iNRACM: Incorporating 15N into the Regional Atmospheric Chemistry Mechanism (RACM) for assessing the role photochemistry plays in controlling the isotopic composition of NO$_x$, NO$_y$, and atmospheric nitrate.

Greg Michalsk1, Huan Fang1, Wendell W. Walters2, and David Mase1.

1Purdue University, Department of Earth, Atmospheric, and Planetary Sciences, Department of Chemistry. West Lafayette, IN. USA

2Brown University, Institute for Environment and Society. Providence, RI. USA

Correspondence: Greg Michalski, gmichals@purdue.edu

Key Points

- Modeling nitrogen isotope fractionation during the photochemical oxidation of nitrogen oxides into atmospheric nitrate.

- Incorporation of N isotopes of NOy into the Regional Atmospheric Chemistry Mechanism.

- Implications for quantifying NO$_x$ sources and oxidation pathways using nitrogen isotopes.
Abstract

Nitrogen oxides, classified as NO$_x$ (nitric oxide (NO) + nitrogen dioxide (NO$_2$)) and NO$_y$ (NO$_x$ + NO$_3$, N$_2$O$_5$, HNO$_3$, HNO$_4$, HONO + Peroxyacetyl nitrate (PAN) + organic nitrates + any oxidized N compound), are important trace gases in the troposphere, which play an important role in the formation of ozone, particulate matter (PM), and secondary organic aerosols (SOA). Among many uncertainties in movement of atmospheric N compounds, nowadays understanding of NO$_y$ cycling is limited by NO$_x$ emission budget, unresolved issues within the heterogeneous uptake coefficients of N$_2$O$_5$, the formation of organic nitrates in urban forests, etc. A photochemical mechanism used to simulate tropospheric photochemistry was altered to include 15N compounds and reactions as a means to simulate δ^{15}N values in NO$_y$ compounds. The 16 N compounds and 96 reactions involving N used in Regional Atmospheric Chemistry Mechanism (RACM) were replicated using 15N in a new mechanism called i_NRACM. The 192 N reactions in i_NRACM were tested to see if isotope effects were relevant with respect to significantly changing the δ^{15}N values (±1‰) of NO$_x$, HONO, and/or HNO$_3$. The isotope fractionation factors (α) for relevant reactions were assigned based on recent experimental or calculated values. Each relevant reaction in the i_NRACM mechanism was tested individually and in concert in order to assess the controlling reactions. The final mechanism was tested by running simulations under different conditions that are typical of pristine, rural, urban, and highly polluted environments. The results of these simulations predicted several interesting δ^{15}N variations.
1. Introduction

Nitrogen oxides are an integral part of atmospheric chemistry, controlling the oxidation state of the troposphere, influencing aerosol formation, altering the pH of rainwater, and facilitating the movement of nitrogen through the N cycle. Nitrogen oxides are classified as NOx (nitric oxide (NO) + nitrogen dioxide (NO2)) and NOy (NOx + NO3, N2O5, HNO3, + HNO4 + HONO + Peroxyacetyl nitrate (PAN) + organic nitrates + any oxidized N compound) [Day et al., 2003; Harrison et al., 1999; Hegglin et al., 2006; Ma et al., 2013]. NOx produces ozone (O3) through NO2 photolysis, and NO acts as a catalyst in O3 production when volatile organic compounds (VOCs) are present. In turn, O3 photolysis generates OH radicals, which initiates a radical chain reaction involving HO2 and organic peroxy propagators that result in the oxidation of chemically reduced compounds in the troposphere making them more soluble [Finlayson-Pitts and Pitts, 2000; Seinfeld and Pandis, 1998]. Thus, NOx facilitates the cleansing of the atmosphere through the production of O3 and OH (OH + HO2), which together define the troposphere’s oxidation state [Bloss et al., 2005; Lelieveld et al., 2008; Prinn, 2003]. These oxidants play an important role in the formation of particulate matter (PM) [Bauer et al., 2007; Pye et al., 2010], forming secondary organic aerosols (SOA) via VOC oxidation [Hoyle et al., 2011; Srivastava et al., 2017]. They also generate secondary inorganic PM through NOx, sulfur oxides (SOx), and ammonia (NH3) neutralization, which leads to ammonium nitrate (NH4NO3) and ammonium sulfate ((NH4)2SO4) production [Cao et al., 2017; Pan et al., 2018; Pusede et al., 2016]. The production of PM has important consequences for air quality aerosols [Andreae and Crutzen, 1997], human health [Bruningfann and Kaneene, 1993; Hall et al., 1992], and radiative forcing [Charlson et al., 1992; Chen et al., 2007]. Termination reactions in NOy cycling produces HNO3, and facilitates the production of sulfuric acid (H2SO4), two strong acids that decrease the pH of rain, known colloquially as acid rain and impact aerosol pH, both of which triggers a number of negative impacts on the environment [Brimblecombe et al., 2007; Lajtha and Jones, 2013]. When NOx is deposited to the surface by wet and dry deposition, it transfers bioavailable N to ecosystems that may be bereft of, or saturated with, bioavailable N. This process can shift the balance of both terrestrial and aquatic ecosystems and impact the goods and services that those ecosystems can normally deliver [Du et al., 2019; E. M. Elliott et al., 2019; Fowler et al., 2013]. Thus, understanding NOx sources and their chemistry is important for an array of scientific disciplines and evaluating their social, economic, and cultural impact on the environment.

Despite this importance, there are numerous knowledge gaps in the understanding of the cycling of NOx in the atmosphere. The NOx emission budget is still poorly constrained. Most emission inventories rely on fixed emission factors for some sources that may, in fact, be variable. For example, power plant NOx emissions are based on assumed efficiency of catalytic converters that may not be accurate [Srivastava et al., 2005; Félix et al., 2012]. Soil NOx emissions are highly dependent on soils moisture, redox conditions, fertilizer application rates, type, and timing making them challenging to constrain [Shepherd, 1991; Galloway et al., 2004; Hudman et al., 2012; Houlton et al., 2013; Pilegaard, 2013]. There are several unresolved issues with the heterogeneous uptake coefficients of N2O5 [Brown et al., 2001; Brown et al., 2006; Chang et al., 2011] and the formation of organic nitrates in urban forests [Lee et al., 2016; Romer et al., 2016; Kastler and Ballschmiter, 1998]. The relative importance and mechanism of HONO formation versus HONO emissions are also hotly debated. Likewise, reactions of NOy in
the aqueous phase and mixed aerosols are not fully understood. Chemical transport models (CTMs) do not accurately predict aerosol nitrate concentrations or other NO\textsubscript{x} mixing ratios [Spak and Holloway, 2009; Zhang et al., 2009]. Therefore, it is important that these uncertainties in NO\textsubscript{x} cycling be resolved if we aim to have accurate air quality forecast and accurate chemistry-climate models that use CTMs.

It has been suggested that stable N isotopes can provide clues as to the origin of NO\textsubscript{x} [Elliott et al., 2009; Felix and Elliott, 2014; Walters et al., 2015b] and the oxidation pathways that transform in NO\textsubscript{x} [Walters and Michalski, 2015; 2016]. Isotopic measurements of NO\textsubscript{x} compounds show a wide range of δ15N values (Eq. (1)), which has been suggested to indicate variability in NO\textsubscript{x} emission sources, chemical processing, and/or a combination of these effects. δ15N is defined by the relative difference between the 15\textsubscript{N}/14\textsubscript{N} ratio in a NO\textsubscript{x} compound and the ratio in air N\textsubscript{2} (the arbitrary reference compound) and is typically reported in parts per thousand e.g. per mil (%).

\[
\delta^{15}N_{NOy} (\text{‰}) = \left[\frac{(15\text{NO}_y/14\text{NO}_y) - 1}{(15\text{N}_2/14\text{N}_2) - 1} \right] \times 1000 \quad \text{Eq. (1)}
\]

A number of studies have measured the δ15N values of NO\textsubscript{x} collected from NO\textsubscript{x} sources such as power plants [Felix et al., 2012], automobiles [Walters et al., 2015a], biomass burning [Fibiger and Hastings, 2016], and non-road sources [Felix and Elliott, 2014].

Many studies have measured the δ15N values of various NO\textsubscript{x} compounds collected from the troposphere. Most of the NO\textsubscript{x} δ15N data is for nitrate that has been collected on filters (PM\textsubscript{2.5}, PM\textsubscript{10}, TSP) [Moore, 1977; Savard et al., 2017], as the dissolved NO\textsubscript{3}- anion in rain [Heaton, 1987; Hastings et al., 2003; Felix et al., 2015; Yu & Elliott, 2017], or as gas phase HNO\textsubscript{3} [Freyer et al., 2009; Savard et al., 2017]. The range of tropospheric NO\textsubscript{x} δ15N values span -50 to +15‰ but the average is ~0‰. Two hypotheses have been offered to explain these ranges: Source and Photochemistry. The source hypothesis [Elliott et al., 2007; Hastings et al., 2013] suggesting that the tropospheric NO\textsubscript{x} δ15N value range reflects the spatial and temporal mixing of NO\textsubscript{x} sources with different δ15N values that is then converted into NO\textsubscript{y}. The photochemistry hypothesis [Freyer, 1978; Freyer et al., 1993; Walters et al., 2018] suggests that the observed NO\textsubscript{x} δ15N variations arise via isotope effects occurring when photochemical cycling partitions N into the myriad of NO\textsubscript{x} compounds. These two hypotheses are not mutually exclusive. Indeed it is likely to be a combination of both processes, but their relative importance likely shifts depending on environmental conditions such as a region’s NO\textsubscript{x} source diversity, plume versus dispersed chemistry, photolysis intensity, and oxidant load. In turn, the δ15N data might be a new key to reconciling some of the current uncertainties in NO\textsubscript{x} sources and chemistry, if it can be properly interpreted.

