Response to Reviewer #1

Authors would like to thank the anonymous reviewer for thorough evaluation of our manuscript and constructive comments. Point-by-point responses to the reviewer's comments are given below in bold fonts and corresponding changes in the manuscript have been highlighted in red color.

General comment: This article delineates the effects of spatial resolution on the model performance over the central Himalaya. Ground and radiosonde profiles were used to assess the performance of WRF at different spatial resolution. The temporal evolution of meteorological profiles in WRF is seen to be in agreement with the measurements with stronger correlations for upper troposphere than those in the lower troposphere. To use the profiles to assess the model result for mountain region is new in my review. However, I find that this paper does not really reach to main question for mountain meteorology studies. The authors should review the frontier of this area. Only do evaluations is not qualified for GMDD publication.

Response: We agree with the reviewer and following the suggestion more literature survey has been included in the revised version (Page: 4-5, Lines: 85-104). We would like to mention that our study is not limited to evaluation only and we show that high-resolution set ups, with existing terrains in the model preprocessor, could reduce the model biases only to some extent. We therefore implemented a very high-resolution topography into the preprocessor to improve the model performance. Some biases particularly in the dynamics suggests uncertainties associated with other factors e.g. interaction between local circulation due to slope winds and synoptic-scale flow, or the representation of highly complex topography of the Himalaya, as correctly pointed out by the reviewer. This study is therefore first step and would be followed up with testing of individual physics schemes as new field measurements become available. These aspects and outlook have been discussed in the revised version (Page: 20-21 Lines 373-406; Page: 25-27 Lines: 503-505, 509-514). It must be however stressed that a model evaluation does qualify for GMD(D) publications as mentioned in the journal's policy.

Comment 1: An issue is that when they compare model grid values with that of AWS, they might use two temperature at different height. Please compare the AWS elevation and the grid elevation where AWS located. Use the elevation difference to adjust the model temperature. The same problem also happens to wind speed. There are many evaluation papers for the mountain numerical simulation. The authors should review these papers, try to improve the wind speed performance.

Response 1: Thanks for the valuable suggestion. The difference between actual elevation of the observation site with model grid is 588 m in d01, 480 m in d02, and 270 m in d03 respectively. As the objective here is to describe the improvements in the model output over finer resolutions, we have analyzed model output without adjustments first. Nevertheless, following reviewer's suggestion and following other mountain modelling papers (e.g. Mues et al., 2018), meteorological data adjusted for elevation has also been analyzed in the revised manuscript (Page: 20, Lines: 371-390 and revised Table 1).

Comment 2: Figure 3, add their difference between d01 and Radiosonde and give some introduction on the difference. Line 261, it's better to add a figure which shows the correlation coefficient r, mean bias etc. result for all the height, not only say model captures variations at 500 hPa better than 50 hPa. It is also possible to compare the r and mean bias profiles with the three spatial resolution simulation.

Response 2: As suggested, difference between d01 and radiosonde are analyzed and discussed (revised Figure 3; and Page: 13-14, Lines: 269-282). Correlations at different altitudes are presented in form of Taylors diagram (Figure 7a). Following reviewer's suggestion, results summarizing the mean bias, root mean square error, correlation of profiles at different resolution have also been included in the revised version (new Figure 5, and Page: 15-16, Lines: 307-331).

Comment 3: Figure 4, many things are not clear in the figure, which year? It also repeat with figure 3. Again, the difference is more interesting to us.

Response 3: Following reviewer's suggestions, Figure 4 (as well as Figure 3) have been modified for clarity. Year (2011) has been mentioned on the revised figure. As suggested, differences are presented in both the figures in revised version.

Comment 4: Figure 6 the figure legend is not clear at all. Replot the figure with a colored marker. **Response 4:** As suggested, Figure 6 (Figure 7 in the revised version) has been replotted with proper color marker and legend.

Comment 5: Figure 7 where is (a) and (b) letters? what does "0-6-12-.30" mean in the first wind-rose diagram? then why 0-2, 2-4, 4-6.....legend appears on the right of the fourth diagram?

Response 5: Figure 7 (Figure 8 in the revised version) has been revised to address reviewer's comment. Frequency of the occurrence and detailed legends are included now. Previously,

the "0-6-12-...30" was percentage frequency and legend "0-2, 2-4, 4-6....." at the right of the figure was showing the wind speed (ms⁻¹).

Comment 6: Figure 8, the simulation does not show the diurnal variation in wind speed at all. What's the explanation for it? This is really interesting for mountain numerical simulation.

Response 6: We agree that the model does not capture the diurnal variation in the wind speed, as also seen over another complex terrain – such as the Tibetan Plateau (Zhou et al., 2019). The daytime reduction in the wind speed was observed by Solanki et al. (2019) over the same mountain peak attributed to the evolution of mountain circulation due to the heating of the slopes and its interaction with the synoptic scale flow, resulting in increased intensity of turbulences and vertical exchange of the momentum fluxes within the surface layer of atmosphere which inhibit the synoptic scale flow up to a certain extent during the daytime. Such competing effect between the thermal and mechanical driven processes could remain unresolved in the model even at higher grid resolution. In addition, mountain winds show sensitivity to boundary layer schemes Yver et al. (2013). Here, we analysed first the impacts of improved representation of the topographical features which would be followed up with testing of different physics schemes in the future. The interpretations with references as well as the limitations and outlook is added in the revised version of the manuscript (Page: 20-21; Lines: 371-406).

Reply to comments of Reviewer#2

Authors would like to thank the anonymous reviewer for thorough evaluation of our manuscript and constructive comments. Point-by-point responses to the reviewer's comments are given below in bold fonts and corresponding changes in the manuscript have been highlighted in red color.

General comment: This study uses WRF v3.8.1 to explore the effects of spatial resolution on local meteorology. It is very interesting that they found the finer spatial resolution can reduce the biases in simulated meteorology and improve representation of CH through domain feedback into regional-scale simulations. However, in this study, there are too many descriptions of the simulation, but no enough physical explanation to the simulation. It's difficult to make sense that why it occurred. In my view, this manuscript still needs major revision before it can be accepted.

Response: Thanks for the suggestion. Here, we mainly show that more realistic representation of the highly complex terrain, through finer resolution implemented with 3s terrain data leads to better local meteorology of the central Himalaya. Following reviewer's suggestion more discussions including physical explanations have been presented in the revised version of the manuscript, as described in response to specific comments.

Comment 1: Section 2.2: How do you process the different temporal resolution of datasets, using the mean value or instantaneous value?

Response 1: Collocated instantaneous values between model and observations have been compared. This is mentioned in the revised manuscript (Page: 9; Lines: 188-189).

Comment 2: Line 182-184: It is available of ERA interim at 0.125×0.125 , but it's the interpolation results, which may not represent the true performance of ERA interim, especially over the complex terrain regions. It's better to add the comparison between WRF and ERA interim at 0.75×0.75 , even there is much less grids of ERA in D03.

Response 2: As suggested, ERA interim at 0.75 x 0.75⁰ has been used for comparison in the revised manuscript (Figure 2; Pages:10-12; Lines: 204; 245-246).

Comment 3: Please update the figure captions: i.e., units of all the variables in Figure 3; caption of Figure 6 is not clear (Fig 6a is the comparison between WRF simulation at D01 and the observation?); Figure 8 is only focused D01, etc. you should make them clear in figure caption.

Response 3: Thanks for pointing this out. We have revised the figure and provided clear caption with details of units. Radiosonde and model d01 is also marked clearly (please see Figures 3, 7a, and 9 in the revised version).

Comment 4: Line 259-262: Why did it happen? The different vertical distribution and the lower correlation at lower altitudes mostly come from the influence of land-air interaction. Please discussing the possible factors of your results.

Response 4: We agree that the interactions of the underlying surface with lower troposphere profoundly affects the dynamics and local circulations. In mountainous terrains, most important interactions include slope winds and the synoptic scale flow (Solanki et al., 2019). Orographic drag has been suggested to be additional source of the lower correlation (Zhou et al., 2018, 2019). This is discussed in the revised version of the manuscript (Page: 16 Lines: 312-322; Page: 20-21 Lines: 382-406).

Comment 5: How do you process the different spatial representation of different simulation and observation? For D01, one grid can indicate the mean situation of 15*15km area; meanwhile, for D02, it only indicates that in 5*5km area, etc. please show details of your methods to compare the grid simulation and the in-situ observation.

Response 5: The nearest grid point to the observational site is used for comparison (Page: 9; Lines: 188-189) (e.g. Mues et al., 2018; Singh et al., 2016).

Comment 6: Line 286-287: It's very interesting that WRF shows a warm bias south side of Himalaya. Many previous studies pointed that there is obvious cold bias over Tibet (including Himalaya), i.e., Zhou et al. (2017) and Gao et al. (2015). Did you check your location of observation site and WRF grids? The warm bias in your WRF simulation is due to the lower terrain height of the grids than the Observed, please check if they are located over valley and the observed located over ridge

Response 6: Thanks for valuable suggestion. The observation site is a mountain ridge. We performed further analysis of model output by accounting for the altitude difference through linear interpolation of the meteorological parameters to the actual altitude of site in the revised version (Figure 6d-f, Table 1). Altitude adjusted data of model shows cold bias in

agreement with Gao et al., (2015). This is discussed in the revised version of the manuscript (Page: 20-21; Lines: 371-399).

Comment 7: Figure 5: as the WRF resolution increasing, the diurnal cycle simulation of T and RH are better, but it didn't work for wind speed. please check the location of the WRF grids and observed station, if both them located valley or ridge? Besides, Zhou et al. (2019) stressed the importance of turbulent orographic form drag (TOFD) on the diurnal cycle simulation of wind speed. It's better to give more explains of inconsistent diurnal cycle of wind between simulation and observations.

Response 7: The processes such as local circulation, slope wind interaction with the synopticscale flow are the key factors governing the diurnal winds over mountain ridge, as shown in Solanki et al., (2016, 2019). We agree with reviewer's view that turbulent orographic form drag (TOFD) could modify the diurnal evolution of wind over such terrains (Zhou et al (2019). These all aspects with relevant references have been included in the revised version of the manuscript (Page: 20-21; Lines:382-406).

Comment 8: RH is also dependent on Temperature. What's the performance of the WRF in simulation Specific Humidity (Q)? Please compare the Q between WRF simulation and observation.

Response 8: Comparison of specific humidity between model and observations has been investigated (new Figure S1 in the Supplement). The specific humidity (Q2) shows the explicit dependent on the horizontal grid resolution the bias decreases with increasing the grid resolution. The Q2 shows better correlation (0.67 for d01, 0.72 for d02, and 0.77 for d03) than RH (0.43 for d01, 0.45 for d02 and 0.52 for d03). This is discussed in the revised version of the manuscript (Page: 18; Lines: 350-354).

Comment 9: Section 3.4: What are the effects of feedback on the wind direction? In WRF-WF experiments, there are obvious difference among the simulated wind direction at three resolutions. Is there any improvement in the WRF-F experiments?

Response 9: The slight improvement in the wind direction is observed in WRF-F, such improvements are explained in the corresponding section 3.4 (Page 24, Line 459-462), where the effect of the feedback is discussed and changes can be seen in the wind rose plot as shown in Figure S2 and S3. Nevertheless, smaller changes were seen in correlations for WS10 (by 0.05) and T2 (by -0.02) (Figure S2). Variations in wind speed and direction shows an improvement in dominant flow direction e.g. easterly, westerly and north-westerly (Figure S3).

