the divided data blocks, in order to adequately capture the387

multidimensional coupling correlation, the key point is how to determine the compression parameter according to the given388

compression error.389

390
Definition 2 Blocked-HGFDR391

Based on the divided data blocks, Yuan et al.(2015) proposed the Blocked-HGFDR method based on the hierarchical tensor392

compression. In this method, the hierarchical tensor compression is applied to each block, then the hierarchical tensor393

compression of each data block is obtained by selecting the prominent feature components and filtering out the residual394
structure. This method utilizes the hierarchical structure of data features, greatly reducing data redundancy, and thereby395

achieving the efficient compression of the amount of spatio-temporal data (Yuan et al., 2015). The overall compression of396

Blocked-HGFDR can be formulated as:397

(2)398

Similar to the prominent components obtained by SVD for two-dimensional data(Yan et al., 2019), the matrix and the399

sparse transfer tensor are considered to be the r-th component of a third-order tensor in each dimension, respectively,400

where denotes the number of multi-domain features. The residual tensor, , in Eq. (2) denotes the information not401

captured by the decomposition model, and in Eq. (2) is the reconstructed r-th core402

tensor and feature matrix(Grasedyck, 2010; Song et al.,2013).403

3.2 Adaptive selection of parameter and solution404

Considering that the distribution characteristic of each divided data block is different (Hackbusch and Kühn, 2002), the key405

to adequately capture the multidimensional coupling correlations in Blocked-HGFDR is to adaptively select the compression406
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parameter for each local data respectively according to the given compression error. So the key step is to construct407
controlling mechanism based on the relationship between the compression error and compression parameter. Thus, the408

following terms are defined.409

410
Definition 3 The controlling mechanism.411

In Blocked-HGFDR, the relationship between the compression error and compression parameter (Rank) is given as412

(Yuan et al., 2015), thus the controlling mechanism to determine the compression parameter of each block data413

should be the rank value closest to the given compression error as follows:414

(3)415

is the given compression error that depends on different application scenarios; are the coefficients depended on the416

structure and complexity of the data, which can be obtained by the simulation experiment for actual data.417

In Blocked-HGFDR, the relationship between the compression ratio and compression parameter (Rank) is given as418

follows：419

(4)420

As shown in Eqs. (2), (3), and (4), in Blocked-HGFDR, with rank decreasing, the compression ratio of Blocked-HGFDR421
increases, and the compression error also increases. In Blocked-HGFDR, the rank value of different blocks is fixed, which422

results in the fluctuation of the compression error in the specific dimension. Since the structure of each block is different, the423

compression parameter of each data block should be determined independently according to the given compression error.424

Considering that the actual compression error may not strictly satisfy the given value, the optimal parameter is selected as425
the minimum in which the obtained compression error is close to the given one.426

427

To find the optimal parameter for data block , with the above constructed controlling mechanism, the binary search428

algorithm based on dichotomy is constructed. That means before adjusting the rank each time, the optimal rank429
corresponding to the given compression error is constantly approached in half by reducing the selection interval by half of430

the rank. The algorithm is implemented as follows:431

432

Algorithm: the optimal parameter search algorithm based on dichotomy

Input: data block ; given compression error ;

Output: the optimal parameter

Function Description: is used to calculate the error of hierarchical tensor SVD of at rank based
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on Eqs. (4) and (6). is the rounding function; is the function which taking the maximum value

1: ,

2:

3:

4: While ( && )

5: If ( )

6:

7: Else

8:

9: End If

10:

11:

12: End While

13: Return ( )

433

During the whole algorithm, the function is the computing intensive function that could be the performance434

bottleneck. If we consider a calculation of as one meta calculation, the complexity of the traditional traversal435

method is . When introducing the dichotomy optimization, the complexity can be reduced to (Cai et al., 2012).436

4 Case study437

4.1 Data description and experimental configuration438

In this paper, data produced by Community Earth System Model are used as the experimental data to evaluate the439

compression performance of Adaptive-HGFDR, which can be obtained from Open Science Data Cloud in NetCDF (Network440