What has become clear is that the temporal-spatial heterogeneity of NO\textsubscript{x} sources and the complex photochemistry of NO\textsubscript{x} presents a serious challenge to deciphering the observed NO\textsubscript{x} δ15N values. Except for a few isolated cases, a proper assessment of NO\textsubscript{x} δ15N values will require incorporating isotope effects into 3-D chemical transport models. This will include emission modeling of 15\textsubscript{NO}_x, meteorological mixing, factoring in isotope effects during NO\textsubscript{x} removal processes, and developing chemical mechanisms that incorporate 15\textsubscript{N} compounds and their relative rate constants. Here we take the first step in this endeavor by developing a chemical mechanism (0-D photochemical box model) that explicitly includes 15\textsubscript{NO} compounds and the isotope effects that occur during their cycling through photolysis, equilibrium, and kinetic reactions.
2. Methods

2.1 Chemical and isotopic compounds and reactions included in iN5RACM

The basis of the iN5RACM model is incorporating 15N into the Regional Atmospheric Chemistry Mechanism (RACM) detailed in Stockwell et al. [Stockwell et al., 1997]. RACM is an extension of the chemical mechanism used in the Regional Acid Deposition Model (RADM2) [Stockwell et al., 1990], but with updated inorganic and organic chemistry. There are 17 stable inorganic compounds, 4 inorganic intermediates, 32 stable organic compounds, including 4 biogenic organic intermediates and 24 organic intermediates in the RACM mechanism. The RACM mechanism uses 237 chemical reactions, including 23 photolysis reactions [Atkinson, 1990; Atkinson et al., 1992]. The rate constants, photolysis cross-sections and quantum yields for the inorganic compounds were taken from [DeMore et al., 1994]. The RACM mechanism aggregates the thousands of VOC in the atmosphere into 16 anthropogenic and 3 biogenic organic compounds. Part of the aggregation criteria is based on the reactivity of a VOC towards the hydroxyl radical (•OH). Full details on how •OH reacts with alkanes, alkenes, aromatics, and other VOCs, and the aggregation rationale, can be found in Stockwell et al. (1997). The actinic flux model used in RACM was developed by Madronich (1987) and calculates the wavelength-dependent photon flux as a function of solar zenith angle, which is a function of time (hourly), date, latitude, and longitude. Inputs to the model include temperature, water vapor content, pressure, initial gas mixing ratios and primary pollutant emission rates. Complete details on the RACM mechanism can be found in Stockwell et al. (1997). The numerical solver used was VODE, part of the ODEPACK, a commonly used, and validated, collection of initial value ordinary differential equation solvers [Brown et al., 1989; Hindmarsh, 1983].

Our iN5RACM (isotope N in RACM) mechanism was generated by adding 15N isotopologues for the 2 primary (NO, NO\textsubscript{2}) and the 11 secondary N pollutants found in the original RACM mechanism (Table S1a). By definition, an isotopologue is a compound with the same chemical formula but a different mass (e.g. NO = 30 amu and 15NO = 31 amu, with N = 15N). This is different from isomers, which are isotopic isomers, compounds with the same mass but a different structure caused by isotopic substitution (e.g. 15NO\textsubscript{2} = 109 amu and 15NO\textsubscript{2} = 109 amu). Of all the reactive N compounds only N\textsubscript{2}O\textsubscript{5} has multiple possible 15N substitutions and 2 isotopologues were defined in the iN5RACM: 15NNO\textsubscript{3} and 15N15N\textsubscript{2}O\textsubscript{5}. The 15N compounds are numbered (Table S1a) and subscripted (a, b) in order to maintain a compound numbering scheme that is consistent with that in Stockwell et al. (1997). The non-N compounds found in both RACM and iN5RACM mechanisms have been excluded from Table S1a for the sake of brevity but can be found in Stockwell et al. (1997). The 16 15N compounds (Table S1a) were added to the original RACM FORTRAN code provided by Stockwell by using Z = 15N (e.g. 15NO is defined as ZO).

The 96 chemical reactions involving N compounds (Table S2a-f) were inspected and replicated for 15N based on classification as the reaction being either “N only” or “multiple N” reactions. Single N reactions are those where only one N compound was found in the products and reactants, for example NO + O\textsubscript{3} \rightarrow NO\textsubscript{2}+O\textsubscript{2}. Multiple N reactions could have multiple N compounds in the reactants, the products, or both. Examples of these possible multiple N reactions are NO\textsubscript{3}+NO\textsubscript{3} \rightarrow N_{2}O_{5}, N_{2}O\textsubscript{5} \rightarrow NO\textsubscript{2} + NO\textsubscript{3}, and NO\textsubscript{3} + NO \rightarrow NO\textsubscript{2} + NO\textsubscript{2} respectively. For these multiple N reactions, a reaction probability was factored into the isotopologue/isotopomer rate constants (discussed below). For example, the N
isotopologue/isotopomer equivalent of the \(\text{N}_2\text{O}_5 \rightarrow \text{NO}_2 + \text{NO}_3 \) reaction has two isotopomer reactions: \(^{15}\text{NNO}_5 \rightarrow ^{15}\text{NO}_2 + ^{15}\text{NO}_3 \) and \(^{15}\text{NNO}_5 \rightarrow ^{15}\text{NO}_2 + ^{15}\text{NO}_3 \). These two isotopologue rate constants (R54a, R54b) are multiplied by a factor of 1/2 to account for this statistical probability.

Similar statistical factors were considered when N compounds or intermediates decomposed or reacted to form multiple N products (R52a, R52b, R52c, R52d). All N isotopologue reaction stoichiometry is given in Table S2a-f.

2.2 Isotope effects included in \(i_R \text{RACM} \)

The main challenge for developing realistic isotopologue chemistry in \(i_R \text{RACM} \) is quantifying the differences in rate constants caused by isotopic substitution. These isotope effects can be classified into four general types: Equilibrium isotope effects (EIE), kinetic isotope effects (KIE), photo-induced isotope fractionation effects (PHIFE), and vapor pressure isotope effects (VPIE). For this study, the most up-to-date isotope fractionations were used when establishing the framework for modeling their effect associated with NO\(_x\) oxidation chemistry. The established framework will easily enable an adjustment of isotope effects as we improve our understanding of isotope fractionation factors.

Urey (1947) and Bigelesien and Mayer (1947) showed that EIEs are driven by the sensitivity of molecular and condensed-phase vibrational frequencies to isotopic substitutions [Bigeleisen and Mayer, 1947; Urey, 1947]. Because vibrations are used in the molecular partition function (Q) to calculate equilibrium constants, isotopic substitution results in isotopologues having different equilibrium constants. Urey [1947] defined the reduced partition function ratio for two isotopologues of the same compound as a \(\beta \) value. For example, the reduced partition function ratio of nitric oxide N isotopologues is \(Q_{1\text{NO}}/Q_{\text{NO}} = \beta_{\text{NO}} \), with the heavy isotope placed in the numerator by convention. The ratio of two \(\beta \) values is denoted as \(\alpha_{\text{N}02/\text{N}15} \) the isotope fractionation factor. For example, \(\alpha_{\text{NO}_2/\text{NO}} \) is the temperature-dependent isotope fractionation factor for the NO + \(^{15}\text{N}O_2 \leftrightarrow \text{NO} + \text{NO}_2 \). In this case, at 298K \(\beta_{\text{NO}} = 1.0669 \) and \(\beta_{\text{NO}2} = 1.1064 \) and \(\alpha_{\text{NO}_2/\text{NO}} = \beta_{\text{NO}}/\beta_{\text{NO}2} = 0.9643 \) [Walters andMichalski, 2015].

A KIE is the relative change in the rate of a unidirectional chemical reaction when one of the atoms of the reactants is substituted with an isotope [Bigeleisen and Wolfsberg, 1958]. KIEs are driven by the change in energy required to proceed over the reaction barrier (transition state) as well as changes in the probability of quantum mechanical tunneling [Wolfsberg et al., 2010]. This generally results in a lighter isotopologue reacting faster than a heavier isotopologue. Much of the early research on KIEs were investigations of the KIE in reactions containing hydrogen isotopes and these studies usually defined a KIE = \(k_1/k_H = -\alpha_{L/H} \), where the \(k \)’s are the rate constants for the light and heavy isotopologues. This is the inverse of the definition of \(\alpha \) usually used in research dealing with EIE, VPIE, PHIFE and this inversion can lead to confusion. In this paper, in order to maintain consistency between the \(\alpha \) values for EIE, KIE, VPIE, and PHIFE, \(\alpha \) will be defined as heavy/light for all four effects.

The \(\alpha \) values for EIE and KIE can be determined using a number of approaches. The \(\alpha \) values for EIE can be calculated if molecular constants (e.g. harmonic frequencies and anharmonicity constants) of the isotopologue pair are known. Accurate molecular constants are difficult to accurately measure for large molecules and as a result, they primary exist only for diatomic and triatomic isotopologues [Richet et al., 1977]. The only experimental EIE values for \(^{15}\text{N}\) isotopologues of NO\(_x\) is for the EIE between NO and NO\(_2\) [Sharma et al., 1970; Walters et al., 2016]. To determine the EIE in other NO\(_x\) compounds we must rely on quantum chemistry
computation methods to estimate the molecular constants and anharmonicity constants. Recent works utilizing these methods have estimated the EIE for most non-organic NO\textsubscript{x} compounds [Walters and Michalski, 2015]. For KIE, in addition to molecular constants, the transition state vibrational frequencies are also needed. The only 15N KIE calculation to date for an NO\textsubscript{y} compound is for the KIE for the NO + O\textsubscript{3} reaction [Walters and Michalski, 2016].

These EIE and KIE values have been incorporated in \textit{i}_N RACM in this study Table S2a-c. If there is no isotope effect associated with any of the NO\textsubscript{x} reactions, then \(\alpha\) is set equal to 1. The 15N isotopologue rate constant for any reaction is then \(\alpha14k\) where \(14k\) is the rate constant for any 14N reaction in RACM and these are given in Table S2a-f. It is useful to define the magnitude of EIE and KIE in the same per mil (‰) notation used to quantify a \(\delta^{15}\text{N}\) values by defining an enrichment factor \(\varepsilon(\%) = (\alpha-1)1000\). For example, the NO\textsubscript{x} isotope exchange equilibrium mentioned above, the \(\varepsilon_{\text{NO/NO}_2} = -35.7\)‰. This means that \(15\text{NO/NO}_2\) ratio would be 35.7‰ smaller than the \(15\text{NO}_2/\text{NO}_2\) ratio if the isotopes in two gases were statistically distributed (Table S2b).