Comment 10: Section 3.5: You should check the orographic variation in WRF model output, when you input different geographic data. multi-scale orographic variations are key factors of Wind and moisture simulation over complex terrain, i.e., south side of Himalaya (Wang et al., 2020).

Response 10: The orographic variations in WRF model output have been checked for different geographical input data (Figure 11, Figure S6). As suggested, the spatial

distribution of relative humidity is included in the revised version of the manuscript (new Figure S6; Page:27-28; Lines:525-529). The impact of the orographic variation with different resolution topographic data in RH (Figure S6) shows the differences are in range of -1 to 1% in d02 and -3% to 3% in d03. Such variations are due to inclusion of the SRTM3s high resolution topographic data allowing the model to capture more variation, such orographic features are seen to impact the distribution of moisture in line with suggested study (Wang et al., 2020).

1 Effects of spatial resolution on WRF v3.8.1 simulated meteorology over the central

2 Himalaya

- 3 Jaydeep Singh¹, Narendra Singh^{1*}, Narendra Ojha², Amit Sharma^{3, a}, Andrea Pozzer^{4, 5}, Nadimpally
- 4 Kiran Kumar⁶, Kunjukrishnapillai Rajeev⁶, Sachin S. Gunthe³, V. Rao Kotamarthi⁷
- ⁵ ¹Aryabhatta Research Institute of Observational Sciences, Nainital, India
- ⁶ ²Physical Research Laboratory, Ahmedabad, India
- ⁷ ³EWRE Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai,

8 India

- ⁴Department of Atmospheric Chemistry, Max Planck Institute for Chemistry, Mainz, Germany
- ⁵Earth System Physics Section, International Centre for Theoretical Physics, Trieste, Italy
- ⁶Space Physics Laboratory, Vikram Sarabhai Space Centre, Thiruvananthapuram, India
- ¹² ⁷Environmental Science Division, Argonne National Laboratory, Argonne, Illinois, USA
- ¹³ ^aNow at Department of Civil and Infrastructural Engineering, Indian Institute of Technology Jodhpur,
- 14 Jodhpur, India
- 15 **Correspondence:** Narendra Singh (narendra@aries.res.in) and Andrea Pozzer (andrea.pozzer@mpic.de)

16

17 Abstract

The sensitive and fragile ecosystem of the central Himalayan (CH) region, experiencing enhanced anthropogenic pressure, requires adequate atmospheric observations and an improved representation of Himalaya in the models. However, the accuracies of atmospheric models remain limited here due to highly complex mountainous topography. This article delineates the effects of spatial resolution on the modeled meteorology and dynamics over the CH by combining the WRF (Weather Research and Forecasting) model with the GVAX (Ganges Valley Aerosol Experiment) observations during the summer monsoon. WRF simulation is performed over a domain (d01) encompassing northern India at 15 km x 15 km

resolution, and two nests: d02 (5 km x 5 km) and d03 (1 km x 1 km) centered over CH with boundary 25 conditions from respective parent domains. WRF simulations reveal higher variability in meteorology e.g. 26 Relative Humidity (RH=70.3–96.1%), Wind speed (WS=1.1–4.2 ms⁻¹), as compared to the ERA Interim 27 reanalysis (RH=80.0-85.0, and WS=1.2-2.3ms⁻¹) over the northern India owing to higher resolution. WRF 28 simulated temporal evolution of meteorological profiles is seen to be in agreement with the balloon-borne 29 30 measurements with stronger correlations aloft (r = 0.44-0.92), than those in the lower troposphere (r = 0.44-0.92) 31 0.18–0.48). However, the model overestimates temperature (warm bias by 2.8°C) and underestimates RH (dry bias by 6.4%) at surface in the d01. Model results show a significant improvement in d03 (P=827.6 32 33 hPa, T=19.8°C, RH=92.3%) and are closer to the GVAX observations (P=801.4, T=19.5, RH=94.7%). Interpolating coarser simulation (d01, d02) to the altitude of station reduces the biases in pressure and 34 35 temperature, however, suppresses the diurnal variations highlighting significance of well-resolved terrain 36 effects (d03). Temporal variations in near-surface P, T and RH are also reproduced by WRF d03 to an extent (r > 0.5). A sensitivity simulation incorporating the feedback from nested domain demonstrated 37 38 improvements in simulated P, T and RH over CH. Our study shows the WRF model set up at finer spatial resolution can significantly reduce the biases in simulated meteorology and such an improved 39 representation of CH can be adopted through domain feedback into regional-scale simulations. 40 41 Interestingly, WRF simulates a dominant easterly wind component at 1 km x 1 km resolution (d03), which 42 was missing in the coarse simulations; however, a frequent southeastward wind component remained underestimated. Model simulation implementing a high resolution (3 s) topography input (SRTM) 43 improved the prediction of wind directions, nevertheless, further improvements are required to better 44 reproduce the observed local-scale dynamics over the CH. 45

46 **1. Introduction**

47 Himalayan region is one of the most complex and fragile geographical systems in the world, and has48 paramount importance for the climatic implications and air composition at regional to global scales (e.g.

Lawrence et al., 2010, Pant et al., 2018; Lelieveld et al., 2018). The ground-based observations of 49 meteorology and fine-scale dynamics are highly sparse. In this direction, an intensive field campaign 50 51 called as the GVAX (Kotamarthi, 2013) was carried out over a mountainous site in the Central Himalaya 52 which provided valuable meteorological observations for atmospheric research, model evaluation and improvements. Accurate simulations of meteorology are needed for numerous investigations, such as to 53 54 study the regional and global climate change, snow-cover change, trapping and transport of regional 55 pollution, and the hydrological cycle especially monsoon system (e.g. Sharma and Ganju, 2000; Bhutiyani 56 et al., 2007; Pant et al., 2018). Studies focussing over this region have become more important due to the 57 increasing anthropogenic influences resulting in enhanced levels of Short-Lived Climate forcing Pollutants 58 (SLCPs) along the Himalayan foothills (e. g. Ojha et al., 2012; Sarangi et al., 2014; Rupakheti et al., 2017; Deep et al., 2019; Ojha et al., 2019). Although Global Climate Models (GCMs) simulate the climate 59 variabilities over global scale, their application for reproducing observations in the regions of complex 60 landscapes is limited, due to coarse horizontal resolution (e. g. Wilby et al., 1999; Boyle et al. 2010; 61 62 Tselioudis et al., 2012; Pervez and Henebry, 2014; Meher et al., 2017). Mountain ridges, rapidly changing land-cover, and the low altitude valleys often lie within a grid box of typical global climate models 63 resulting in significant biases in model results when compared with observations (e. g. Ojha et al., 2012; 64 65 Tiwari et al., 2017, Pant et al., 2018). On the other hand, Regional Climate Models (RCMs) at finer resolutions allow better representation of the topographical features thus providing improved simulations 66 of the atmospheric variability over regions of complex terrains. Several mesoscale models (e. g. 67 Christensen et al., 1996; Caya and Laprise 1999; Skamarock et al., 2008; Zadra et al., 2008) have been 68 developed and applied successfully over different parts of the world. These studies have revealed that the 69 70 RCMs provide significant new insights by parameterizing or explicitly simulating atmospheric processes over finer spatial scales. Nevertheless, large uncertainties are still seen over highly complex areas 71 indicating the effects of further unresolved terrain features (e. g. Wang et al., 2004; Laprise, 2008; Foley, 72 73 2010) and need to improve the simulations.

Of late, anthropogenic influences and climate forcing have been increasing over the Himalaya and its 74 75 foothill regions since pre-industrial times (Pant et al., 2006; Bonasoni et al., 2012; Srivastava et al., 2012). 76 Further, an increase in the intensity and frequency of extreme weather events have been observed over the Himalayan region (e. g. Nandargi and Dhar, 2012; Sun et al., 2017; Dimri et al., 2017) in past few decades. 77 78 These events include extreme rainfall and resulting flash floods, cloudbursts, landslides etc., and their 79 causes range from mesoscale processes to larger synoptic scale events. Unfortunately, the lack of 80 observational network covering the Himalaya and foothills with sufficient spatio-temporal density inhibits 81 the detailed understanding of the aforementioned processes, and meteorological and dynamical conditions 82 in the region. Therefore, usage of regional models, evaluated against available in-situ measurements would 83 fill the gap of investigating atmospheric variability in the observationally sparse and geographically complex mountain terrain of Himalaya. 84

The biases in simulating the meteorological parameters especially in the lower troposphere are associated 85 with several factors e.g. representation of topography, land use, surface heat and moisture flux transport, 86 87 and parameterization of physical processes (e. g. Lee et al., 1989; Hann and Yang, 2001; Cheng and Steenburgh, 2005; Singh et al., 2016). WRF model has been applied over the complex terrains in the 88 Himalaya region (e.g. Sarangi et al., 2014; Singh et al., 2016, Mues et al., 2018; Wang et al., 2020), Tibetan 89 90 Plateau (e.g. Gao et al., 2015; Zhou et al., 2018), and intermountain west of the United States (e.g. Zhang et al., 2013) to evaluate and study the meteorology and dynamics. A cold bias was reported in this model 91 92 over the Tibetan Plateau and Himalayan region by Gao et al (2015). Near surface winds showed biases linked with unresolved processes in the model such as sub-grid turbulence, land-surface atmospheric 93 interactions, besides boundary layer parametrization (Hanna and Yang, 2001; Zhang and Zheng, 2004; 94 95 Cheng and Steenburgh, 2005). Zhou et al., (2018) found lower biases in simulated winds after taking into account the turbulent orographic form drag over the Tibetan Plateau. 96

WRF model with suitably chosen schemes has been shown to reproduce the regional-scale meteorology
(Kumar et al., 2012) and to some extent also the mountain-valley wind systems (Sarangi et al., 2014) and

boundary layer dynamics (Singh et al., 2016; Mues et al., 2018) over the Himalayan region. Nevertheless
local meteorology is still difficult to simulate correctly; Mues et al (2018) performed high resolution WRF
simulation over Kathmandu valley of Himalaya and reported overestimation of 2m temperature and 10m
wind speed attributed to complex topography even at resolution of 3 km x 3 km. Meteorological
simulations including winds and precipitation were shown to improve with increase in grid resolution over
different parts of the world (e.g. Mass et al., 2002; Rife and Davis, 2005; Hart et al., 2005).

Most of the studies carried out over the Himalayan region applied model at coarse horizontal resolutions (45 to 30 km) and evaluated simulations over larger spatial scales, except the study by Mues et al. (2018) which used relatively higher spatial resolution (3 km x 3 km). Nevertheless, it remains unclear how the finer resolution could better resolve the complex terrain of the central Himalaya and improve the meteorological simulations, especially at 5 km to 1 km resolution.