Common Data Form) format (http://doi.org/10.5281/zenodo.3997216). The data set includes air temperature data (T) stored441

as a (latitude longitude height) tensor and other 22 variables stored as442

a (latitude longitude time) tensor from 1980/01 to 1998/05. When reading the NetCDF data, a total of443

48GB memory will be occupied. The original data we used is double precision, we first process the data into single precision,444

and then the existing methods (SZ, ZFP, Blocked-HGFDR) and the proposed method are applied to compare the445
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compression performances. Research experiments were performed by the MATLAB R2017a environment on a Windows 10446
Workstation (HP Compaq Elite 8380 MT) with Intel Corei7-3770 (3.4 GHz) processors and 8 GB of RAM.447

448

The following experiments were performed. (1) In order to transform the original data to data blocks with the balanced449
dimension, the dimensions of these data blocks are better to have the same size. Thus, the optimal counts of data blocks450

should be determined. For the given compression error, we randomly divide the original data into a series of data blocks with451

different block counts, Adaptive-HGFDR is then applied to these data blocks, and the corresponding compression ratios are452

calculated. The optimal block count is achieved at the largest compression ratio. (2) Since ESMD have multiple dimensions453
and these dimensions may have different organization orders, to verify that the proposed compression method is unrelated454

with the data organization order, different variables are selected and organized with different orders. Then the advanced455

predict method SZ and the proposed method are applied to these reorganized data to realize the lossy compression, and the456

dimensional distributions of compression errors are used to explore the relevance of the method with the data organization457
order. (3) To verify the advantages of the proposed method for ESMD, the proposed method was compared with the458

advanced transform method ZFP and Blocked-HGFDR. (4) To show the applicability and the aadvantages of the proposed459

method for the data with different characteristics, we select 22 variables in ESMD, then the proposed method, ZFP and the460

Blocked-HGFDR are applied to compare the compression performances. In these experiments, two key indices are used to461
benchmark the performances: the compression error and compression ratio. The compression error is calculated as:462

463

(5)464

465
Here, the is the F norm. is the original tensor data, is the compressed tensor data.466

The compression ratio is calculated as：467

(6)468

Here, is the memory size of original data before compression, is the memory size of the compressed469

reconstructed data.470

4.2 Optimal block count selection471

The selection of the optimal block count is carried out using the temperature data (T). Here, the block count with a power of472

2 will be the best to fit as the near balanced data blocking. Therefore, a series of block counts of 4, 16, 64, and 128, 256 are473

generated as the potential block counts. For the compression constraint, 10-4 is used as an initial given compression error.474
The relationships between the block count (BC) and the compression ratio are shown in Figure 2.475
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Clearly, the highest compression ratio is reached when the block count equals 16 (BC=16). Hence, the optimum block count476
is 16, and the corresponding block size is . It is interesting to find that the overall compression ratio presents a477

downward trend with BC in the range 16 and 64. When BC is larger than 64, the data volume of each block becomes smaller,478

and the number of feature components required to achieve the same compression error significantly decrease, so the data479
volume of each block after compression significantly decreases. Although the number of blocks is increased (BC=128 and480

BC=256), the significant reduction of local block data volume makes the overall compression ratio show an upward trend.481

Besides that, the relationship between the block count and the compression ratio is related to the structure and complexity of482

the data itself, which is different for the data with different distribution characteristics. For the temperature data (T), the483
compression ratio reaches a maximum when the block count is equal to 16.484

485
486

Figure 2. The relationship between the block count and the compression ratio487
488

Figure 3 show the original data and the compressed data with different block counts. It can be seen there is no489

significant difference between the original data (Figure 3(a)) and the compressed data (Figure 3(b)-Figure 3(f)), and the490

distribution characteristics of the compressed data (Figure 3(b)-Figure 3(f)) are consist with the original data (Figure 3(a)).491