PHIFE is the relative change in photolysis rates of isotopologues due to the substitution of a heavier isotope [Yung and Miller, 1997]. In the atmospheric N cycle, NO\textsubscript{2}, NO\textsubscript{3}, N\textsubscript{2}O\textsubscript{5}, and HONO readily undergo photolysis at wavelengths of light that penetrate into the troposphere. The PHIFE can be estimated using a simple zero-point energy shift model (\(\Delta ZPE\)). In this approximation, the absorption spectra of the heavier isotopologue is generated by applying a uniform blue shift (equal to \(\Delta ZPE\)) to the measured spectral absorbance of the light (major) isotopologue [Blake et al., 2003; Liang et al., 2004; Miller and Yung, 2000]. This results in isotopic fractionation because the wavelength (\(\lambda\)) dependent photolysis rate constant (\(J(\lambda)\)) is dependent on the convolution of the absorption cross-section (\(\sigma(\lambda)\)), actinic flux (\(F(\lambda)\)), and quantum yield (\(\phi(\lambda)\)) (Eq. (2)):

\[
\begin{align*}
\sigmaf(\lambda) &= \sigma(\lambda)F(\lambda)\phi(\lambda) \quad \text{Eq. (2)}
\end{align*}
\]

The overall photolysis rate constant \(\left< J \right>\) can be calculated by integrating \(\sigma\), \(F\), and \(\phi\) over a range of wavelengths that can cause dissociation (\(\lambda_1\) and \(\lambda_2\)):

\[
\begin{align*}
\left< J \right> &= \int_{\lambda_1}^{\lambda_2} \sigma(\lambda)F(\lambda)\phi(\lambda)d\lambda \quad \text{Eq. (3)}
\end{align*}
\]

The N isotopologue fractionation \(\alpha\) resulting from photolysis (of NO\textsubscript{2} isotopologues) is calculated by (Eq. (4)).

\[
\begin{align*}
\alpha_{47/46} &= \frac{\sigmaf7}{\sigmaf6} \quad \text{Eq. (4)}
\end{align*}
\]

It is important to note that there are limitations in the \(\Delta ZPE\)-shift model [Blake et al., 2003; Liang et al., 2004; Miller and Yung, 2000]. These include the failure to account for changes in shape and intensity of absorption spectra upon isotopic substitution and the same quantum yield (as a function of wavelength) is assumed for all isotopologues. Despite these limitations, this approach should still give a rough estimate of photolytic fractionation until experimentally determined PHIFE’s become available [Blake et al., 2003; Liang et al., 2004; Miller and Yung, 2000].

Isotopologues partition differently between phases giving rise to the VPIE. This is most notable in gas-liquid systems [Van Hook et al., 2001], but also can occur in gas-solid equilibrium.
Both of these may ultimately be important for understanding δ^{15}N variability in NO$_y$ compounds. For example, solid-gas VPIE may be relevant for the HNO$_3(g)$ + NH$_3(g)$ \leftrightarrow NH$_4$NO$_3(aq)$ reaction, whose temperature-dependent equilibrium can shift dramatically diurnally [Morino et al., 2006] and seasonally [Paulot et al., 2016]. It is likely that this VPIE will result in the particle phase NO$_3^-$ having a different δ^{15}N value compared to the gas phase HNO$_3$ [Heaton, 1987]. Additionally, possible VPIE occurring during wet and dry deposition, such as HNO$_3(g)$ \rightarrow HNO$_3(aq)$ may be relevant for δ^{15}N variations NO$_3^-$ in precipitation [Freyer et al., 1993]. Multiphase reactions are not included in RACM since it is only concerned with gas phase reactions. These effects may be important for accurate δ^{15}N predictions and should be addressed in more complex models, but this is a limitation in any “gas phase only” photochemical box model. Similarly, NO$_3^-$ aqueous phase reactions, such as 2NO$_2^-$ + H$_2$O \rightarrow HNO$_3^-$ + HNO$_2^-$, are not included in RACM, which may limit i_NRACM’s ability to accurately predict the δ^{15}N values of dissolved NO$_3^-$ in rainfall samples.

2.3 Sensitivity analysis: Determining the “reaction relevance” of NO$_y$ isotopologues

The objective of the i_NRACM model is to make predictions about the temporal and spatial variation of δ^{15}N value in various N compounds caused by EIE, KIE, and PHIFE, and compare them to observations. Currently, the δ^{15}N observations are largely limited to HNO$_3^-$, as either particulate or dissolved NO$_3^-$, but there are a few recent measurements of the δ^{15}N values of NO$_x$ [Walters et al., 2018] and HONO [Chai and Hastings, 2018]. The δ^{15}N values of organic nitrates and PAN may be made in the not so distant future, but there is no published data to date. Thus, a given isotopologue reaction pair in i_NRACM was considered “relevant” if it significantly changed the δ^{15}N value ($\pm 1\%$) of NO$_x$, HONO, or HNO$_3$. This relevance was determined by conducting a sensitivity analysis on the PHIFE, KIE, and EIE effects for all N reactions. This was done by arbitrarily setting $\alpha = 0.98$ ($\varepsilon = -20\%$) for one isotopologue reaction and $\alpha = 1.0$ for all others, then running a test case. This test case is a 5-day simulation, beginning at 3 AM on March 1 (2007) and simulates mid-latitude suburban chemistry using the trace gas and meteorology parameters given in Table S3a-b. This simulation was repeated 96 times until every N containing reaction was tested. For example, NO$_x$, HONO, or HNO$_3$ δ^{15}N values are not sensitive to R51 (Fig. 1). The following section discusses which i_NRACM reactions are relevant and the approaches used to determine the appropriate α values for those reactions. Testing for isotope mass balance was also performed by hourly summing all N isotopologues, excluding...
unreactive N₂. Over the course of a five day simulation the total δ¹⁵N value averaged 0.023 ± 0.048‰, with most of the variance occurring during the initial four hour model spin-up. Excluding these data points the total δ¹⁵N value averaged 0.018 ± 0.016‰, demonstrating limited impact of rounding errors and effective isotope mass conservation.

2.3.1 PHIFE relevant in the iN-RACM mechanism

Only one of the 6 photolysis reactions involving N compounds was found to be relevant. NO₂ photolysis (R1) had a significant impact on the δ¹⁵N value of NOₓ, HONO, and HNO₃ (Fig. 2). The initial difference between the δ¹⁵N of NO and NO₂ values is roughly equal to the arbitrarily set -20‰ enrichment factor. The nature of the diurnal oscillation in δ¹⁵N values on the three relevant NOₓ compounds and the dampening effect over time will be discussed in the results section.

When there is sufficient photolysis of any single NOₓ compound, then the δ¹⁵N value of that compound tends to significantly change, but often neither the HNO₃, HONO, nor NOₓ δ¹⁵N values are affected. For example, the arbitrary α for NO₃ photolysis (R7 and R8) alters the δ¹⁵N value of HNO₃ and NOₓ by less than 0.1‰ (not shown), but it induces a large diurnal changes in the δ¹⁵N value of NOₓ and N₂O₅, with sharp transitions occurring during sunrise and sunset (Fig. 3). This is easily understood. For our test case, during the day ¹⁵NO₃ would be left behind because ¹⁴NO₃ is preferentially being photolyzed. The daytime N₂O₅ formed from this NO₃ (positive δ¹⁵N) and NO₂ (δ¹⁵N ~ 0) thus has a δ¹⁵N values halfway between these two reactants (isotope mass balance). However, there is so little NO₃ and N₂O₅ during the day that essentially no HNO₃ is being formed through these precursors and the NO₃ PHIFE is not manifested in the NOₓ or HNO₃ δ¹⁵N value. During the night, photolysis and the PHIFE ceases and any NO₃ and N₂O₅ formed by NO₂ oxidation have δ¹⁵N values equal to the NO₂.

NOₓ, HONO, and HNO₃ are not sensitive to the other NOₓ photolysis reactions because of this isotope mass balance effect.

\[\delta^{15}N_{NO_x} = \sum \delta^{15}N_{NO_y} \]
Eq. (5)

Where \(f_{NO_y} \) is the mole fraction of any NOₓ compound relative to total NOₓ, \(\delta^{15}N_{NO_y} \) is

Figure 2. The time evolution of δ¹⁵N values of NO, NO₂, HNO₃, and HONO caused by PHIFE during NO₂ photolysis.

Figure 3. The time evolution of δ¹⁵N values of NO₃, and N₂O₅ caused by PHIFE during NO₃ photolysis.
the \(\delta^{15}N \) value of that compound, and \(\delta^{15}N_{\text{NOy}} \) is the value of total N, which in these simulations is arbitrarily set to 0‰. For an \(\epsilon = -20\% \) and a threshold of “importance” set to ± 1‰, isotope mass balance requires that \(f_{\text{NOy}} > 0.05 \). Only NO, NO\(_2\), HONO, and HNO\(_3\) compounds meet this threshold (Fig. 4). All other \(f_{\text{NOy}} \) values are an order of magnitude smaller, the largest being \(f_{\text{HNO}_4} \) and it only reaches a maximum value of 0.005. By the end of the second simulation day the \(f_{\text{HNO}_3} \) has approached 1 and effectively minimizes the other \(f_{\text{NOy}} \) values because it is the only stable N compound because the other NO\(_x\) compounds are very photochemically active. If we exclude this build up in HNO\(_3\) from the sum of NO\(_x\), then \(f_{\text{NO}} \) and \(f_{\text{NO}_2} \) (and HONO during some hours, see discussion) become the dominant fractions (Fig. 4) and they control the other \(f_{\text{NOy}} \). Even under this constraint, the \(f_{\text{HNO}_3} \) only reaches 0.001 (Fig. 4). Thus, in \(iN_{\text{RACM}} \), the \(\alpha \) values of \(\alpha_{R4+R8} \) were set equal to 1 and only the \(\alpha_{R1} \) was assigned a non-1 value, which was determined using a PHIFE theory (discussed below).