With this opportunity of model evaluation and improvements in simulating meteorological and dynamical variability over the CH, here, we have used a nested WRF set up with a coarse 15 km x 15 km domain (d01) with nests of 5 km x 5 km (d02) and 1 km x 1 km (d03) centred over the CH. The main objectives of the study are as follows:

- 114 1. To examine the model performance over the CH at 15 km x 15 km resolution
- 2. To examine the effects or improvements that can be achieved at higher spatial resolutions: 5 km x
 5 km, and 1 km x 1 km.
- 3. To investigate the effect of feedback from nest that could be adopted into parent domain, as this
 would allow configuring a setup covering larger Indian region with more accurate results over
 Himalaya
- 4. To implement a very high resolution (3 s) topographical input into the model to examine thepotential of simulations finer than 1 km in reproducing local-scale dynamics

Subsequent section 2 describes the model set up, followed by experimental design, and a discussion of datasets used for model evaluation. Section 3 provides comparison of model results with the ERA Interim reanalysis (section 3.1), radiosonde observations (section 3.2), and ground-based measurements (section 3.3). Analysis of domain feedback is presented in section 3.4, and the effect of implementing highresolution topography is investigated in section 3.5, followed by the summary and conclusions in section 4.

128 **2.** Methodology

129 2.1 Model set up and Experimental Design

Weather Research and Forecasting (WRF) model-version 3.8.1 has been used in the present study. WRF 130 is a mesoscale non-hydrostatic, Numerical Weather prediction (NWP) model with advance physics and 131 numerical schemes for simulating meteorology and dynamics. WRF-ARW uses Eulerian mass based 132 dynamical core with terrain-following vertical coordinates (Skamarock et al., 2008). ERA Interim 133 reanalysis from the European Center for Medium Range Weather Forecasts (ECMWF) available at a 134 horizontal resolution of 0.75⁰ x 0.75⁰ at 6 h interval has been used to provide the initial and lateral boundary 135 conditions to the WRF model (Dee et al., 2011). Static geographical data, which includes the information 136 of terrain height, land use, and land cover etc., is based on the Moderate Resolution Imaging 137 Spectroradiometer (MODIS) data available at 30s horizontal resolution. 138

The shortwave radiation scheme used is the Goddard scheme (Chou and Suarez, 1994) while the long wave radiation is simulated by the Rapid Radiative Transfer Model (Mlawer et al., 1997) scheme. For resolving the boundary layer processes the first order nonlocal closure based Yonsei University (YSU) scheme (Hong et al., 2006) is used including an explicit entrainment layer with the K-profile in an unstable mixed layer. PBL height is determined from the Richardson number (*Ri_b*) method in this PBL scheme. Convection is parameterized by the Kain-Fritsch (KF) cumulus parameterization (CP) scheme, accounting for sub-grid level processes in the model such as precipitation, latent heat release and vertical redistribution

of heat and moisture as a result of convection (Kain, 2004). With increase in model grid resolution to less 146 than 10 km (known as "grey area"), the CP scheme is usually turned off and an explicit microphysics (MP) 147 148 scheme is needed to resolve cloud and precipitation processes (Weisman et al., 1997). In the present study, the CP scheme is used for d01 while it is turned off for d02 and d03. The Thomson microphysics containing 149 prognostic equations for cloud water, rain water, ice, snow, and graupel mixing ratios, is used (Thompson 150 et al., 2004). Parameterization of surface processes is done with MM5 Monin-Obukhov scheme and 151 152 Unified Noah land surface model (LSM) (Chen and Dudhia, 2001; Ek et al., 2003; Tewari et al., 2004). The Noah LSM includes a single canopy layer and four soil layers at 0.1, 0.2, 0.6 and 1m within 2m of 153 154 depth (Ek et al., 2003).

The model is configured with three domains of 15 km (d01), 5 km (d02) and 1 km (d03) horizontal grid 155 156 spacing using Mercator projection centering at Manora Peak (79.46°N, 29.36°E, amsl ~ 1936m) in central Himalaya. Topography within the model domains is highly complex as evident form the ridges (Figure 1). 157 Outer domain d01 includes north part of Thar Desert, part of IGP (Indo-Gangetic-Plain), Himalayan 158 mountains with vegetation and snow cover, while the innermost domain d03 consists of mostly 159 mountainous terrain. Model atmosphere has 51 vertical levels with top at 10 hPa. For d01, 100 east-west 160 161 and 86 north south grid points are used to account for the effect of synoptic scale meteorology e.g. Indian summer monsoon. The d02 has 88 east-west and 76 north-south grid points covering sufficient spatial 162 region around the observational site to consider the effects of mesoscale dynamics, e.g. change of wind 163 164 pattern due to orography. The innermost domain 03 has 126 east-west and 106 north-south grid points mainly to reveal local effects e.g. convection, advection, turbulence, orthographic lifting etc. 165

Figure 1: Topography in WRF model domains at three horizontal resolutions: domain d01 (15 x 15km),
domain d02 (5 x 5km) and domain d03 (1 x 1 km). Triangle symbol indicates the location of the GVAX
campaign over Manora Peak, Nainital. Box inside the figure represents the nested domain.

The d01 simulation provides the boundary conditions to domain d02, and domain d02 to innermost domain d03. For d01, boundary conditions are provided from ERA Interim reanalysis, as explained earlier. Model simulation has been performed for four months of the summer monsoon season: 01 June 2011 to 30 September 2011 (JJAS). First 10 days of the simulation is considered as the spin-up and removed from the analysis. Only the outer domain d01 is nudged with the global reanalysis for temperature, water vapor, zonal and meridional (u and v) components of wind with nudging coefficient of 0.0006 (6 x 10^{-4}) at all vertical levels (e.g. Kumar et al., 2012). Several of the configuration options e. g. physics, meteorological nudging, etc. are selected following earlier applications of this model over this region (e. g. Kumar et al.,
2012; Ojha et al., 2016; Singh et al., 2016; Sharma et al., 2017).

180

181 **2.2. Observational data**

182 We utilize the observations conducted as a part of an intensive field campaign- the Ganges Valleys Aerosol Experiment (GVAX) for the evaluation of model simulations. The GVAX campaign was conducted using 183 Atmospheric Radiation Measurement (ARM) Climate Research Facility of the U.S. Department of Energy 184 185 (DOE) from June, 10 2011 to March 31, 2012 at ARIES, Manora Peak in Nainital (e.g. Kotamarthi, 2013; Singh et al., 2016; Naja et al., 2016). The surface-based meteorological measurements of ambient air 186 temperature, pressure, relative humidity, precipitation, wind (speed and direction) were carried out using 187 an automatic weather station at 1-minute temporal resolution. The instantaneous values of the observations 188 are compared with hourly instantaneous model output at the nearest grid point. 189

190 The vertical profiles of temperature, pressure, relative humidity and horizontal wind (speed and direction) were measured by four launches (00:00, 06:00, 12:00 and 18:00 UTC) of the radiosonde each day during 191 the campaign (Naja et al., 2016). The continuous vertical profiles of the meteorological parameters except 192 wind speed and direction were available from end of June 2011 to the entire period of study, whereas valid 193 wind data were available only for September 2011. Hence, in this study, radiosonde measurements from 194 July 1, 2011 onwards are used for model evaluation of meteorological parameters, except wind speed and 195 direction, which are evaluated for the month of September. A total of 309 valid profiles of temperature 196 197 and relative humidity and 104 profiles of wind are used. The statistical metrics mean bias (MB), root mean 198 square error (RMSE) and correlation coefficient (r) are used for the model evaluation and the description of these metrics is given in the supplementary material. 199

- 200 3. Results and Discussions
- 201 **3.1.** Comparison with ERA Interim reanalysis

ERA Interim reanalysis data set is available globally at resolution of $0.75^{\circ} \times 0.75^{\circ}$ with 37 vertical levels 202 from surface to the top at 1 hPa with covering time period from 1979 to present at 6-hourly time step (Dee 203 204 et. al., 2011). Here, we have used the ERA Interim data available at 0.75° x 0.75° for comparison with WRF results. We first compare the WRF simulated spatial distribution of meteorological parameters 205 206 (surface pressure, 2m air Temperature, 2m RH and 10m WS) with ERA Interim reanalysis over common area of all the domains and averaged for the complete simulation period (Figure 2). The common area in 207 208 all domains includes low-altitude Indo-Gangetic Plain (IGP) region in south (with elevation of less than 209 400m, Figure 1) and elevated mountains of the central Himalaya in north. Also, for a consistent 210 comparison, model simulated values are taken at the same time intervals as that in ERA Interim data (i.e. every 6h). From the comparison Figure 2, it is evident that the meteorological parameters simulated by the 211 model are dependent on the model grid resolution. The existence of the sharp gradient topographic height 212 (SGTH) of about 1600 m from the foothill of the Himalaya to the observational site modifies the wind 213 pattern as well as moisture content differently at different grid resolutions, indicating the critical role of 214 215 mountain orography. The surface pressure explicitly depends upon the elevation of a location from mean sea level. The contour plot of the pressure from ERA Interim shows surface pressure of about 900hPa for 216 observational site Manora Peak and varied from 550 to 975 hPa within this region, while WRF simulated 217 218 pressure is 869 hPa, 835hPa and 827 hPa for d01, d02 and d03, respectively. WRF simulated surface pressure ranges from 821.9 hPa over high altitude CH region to 977.0 hPa in IGP region within d01. At 219 the same time, the variation range of surface pressure is 788.1 - 977.5 and 760.4 - 977.7 hPa within d02 220 and d03 respectively, and the minimum pressure decreases from d01 to d03 which is attributed to the 221 improvement in resolved topography on increasing model grid resolution. The effects of the SGTH are 222 223 not clearly observed for temperature, wind and RH in ERA-Interim contours, and it could be due to the unresolved topographic features. Simulated spatial profiles show significantly distinct meteorology in 224 Indo-Gangetic Plain (IGP), which lies just in the foothills of Himalaya, and elevated central Himalayan 225 region. 226

The effect of spatial resolution is clearly observed over the mountainous region of Himalaya, where size of the mountains changes abruptly, with the modelled output showing distinct features with increasing grid resolution. On the other hand, there are minimal differences in the topography of the IGP, and hence features are well captured in the model even at coarser resolution of 15 Km.

Model simulations show topography dependent spatial variation in the 2m temperature in the ranges of 237 $20.0-29.5^{\circ}$ C in d01,17.3-29.6°C in d02, and 15.5.0-29.9°C in d03 with lowest values simulated over the 238 239 elevated mountain peaks and higher values over the temperate IGP region. The contours in three model domains show explicit dependency of 2m temperature on the grid resolution over the mountainous region. 240 With increasing model resolution, the topography is resolved to a greater extent and the lower temperature 241 242 is simulated at higher surface elevations, as expected. Estimation of water vapour is very important for 243 both climate and numerical weather prediction (NWP) applications. The relative humidity is above 70% in all three domains as the study period is monsoon season. The variations (minimum-maximum) in the 244 245 relative humidity in ERA-Interim (80% to 85%) data sets, domains d01 (77-93%), d02 (74 - 95%), and d03 (70-96%) are generally comparable. The mountain slopes provide the uplift to the monsoonal moist 246 air that subsequently saturates on ascent and increases the relative humidity to about 90% as observed over 247 the grid encompassing the site. 248

249 The wind speed is highly dependent upon the model grid resolution as well as orography-induced 250 circulations during different seasons (Solanki et al., 2016; Solanki et al 2019) as shown in Figure 2. As mentioned earlier, although the topography of the IGP region does not vary abruptly, the magnitude of the 251 wind speed over this region as well as over the complex Himalayan region are found to change 252 significantly at different model resolutions, thereby indicating that the wind speed is very sensitive to both 253 model resolution and topography. The wind speed in d01 varies from minimum value of 1.3 ms⁻¹ to 254 maximum value of 2.8 ms⁻¹, while the wind variations in domains d02 $(1.2 - 3.4 \text{ ms}^{-1})$ and d03 $(1.3 - 4.2 \text{ ms}^{-1})$ 255 ms⁻¹) overestimated as compared to the ERA-interim (1.2–2.3ms⁻¹). Overall, the variations in surface 256 pressure, temperature, and relative humidity are seen to be similar between the two datasets. 257

258 **3.2.** Comparison with Radiosonde observations

259 Model simulated vertical structure of temperature, relative humidity, and wind speed are evaluated against

the radiosonde observations during the GVAX campaign. Such comparisons from surface to 50 hPa are

shown in the Figure 3a-c for WRF d01 simulation and the radiosonde observations in the Figure 3d-f.