This may because that the prominent feature components are gradually added to approximate the original data to affect492

the compression error, no matter how many blocks are, the proposed method can approach the given compression error493

by controlling the rank value to provide the accurate compression results.494
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495
496

Figure 3. Original data and compressed data with different block counts. (a) The original data; (b) the compressed data when data497
count is 4; (c) the compressed data when data count is 16; (d) the compressed data when data count is 64; (e) the compressed data498
when data count is 128;(f) the compressed data when data count is 256.499

500

4.3 Comparison with traditional methods501

4.3.1 Comparison with SZ502

In order to verify that the proposed compression method is unrelated with the data organization order, we select three503

variables in ESMD. For each variable, we organize the data with504

different orders as . Then, the SZ and the proposed method are applied505

to the data to realize the lossy compression. The error distributions of different compression results in the corresponding506

dimension are shown in the Figure 4.507

508
509
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Figure 4. The compression error distribution along different dimensions. (a) The compression error distribution along latitude for510
SOLIN. (b) The compression error distribution along latitude for TREFMXAV. (c) The compression error distribution along511
latitude for FSNTC.512

513
Figure 4 shows that the dimensional distribution of the compression error in SZ is quite different with the different514

organization orders of data. This may because the SZ predicts the data point only along the first dimension but not515

along the other dimensions, thus the compression result varies depending on the order of organization. Since the same516

ESMD may have the different organization orders, this makes a critical data inconsistency problem of SZ. While,517

because the proposed method processes the multidimensional data as a whole, the error distribution is independent518

with the data organization order, thus the dimensional distribution of the error remains consistent.519

4.3.2 Comparison with ZFP and Blocked-HGFDR520

To verify the advantage of the proposed method for ESMD, we compare Adaptive-HGFDR with the Blocked-HGFDR and521

the ZFP method for the given compression error. Without loss of generality, the relative compression error ratios are set as522

10-5, 5×10-5, 10-4, 5×10-4 and 10-3 respectively. Here, the block count in the proposed method and the Blocked-HGFDR523

method are both set as 16, and the rank of Blocked-HGFDR is selected as the average of the adaptive rank in each divided524
block data. In ZFP, the key parameter is the tolerance. For the above given compression errors, we conduct the simulation525

experiments with many random tolerances, then find the ideal tolerances in these cases the corresponding compression errors526

are close to the given compression errors. Thus, the tolerance parameters are 0.05, 0.3, 0.5, 3.8 and 10. The compression527
ratios of different compression methods under the condition of different compression errors are calculated and shown in528

Figure 5.529

530
531

Figure 5. The relationship between the compression error and compression ratio for different methods.532
533
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Figure 5 shows that as the compression error ratio grows, the compression ratio of all three methods becomes larger and534
larger. However, the growth rate of ZFP is much slower than that of Blocked-HGFDR and Adaptive-HGFDR. When the535

compression error is less than 0.0001, the compression ratio of ZFP is a little higher than that of Adaptive-HGFDR and536

Blocked-HGFDR. This may be because that the approximating of the original data with high accuracy requests higher rank,537
which limits the improvement of compression ratio. When the compression error is 0.001, which is also acceptable for most538

ESMD data application, the compression ratio of Adaptive-HGFDR increases to 68.16, which means that the compressed539

data size is 68.16 times smaller than that of the original data. At the compression error of 0.001, the compression ratio of540

Adaptive-HGFDR, ZFP and Blocked-HGFDR are 68.16, 13.42 and 50.78, respectively. The compression ratio of Adaptive-541
HGFDR is 5.07 times and 1.34 times larger than that of ZFP and Blocked-HGFDR. These may be because that the Adaptive-542