2.3.2 KIE relevant in \(iN_{\text{RACM}} \) mechanism

The KIE for 12 N containing compounds and their 96 reactions were evaluated using the same sensitivity analysis. The vast majority of reactions had little influence on the \(\delta^{15}N \) values of NO\(_x\), HONO, and HNO\(_3\) (Fig. 1). Similar to the photolysis sensitivity, either reaction proximity or isotope mass balance were controlling \(\delta^{15}N \) relevance. For example, NO\(_2\) + OH is reaction that directly produces a significant fraction of HNO\(_3\) and therefore R39 is relevant in the \(iN_{\text{RACM}} \) mechanism. In contrast, R95 produces very little HNO\(_3\) so it has a negligible influence on the predicted HNO\(_3\) \(\delta^{15}N \) value. Therefore, the only relevant KIE reactions that have \(\alpha \neq 1 \) in \(iN_{\text{RACM}} \) mechanism are R39, R91-R97, R48 (Table S2b).
2.3.3 EIE relevant in iN RACM mechanism

While some EIE are naturally handled in the iN RACM mechanism, such as the NO₂–NO₃–N₂O₅ equilibrium, other potentially important N isotope exchange reactions are not directly expressed in RACM and must be considered. From a thermodynamic perspective, the EIE for any two N containing compounds can be calculated. The rate at which these compounds can achieve equilibrium, however, needs careful consideration. For example, the EIE for the isotope exchange reaction NO + ^15^NHO₃ ↔ ^15^NO + HNO₃ has been calculated and measured [Brown and Begun, 1959]. Yet, steric considerations would suggest it would be very improbable for a gas phase reaction pathway or transition state to exist where two O atoms and a hydrogen from a HNO₃ could quickly migrate to a NO molecule during a collision. The result is that isotope exchange for this gas phase reaction is likely kinetically too slow to be relevant but is valid in a highly concentrated liquid phase [Brown and Begun, 1959]. The larger the N containing molecule the more difficult it is to envision gas phase EIE occurring on a timescale comparable to the residence time tropospheric N of about a week. On the other hand, the isotope exchange reaction NO + ^15^NO₂ ↔ ^15^NO + NO₂ rapidly occurs [Sharma et al., 1970] because it can form an ONONO (N₂O₃) stable intermediate. As such, iN RACM only considers N isotope equilibrium between NO, NO₃, NO₂, and N₂O₅. Since the latter 3 compounds are already chemically equilibrated in RACM, they are by default isotopically equilibrated in iN RACM. Therefore, the only new isotope exchange reaction added to iN RACM was NO + ^15^NO₂ ↔ ^15^NO + NO₂ (R238, R238a).

2.4 Isotopologue fraction factors (α) used in iN RACM

In this section we discuss the methodology used to determine the values for the relevant PHIFE, KIE, and EIE. These are reactions R1, R39, R48, R91-R97, and R238.

2.4.1 PHIFE derived α used in the iN RACM mechanism

The PHIFE for R1 was calculated using existing NO₂ experimental photolysis cross-section of ^14^NO₂ for tropospheric relevant wavelengths (300 to 450 nm) [Vandaele et al., 2002]. Using the experimentally determined AZPE for the ^15^NO₂ isotopologue of 29.79 cm⁻¹ [Michalski et al., 2004], the ^47^σ(λ) was blue shifted by roughly 0.3 nm from the experimentally measured...
The wavelength dependent actinic flux, $F(\lambda)$, was taken from the TUV model (NCAR) for solar zenith angles from 0 to 90° in 15° increments. The $\phi(\lambda)$ values were taken from experimental data at 298 K [Roehl et al., 1994], and it was assumed that there is no significant quantum yield isotope effect. Based on these assumptions the $46J(\lambda)$ and $47J(\lambda)$ values were calculated (Fig. 5). An important feature of NO2 the wavelength dependent J include a peak near 390-400 nm that subsequently decreases at longer wavelengths until NO2 photolysis ceases beyond 420 nm due to a $\phi = 0$ beyond this wavelength [Roehl et al., 1994]. Overall, the NO2 PHIFE α value was found to be consistent for the wide range of solar zenith angles, ranging between 1.002 to 1.0042 with higher values occurring at lower solar zenith angles. We used an $\alpha = 1.0042$ for daylight hours.

2.4.2 KIE derived α used in the iαRACM mechanism

2.4.2.1 KIE for the NO + O3 reaction

The $^{15}\alpha_{48}$ for the reaction NO + O3 \rightarrow NO2 +O2 reaction was determined by ab initio calculations [Walters and Michalski, 2016]. Generally, in a normal KIE the heavy 15NO would react with O3 slower than the light 14NO, which consistent with the calculated effect, however, it is relatively small ($\epsilon = -6.7‰$ at 298 K). The $^{15}\alpha_{48}$ was determined to have the following temperature dependent relationship [Walters and Michalski, 2016] over the temperature range of 220 to 320 K (Eq. (6)):

$$\alpha_{48} = (0.9822*\exp(3.3523/T)) \quad \text{Eq. (6)}$$

2.4.2.2 KIE for the NO3 + VOC reactions

The most influential reactions that impacted the δ^{15}N of HNO3 were the three reaction pathways that generate HNO3. This is because the isotope effect associated with this last step is largely retained in the product HNO3 because photolysis of HNO3 back into photochemically active compounds that could re-scramble N isotopes is slow, effectively "locking in" these final isotope effects. Two gas phase reactions groups are important for HNO3 production. Nitric acid is produced mainly by R39 during the daytime [Seinfeld and Pandis, 1998] but this reaction is treated as an EIE as discussed below in the EIE section. During the nighttime, when the photolysis sink for NO3 vanishes, NO3 can react with VOCs to form HNO3 via hydrogen abstraction reactions [Atkinson, 2000]. Any individual NO3 + VOC reaction had a small “relevance” for the δ^{15}N values of NO3, and HNO3, but given there are 7 such reactions (R91-R97) their sum may be important.

The KIE for each of the NO3 + VOC \rightarrow HNO3 reaction (R91-R97) was determined by assuming collisional frequency was the key KIE factor in such reactions. In these reactions (R91-R97) NO3 abstracts a hydrogen from a hydrocarbon, acting though a transition state involving the oxygen atoms in the nitrate radical C==H--ONO2. Since N is not directly participating in the bond formation it is classified as a secondary KIE [Wolfsberg, 1960]. Secondary KIE are typically much smaller than primary KIEs that occur at bond breaking/forming positions within a molecule [Wolfsberg, 1960]. Therefore, we assumed that the secondary KIE was negligible and did not factor into the α values for these 7 reactions. On the other hand, isotope substitution does change the relative rate of collisions for N isotopologues because of the change in molecular mass. The collisional frequency (Eq.7) for any of the NO3 + VOC reaction pair was calculated assuming a hard sphere approximation via
here \(\mu \) is the reduced mass of either NO\(_3\) or \(^{15}\)NO\(_3\) and the specific hydrocarbon in a given reaction (R91-R97). When taking the isotopologue collision ratio, the constants, collision cross-section (\(\bar{d} \)), and temperature cancel out giving a temperature independent KIE of

\[
\alpha = \frac{k_{15}}{k_{14}} = \frac{A_{15}}{A_{14}} = \sqrt{\frac{\mu_{15}}{\mu_{14}}} \quad \text{Eq. (8)}
\]

The \(\alpha \) for each NO\(_3\) + VOC reaction (R91-R97) as calculated using the hydrocarbon mass (Table S1b) and the NO\(_3\) isotopologue masses (62, 63 amu) and using Eq. (8).

2.4.3 EIE derived \(\alpha \) used in the \(i_3 \)RACM mechanism

2.4.3.1 EIE of NO + NO\(_2\) exchange

The NO + NO\(_2\) exchange was added to \(i_3 \)RACM by defining a forward and reverse reaction (R238, R238a) and an equilibrium constant \(K_{238} = k_{238}/k_{238a} = \alpha \). The forward rate constant \((k_{238}) \) was based on the NO-NO\(_2\) isotope exchange rate determined by Sharma et al. \((3.6 \times 10^{14} \text{ cm}^3 \text{ s}^{-1} \text{ molecule}^{-1})\). The reverse rate was calculated using \(k_{238} = k_{238a}/\alpha_{238} \). The temperature-dependent for EIE of NO + NO\(_2\) exchange (Eq. 9) was calculated using quantum mechanical techniques [Walters and Michalski, 2015] that matched well with recent experimental values [Walters et al., 2016].

\[
\alpha_{238} = 0.9771 \times \exp(18.467/T) \quad \text{Eq. (9)}
\]

2.4.3.2 EIE used in the NO\(_2\) + OH reaction

The \(^{15}\)O\(_3\) for the NO\(_2\)+OH+M \(\rightarrow \) HNO\(_3\) reaction (R39) was determined by assuming equilibrium between NO\(_2\) and HNO\(_3\). The third body and the negative temperature dependence of the rate constant shows that, similar to O\(_3\) formation, this reaction is an association reaction [Golden and Smith, 2000]. It proceeds through an excited intermediate, \(^*\)HNO\(_3\), that can undergo collisional deactivation by a third body M (Eq.10).

\[
\text{NO}_2 + \text{OH} \leftarrow k_r, k_f \rightarrow \text{HNO}_3 \quad \text{Eq. (10)}
\]

in which \(k_r \) and \(k_f \) are the forward and reverse rate constants for the association step and \(k_d \) is the rate constant for collisional deactivation. The HNO\(_3\) production rate constant is then \(k_f k_d [M] / k_r = K_{eq}[M] \). This general form can be used to write two isotopologue equilibrium constants \(K \)

\[
K_{39} = \left[^*\text{HNO}_3 \right]/\left[\text{[NO}_2\text{][OH]} \right] = k_{39f} k_{39r} \quad \text{Eq. (11)}
\]

\[
K_{39\alpha} = \left[^{15}\text{HNO}_3 \right]/\left[\text{[^{15}\text{NO}_2\text{][OH]} } \right] = k_{39f\alpha} k_{39r\alpha} \quad \text{Eq. (12)}
\]

Since \(^*\)OH is not participating in the N isotope chemistry, these two EIE effectively reduces the isotope chemistry to the temperature dependent \(^{15}\)N EIE
$^{15}\text{NO}_2 + \cdot\text{HNO}_3 \leftrightarrow \text{NO}_2 + \cdot\text{H}^{15}\text{NO}_3$ \hspace{1cm} Eq. (13)

$K_{39a}/K_{39} = \alpha_{\text{HNO}_3/\text{NO}_2} = \beta_{\text{HNO}_3/\text{NO}_2}$ \hspace{1cm} Eq. (14)