262

Figure 3: The comparison of (a) temperature in 0 C, (b) relative humidity (RH; %), and (c) wind speed in ms⁻¹ (c) vertical profiles in WRF simulation d01 with the radiosonde observations (d, e, and f). The x-axis of (a), (b), (d), (e), (g) and (h) show the day of the year 2011 starting from 1 July (182nd day) to 30 September (273rd day). Wind speed profiles (c, f) in ms⁻¹ are plotted only for month September, 2011. The third row (g, h, and i) shows the difference in temperature, relative humidity, and wind speed between WRF d01 simulation and radiosonde observation.

269 The inversion of the temperature at the top of the troposphere occurred at ~90hPa (~16km) in observations.

270 Radiosonde profiles (Figure 3a) show that temperature decreases with pressure from 15.5°C at 750 hPa to

271 -78.0 ^oC at ~90 hPa. Mean temperature profile simulated by the WRF model also captures this variability

showing a reduction from 15.1 ^oC to -76.6 ^oC in these pressure levels. Further the difference between

model (d01) and radiosonde observations (Figure 3g) are found in the range of -4 to 4^{0} C. The mean RH

values from the radiosonde observation (model d01) also show decrease from 82.3% (76.7%) at 750 to

25.2% (32.0%) at 90 hPa. The difference of the mean RH between observation and model (Figure 3h) 275 shows that model simulates wetter (or more humid) atmosphere at higher altitudes while showing a dry 276 277 bias in lower altitudes. The observations of wind speed from radiosonde were available only from 01 September 2011 onwards therefore wind comparison is made only for the September month. The simulated 278 profiles of the wind agree generally well with the observations. Wind speed is observed less than 10 ms⁻¹ 279 up to 400 hPa over the month of September and similar magnitude is observed above 400 hPa till mid of 280 September (day of year 258). Further, the wind speed observed $\geq 15 \text{ ms}^{-1}$ above 400hPa after 258 day of 281 year (15 September). The vertical variation of wind speed well simulated by model. For the statistical 282 283 comparison of the simulated meteorology with the observations, the Taylor diagram (Taylor, 2001) is used and shown in Figure 7a. In the diagram the comparison is summarized with correlation coefficient (r), 284 normalized root mean squared difference (RMSD) and normalized standard deviation (SD), normalized to 285 the standard deviation of observation. In most of the cases, model simulates less variability in 286 meteorological parameters as shown by the normalized standard deviation which turns out to be less than 287 288 1. For temperature and wind speed, model shows good agreement at 250hPa (r > 0.80) than that in lower altitudes i.e. 750hPa (r < 0.40). On the other hand, model captures variability in humidity relatively well 289 at 500 hPa (r = 0.71) but shows poor correlation at 50 hPa (r = 0.17) near the model top. 290

291 Lower correlations for temperature and wind speed near to the surface (750 hPa) could be due to the terrain induced effects most significant in the local boundary layer. The, surface level winds, and turbulence etc. 292 are some of the features of the boundary layer that are largely affected by the surface and terrain 293 characteristics. The vertical profiles of these parameters for all three model domains only up to 500 hPa is 294 shown in Figure 4. Differences between the simulated vertical profile of temperature and radiosonde 295 296 observation below 500hPa (Figure 4) are in general similar in all the domains. Except for the relative humidity in d01, other meteorological parameters shown here do not reveal strong dependencies on the 297 model resolution. Model however overestimates the relative humidity near 500hPa level in d02 and d03 298

on some of the days. In case of the wind speed, the model underestimates the magnitude of the wind infirst few days up to 500 hPa, though qualitatively the model is able to capture the vertical profiles.

Figure 4: Difference between model (d01: first row, d02: second row, d03: third row) and radiosonde
observation for temperature (first column: a, b, c), relative humidity (second column: e, f, g) and wind
speed (third column: i, j, k) profiles up to 500 hPa. Radiosonde observations are also shown (fourth row).
The x-axis of (a-h) shows the day of the year 2011 from 1 July (182nd day) to 30 September (273rd day).
Wind speed (ms⁻¹) profiles (i-l) are plotted only for the month September, 2011.

301

Figure 5 shows the vertical profiles of the statistical metrics: mean bias (MB), root mean square error(RMSE), and correlation coefficient (r) for temperature, relative humidity, and wind speed for the three

simulations (d01, d02, d03). The magnitude of the MB values throughout the troposphere are estimated to 309 be within about 1 °C, 12 %, 2.5 ms⁻¹ for temperature, relative humidity, and wind speed, respectively. 310 Additionally, RMSE values are about 1 °C, 15–30%, and 2.5–5 ms⁻¹ for temperature, relative humidity. 311 and wind speed, respectively. As discussed earlier also, correlations between model results and 312 observations are found to be stronger in the middle and upper troposphere as compared to the lower 313 troposphere. For temperature, the r values are higher than 0.75 between 600 to 200 hPa, whereas it 314 315 decreases up to 0.4 at lower altitudes i.e. near 800 hPa. Correlations in lower troposphere are particularly weaker (r = -0.25) in case of wind speed. The results suggest that model captures well the day-to-day 316 317 variabilities in the meteorological parameters in the middle upper troposphere and to a minor extent in the 318 lower troposphere. Relatively weaker correlations in the lower troposphere are suggested to be associated with more pronounced effects of the uncertainties caused by the underlying complex mountain terrain and 319 320 resulting unresolved local effects. Wind fields near the surface have been shown to be strongly impacted by interactions between terrain and boundary layer besides orographic drag in a modelling study over the 321 322 Tibetan Plateau (Zhou et al., 2018) and in measurements over Himalaya (Solanki et al., 2019). Increase in bias with altitude was reported by Kumar et al (2012) for dew point temperature. Besides the model 323 physics, the higher uncertainties in radiosonde observations of humidity also contribute to these 324 325 differences. The effect of model resolution is not very significant for temperature and wind profiles above 800 hPa, nevertheless, the mean bias in RH is lower in d02 and d03 simulations (~5%) in the 800-600 326 hPa. Overall, it is seen that model captured the vertical structures of meteorological parameters, however, 327 better representation of complex terrains itself is insufficient for improving the model performance aloft. 328 This highlights the need of future studies evaluating various physics schemes on top of better topography 329 330 representation considered here. Nevertheless, model biases have been significantly reduced for surface level meteorology with higher resolution, which is discussed in detail in the next section (3.3). 331

Figure 5. The vertical profiles of mean bias (MB), root mean square error (RMSE), and correlation
coefficient (r) for temperature, relative humidity, and wind speed for different domains d01 (blue), d02
(red) and d03 (green).

336 3.3. Comparison with ground-based observations

332

Model simulated 2m temperature (T2), 2m relative humidity (RH2) and 10 m wind speed (WS10) for the observational site, Manora Peak are compared with the ground-based measurements made during GVAX

campaign in Figure 6 and summarized in Table1. The diurnal variations in T2, RH2 and WS10 simulated

by the WRF model are compared with observations, whereas the surface pressure does not show a 340 significant diurnal variation (not shown here). Model simulation d01 shows a positive bias of 68 hPa in 341 surface pressure with strong correlation (r = 0.97) with observation (mean = ~801 hPa). A significant 342 improvement is achieved (MB = 26 hPa) in d03 i.e. the finest resolution simulation (Figure 6b and Table 343 1). WRF model simulated T2 shows warm bias in all the three domains. The simulated T2 for d01 varies 344 from 16.2 to 28.7 °C with the higher mean value of 22.3±2.1°C compared to observed mean value of about 345 346 $19.5\pm1.6^{\circ}$ C with a correlation of r = 0.75 between d01 and observation. This warm bias is seen to decrease from d01 (2.8 °C) with increasing model resolution to 0.2°C in the d03 simulation (Table S1). The mean 347 348 value of the RH2 in d01 is about 88.2±9.7% lower by 6.4% lower than the observed value 94.7±9.5% with the correlation about 0.45 (Figure 7bs). MB and RMSE values of RH2 show a decrease with increasing 349 model resolution (Table S1). As relative humidity also depends on temperature therefore the diurnal 350 variation in 2m specific humidity (Q2; gkg⁻¹) has also been analyzed (Figure S1). Q2 is observed in the 351 range of 5.5–21.5 g kg⁻¹ with mean value as 16.8 ± 2.0 g kg⁻¹. It is found that the agreement in Q2 is 352 relatively better (MB = -0.7; r = 0.77 in d03), when the statistical metrics are compared with that for RH 353 (Table S1). The wind speed plays a vital role in transport processes and controls the dynamics of the 354 atmosphere at different temporal and spatial scales. The average 10m wind speed (WS10) over the 355 measurement station is about 2.1 \pm 1.4 ms⁻¹ which is similar in d01 (2.1 \pm 1.1) while overestimated in d02 356 by 0.9 ms⁻¹ and 0.5 ms⁻¹ d03 (Table 1 and Table S1). The correlation in case of the WS10 is 0.18 in d01 357 and d02 which improves to 0.24 in d03. The diurnal variation of WS10 (Figure 6c) is not well captured 358 especially during the noontime. 359

Table 1: Mean values along with minimum and maximum of the meteorological parameters: surface pressure (P; hPa), 2m Temperature (T2; ⁰C); 2m relative humidity (RH2; %) and 10m wind speed (WS10; ms⁻¹) in the model simulations and observations. An additional evaluation is presented accounting for the difference in model surface altitude and actual altitude of measurements (referred to as with altitude adjustment).

Parameter	Withou	ıt altitude adj	ustment	With	Observation				
	d01	d02	d03	d01	d02	d03			
P (hPa)	869.6±2.6	835.3±2.5	827.6±2.4	801.3±2.4.6	801.3±2.4	801.4±2.4	801.1±2.4		
Min/Max	862.8/875.1	828.3/840.8	821.2/833.1	795.0/806.7	795.0/806.7	795.2/806.8	795.1/806.8		
T2 (⁰ C)	22.3±1.8	20.4±1.8	19.8±1.1	18.4±0.8	18.4±0.9	18.3±0.9	19.5±1.1		
Min/Max	16.2/28.7	15.1/26.0	14.0/25.0	16.1/20.9	15.5/21.8	15.6/22.1	14.8/25.6		
RH2(%)	88.2±9.7	94.3±6.4	92.3±7.9	86.2±10.9	93.8±8.5	91.5±9.7	94.7±9.5		
Min/Max	53.3/100	67.6/100	52.3/100	43.9/100	51.3/100	47.9/100	31.6/100		
WS10 (ms ⁻¹)	2.1±1.1	3.0±1.4	2.6±1.7	3.4±2.6	4.8±3.1	4.0±3.1	2.1±1.4		
Min/Max	0.0/8.6	0.1/11.4	0.1/11.7	0.0/20.2	0.1/23.9	0.1/22.1	0.0/10.0		

365

366

Figure 6: Mean diurnal variations of (a) 2m temperature: T2, (b) 2m relative humidity: RH2, and (c) 10m
wind speed: WS10 from model simulations (d01, d02 and d03) and observations. Altitude adjusted
variations are also shown (d–f).