HGFDR can adaptively adjust the compression parameter (rank value) according to the actual data complexity, and thus543

better capture data features to improve the compression ratio.544

We summarize the error distribution along the longitude dimension of each method in Figure 6. It is clearly seen that the545
error distributions of both Adaptive-HGFDR and ZFP are nearly uniform among different longitude dimensions. However,546

the Blocked-HGFDR method shows significant four segments of abrupt changes at different longitude slices. The oscillation547

characteristics of the three methods are different. For Adaptive-HGFDR, the error distribution is more acted as low-548

frequency fluctuations while ZFP method is more as higher frequency fluctuations. The Blocked-HGFDR method has very549
different fluctuations characteristics. For the first 1-230 longitude slices, the error distribution of Blocked-HGFDR is of high550

frequency fluctuations with relatively high frequency, which is similar to ZFP, while in the rest three segments, it has low551

amplitude, which has similar fluctuations as Adaptive-HGFDR. For the comparison of the mean value and standard552

deviation of the error distribution among the three methods, the Adaptive-HGFDR has much smaller standard deviation553
(6.89×10-6), compared with ZFP (2.94×10-5) and Blocked-HGFDR (2.80×10-5). The Blocked-HGFDR method has the smallest554

mean compression error (9.35× 10-5), slightly lower than Adaptive-HGFDR (9.83× 10-5), while ZFP has the largest mean555

compression error (1.29×10-4).556

Both Blocked-HGFDR and Adaptive-HGFDR show the small difference between the adjacent slices and the big difference557
among the different local block data. Due to the spatio-temporal heterogeneity, the feature distributions of each local ESMD558

are significantly different, but the feature distributions of adjacent slices have a small difference because of the spatio-559

temporal similarity. Meanwhile, since the adjacent compressed slice data have similar characteristics, the error fluctuation of560

these slices is small. On the contrary, the structure difference of each compressed local block data is large, and the error561
fluctuation is also large. In Blocked-HGFDR, the compression parameter of each block are fixed, and the characteristic562

difference of data in each block is ignored. This weakness is improved in Adaptive-HGFDR by adjusting the compression563

parameter of each block adaptively according to the compression error to achieve the balanced distribution of error.564

Although Blocked-HGFDR performs substantially better for several slice numbers, Adaptive-HGFDR shows less variations.565
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566
567

Figure 6. The distributions of compression error along the longitudinal slices ( the slice means the partial data that divided along568
specific dimensions).569

570
To better reveal the characteristics of the compression error distributions, the distributions of the spatial error for three571

random spatial pieces (Height 2,8 and 16) are depicted in Figure 7. From Figure 7, we can see that the spatial structure of the572

data is different at different height, there are both continuous and abrupt structure changes at different levels. Specifically,573

the compression error in the Blocked-HGFDR method and the ZFP method fluctuates dramatically, forming multiple peaks574
and valleys. The error distributions of ZFP suggest that there are high frequency stripes. There are irregular spatial patterns575

for Blocked-HGFDR. The Adaptive-HGFDR method is more stable where the error distribution is nearly random.576

Additionally, the spatial structure of the data is different at different height, and there are both continuouss and abrupt577

structure changes at different levels.578
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579
580

Figure 7. The spatial distribution of compression error of different compression methods. (a)The spatial distribution of581
compression error with height as 2 in ZFP; (b)the spatial distribution of compression error with height as 8 in ZFP; (c) the spatial582
distribution of compression error with height as 16 in ZFP; (d) the spatial distribution of compression error with height as 2 in583
Blocked-HGFDR; (e) the spatial distribution of compression error with height as 8 in Blocked-HGFDR; (f) the spatial distribution584
of compression error with height as 16 in Blocked-HGFDR; (g) the spatial distribution of compression error with height as 2 in585
Adaptive-HGFDR; (h) the spatial distribution of compression error with height as 8 in Adaptive-HGFDR; (i) the spatial586
distribution of compression error with height as 16 in Adaptive-HGFDR;587