The fundamental vibration frequencies for HNO$_3^*$ were taken to be the same as ground state HNO$_3$, similar to RRKM theory approaches used to calculate the uni-molecular decay rate of HNO$_3^*$ [Golden and Smith, 2000]. The temperature-dependent β_{HNO_3} and β_{NO_2} values for this exchange were taken from [Walters and Michalski, 2015]. Since the reaction has a negative activation energy and has a fairly rapid rate constant at 101 kPa, (1×10^{11} cm3 s$^{-1}$) and the isotope effect due to the collisional deactivation frequency (Eq. 7) is minimal (~2‰) compared to the equilibrium effect (~40‰), the deactivation rate constants k_d were set equal ($k_{d14}/k_{d15}=1$). Setting $k_{14}=k_{15}$, and using the $\alpha_{\text{HNO}_3/\text{NO}_2}$ equilibrium value the k_{39a} for the $^{15}\text{NO}_2 + \cdot\text{OH}$ \rightarrow H$^{15}\text{NO}_3$ reaction is

$K_{39a} = \alpha_{\text{HNO}_3/\text{NO}_2} (K_{39})$ \hspace{1cm} Eq. (15)

The temperature dependence of $\alpha_{\text{HNO}_3/\text{NO}_2}$ is derived from the tables in [Walters and Michalski, 2015] and α_{39} is then:

$\alpha_{39} = (0.973*\exp(19.743/T))$ \hspace{1cm} Eq. (16)

For typical tropospheric temperatures the $\alpha_{\text{HNO}_3/\text{NO}_2}$ 1.040 suggesting the δ^{15}N of HNO$_3$ produced by the NO$_2 + \cdot\text{OH}$ reaction will be +40‰ relative to tropospheric NO$_2$. This α value is larger and opposite the sign of the $^{15}\alpha = 0.9971$ assumed by Freyer et al. (1993). Freyer’s α was approximated by the using reduced mass of the OH-NO$_2$ activated complex. There two problems with this approach. First, the activation complex’s reduced mass approximation should be viewed in terms as the decomposition rate constant, not the product formation rate constant as assumed by Freyer, because transition state theory assumes equilibrium between the stable reactants and the transition state [Bigeleisen and Wolfsberg, 1958; Wolfsberg et al., 2010]. In other words, Freyer’s $\alpha = 0.9971$ should indicate that the $^{15}\text{NO}_2-\cdot\text{OH}$ decomposes more slowly than $^{14}\text{NO}_2-\cdot\text{OH}$ and therefore more likely to form HNO$_3$ at +2.9‰ (not -2.9‰ determined in Freyer). Secondly, the reduced mass approximation of the complex pair ignores the thermodynamic contribution of the reactants and the vibrations in the transitions state other than the bond forming (imaginary) vibration. Our approach overcomes both of these assumptions and incorporates the temperature dependence of the EIE for this reaction.

2.4.3.3 EIE used in heterogeneous reactions of N$_2$O$_5$

During the nighttime, the heterogeneous HNO$_3$ formation pathway becomes important [Chang et al., 2011; Dentener and Crutzen, 1993; Riemer et al., 2003]. During the night, NO is nearly completely oxidized to NO$_2$ leading to the build-up of the NO$_3$ radical (R48), the formation of N$_2$O$_5$ (R53), and heterogeneous N$_2$O$_5$ hydrolysis becomes a major source of HNO$_3$ production (discussed below). This is particularly true in regions that have high NO$_x$ mixing ratios and large aerosol surface areas such as urban centers [Chang et al., 2011; Riemer et al., 2003]. In order to assess the 15N partitioning of this reaction pathway, both EIE and KIE were considered.
It was assumed that the fractionation factor for the \(\text{N}_2\text{O}_5 \rightarrow 2\text{HNO}_3 \) reaction was mainly controlled by nighttime equilibrium between \(\text{N}_2\text{O}_5 \) and \(\text{NO}_x/\text{NO}_3 \) (R53, R54). When factoring the isotopologue dynamics, this equilibrium can be viewed as an EIE via

\[
\text{N}_2\text{O}_5 + \text{NO}_3 \leftrightarrow \text{O}_2^{15}\text{N}--\text{O}--\text{NO}_2 \leftrightarrow \text{NO}_2 + ^{15}\text{NO}_3 \quad \text{Eq. (17)}
\]

here \(^{15}\text{N}_2\text{O}_5\) is represented as the transition state \(\text{O}_2^{15}\text{N}--\text{O}--\text{NO}_2 \) to highlight the relative ease of \(\text{N} \) isotope exchange via oxygen migration during \(\text{N}_2\text{O}_5 \) formation and decomposition. The symmetry of \(^{15}\text{NNO}_3\) and \(^{15}\text{NO}_i\) is also why they were not treated as isotomers since they are structurally identical.

The \(\text{N}_2\text{O}_5 \) equilibrium in the RACM model is dealt with as a forward reaction R53 (\(k_53 \)) and a decomposition reaction R54 (\(k_54 \)) that are derived from the measured equilibrium constant \((K_{53}) = (k_{53}/k_{54}) \). In \(i\text{RACM} \) the \(\text{N}_2\text{O}_5 \) isotopologue has 2 formation pathways, with two forward rate constants \((k_{53 a},b) \) and two decomposition rate constants \((k_{54 a},b) \) that were used to write their respective equilibrium constants \(K \)

\[
^{15}\text{NO}_2 + \text{NO}_3 \leftrightarrow ^{15}\text{NNO}_3 \quad (K_{53 a} = k_{53 a}/k_{54 a}) \quad \text{Eq. (18)}
\]

\[
\text{NO}_2 + ^{15}\text{NO}_3 \leftrightarrow ^{15}\text{NNO}_3 \quad (K_{53 b} = k_{53 b}/k_{54 b}) \quad \text{Eq. (19)}
\]

Dividing \(K_{53a} \) and \(K_{53b} \) by \(K_{53} \) yields isotopologue product and reactant ratios that can be evaluated using \(\beta(\alpha) \) values from Walters and Michalski (2015). These were used to determine the \(\alpha \) value for the \(\text{N}_2\text{O}_5 \) isotopologue equilibrium, which are simply a function of the formation and decomposition rate constants and temperature

\[
K_{53a}/K_{53} = (^{15}\text{NNO}_3/\text{N}_2\text{O}_5)(\text{NO}_3/^{15}\text{NO}_3)(\text{NO}_3/\text{NO}_3) = \beta_{\text{NO}_2}/\beta_{\text{NO}}
\]

\[
= \alpha_{\text{NO}_2/\text{NO}_3} = k_{53a}/k_{53} \times k_{54a}/k_{54}
\quad \text{Eq. (20)}
\]

\[
K_{53b}/K_{53} = (^{15}\text{NNO}_3/\text{N}_2\text{O}_5)(\text{NO}_3/^{15}\text{NO}_3)(\text{NO}_3/\text{NO}_2) = \beta_{\text{NO}_2}/\beta_{\text{NO}}
\]

\[
= \alpha_{\text{NO}_2/\text{NO}_3} = k_{53b}/k_{53} \times k_{54a}/k_{54b}
\quad \text{Eq. (21)}
\]

The \(\text{N}_2\text{O}_5 \) decomposition rate constants were arbitrarily set to be equal \((k_{54} = k_{54a} = k_{54b}) \) and the decomposition rate constants were then derived using the temperature dependent \(\alpha \) values

\[
k_{53a} = k_53(\alpha_{\text{NO}_2/\text{NO}_3}) \alpha_{\text{NO}_2/\text{NO}_3} = 1.0266 \quad \text{(298 K)}
\quad \text{Eq. (22)}
\]

\[
k_{53b} = k_53(\alpha_{\text{NO}_2/\text{NO}_3}) \alpha_{\text{NO}_2/\text{NO}_3} = 1.0309 \quad \text{(298 K)}
\quad \text{Eq. (23)}
\]

The \(\alpha \) for doubly substituted \(^{15}\text{N}_2\text{O}_5\) isotopologue was determined using \(\alpha = \beta_{\text{NO}_2/\text{NO}_3} \) and the value for \(\beta_{\text{NO}_2/\text{NO}_3} \) (1.272) was approximated using the principle of the geometric mean [Bigeleisen, 1958; Snyder et al., 1999], yielding a temperature independent \(\alpha = 1.057 \). However, the \(\text{N}_2\text{O}_5 \) system is insensitive to this value because the low probability of a \(^{15}\text{N} + ^{15}\text{N} \) reaction (1.5 \(\times 10^{-5} \)) relative to a \(^{14}\text{N} + ^{15}\text{N} \) reaction (4 \(\times 10^{-3} \)), thus the small temperature dependence was also ignored.

Because RACM is a gas phase chemical mechanism, it does not include heterogeneous reactions of \(\text{N}_2\text{O}_5 \) on aerosols, which would limit \(i\text{RACM} \) to accurately predict the \(\delta^{15}\text{N} \) values, particularly at night. Gas chemical mechanisms are often used in larger 1, 2, and 3-D chemical
transport models that usually also include aerosol modules that calculate heterogeneous chemistry using inputs from the gas phase chemical mechanism (i.e. \(\text{N}_2\text{O}_5 \) concentrations). However, if the objective is to use a 0-D chemical box model to simulate local chemistry the \(\text{N}_2\text{O}_5 \) heterogeneous hydrolysis will need to be included. \(\text{iS} \)RACM was modified to use a first order rate constant to calculate \(\text{N}_2\text{O}_5 \) heterogeneous hydrolysis [Yvon et al. 1996; Riemer et al., 2003]. The rate constant is a function of \(\text{N}_2\text{O}_5 \) molecular speed \((c)\), the \(\text{N}_2\text{O}_5 \) uptake coefficient \((\gamma)\) and the aerosol surface area density \(S\).

\[
\frac{d\text{N}_2\text{O}_5}{dt} = d0.5\text{HNO}_3/dt = k_{\text{N2O5}}[\text{N}_2\text{O}_5] = \text{R239}
\]

\[
k_{\text{N2O5}} = \frac{1}{4c} \gamma S \quad \text{Eq. (24)}
\]

The \(k_{\text{N2O5}} \) values were assessed based on the different pollutant loadings and emission scenarios (Fig. 6). The \(k_{\text{N2O5}} \) was calculated as a function of \(\gamma \) [Anttila et al., 2006; Bertram & Thornton, 2009; Davis et al., 2008; Riemer et al., 2003; Riemer et al., 2009] and \(S \) [Cai et al., 2018; Kuang et al., 2010; McMurry et al., 2005; Petäjä et al., 2009; Qi et al., 2015] values that span clean to highly polluted environments. This range yielded \(k_{\text{N2O5}} = 1, 0.1, \) and 0.01 for high, medium, and low polluted environments (Fig. 6).