370

Due to the complex terrains and the grid size of the model, the simulated altitude of the station could differ 371 from the reality. In this study, the model underestimated station altitude by about 588m, 480m, and 270m 372 373 in d01, d02, and d03 respectively. We performed an additional evaluation to explore how much improvement can be achieved by linearly interpolating the vertical profile of meteorological parameters 374 to the actual altitude of the station (Figure d-f), as done in few previous studies (e.g. Mues et al., 2018). 375 Analysis shows that correlations between model and observations do not show a clear improvement (e.g., 376 377 T2: 0.35) by adjusting the altitude in model output except in case of WS10. Additionally, variability in temperature is not captured by the model over diurnal (Figure 6 a, d) as well as the day to day timescales 378 379 i.e. r drops from 0.67 to 0.36 in d03 after the adjustment of altitude. As expected the altitude adjustment does reduce bias in pressure. Nevertheless, reductions in mean biases are not achieved (Table S1), instead, 380 absolute values of biases show increase from 0.2 to 1.2, 2.4 to 3.1, 0.5 to 1.9, 0.7 to 1.6 in T2, RH2, WS10, 381 and Q2 in simulation d03. Besides thermal and mechanical interactions of the mountain surfaces with 382 atmosphere, local processes such as the evaporation, transpiration, etc. affect meteorological conditions in 383 384 the air just above the surface. A reduction in wind speed during the daytime is associated with the competing effects of mountain-valley circulation due to the heating of the slopes versus synoptic-scale 385 flow (Solanki et al., 2019). To resolve such sub-grid scale processes, we emphasize that very high-386 387 resolution simulations are needed, such as conducted here, to simulate in a satisfactory way the meteorological variability. The analysis further highlights a need of accurate representation of the complex 388 topographical features rather than altitude adjusted estimations which lead to very limited improvements. 389 Here onwards we will discuss the evaluation without altitude adjustment until stated otherwise. 390

We evaluate the MB values in model simulations considering the benchmarks as suggested by Emery et al. (2001). In the d03 simulation, MB values for both T2 (0.2^{0} C) and Q2 (-0.7) are found to be well within the range of benchmark values: $\pm 0.5^{0}$ C for T2 and ± 1.0 g kg⁻¹ for Q2. It is important to note that biases in T2 in the coarser simulations d01 (2.8^{0} C) and d02 (0.9^{0} C) are however higher as compared to the benchmarks. MB values in T2 estimated here for the Himalaya are found to be slightly lower (+0.2) (-1.2

with altitude adjustment) than that over the Tibetan Plateau (-2 to -5) (Gao et al., 2015) and over 396 mountainous regions in the Europe (Zhang et al., 2013). Warmer bias in our case is due to underestimation 397 of Himalayan altitude, whereas, model overestimated terrain height over the Tibetan Plateau region giving 398 contrasting results. Further, the RMSE in wind speed here is lower (1.6-2.0 ms⁻¹) than that over 399 Kathmandu valley (2.2 ms⁻¹; Mues et al., 2018) and similar to benchmark (2.0 ms⁻¹). Mar et al. (2016) also 400 reported similar bias (2 ms^{-1}) in the 10m wind speed over Europe and average correlation of ~0.4–0.6 over 401 402 the Alps. As also seen here, simulating near surface diurnal winds remains challenging over complex terrains, although the bias was reduced after including effects of the turbulent orographic form drag (Zhou 403 404 et al., 2017; 2019). Besides turbulent orographic form drag, it is suggested that wind speed is sensitive towards boundary layer schemes (Yver et al., 2013; Zhou et al., 2019) and that more studies are needed to 405 explore these aspects over the central Himalaya. 406

407

408

Figure 7: Taylor diagram with correlation coefficient, normalized standard deviation, and normalized root mean square difference (RMSD) error for (a) model performance at different pressure levels shown in Figure 3 for d01, and (b) the model simulated surface pressure, 2m temperature, RH and 10 m wind speed for different domains as shown in Figure 6a-c.

415 Figure 8: Comparison of the wind speed and direction as shown in form of wind rose (top panel), and 416 frequency distribution of wind direction (bottom row) from model simulations over the three domains 417 (d01, d02, d03) and observations (obs) during June-September 2011. Different colours and radius of wind 418 roses show the wind speed and frequency of counts respectively.

419

The wind direction is strongly influenced by the surrounding topography over the mountainous region and 420 the evaluation of the wind direction at horizontal resolution is shown Figure 8. The winds varying between 421 meteorological direction 337.5° to 22.5° are considered to be the Northerly and represented by N in the 422 423 frequency distribution and so on for other directions taking into account the clockwise meteorological convention. The dominance of the wind flow over the observational site is easterly (30%) and south 424 easterly (26%) while 26% wind flows from the west and north-west. The frequency of southerly (539) and 425 426 south-westerly (SW, 481) are quite higher in d01 as compared to the observations (93 and 118 respectively), which decreases up to 109 and 232 in d03. Model is able to simulate the northerly and north-427 easterly winds in d01 and d02, while, model simulates larger contribution of north easterly winds in d03 428

which is not present in the observations. The dominance of the summer monsoon seasonal easterly (30%) 429 and south-easterly (27%) winds are clearly seen in the observation. The easterly component of the model 430 431 simulated wind shows better agreement with observations on increasing the model resolution. Additionally, the model is able to simulate the westerly and north-westerly wind contribution in d02, 432 whereas, the westerly component is over predicted by 10% in d03. The winds blowing from north, north-433 easterly, south and south-westerly are very weak (<2ms⁻¹) and are about ~15% of the total winds. Wind 434 435 direction changed during transitions from high to low wind conditions during morning hours (7-10 h), and then low to high during evening (18–20 h). Overall, the simulated wind field in d03 are relatively in better 436 437 agreement with observations than that of d01 and d02. This is further assessed in the section 3.5 using a finer resolution simulation through implementation of SRTM 3s terrain data. 438

439

440 **3.4. Effect of feedback**

In the preceding section, the results of the simulations carried out without any feedbacks (WRF-WF) from 441 442 the finer resolution domain to its parent domain were presented. This WRF-WF experiment was conducted in such a way that it could explicitly account for the grid resolution effects on the model performance. The 443 simulated meteorology with this model setup depicted different model performance in outermost coarse 444 445 resolution domain d01 as compared to d02 and d03 (Figure 2 and 6). The model performance depends upon the boundary and initial conditions. Another model simulation is carried out in this section using the 446 same configuration but with two-way interactive nesting and feedback (WRF-F) from daughter domain to 447 its parent domain. The simulated meteorological parameters in higher nest are fed back to its parent 448 domains and the boundary conditions replaced there. The model results over CH region in the regional 449 450 scale simulation (d01) shows better agreement with the observations because of the feedback from high resolution nested simulation. The comparison of the simulated meteorological parameters (T2, RH2, and 451 WS10) for outermost domain with the surface observations is presented in Figure 9 for both WRF-WF 452 and WRF-F, and the effect of the feedback within outermost domain. 453

Figure 9: Diurnal variation of the T2, RH2, and WS10 from d01 without feedback (WRF-WF) and with
feedback (WRF-F) simulations.

The comparison of mean values (Table 2) shows a decrease in model bias for T2, RH2, and Q2 by 0.5 °C, 456 0.3%, and 0.2 gkg⁻¹ respectively due to feedback from finer resolution simulations. Additionally, 457 correlations are found to be improved for RH2 and Q2 by 0.15 and 0.12 respectively due to feedback. 458 459 Nevertheless, smaller changes were seen in correlations for WS10 (by 0.05) and T2 (by -0.02) (Figure S2). Variations in wind speed and direction shows an improvement in dominant flow direction e.g. easterly, 460 461 westerly and north-westerly (Figure S3). Effects of the feedback on surface pressure, T2, and RH2 at over domain d01 is shown in Figure 10. Feedback effects is seen to be more pronounced over mountainous 462 region than over the plain region of IGP. 463

464

Figure 10: The effect of the two-way nesting on d01 is shown. The difference between the simulations
with feedback (WRF-F) and without feedback (WRF-WF) is shown for surface pressure, 2m temperature,
and 2m relative humidity.

Table 2: Comparison of the simulated meteorology for surface pressure (P), 2m Temperature (T2), 2m 468 relative humidity (RH2), 10m wind speed (WS10) and 2m specific humidity (Q2) in two model 469 470 simulations: WRF-WF and WRF-F at the observational site from outermost domain d01.

Parameters	Observed	WRF-WF	WRF-F		
P (hPa)	801.4±2.4	869.6±2.6	858.9±2.5		
T2 (⁰ C)	19.5±1.6	22.3±2.1	21.9±1.4		
RH2 (%)	94.7±9.5	88.2±4.9	88.6±4.9		
WS10 (ms ⁻¹)	2.1±1.4	2.1±1.1	1.7±1.3		
Q2(g kg ⁻¹)	16.8±2.0	17.3±2.0	17.0±2.1		

471

The feedback from the daughter domain to parent domain process mostly modifies the meteorology over 472 the mountainous region within the domain. The effect of feedback is strikingly observed for the 2m 473 temperature and the trend of diurnal variation of the relative humidity. The analyses of biases and 474 correlations suggest an improvement in the model simulated pressure, temperature, and humidity through 475 476 feedback from well resolved nests. This further underpins that better representations of Himalaya over local-scales can be adopted to simulate meteorology over regional-scale with lower biases over complex 477 478 terrains in the domain. Nevertheless, further modelling studies alongside with more observations are 479 needed to improve the model performance. We make further effort on the improvement of the wind speed and direction over the complex topography by implementing a high resolution (3s) topographical input in 480 the model to evaluate further fine resolution features over Himalaya in the next section. 481

482

483

3.5. Inclusion of high resolution (3s) SRTM topography

the GMTED2010 (Danielson and Gesch, 2011). The resolution of this (30s or ~0.95km) is comparable to 484

Simulations described in previous sections were performed using the 30s (~1km) topographic data from

the highest resolution of the WRF simulation (d03). To evaluate influences of topographical features 485

over even finer scales on the wind flows over this highly complex terrain, topography input available at 486 very high resolution (3s or ~90m) from the Shuttle Radar Topography Mission (SRTM3s) (Farr et al., 487 488 2007) has been implemented without altering the model configuration, except performing the simulation as d04 (~333m). Simulation with SRTM data at 1 km resolution did not differ significantly with the 489 similar resolution simulation using GMTED2010 (GMTED hereinafter). For this experiment, model 490 simulation is performed for 1 month only (September 2011). This simulation carried out without 491 492 feedback and compared with the observation to check the effect of implementing high-resolution 493 topography.

Red dot reperests observatinal site Manora Peak

Figure 11: The topography from GMTED at 30s and SRTM at 3s in domain d03 and d04.