588

4.4 Evaluation with multiple variables589

For a comprehensive comparison of the different methods, 22 monthly climate model data were used as the experimental590
data. Here, we focus on the variables with flux information and fast changing. Among these variables, there are variables591

with weak spatio-temporal heterogeneity such as the temperature, and the variables with strong spatio-temporal592

heterogeneity, which will help to better investigate the applicability of the method. The dimension of the experimental data is593

1024×512×221. Here, considering that the compression error and compression performance of each variable can be594
comparable, the compression error should not be too big or too small for all the 22 variables, the given error is 0.01, the595

block size is 256×128×26, and the block count is 144. For the tolerance parameter settings in ZFP, we conduct the596

simulation experiments with many random tolerances, then find the ideal tolerances in these cases the corresponding597

compression errors are close to the given compression errors. A detailed description of the variables is shown in Table 1.598
599

600
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Table 1: 22 Descriptions of climate model data variables.601
Variable
name Variable description Variable

name Variable description

FLDS Downwelling longwave flux at the surface PCONVT Convection top pressure

FLDSC
Clearsky downwelling longwave flux at
surface RHREFHT

Reference height relative humidity

FLNSC Clearsky net longwave flux at surface SOLIN Solar insolation
FLNT Net longwave flux at top of model SRFRAD Net radiative flux at surface

FLNTC
Clearsky net longwave flux at top of model

TMQ
Total (vertically integrated) precipitable
water

FLUT Upwelling longwave flux at top of model TREFHT Reference height temperature

FLUTC
Clearsky upwelling longwave flux at top of
model TREFMNAV

Average of TREFHT daily minimum

FSDSC Clearsky downwelling solar flux at surface TREFMXAV Average of TREFHT daily maximum
FSNSC Clearsky net solar flux at surface TS Surface temperature (radiative)

FSNTC
Clearsky net solar flux at top of model

TSMN
Minimum surface temperature over output
period

FSNTOAC
Clearsky net solar flux at top of atmosphere

TSMX
Maximum surface temperature over output
period

602

The Adaptive-HGFDR, Blocked-HGFDR, and ZFP method were applied to the 22 variables. The compression ratio, time,603
and standard deviation of the slice error were calculated and shown in Figure 8. Form Figure 8(a), it can be seen that604

compared with the other two methods, the compression ratio of Adaptive-HGFDR is the largest. This may be because605

Adaptive-HGFDR considers the coupling relationship among the spatial-temporal dimensions and searches for the optimal606
compression parameter at each data blocks. This not only makes the number of features required by each data block small,607

but also makes the effect of data heterogeneity on the compression ratio least. Adaptive-HGFDR captures the data features608

more accurate than the other two methods. The adaptive adjustment of parameter makes Adaptive-HGFDR yield the uniform609

error distribution for the multiple variables shown in Figure 8(c). In summary, Adaptive-HGFDR provides good adaptability610
for ESMD.611

612

Additionally, Figure 8(a) also shows that the tensor-based compression methods (Adaptive-HGFDR, Blocked-HGFDR) have613

the high compression ratios for some variables, it may be because for tensor-based compression, the relationship between614
data volume and dimensions is transformed from exponential growth to nearly linear growth by defining the tensor product615

of tensors, which is essentially the displacement of space by calculating time, so the compression ratio is very high. Also, we616

can see that with the given compression error, the compression rates of different variables are significant different. It may be617

because different climate model variables have different distribution features. Generally speaking, for the variables with618
weak spatio-temporal heterogeneity, a small number of feature components can well achieve the accurate approximation that619

have the high compression rate. While, the variables with strong spatio-temporal heterogeneity may need a large number of620

feature components that have the low compression rate. Due to the continuous adjustment of compression parameter to621

search for the optimal rank, Adaptive-HGFDR is the most time consuming [Figure 8 (b)]. Despite this, some optimization622
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strategies, such as the spatio-temporal indexes and the unbalanced block split, can help improve the efficiency of Adaptive-623
HGFDR.624

625
626

Figure 8. Comparison results of compression ratio, compression time and standard deviation. (a) The comparison results of627
compression ratio; (b) The comparison results of compression time; (c) The comparison results of standard deviation.628