Only the uptake coefficient \((\gamma)\) and molecular speed \((c)\) could have a KIE during aerosol uptake of \(\text{N}_2\text{O}_5 \) (R239, R239a, R239b). The \(\gamma \) term was ignored because \emph{ab initio} work suggests that \(\text{N}_2\text{O}_5 \) hydrolysis activates through hydrogen bonding between water molecules on the aerosol surface and O atom in the \(\text{N}_2\text{O}_5 \) [Snyder et al., 1999] making it a secondary (small) KIE for \(N \). The \(c \) term is a function of the root of the \(\text{N}_2\text{O}_5 \) molecular mass and when the ratio is taken there is no temperature dependence yielding \(\alpha_{239a} = (108/109)^{0.5} = 0.995 \) and \(\alpha_{239b} = (108/110)^{0.5} = 0.9909 \).

An online interactive version of this \(\text{iS} \)RACM model is available for public use at https://mygeohub.org/tools/sbox/

2.4.4 \(\text{iS} \)RACM simulations

A number of \(\text{iS} \)RACM simulations were run with two different purposes. The first set of simulations iteratively changed the \(\alpha \) values from 1 to their values discussed above. These simulations aimed at investigating the importance of each \(\alpha \) as they aggregated together. These include photolysis only, Leighton cycle, daytime chemistry, night-time chemistry, and full chemistry using the same test case (Table S3a-f). The second set of simulations replicated the
test case simulations (Table S4a-b, 5a-b) detailed in Stockwell (1997) and other pollution scenarios (Table S8). These were run with all α’s activated but with varied initialized chemistry and primary pollutant emissions.

3.0 Results and Discussion

It is important to first test i8RACM by turning on and off individual relevant isotope effects and then combining their cumulative effects. This is advantageous relative to simply running the full mechanism under different pollution scenarios because it would be a challenge to disentangle which isotope effects in the full mechanism were mainly responsible for δ15N change in NOx, HONO, or HNO3 without such a systematic investigation. For example, it is likely that the δ15N value of NO2 will be a significant factor in the δ15N value of HNO3 because it is the reactant in R39 and R239. Thus, understanding which isotope effects control the δ15N of NO2 helps with interpreting the δ15N value of HNO3 and vice versa. Thus, this discussion section is divided into 3 sections. The first is the examination of the relevant isotope effects occurring during daytime photochemistry and their impact on NOx, HONO, and HNO3 δ15N values. Secondly, is the examination of the relevant isotope effects occurring during nighttime chemistry (EIE and KIE) and their effect on NOx, HONO, and HNO3 δ15N values. These first two discussion sections focus mainly on the relative importance of each isotope effect when the photochemical conditions are constant. Finally, the full i8RACM mechanism will be tested under different atmospheric conditions such as variations in trace gas concentrations, aerosol loading, and hours of sunlight. This tests how changes in photochemical oxidation pathways results in difference in the δ15N values of NOx, HONO, and HNO3.

3.1 The δ15N of NOx, HONO, and HNO3 due to daytime chemistry

The role that daytime chemistry plays in determining the δ15N values of NOx, HONO, and HNO3 was investigated by iteratively adding relevant fractionation factors to i8RACM. The sensitivity of NOx, HONO, and HNO3 δ15N values to NO2 photolysis (R1a) was tested. The initial trace gas concentrations and emissions were set to the March 1 test cases (Table S3 a-f) and simulations were run with, and without, NO emissions. All subsequent test simulations will also use the March 1 test case in order to have a consistent comparison of δ15N values between different simulations. It is noted that the initial HNO3 and O3 mixing ratios are set to zero and that the start time of the simulations is 3 a.m. The main daytime only effects will be NO2 photolysis (R1), O3 oxidation (R8) and reaction OH (R39) since both photolysis and OH chemistry is only relevant during the daytime. However, NOx isotope exchange and NO + O3 will also play a vital role despite no being exclusively daytime reactions.

3.1.1 The δ15N values of NOx, HONO, and HNO3 due to the photolysis only
The simulations with only R1 isotope effect activated (with NO\textsubscript{x} emissions) shows a clear diurnal cycle in NO\textsubscript{x} and HONO δ^{15}N values and a weekly trend moving towards an approximate steady-state for HNO\textsubscript{3} δ^{15}N values, which can be explained by the PHIFE (Fig. 7a).

Initially all NO\textsubscript{3} has δ^{15}N of zero (by default) and there is no photolysis at 3 am. At sunrise the δ^{15}N value of NO\textsubscript{2} goes negative and NO value positive since 15NO\textsubscript{2} is preferentially photolyzed ($\alpha_{R1} = 1.0042$). The difference between the δ^{15}N values of NO and NO\textsubscript{2} ($\Delta\delta^{15}$N\textsubscript{NO-NO2} = δ^{15}N NO - δ^{15}N NO\textsubscript{2}) at all times during the day is 4‰, which is the ϵ_{R1a} value.

During the night both the NO and NO\textsubscript{2} δ^{15}N values approach 0‰ because most NO is oxidized to NO\textsubscript{2} and NO emissions (0‰) dominate the NO nighttime budget (relative to residual day NO). Over the weeklong simulation, the NO\textsubscript{x} δ^{15}N value slowly increases by about one per mil. This is because 15N depleted NO\textsubscript{2} is converted into HNO\textsubscript{3} leaving the residual NO\textsubscript{x} 15N enriched. This is also the reason for the δ^{15}N values of HNO\textsubscript{3} that initially mimic the daytime NO\textsubscript{2} values and trends towards 0‰ by the end of the simulation week. The δ^{15}N values of HONO mimics the NO values during the daytime since the main reaction pathway forming HONO is OH + NO, which peaks in the morning (~10:00). HONO retains the evening δ^{15}N values through the night since most of the HONO is destroyed in the afternoon via photolysis and again follows NO δ^{15}N the next morning as its production again reaches a maximum (Fig. 7).

The simulation without NO emissions shows a similar behavior but with some clear differences relative to the emission case. The NO\textsubscript{x} and HONO δ^{15}N values exhibit the same diurnal $\Delta\delta^{15}$N\textsubscript{NO-NO2} = 4‰ value. Unlike the emission case, however, the diurnal NO\textsubscript{x} δ^{15}N value peaks and troughs trend downward during the week-long simulation, with NO approaching 0‰ and NO\textsubscript{2} approaching -4‰. The HNO\textsubscript{3} δ^{15}N values reach roughly a steady state value of -1.7‰ after about a day and NO\textsubscript{x} is ~ -1.8‰ (Fig. 7b). This difference between the emission and non-emission case is a consequence of isotope mass balance ($f_x = $ mole fraction of compound x relative to total NO\textsubscript{x}).
\[\delta^{15}\text{N}_{\text{total}} = 0 = f_{\text{NOx}} \cdot \delta^{15}\text{N}_{\text{NOx}} + f_{\text{HNO}_3} \cdot \delta^{15}\text{N}_{\text{HNO}_3} + f_{\text{ONIT}} \cdot \delta^{15}\text{N}_{\text{ONIT}} \]

Eq. (25)

The positive \(\delta^{15}\text{N} \) NO\(_x\) compound that effectively offsets the -1.7‰ in HNO\(_3\) and -1.8‰ in NO\(_x\) is organic nitrate that is +2‰ and makes about half the NO\(_y\) pool and is roughly equal to HNO\(_3\) + NO\(_x\) \((f_{\text{NOx}} = 0.11, f_{\text{HNO}_3} = 0.36, f_{\text{ONIT}} = 0.53)\). In the NO\(_x\) emission case only about 5% of NO\(_y\) is as organic nitrate \((f_{\text{NOx}} = 0.17, f_{\text{HNO}_3} = 0.78, f_{\text{ONIT}} = 0.05)\) indicating a shift in oxidation pathways when NO and VOCs are emitted during the simulation relative to when they are not. In the emissions case the NO\(_y\) mixing ratios at the end of the simulation are actually slightly higher than their initial ratios, in contrast to the no NO\(_x\) emission case where 90% of NO\(_x\) has been lost via oxidation into organic nitrate and HNO\(_3\). This loss of N in the no emission scenario effectively shuts down the oxidation chemistry. For example, the day 5 mixing ratio of O\(_3\) is 45 ppb, (reasonable) for the emission case but only 2 ppb, for the no-emission case (unreasonable). Therefore, we exclude no-emission simulations for the chemistry analysis discussed in this section and restrict them to the no emission simulations to 48 hours in the final test case analysis (See section 4).

3.1.2 The \(\delta^{15}\text{N} \) values of NO\(_x\), HONO, and HNO\(_3\) due to the combined Leighton cycle

The simulations with both NO\(_2\) photolysis (R1) and O\(_3\) + NO (R48) isotope effects active shows similar diurnal and weekly trends as the photolysis only simulations, they are just slightly amplified (Fig. 8). The daytime \(\Delta\delta^{15}\text{N}_{\text{NO}-\text{NO}_2} \) is now ~ 9.5‰, which is close to the additive of the two isotope effects \((\varepsilon_{48a} = -6.7‰, \varepsilon_{R1a} = 4.2‰)\). This is logical since \(^{15}\text{NO} \) is reacting with O\(_3\) slower than \(^{14}\text{NO} \), preferentially leaving behind \(^{15}\text{NO} \) and thus the higher NO \(\delta^{15}\text{N} \) value. The HNO\(_3\) \(\delta^{15}\text{N} \) values reach the mean of the daytime NO\(_2\) \(\delta^{15}\text{N} \) values via the NO\(_2\) + OH reaction. The slight (1‰) upward trend of NO\(_x\) and HNO\(_3\) are due to isotope mass balance as detailed in the photolysis only case. Similar to the photolysis only case the \(\delta^{15}\text{N} \) of HONO is mimicking daytime NO \(\delta^{15}\text{N} \) values.