496

494

495

The differences of the topographic height between GMTED and SRTM3s as shown in Figure S4 shows 497 498 that the differences are larger over the mountainous region which varies from -100 to +100m. The differences are lower in within d02 and d03 by changing input from GMTED to SRTM3s. The topography 499 in the d04 get better resolved as depicted by sharp variations of mountain ridges and valleys using the 500 SRTM3s as compared to the d03, as shown in the Figure 11, which could be smoothed out if the simulation 501 502 was carried out with GMTED / or at 1 km with SRTM3s. The induced effects due the more resolved variability of topographic height in d04 can better simulate the local circulation of air mass. After including 503 504 the SRTM3s topography, the MB and RMSE values for wind speed in d03 reduced slightly ($\sim 0.04 \text{ ms}^{-1}$). Additionally, wind directions also improved by $\sim 1-2\%$ for different directions after using the SRTM3s. 505 Therefore, simulated 10 m wind direction in d04 is compared with the observations and d03 to investigate 506

the effect of including the SRTM3s topography. Surface pressure is seen to be simulated more realistically 507 (809 hPa) and the dry bias in 2m relative humidity is improved by ~2%. Simulations of diurnal wind 508 509 variations remain challenging (not shown here) even at finest resolutions considered here (d04) with updated topographic data (SRTM3s). The variations in winds are analysed by wind rose (Figure 12) and 510 frequency distribution (Figure S5). A comparison is performed between d03 before and after using 511 SRTM3s and the innermost nest d04 with SRTM3s. The fraction of north-easterly component in d04 with 512 513 SRTM3s (5%) is found to be comparable to observation (6%), which was overestimated 19% (17%) in 514 d03 with GMTED (SRTM3s). The southerly wind component consistently shows an agreement with the 515 observations with increasing model resolution. The observation shows the prevalence of north-westerly (19%), easterly (24%), westerly (18%) and south-easterly (20%) winds and these are also seen to be 516 dominant directions in the simulation d04, while occurrence of south-easterly winds is underestimated. 517

518

Figure 12: Wind roses (a) d03 using GMTED, (b-c) d03 and d04 using SRTM3s topography data, and (d)
surface observation. The comparison of the wind speed and direction shown for the month September,
2011.

522 Simulation of the wind directions improved from d03 to d04 by using the SRTM3s topography being 523 relatively in better agreement with observations, except certain wind directions such as south easterly. An 524 improvement is noticed in simulated surface pressure, 2 m relative humidity and 10 m wind speed using 525 the SRTM3s topography over the complex CH. The impact of the orographic variation with different 526 resolution topographic data in RH (Figure S6) shows the differences are in range of -1 to 1% in d02 and -

3% to 3% in d03. Such variations are due to inclusion of the SRTM3s high resolution topographic data. 527 528 Such multi-scale orographic variations are found to be key factors in meteorological simulation over 529 complex terrains (e.g. Wang et al., 2020). The effects of the SRTM3s topographic static data is studied previously over other regions of the world (e. g. Teixeira et al., 2014; De Meij and Vinuesa, 2014). 530 531 However, the daytime lower wind speed and the transition phases during morning and evening hours still 532 remain a challenge even after using the high resolution (333m x 333m) nest. Such discrepancies between 533 model and observations over the Himalayan region are suggested to be associated with still unresolved terrain features, besides the influences of input meteorological fields as well as the model physics on 534 535 simulated atmospheric flows (e. g. Xue et al., 2014; Vincent et al., 2015).

536

537 4. Summary and Conclusions

In this study, the effects of spatial resolution on model simulated meteorology over the CH has been 538 examined combining the WRF model with ground-based, balloon-borne observations during and intensive 539 540 field campaign, and reanalysis datasets. Owing to the highly complex topography of the central Himalaya, model results show strong sensitivity towards the model resolution and adequate representation of terrain 541 features. Model simulated meteorological profiles do not show much dependency on resolution except in 542 the lower atmosphere, which is directly influenced by terrain induced effects and surface characteristics 543 emphasizing the need also to evaluate various physics schemes over this region. The biases in 2 m 544 temperature, relative humidity and pressure show a decrease on increasing the model resolution indicating 545 a better resolved representation of topographical features. Diurnal variations in meteorological parameters 546 also show better agreements on increasing the grid resolution. Although the surface pressure does not 547 548 show a pronounced diurnal variation nevertheless the biases in simulated surface pressure reduce drastically over fine resolution simulations. Interpolation of coarser simulations (d01, d02) to the station 549 550 altitude reduces the bias in surface pressure and temperature, but suppresses the diurnal variability. The 551 results highlight the significance of accurately representing terrains at finer resolutions (d03). Model is

generally not able to reproduce the wind directions well, except some of the major components in all the 552 simulations with varying resolutions. The directionality of the simulated winds show improvements over 553 554 finer grid resolutions nevertheless reproducing the diurnal variability remains a challenge. Biases are stronger typically during daytime and also during transitions of low to high wind conditions and vice versa. 555 This is attributed to the uncertainties in representing the interaction of slope winds with synoptic mean 556 flow and local circulations, despite of an improved representation of terrain features. A sensitivity 557 558 experiment with domain feedback turned ON shows that the feedback process can improve the representation of the CH in the simulation covering larger region of the northern Indian subcontinent. It is 559 560 suggested that further improvements in the model performance are limited due to the lack of highresolution topographical inputs biases through input meteorological fields, and model physics. 561 Nevertheless, an implementation of a very high resolution (3s) topographical input using the SRTM data 562 shows potential to reduce the biases related to topographical features to some extent. 563

564

565 Code and data availability

Observational data from GVAX available freely 566 the campaign is (https://adc.arm.gov/discovery/#v/results/s/fsite::pgh.M). WRF is an open-source and publicly available 567 model, which can be downloaded at http://www2.mmm.ucar.edu/wrf/users/download/get_source.html. . 568 A zip file containing a) namelists for both pre-processor (WPS) as well as the WRF, b) 3 s resolution 569 topography input prepared for the pre-processor, along with a README file describing details necessary 570 to perform the simulations, has been archived at https://doi.org/10.5281/zenodo.3978569. 571

572

573 Author contributions

NS and AP designed and supervised the study. JS performed the simulations, assisted by NO and AS. JS,
NO, AS analysed the model results and NVPKK, KR, SSG contributed to the interpretations. VRK

contributed significantly in conceiving and realizing the GVAX campaign. JS and NS wrote the first draft,and all the authors contributed to the manuscript.

578

579 Acknowledgement

580 This study has been supported by ABLN& C: NOBLE project under ISRO-GBP. We are thankful to Director ARIES, Nainital. We acknowledge NCAR for the WRF-ARW model, ECMWF for the ERA-581 Interim reanalysis data sets, ARM Climate Research Facility of U.S. Department of Energy (DOE) for 582 availing the observations made during GVAX campaign. Computing resources from the Max Planck 583 Computing and Data Facility (MPCDF) are acknowledged. N. Ojha acknowledges the computing 584 resources - Vikram-100 HPC at Physical Research Laboratory (PRL), and valuable support from 585 Duggirala Pallamraju and Anil Bhardwaj. Constructive comments and suggestions from the anonymous 586 reviewers and the handling editor are gratefully acknowledged. 587

588

589 **References**

- 590 Bhutiyani, M.R., Kale, V.S. and Pawar, N.J.: Long-term trends in maximum, minimum and mean annual
- air temperatures across the Northwestern Himalaya during the twentieth century. Climatic Change, 85, 59-
- 592 177,<u>https://doi.org/10.1007/s10584-006-9196-1</u>.,2007.
- 593 Bonasoni, P., Cristofanelli, P., Marinoni, A., Vuillermoz, E. and Adhikary, B.: Atmospheric pollution in

the Hindu Kush–Himalaya region: Evidence and implications for the regional climate. Mountain research

- and development, 32, 468-479, 2012.
- Boyle, J. and Klein, S.A.: Impact of horizontal resolution on climate model forecasts of tropical
 precipitation and diabatic heating for the TWP-ICE period. Journal of Geophysical Research:
 Atmospheres, 115, https://doi.org/10.1029/2010JD014262, 2010.
- Caya, D. and Laprise, R.: A semi-implicit semi-Lagrangian regional climate model: The Canadian RCM.
 Monthly Weather Review, 127, 341-362, <u>https://doi.org/10.1175/1520-</u>
 0493(1999)127<0341:ASISLR>2.0.CO;2, 1999.

- 602 Chen, F. and Dudhia, J.: Coupling an advanced land surface–hydrology model with the Penn State–NCAR
- 603 MM5 modeling system. Part I: Model implementation and sensitivity. Monthly Weather Review, 129,
- 604 569-585,<u>https://doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2</u>2001.
- 605 Cheng, W. Y. Y. and Steenburgh, W. J.: Evaluation of surface sensible weather forecasts by the WRF and the Eta
- Models over the western United States, Weather Forecast., 20(5), 812–821, doi:10.1175/WAF885.1, 2005.
- 607 Chou, M.D. and Suarez, M.J.: An efficient thermal infrared radiation parameterization for use in general
- circulation models, NASA Technical Memorandum No. 104606, Vol. 3, pp.85,1994.
- 609 Christensen, J.H., Christensen, O.B., Lopez, P., van Meijgaard, E. and Botzet, M.: The HIRHAM4
- 610 regional atmospheric climate model.DMI Scientific report, 4, p.51, 1996.
- 611 Danielson, J.J. and Gesch, D.B.: Global multi-resolution terrain elevation data 2010 (GMTED2010) (No.
- 612 2011-1073), US Geological Survey, 2011.
- De Meij, A. and Vinuesa, J. F.: Impact of SRTM and Corine Land Cover data on meteorological
 parameters using WRF, Atmos. Res., 143, 351–370, doi:10.1016/j.atmosres.2014.03.004, 2014.
- 615 Dee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda,
- 616 M.A., Balsamo, G., Bauer, D.P. and Bechtold, P.: The ERA-Interim reanalysis: Configuration and
- 617 performance of the data assimilation system. Quarterly Journal of the royal meteorological society, 137,
- 618 pp.553-597, https://doi.org/10.1002/qj.828, 2011.
- Deep, A., Pandey, C.P., Nandan, H. et al. Evaluation of ambient air quality in Dehradun city during 2011–
 2014. J Earth Syst Sci 128, 96, doi:10.1007/s12040-019-1092-y, 2019.
- Dimri, A.P., Chevuturi, A., Niyogi, D., Thayyen, R.J., Ray, K., Tripathi, S.N., Pandey, A.K. and Mohanty,
 U.C.: Cloudbursts in Indian Himalayas: a review. Earth-science reviews, 168, pp.1-23,
 https://doi.org/10.1016/j.earscirev.2017.03.006, 2017.
- Ek, M.B., Mitchell, K.E., Lin, Y., Rogers, E., Grunmann, P., Koren, V., Gayno, G. and Tarpley, J.D.:
 Implementation of Noah land surface model advances in the National Centers for Environmental
 Prediction operational mesoscale Eta model. Journal of Geophysical Research: Atmospheres,
 https://doi.org/10.1029/2002JD003296, 2003.
- Emery, C., Tai, E., and Yarwood, G.: Enhanced meteorological modeling and performance evaluation for two Texas
- 629 ozone episodes, Tech. Rep. Prepared for The Texas Natural Resource Conservation Commission, ENVIRON
- 630 International Corporation, 2001.