5 Conclusion629

In this study, we propose a lossy compression method, Adaptive-HGFDR, for ESMD based on the blocked hierarchical630
tensor decomposition by integrating multidimensional coupling correlations. In Adaptive-HGFDR, to achieve the lossy631

compression, ESMD is divided into nearly balanced data blocks, which are then approximated by the hierarchical tensor632

decomposition. This compression method is applied to all the dimensions of the data blocks rather than mapping the data633

into low dimensions to avoid the destruction of coupling correlations among different dimensions. This also avoids the634
possible data inconsistency of compression methods like SZ, when the data are extracted and analyzed with different635

Input/Output (IO) orders. Thus, this method provides the potential advantage in multidimensional data inspection and636

exploration. Additionally, the compression parameter is simple and adaptively calculated for each data block independently637

for a given compression error. Therefore, the compression well captures both the global and local variation of the coupling638
correlations to improve the approximation accuracy. The simulated experiments demonstrated that, the proposed method has639

higher compression ratio and more uniform error distributions than ZFP and Blocked-HGFDR under the same condition, and640
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can support the lossy compression of ESMD on the ordinary PCs both in terms of the memory occupation and compression641
time. Additionally, the comparison results among 22 climate variables show that the proposed method can achieve good642

compression performance for the variables with significant spatio-temporal heterogeneity and fast changing.643

644
The application of the hierarchical tensor in this paper provides several new potentials for developing more advanced lossy645

compression methods. With the hierarchical tensor, both the representation model and computational model can support the646

complex multidimensional computation and analysis(Kressner and Tobler, 2014). For example, commonly used signal647

analysis methods like (Singular Value Decomposition)SVD and (Fast Fourier transform)FFT can achieve efficient stream648
computing with the hierarchical tensor representation, thus can inherently support efficient on-the-fly computation and649

analysis. Other interesting topics focusing on the tensor-based compression, includes the compression for unstructured data650

or extremely sparse data (Li, D. et al. 2019). Moreover, comprehensive tensor methods, like Partial Differential Equation651

(PDE) are also recently been introduced to the hierarchical tensor, Thus, it is even possible to integrate some dynamic652
models of earth systems directly on the compressed data. With the rapid development of the tensor theory and applications, it653

may provide more and more potentials for tensor-based spatio-temporal data compression for the modelling and analyzing of654

ESMD.655

656
Multiple dimensionality and heterogeneity are the natural attributes of ESMD. In ESMD, there are various spatio-temporal657

structures with gradual/sudden change and fast/slow change, which also show the significant regularity and randomness.658

From the perspective of the rules of ESMD distribution, constructing the data compression method based on659

multidimensional coupling correlations may be the key to improve ESMD compression performance in the future. For660
example, for static or slow-varying variables, large block and small Rank can be used to achieve large compression, while661

for fast-changing variables, small block and large Rank may be needed. The data coupling correlations obtained by662

dynamically adjusting the block count and Rank, can not only be used to the data compression, but also are helpful to realize663

the data organization and compressed storage based on the data characteristics. Additionally, in the large-scale simulation664
experiment with long time sequence and multi-mode integration, this characteristic-based data organization and storage of665

multidimensional ESMD make it possible to only retain the prominent components, so as to achieve efficient comparison of666

large-scale data and can help to promote the ability of ESMD application service. For instance, for the major natural667

disasters, this multidimensional tensor compression can support the progressive transmission with the limited bandwidth by668
using only the prominent components, which can help to promote the depth and breadth of ESMD application.669

Code and data availability. The Adaptive-HGFDR lossy compression algorithm proposed in this paper was conducted out670

in MATLAB R2017a. The exact version of Adaptive-HGFDR and experimental data used in this paper is archived on671

Zenodo(AndyWZJ, 2020). The experimental data are Large-scale Data Analysis and Visualization Symposium Data672
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