3.1.3 The \(\delta^{15}\text{N} \) values of NO\(_x\), HONO, and HNO\(_3\) due to the combined Leighton cycle and NO\(_x\) isotope exchange

The \(\delta^{15}\text{N} \) values of NO\(_x\) produced when both the Leighton cycle and NO\(_x\) isotope exchange are active exhibit a very dynamic diurnal range that is a function of the NO\(_x\) mixing ratios. At high NO\(_x\) mixing ratios (150 ppb, 1/3 NO, 2/3 NO\(_2\), Fig. 9a) the \(\Delta\delta^{15}\text{N}_{\text{NO}-\text{NO}_2} \) is -40‰ at night as expected for NO\(_x\) isotopic equilibrium \((\varepsilon_{\text{NO}/\text{NO}_2} = -40‰ \text{ at } 298\text{K})\). During the daytime the \(\Delta\delta^{15}\text{N}_{\text{NO}_x} \) shifts -30 to -35‰ as the photolysis and O\(_3\) isotope effects begin to influence the
Δδ¹⁵N_{NO-NO_2}. HNO₃ δ¹⁵N values during the high NOₓ mixing ratio simulation initially follow the δ¹⁵N of NO₂ (via NO₂ + OH) before approaching 0‰, the defined NOₓ source values.

At low NOₓ mixing ratios (1.5 ppb, 1/3 NO, 2/3 NO₂, Fig. 9c) the Δδ¹⁵N_{NO-NO_2} and HNO₃ δ¹⁵N is very different from the high NOₓ simulation. The nighttime Δδ¹⁵N_{NO-NO_2} ranges from -15 to -20‰ and during the daytime it is around +7‰, while the HNO₃ δ¹⁵N values hover around zero throughout the simulation. The difference between the NOₓ δ¹⁵N values in the high and low NOₓ cases can be explained as a competition between the NOₓ EIE and the Leighton isotope effect. At high NOₓ mixing ratios, the NOₓ EIE achieves equilibrium quickly at night (Δδ¹⁵N_{NO-NO_2} = -40) because the rate of NOₓ isotope exchange (R238) is proportional to its concentration. In contrast, isotope exchange is slow in the low NOₓ case and the time scale to reach equilibrium is much longer. Indeed, at the low NOₓ mixing ratios the nighttime equilibrium only reaches about 40-50% of completion by 6:30. Afterwards sunlight begins to erase the NOₓ EIE effect until around noon when the δ¹⁵N values of NO is mostly due to the Leighton effect and only a small contribution from EIE (about 5%). For intermediate NOₓ mixing ratio case (15 ppb, 1/3 NO, 2/3 NO₂, Fig. 9b) the diurnal and week-long NOₓ δ¹⁵N trends fall somewhere in between the high and low NOₓ simulations.

The changes in δ¹⁵N values of HNO₃ during the March 1 simulations at differing NOₓ mixing ratios can be explained in terms of HNO₃ production pathways. Over the course of day 1 the δ¹⁵N of HNO₃ mirrors that of NO₂ because HNO₃ produced by NO₂ + OH (R39), thus the product HNO₃ δ¹⁵N values are similar to those in NO₂. This varies depending on the NOₓ mixing ratio scenario for two reasons. First, as the NOₓ mixing ratio gets bigger, the closer the NOₓ gets to achieving the EIE and the bigger the split between NO and NO₂ δ¹⁵N values (40‰ versus 10‰ for Leighton+O₃). Secondly,
differences in the amount of NOx result in different NO/NO2 ratios as the simulations progress. For example, under low NOx mixing ratios the nighttime NO/NO2 < .001, which means the δ15N value of NO2 will be close to that of total NOx, which will be close to 0‰. At the same time the δ15N value of NO will be close to the fraction of the EIE achieved, which is about 50% under low NOx conditions, resulting in a NO δ15N of about -15‰. These two effects control the δ15N of NO2 and that in turn controls the δ15N value of HNO3. In all scenarios the diurnal cycle repeats itself over the subsequent 4 days and a greater fraction of total NO emitted has been turned into HNO3, so that by the end of the 5-day simulation the HNO3 δ15N values converge towards 0‰, the defined value of NOx emissions in the simulations.

The modeled δ15N values of HONO also have a diurnal pattern that can also be traced to diurnal chemistry and isotope mass balance. Similar to the photolysis and photolysis + O3 cases, the HONO δ15N values mirror the oscillation of the NO δ15N values (data no shown). This is a result of HONO production by the NO + OH reaction (R38). In contrast, the HONO δ15N values at night remain nearly constant despite the fact that the δ15N of NO is changing dramatically. This is because the absence of OH at night halts R38 and thus HONO production ceases and the δ15N values are simply the same as the residual daytime HONO reservoir. There is a repeated minimum in HONO δ15N values occurring each morning at 7:00 over the subsequent 4 days. This is a result of the fact that, unlike HNO3, HONO is effectively destroyed by photolysis (R4) and OH (R45). Thus, HONO does not build up in the model over the 5-day simulation, but rather mixing ratio peaks daily (30 ppb) at around 9:00 each day. This is when the HONO production – destruction rate is greatest, and its mixing ratio then deceases to a low of 2 ppt by sunset. Since the nighttime HONO, with δ15N ~ +5.5‰, only contributes about 7% (f = 0.07) of the morning HONO spike, it does not greatly impact the control that NO δ15N has on the HONO δ15N value. This daily isotope effect should be contrasted with the HNO3 δ15N trends with time. Initially HNO3 δ15N values are influenced by NO2 δ15N variations by NO2-OH-HNO3 coupling, similar to the NO-OH-HONO coupling. But since there is no significant photochemical sink of HNO3, the control on HNO3 δ15N values by HNO3 accumulation increases with time, so that by day 5 the diurnal changes in NO2 δ15N have almost no impact on the HNO3 δ15N values (Fig. 9).

3.1.4 The δ15N values of NOx, HONO, and HNO3 due to the combined Leighton cycle, NOx isotope exchange, and NO2 + OH

The effect of the NO2 + OH reaction has on δ15N values of NOx and HNO3 associated was then examined (Table S3c). Since R39 is the last step in HNO3 production, the instantaneous δ15N HNO3 = δ15N(NO2) + ε48, thus the δ15N HNO3 is initially 40‰ higher than the NO2 (Fig. 10).
This in turn depletes ^{15}N in the residual NO$_2$ leading to more negative $\delta^{15}\text{N}$ values in NO$_2$ relative to the Leighton + exchange simulations. These latter two effects are still in play as evident by the diurnal NO$_3$ $\delta^{15}\text{N}$ cycling and $\Delta\delta^{15}\text{N}_{\text{NO}_2}$. As the 5-day simulation progresses, the HNO$_3$ $\delta^{15}\text{N}$ value approaches 0‰, approaching the $\delta^{15}\text{N}$ of NO emissions, as expected based on isotope mass balance. We point out that this convergence to the source NO$_x$ $\delta^{15}\text{N}$ value is much slower in this case than the Leighton and exchanges cases. This highlights the importance of the knowing the correct ε_{48}. If $\varepsilon_{48} \approx 0$ as suggested by Freyer (1993) then daytime the $\delta^{15}\text{N}$ HNO$_3 \equiv \delta^{15}\text{N}$ NO$_2$, demonstrably lower than the $\varepsilon_{48} \approx 40$‰ case. In the end the average daytime $\delta^{15}\text{N}$ value of HNO$_3$ for the entire simulation is about 10‰ higher than the $\delta^{15}\text{N}$ of the NO$_x$ source (here defined as 0‰).

3.2 The $\delta^{15}\text{N}$ values of NO$_x$, HONO, and HNO$_3$ due to nighttime chemistry

The role that nighttime chemistry plays in determining the $\delta^{15}\text{N}$ values of NO$_x$, HONO, and HNO$_3$ was investigated by iteratively adding relevant fractionation factors to iRACM. The nighttime chemistry effect was assessed by separating the effects of NO$_3$ radical chemistry and N$_2$O$_5$ heterogeneous hydrolysis. NO$_3$ radical chemistry is only relevant at night because of its short daytime lifetime with respect to photolysis, which keeps its daytime mixing ratios at the sub ppt, levels [Platt et al., 1984]. At night NO$_3$ builds up and produces HNO$_3$ [Aldener et al., 2006; Finlayson-Pitts and Pitts, 1997; Horowitz et al., 1998] via reactions with hydrocarbons (R91-97). The magnitude of this isotope effect was tested by adding NO$_3$ the isotope fractionation factors for R91-97 (see methods) and altering VOC emission rates to simulate clean, moderate, and extreme VOC pollution environments. Likewise, N$_2$O$_5$ only accumulates at night when it begins producing HNO$_3$ on aerosol surfaces [Chang et al., 2011].

The magnitude of this isotope effect was tested by adding the N$_2$O$_3$ EIE (see methods) and adding the first order N$_2$O$_5$ heterogeneous pathway (see methods) to iRACM. The first-order rate constant was adjusted to simulate clean, polluted, and extreme pollution environments where aerosol surface area density largely controls the rate constant [Riemer et al., 2003 Chang et al., 2011].

3.2.1 The $\delta^{15}\text{N}$ values of NO$_x$, HONO, and HNO$_3$ due to NO$_3$ + VOC reactions

The effect on the $\delta^{15}\text{N}$ values of NO$_x$, HNO$_3$, HONO associated with the KIE occurring during NO$_3$ + VOC nighttime reactions (R91-R97) were first examined. Four simulations were run that included the isotope effects (α values in Table S6) of the Leighton cycle (R1 and R48), NO$_x$ isotope exchange (R238), NO$_2$ + OH production of HNO$_3$ (R39), and the KIE effects (R91-
R97), as well as NO emissions. The simulation tested first was the March test case (medium VOC ~360 ppbv). Then, two simulations were run for June 1 (extended sunlight, warm temperatures), one with high initial of VOC concentrations and a high VOC emission rate (2 ppbv h^-1) and one with low emission rate of VOCs (0.4 ppbv h^-1). The same two initial conditions were used in the Jan. 1 test case to assess if the extended night time and cold temperatures significantly affected the NOx of HNO3 δ15N values produced by NO3 radicals. The impact of NO3 reactions on NO3 δ15N values was determined by subtracting these simulated δ15N values from those same simulations when only the Leighton cycle, exchange and OH + NO2 reaction was considered (Section 3.1).