- 631 Farr, T.G., Rosen, P.A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez,
- E., Roth, L. and Seal, D.: The shuttle radar topography mission, Reviews of geophysics, 45(2).
 doi:10.1029/2005RG000183, 2007.
- Foley, A.M.: Uncertainty in regional climate modelling: A review. Progress in Physical Geography, 34,
 pp.647-670.https://doi.org/10.1177/0309133310375654, 2010.
- Gao, Y., Xu, J. and Chen, D.: Evaluation of WRF mesoscale climate simulations over the Tibetan Plateau during
 1979-2011, J. Clim., 28(7), 2823–2841, doi:10.1175/JCLI-D-14-00300.1, 2015.
- 638 Hanna, S. R. and Yang, R.: Evaluations of Mesoscale Models' Simulations of Near-Surface Winds, Temperature
- 639 Gradients, and Mixing Depths, J. Appl. Meteorol., 40(6), 1095–1104, doi:10.1175/1520-
- 640 0450(2001)040<1095:EOMMSO>2.0.CO;2, 2001.
- 641 Hart, K. A., Steenburgh, W. J. and Onton, D. J.: Model Forecast Improvements with Decreased Horizontal Grid
- 642 Spacing over Finescale Intermountain Orography during the 2002 Olympic Winter Games, Weather Forecast.,
- 643 20(4), 558–576, doi:10.1175/WAF865.1, 2005.
- Hong, S.Y., Noh, Y. and Dudhia, J.: A new vertical diffusion package with an explicit treatment of
 entrainment processes. Monthly weather review, 134, pp.2318-2341,
 https://doi.org/10.1175/MWR3199.1, 2006.
- Kain, J.S.: The Kain–Fritsch convective parameterization: an update. Journal of applied meteorology, 43,
 pp.170-181, https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2,2004.
- 649 Kotamarthi, V.R.: Ganges Valley Aerosol Experiment (GVAX) Final Campaign Report. DOE/SC-ARM-
- 650 14-011, available at: https://www. arm. gov/publications/programdocs/doe-sc-arm-14-011. Pdf, 2013.
- 651 Kumar, R., Naja, M., Pfister, G.G., Barth, M.C. and Brasseur, G.P.: Simulations over South Asia using
- the Weather Research and Forecasting model with Chemistry (WRF-Chem): set-up and meteorological
- evaluation. Geoscientific Model Development, 5, p.321, https://doi.org/10.5194/gmd-5-321-2012, 2012.
- Laprise, R. Regional climate modelling. Journal of Computational Physics, 227, pp.3641-3666.,
 https://doi.org/10.1016/j.jcp.2006.10.024, 2008.
- 656 Lawrence, M.G. and Lelieveld, J.: Atmospheric pollutant outflow from southern Asia: a review.
- 657 Atmospheric Chemistry and Physics, 10, p.11017, https://doi.org/10.5194/acp-10-11017-2010, 2010.
- 658 Lee, T. J., Pielke, R. A., Kessler, R. C. and Weaver, J.: Influence of Cold Pools Downstream of Mountain Barriers
- on Downslope Winds and Flushing, Mon. Weather Rev., 117(9), 2041–2058, doi:10.1175/1520-
- 660 0493(1989)117<2041:IOCPDO>2.0.CO;2, 1989.

- 661 Lelieveld, J., Bourtsoukidis, E., Brühl, C., Fischer, H., Fuchs, H., Harder, H., Hofzumahaus, A., Holland,
- 662 F., Marno, D., Neumaier, M. and Pozzer, A.: The South Asian monsoon—pollution pump and purifier.
- 663 Science, 361, pp.270-273, DOI:10.1126/science.aar2501, 2018.
- 664 Mar, K. A., Ojha, N., Pozzer, A. and Butler, T. M.: Ozone air quality simulations with WRF-Chem (v3.5.1) over
- Europe: Model evaluation and chemical mechanism comparison, Geosci. Model Dev., 9(10), 3699–3728,
- 666 doi:10.5194/gmd-9-3699-2016, 2016.
- 667 Mass, C. F., Ovens, D., Westrick, K. and Colle, B. A.: DOES INCREASING HORIZONTAL RESOLUTION
- 668 PRODUCE MORE SKILLFUL FORECASTS?: The Results of Two Years of Real-Time Numerical Weather
- 669 Prediction over the Pacific Northwest, Bull. Am. Meteorol. Soc., 83(3), 407–430, doi:10.1175/1520-
- **670** 0477(2002)083<0407:DIHRPM>2.3.CO;2, 2002.
- 671 Meher, J.K., Das, L., Akhter, J., Benestad, R.E. and Mezghani, A.: 2017. Performance of CMIP3 and
- 672 CMIP5 GCMs to simulate observed rainfall characteristics over the Western Himalayan region. Journal of
- 673 Climate, 30, pp.7777-7799, *https://doi.org/10.1175/JCLI-D-16-0774.1*, 2017.
- Mlawer, E.J., Taubman, S.J., Brown, P.D., Iacono, M.J. and Clough, S.A.: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. Journal of Geophysical Research: Atmospheres, 102, pp.16663-16682. https://doi.org/10.1029/97JD00237, 1997.
- Mues, A., Lauer, A., Lupascu, A., Rupakheti, M., Kuik, F. and Lawrence, M.G.: WRF and WRF-Chem
 v3. 5.1 simulations of meteorology and black carbon concentrations in the Kathmandu Valley.
 Geoscientific Model Development, 11, p.2067. https://doi.org/10.5194/gmd-11-2067-2018, 2018.
- 680 Naja, M., Bhardwaj, P., Singh, N., Kumar, P., Kumar, R., Ojha, N., Sagar, R., Satheesh, S. K., Krishna
- 681 Moorthy, K., Kotamarthi, V. R., High-frequency vertical profiling of meteorological parameters using
- AMF1 facility during RAWEX–GVAX at ARIES, Nainital, Current Science, Vol. 111, No. 1, 132–140,
 2016.
- Nandargi, S. and Dhar, O.N.: Extreme rainstorm events over the northwest Himalayas during 1875–2010.
 Journal of Hydrometeorology, https://doi.org/10.1175/JHM-D-12-08.1,2012.
- Ojha, N., Girach, I., Sharma, K., Nair, P., Singh, J., Sharma, N., Singh, N., Flemming, J., Inness, A. and
 Subrahmanyam, K.V.: Surface ozone in the Doon Valley of the Himalayan foothills during spring.
 Environ. Sci. Poll. Res., doi:10.1007/s11356-019-05085-2, 2019
- 689 Ojha, N., Naja, M., Singh, K.P., Sarangi, T., Kumar, R., Lal, S., Lawrence, M.G., Butler, T.M. and
- 690 Chandola, H.C.: Variabilities in ozone at a semi-urban site in the Indo-Gangetic Plain region: Association

- with the meteorology and regional processes. Journal of Geophysical Research: Atmospheres,
 https://doi.org/10.1029/2012JD017716, 2012.
- Ojha, N., Pozzer, A., Rauthe-Schöch, A., Baker, A.K., Yoon, J., Brenninkmeijer, C.A. and Lelieveld, J.:
 Ozone and carbon monoxide over India during the summer monsoon: regional emissions and transport.
 Atmos. Chem. Phys, https://doi.org/10.5194/acp-16-3013-2016, 2016.
- Pant, G.B., Pradeep Kumar, P., V. Revadekar, Jayashree, Singh, Narendra.: The Himalaya.
 https://doi.org/10.1007/978-3-319-61654-4, 2018.
- Pant, P., Hegde, P., Dumka, U.C., Sagar, R., Satheesh, S.K., Moorthy, K.K., Saha, A. and Srivastava,
 M.K.: Aerosol characteristics at a high-altitude location in central Himalayas: Optical properties and
 radiative forcing. Journal of Geophysical Research: Atmospheres. https://doi.org/10.1029/2005JD006768,
 2006.
- Pervez, M.S. and Henebry, G.M.: Projections of the Ganges–Brahmaputra precipitation—Downscaled
 from GCM predictors. Journal of Hydrology, 517, pp.120134.https://doi.org/10.1016/j.jhydrol.2014.05.016, 2014.
- Rife, D. L. and Davis, C. A.: Verification of Temporal Variations in Mesoscale Numerical Wind Forecasts, Mon.
 Weather Rev., 133(11), 3368–3381, doi:10.1175/MWR3052.1, 2005.
- 707 Rupakheti, D., Adhikary, B., Praveen, P.S., Rupakheti, M., Kang, S., Mahata, K.S., Naja, M., Zhang, Q.,
- Panday, A.K. and Lawrence, M.G., 2017.: Pre-monsoon air quality over Lumbini, a world heritage site
- along the Himalayan foothills. Atmos. Chem. Phys., 17, 11041-11063, https://doi.org/10.5194/acp-1711041-2017, 2017.
- Sarangi, T., Naja, M., Ojha, N., Kumar, R., Lal, S., Venkataramani, S., Kumar, A., Sagar, R. and Chandola,
 H.C.: First simultaneous measurements of ozone, CO, and NOv at a high-altitude regional representative
 - H.C.: First simultaneous measurements of ozone, CO, and NOy at a high-altitude regional representative
 site in the central Himalayas. Journal of Geophysical Research: Atmospheres, 119, pp.1592-1611.
 https://doi.org/10.1002/2013JD020631, 2014.
 - Sharma, A., Ojha, N., Pozzer, A., Mar, K. A., Beig, G., Lelieveld, J., and Gunthe, S. S.: WRF-Chem
 simulated surface ozone over south Asia during the pre-monsoon: effects of emission inventories and
 chemical mechanisms, Atmos. Chem. Phys., 17, 14393–14413, https://doi.org/10.5194/acp-17-143932017, 2017.

- Sharma, S.S. and Ganju, A.: Complexities of avalanche forecasting in Western Himalaya—an
 overview. *Cold Regions Science and Technology*, *31*, pp.95-102.https://doi.org/10.1016/S0165232X(99)00034-8, 2000.
- Singh, N., Solanki, R., Ojha, N., Janssen, R.H., Pozzer, A. and Dhaka, S.K.: Boundary layer evolution

723 over the central Himalayas from radio wind profiler and model simulations. Atmospheric Chemistry &

- 724 Physics, https://doi.org/10.5194/acp-16-10559-2016, 2016.
- 725 Skamarock, W. C., Klemp, J.B., Dudhia, J., Gill, D.O., Barker, D.M., Wang, W. and Powers, J.G.: A
- Description of the Advanced Research WRF Version 3. NCAR Technical Note NCAR/TN-475+STR,
 http://dx.doi.org/10.5065/D68S4MVH,, 2008.
- 728 Solanki, R., Singh, N., Kumar, N.K., Rajeev, K. and Dhaka, S.K.: Time variability of surface-layer
- characteristics over a mountain ridge in the central Himalayas during the spring season. Boundary-layer
- 730 meteorology, 158, pp.453-471, https://doi.org/10.1007/s10546-015-0098-5, 2016.
- 731 Solanki, R., Singh, N., Kiran Kumar, N. V. P., Rajeev, K., Imasu, R. and Dhaka, S. K.: Impact of
- 732 Mountainous Topography on Surface-Layer Parameters During Weak Mean-Flow Conditions, Boundary-
- 733 Layer Meteorol., 172(1), 133–148, doi:10.1007/s10546-019-00438-3, 2019.
- Srivastava, A.K., Ram, K., Pant, P., Hegde, P. and Joshi, H.: Black carbon aerosols over Manora Peak in
 the Indian Himalayan foothills: implications for climate forcing. Environmental Research Letters, 7,
 p.014002, 2012.
- 737 Sun, X.B., Ren, G.Y., Shrestha, A.B., Ren, Y.Y., You, Q.L., Zhan, Y.J., Xu, Y. and Rajbhandari, R.:
- Changes in extreme temperature events over the Hindu Kush Himalaya during 1961–2015. Advances in
 Climate Change Research, https://doi.org/10.1016/j.accre.2017.07.001, 2017.
- Taylor, K.E.: Summarizing multiple aspects of model performance in a single diagram. Journal of
 Geophysical Research: Atmospheres, 106, pp.7183-7192, https://doi.org/10.1029/2000JD900719, 2001.
- 742 Teixeira, J. C., Carvalho, A. C., Carvalho, M. J., Luna, T. and Rocha, A.: Sensitivity of the WRF model
- to the lower boundary in an extreme precipitation event-Madeira island case study, Nat. Hazards Earth
- 744 Syst. Sci., 14(8), 2009–2025, doi:10.5194/nhess-14-2009-2014, 2014.
- Tewari, M., Chen, F., Wang, W., Dudhia, J., LeMone, M.A., Mitchell, K., Ek, M., Gayno, G., Wegiel, J.
- and Cuenca, R.H.: Implementation and verification of the unified NOAH land surface model in the WRF
- model. In 20th conference on weather analysis and forecasting/16th conference on numerical weather
- 748 prediction (Vol. 1115), 2004,

- Thompson, G., Rasmussen, R.M. and Manning, K.: Explicit forecasts of winter precipitation using an
 improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Monthly Weather
 Review, 132(2), pp.519-542,https://doi.org/10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2,
 2004.
- Tiwari, P.R., Kar, S.C., Mohanty, U.C., Dey, S., Sinha, P. and Shekhar, M.S.: Sensitivity of the Himalayan
 orography representation in simulation of winter precipitation using Regional Climate Model (RegCM)
 nested in a GCM. Climate Dynamics, 49(11-12), pp.4157-4170, https://doi.org/10.1007/s00382-017-
- 756 3567-3, 2017.
- Tselioudis, G., Douvis, C. and Zerefos, C.: Does dynamical downscaling introduce novel information in
 climate model simulations of precipitation change over a complex topography region? International
 Journal of Climatology, 32, pp.1572-1578, https://doi.org/10.1002/joc.2360, 2012.
- Vincent, C. L. and Hahmann, A. N.: The impact of grid and spectral nudging on the variance of the nearsurface wind speed, J. Appl. Meteorol. Climatol., 54(5), 1021–1038, doi:10.1175/JAMC-D-14-0047.1,
 2015.
- Wang, Y., Leung, L.R., McGREGOR, J.L., Lee, D.K., Wang, W.C., Ding, Y. and Kimura, F.: Regional
 climate modeling: progress, challenges, and prospects. Journal of the Meteorological Society of Japan.
 Ser. II, 82, pp.1599-1628,https://doi.org/10.2151/jmsj.82.1599, 2004.
- 766 Wang, Y., Yang, K., Zhou, X., Chen, D., Lu, H., Ouyang, L., Chen, Y., Lazhu and Wang, B.: Synergy of
- orographic drag parameterization and high resolution greatly reduces biases of WRF-simulated precipitation in
 central Himalaya, Clim. Dyn., 54(3), 1729–1740, doi:10.1007/s00382-019-05080-w, 2020.
- Weisman, M.L., Skamarock, W.C. and Klemp, J.B.: The resolution dependence of explicitly modeled
 convective systems. Monthly Weather Review, 125, pp.527-548, https://doi.org/10.1175/1520-
- 771 0493(1997)125<0527:TRDOEM>2.0.CO;2, 1997.
- 772 Wilby, R.L., Hay, L.E. and Leavesley, G.H.: A comparison of downscaled and raw GCM output:
- implications for climate change scenarios in the San Juan River basin, Colorado. Journal of Hydrology,
- 774 225, pp.67-91, https://doi.org/10.1016/S0022-1694(99)00136-5, 1999.
- Xue, Y., Janjic, Z., Dudhia, J., Vasic, R. and De Sales, F.: A review on regional dynamical downscaling
- in intraseasonal to seasonal simulation/prediction and major factors that affect downscaling ability, Atmos.
- 777 Res., 147–148, 68–85, doi:10.1016/j.atmosres.2014.05.001, 2014.

- 778 Yver, C. E., Graven, H. D., Lucas, D. D., Cameron-Smith, P. J., Keeling, R. F. and Weiss, R. F.: Evaluating
- transport in the WRF model along the California coast, Atmos. Chem. Phys., 13(4), 1837–1852, doi:10.5194/acp13-1837-2013, 2013.
- 781 Zadra, A., Caya, D., Côté, J.E.A.N., Dugas, B., Jones, C., Laprise, R., Winger, K. and Caron, L.P.: The
- next Canadian regional climate model. PhysCan, 64, pp.75-83, 2008.
- 783 Zhang, D. L. and Zheng, W. Z.: Diurnal cycles of surface winds and temperatures as simulated by five boundary
- 784 layer parameterizations, J. Appl. Meteorol., 43(1), 157–169, doi:10.1175/1520-
- 785 0450(2004)043<0157:DCOSWA>2.0.CO;2, 2004.
- 786 Zhang, Y., Sartelet, K., Wu, S. Y. and Seigneur, C.: Application of WRF/Chem-MADRID and WRF/Polyphemus
- 787 in Europe Part 1: Model description, evaluation of meteorological predictions, and aerosol-meteorology
- 788 interactions, Atmos. Chem. Phys., 13(14), 6807–6843, doi:10.5194/acp-13-6807-2013, 2013.
- 789 Zhou, X., Beljaars, A., Wang, Y., Huang, B., Lin, C., Chen, Y. and Wu, H.: Evaluation of WRF Simulations With
- 790 Different Selections of Subgrid Orographic Drag Over the Tibetan Plateau, J. Geophys. Res. Atmos., 122(18),
- **791** 9759–9772, doi:10.1002/2017JD027212, 2017.
- Zhou, X., Yang, K. and Wang, Y.: Implementation of a turbulent orographic form drag scheme in WRF and its
 application to the Tibetan Plateau, Clim. Dyn., 50(7–8), 2443–2455, doi:10.1007/s00382-017-3677-y, 2018.
- 794 Zhou, X., Yang, K., Beljaars, A., Li, H., Lin, C., Huang, B. and Wang, Y.: Dynamical impact of parameterized
- turbulent orographic form drag on the simulation of winter precipitation over the western Tibetan Plateau, Clim.
- 796 Dyn., 53(1–2), 707–720, doi:10.1007/s00382-019-04628-0, 2019.

Supplementary material

Effects of spatial resolution on WRF v3.8.1 simulated meteorology over the central Himalaya

Jaydeep Singh¹, Narendra Singh^{1*}, Narendra Ojha², Amit Sharma^{3, a}, Andrea Pozzer^{4, 5*}, Nadimpally Kiran Kumar⁶, Kunjukrishnapillai Rajeev⁶, Sachin S. Gunthe³, V. Rao Kotamarthi⁷

¹Aryabhatta Research Institute of Observational Sciences, Nainital, India

²Physical Research Laboratory, Ahmedabad, India

³EWRE Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, India

⁴Department of Atmospheric Chemistry, Max Planck Institute for Chemistry, Mainz, Germany ⁵Earth System Physics Section, International Centre for Theoretical Physics, Trieste, Italy ⁶Space Physics Laboratory, Vikram Sarabhai Space Centre, Thiruvananthapuram, India ⁷Environmental Science Division, Argonne National Laboratory, Argonne, Illinois, USA ^aNow at Department of Civil and Infrastructural Engineering, Indian Institute of Technology Jodhpur, Jodhpur, India

Correspondence: Narendra Singh (narendra@aries.res.in) and Andrea Pozzer (andrea.pozzer@mpic.de)

Evaluation metrics: The following statistical metrics are used to evaluate the WRF model performance.

Mean Bias (MB)

$$\mathbf{MB} = \frac{1}{N} \sum_{i=1}^{N} (\boldsymbol{P}_i - \boldsymbol{O}_i)$$

RMSE (Root mean square error)

$$\mathbf{RMSE} = \sqrt{\frac{\sum_{i=1}^{N} (P_i - O_i)^2}{N}}$$

Correlation coefficient (r)

$$\mathbf{r} = \frac{1}{N-1} \sum_{i=1}^{N} \frac{(P_i - \overline{P})(O_i - \overline{O})}{\sigma_P \sigma_O}$$

Where:

N = The total number of the total pairs of observations and model simulated values

P = The model values

O = The observations

 σ_P and σ_O are the standard deviation of the and observations.

Table S1. The summary of the statistical metrics MB, RMSE and correlation coefficient (r) for different meteorological parameters, surface pressure (P), 2m temperature (T2), 2m relative humidity (RH2), 10m wind speed (WS10) and specific humidity (Q2) within all three domains d01, d02 and d03 without the altitude adjustment and after altitude correction

Parameters	MB								RM	ISE			Correlation Coefficient (r)					
	Without correction		With correction		Without correction		With correction			Without correction			With correction					
	d01	d02	d03	d01	d02	d03	d01	d02	d03	d01	d02	d03	d01	d02	d03	d01	d02	d03
P (hPa)	65.3	32.5	25.2	0.1	0.1	0.1	66.8	33.3	25.8	0.6	0.6	0.6	0.97	0.97	0.97	0.97	0.97	0.97
T2 (⁰ C)	2.8	0.9	0.2	-1.1	-1.2	-1.2	3.2	1.6	1.3	1.9	2.0	2.0	0.75	0.67	0.67	0.35	0.34	0.36
RH2 (%)	-6.4	-0.4	-2.4	-8.4	-0.9	-3.1	12.1	8.8	8.9	12.8	10.0	10.4	0.43	0.45	0.52	0.56	0.39	0.46
WS10 (ms ⁻¹)	0.0	0.9	0.5	1.3	2.7	1.9	1.6	2.0	2.0	2.8	4.0	3.5	0.18	0.18	0.24	0.35	0.33	0.34
Q2 (g Kg ⁻¹)	0.4	0.3	-0.7	-2.4	-1.3	-1.6	1.6	1.5	1.6	3.0	1.9	2.2	0.67	0.72	0.77	0.63	0.68	0.72

Fig. S1 The diurnal variation of the 2m specific humidity (Q2) in different domain. The left panel for without altitude adjustment and right panel after the correction of the altitude.

Fig. S2 The comparison of the correlation coefficients without feedback (WRF-WF: blue) and with feedback (WRF-F: gray) for different meteorological parameters; Surface pressure (P), 2m temperature (T2), 2m relative humidity (RH2), 10m wind speed (WS10) and 2m Specific Humidity (Q2) for the different domains d01, d02 and d03

Fig S3: Comparison of the wind speed and direction is shown by the windrose diagram (first row), and frequency distribution of the wind direction (second row) for d01 without feedback

(WRF-WF) and with feedback (WRF-F) along with the observation for the time period June-September 2011. The different colours of windrose show the wind speed and the radius of windrose show the percentage frequency of counts for particular direction.

Figure S4: The topography from GMTED2010 (first row) at 30s and SRTM (second row) at 3s in three different domain d02, d03 and d04 while third row shows the difference between SRTM and GMTED2010.

Figure S5: Frequency distribution of wind direction

Figure S6: Mean distribution of relative humidity (RH; %) during 1–30 September 2011 simulated by WRF model (**a**) d02 from GMTED, and (**b**) d02 using SRTM3s; (**c**) the difference between (**a**) and (**b**) while in d03 is shown from (**d-f**). The triangle shows the observation station.