The NO3 + VOC KIE induced a minor diurnal pattern on the δ15N values of NOx, and HONO, and a trend for HNO3 for the March test case, but the size of the effect was relatively small (e.g., < 0.4‰; Fig. 11). At the start of the simulation (3 am) there is no HNO3, therefore the initial HNO3 is produced via OH production of HNO3 (R39), δ15N values of HNO3 decreased from 0.35 to 0.2‰ during the night. The pattern is because of increasing the importance of R91-R97 in HNO3 production at night. The smallness of the effect is because α values are all relatively small, the average δ for the NO3 + VOC is about -4‰, and the relatively small amount of HNO3 produced via these pathways (around 2.6 % of 24-hour HNO3). The first source of the HNO3 in the simulation (3 to 6 am) is the NO3 + VOC reactions and results in a slight negative δ15N in HNO3 value (-0.01‰). This leaves the residual NO3 15N enriched that is then photolyzed into NO2 at sunrise and used NO2 + OH → HNO3 production resulting in slight positive δ15N values (+0.35‰) (Fig. 11). The range of the diurnal HNO3 δ15N oscillation dampens as the fraction of emitted NO that has been converted to HNO3 has increased over time. The diurnal and weekly change in δ15N of HNO3 changes did not significantly change during the winter and summer simulations (Fig. 12) run with and without the KIE for R91-R97 show negligible differences, similar to those in Fig. 11. In conclusion, although there is some δ15N effect associated with NO3 + VOC chemistry, it is much smaller than the effects associated with the

Figure 12. The difference in δ15N(HNO3) values when NO3 + VOC → HNO3 reactions are included and excluded, for Mar 1 simulation, relative to Jun 1 simulation (☐) and Jan 1 simulation (o). The 5-day simulation was under the conditions list in Table S3e.

Figure 13. The difference in δ15N values of NO2 and HNO3 when the isotopic effect during N2O5 heterogeneous reactions (R53-54, R239) is included (αN2O5 =1.029) and when it is excluded (αN2O5 = 1.0). The 5-day simulation was under the conditions list in Table S3e.
3.2.2 The δ^{15}N values of NO$_x$, HONO, and HNO$_3$ due to N$_2$O$_5$ reactions

The effect on the δ^{15}N values of NO$_x$, HNO$_3$, HONO associated with the EIE of N$_2$O$_5$ heterogeneous hydrolysis was also tested. March 1 simulations with N emissions and k$_{N2O5}$ = 0.1 s$^{-1}$ were run that included the isotope effects of the Leighton cycle (R1 and R48), NO$_x$ isotope exchange (R238), OH production of HNO$_3$ (R39), and the N$_2$O$_5$ EIE (R53-54) KIE (R239) (Table S7), as well as NO emissions. These simulations were compared to an identical simulation but where the α_{N2O5} was set equal to 1.0. This ensured that the NO$_x$ chemistry was not altered when comparing the two simulations (i.e., α_{N2O5} = 1.029 vs. α_{N2O5} = 1.0). The effect of N$_2$O$_5$ chemistry on the δ^{15}N values of NO$_2$ and HNO$_3$ was investigated. Similar to the March 1 NO$_3$ + VOC tests, simulations with R1, R39, R48, R238, and R239 isotope effects active were run and then compared to simulations with the same conditions but with R239 turned off. In addition, March simulations were run using three different k$_{N2O5}$ values (.01, 0.1 and 1) and compared to each other in order to test the range of NO$_2$ and HNO$_3$ δ^{15}N values that could be generated solely by heterogeneous N$_2$O$_5$ hydrolysis.

The average daily δ^{15}N values of HNO$_3$ reach a steady state average value after simulation day 2. At that point HNO$_3$ has a δ^{15}N = +2.5‰ relative to the α_{N2O5} = 1.0 simulation. In contrast the NO$_2$ δ^{15}N values oscillate diurnally by about +/- 2‰ around an average daily difference of about -8‰. This change is due to the R53-54 equilibrium, which predicts 15N enrichment in N$_2$O$_5$ (and thus HNO$_3$) and depletion in NO$_3$ and NO$_2$. The N$_2$O$_5$ produces HNO$_3$ with the highest δ^{15}N difference (~ +29‰) during the first simulation morning. This is because all of the initial HNO$_3$ is produced by N$_2$O$_5$ due to the 3 am simulation start time. The roughly steady state HNO$_3$ δ^{15}N value of +2.5‰ is a consequence of the fact that when α_{N2O5} = 1.0 HNO$_3$ is being produced by N$_2$O$_5$ at 0‰ and when α_{N2O5} = 1.029 it is being produced at +29‰. The ratio of this simulated +2.5‰ value and N$_2$O$_5$ enrichment factor of +29‰ yields 0.086, the fraction of HNO$_3$ produced by N$_2$O$_5$. This is similar to the fraction of HNO$_3$ produced in simulations when the N$_2$O$_5$ reaction was active and where it is inactive, which yielded a fraction of 0.064. The difference in these fractions is because deactivating N$_2$O$_5$ chemistry changes overall NO$_x$ chemistry and HNO$_3$ production [Dentener and Crutzen, 1990].

The effect of N$_2$O$_5$ chemistry on the δ^{15}N values of NO$_2$ is more dynamic than HNO$_3$ (Fig. 13). This is mainly due to the fact that HNO$_3$ is continually building up over time and thus its δ^{15}N is less susceptible to change by small additions. The oscillation in the NO$_2$ δ^{15}N value

Figure 14. The difference in δ^{15}N(HNO$_3$) values when the isotopic effect during N$_2$O$_5$ heterogeneous reactions is included and when it is excluded, for the simulation of k$_{N2O5}$ = 0.1, relative to 0.01 (☐) and 1.0 (o). The 5-day simulation was under the conditions list in Table S3e.
becomes more negative at night, which corresponds to the increase in the HNO_3 $\delta^{15}\text{N}$ values. This is a reflection of ^{15}N preferentially incorporating into N_2O_5 resulting in NO_2 depleted in ^{15}N. Similar oscillations are found in NO and HONO (data not shown) as they are connected to NO2 build-up and decay diurnally. This suggests that night-time partitioning of NO2 will have a small but measurable influence on daytime NOx $\delta^{15}\text{N}$ values. The effect of using different k_{N2O5} values had a small but measurable effect on the NO_2 and HNO_3 $\delta^{15}\text{N}$ values. Simulations that used a $k_{\text{N2O5}} = 1.0$ resulted in HNO_3 $\delta^{15}\text{N}$ values that were about 2‰ lower than those run at $k_{\text{N2O5}} = 0.01$ and 1‰ heavier than when $k_{\text{N2O5}} = 1.0$. This makes sense because the mean EIE for N_2O_5 (29‰) is lower than that for $\text{NO}_2 + \text{OH}$ (40‰), therefore as N_2O_5 produces more HNO_3 its $\delta^{15}\text{N}$ value would decrease with respect to that of daytime HNO_3 production. Thus, the model predicts lower HNO_3 $\delta^{15}\text{N}$ values in cold, dark polluted regions (relative to the tropics where) where N_2O_5 heterogeneous hydrolysis may be the main HNO_3 production pathway [Dentener and Crutzen, 1990].

3.3 Case studies

The completed iSRACM was tested using different simulation conditions that had various initial trace gas concentrations and emission rates. These test cases were labeled urban, rural, forest, and marine due to their initial conditions that were designed to mimic those environments. Initially, iSRACM simulations were run using the 18 test cases without emission (9 for urban condition, 9 for rural condition), and 2 test cases with emission (1 for polluted atmosphere, 1 for clean atmosphere) provided in Stockwell (1997). However, we found that trace gas concentrations in these simulations do not agree with atmospheric observations (See SI) when simulations were run for several days [Altshuller, 1989; Baugues, 1986; Greenberg & Zimmerman, 1984; Logan, 1989; National Research Council, 1992; Torres & Buchan, 1988; Zimmerman et al., 1988]. Thus, instead of replicating Stockwell’s cases (See SI), we set up four conditions that mimic urban, rural, forest, and marine, with the initial concentrations based on various measurements from previous studies. The emission rates of NO and total VOCs were tuned until the simulation results satisfied with the following features: a). The concentration of NOx changes diurnally and stabilized through time; b). The concentration of O3 changes diurnally and stabilized through time; c). VOCs are slowly consumed during nighttime (Fig. S2-5). The molar fraction of each VOC species with respect to the total VOC emission rate was obtained from Stockwell’s (1997) emission cases. It is noted that the conditions chosen for urban, rural, forest, and marine may not be representative of all of these environments in different countries or regions (i.e all urban environments are not the same) but were devised to bracket extremes of trace gases for most tropospheric conditions (we have ignored any polar environment simulations due to isotope effects occurring during snow pack photolysis).

3.3.1 The initial concentrations and emission rates under the urban conditions

The simulations under the urban conditions were designed to simulate highly polluted urban environments such as current Asia megacities and early 1980’s US cities. The initial concentration of NOx (Table S8) was set to 180 ppb, based on 90th percentile of polluted US cities (Cincinnati, OH, Fort Worth, TX, Memphis, TN, Miami, FL, Cleveland, OH) during summers of 1984 and 1985 [Baugues, 1986], slightly lower than the maximum NOx concentration (> 200 ppb) at Shenyang, China from Aug 20 to Sept 16, 2017 [Ma et al., 2018].
For urban conditions, NO/NO\textsubscript{x} ratio was set to 0.5 and NO\textsubscript{y}/NO\textsubscript{x} ratio was set to 0.9, and we assumed the concentrations of HNO\textsubscript{3} and PAN are equal since they are minimal NO\textsubscript{x} compounds in this case. The initial carbon (C) concentration of total VOC was set to 1000 ppb C, based on the weighted average of the measurements among 30 sites during the summers of 1984 and 1985 [Baugues, 1986]. Baugues (1986) also provided the carbon fraction of toluene, xylene, HCHO, acetaldehyde, ethene, alkene other than ethene, and total alkane with respect to total VOC in ppb C. Thus, the initial concentration of toluene, xylene, HCHO, acetaldehyde, ethene was based on their carbon fraction provided by Baugues (1986). The initial concentration of each alkane and alkene species was based on the carbon fraction of their groups, provided by Stockwell et al. (1997). Thus, the initial concentration of total VOC was set to 252 ppb, which matches well with the recent year measurement at Shenyang, a typical urban area of Northeast China [Ma et al., 2018]. To stabilize the concentration of NO\textsubscript{x}, the emission rates of NO and total VOCs were set to 9.36 ppb h-1 and 7.80 ppb h-1, respectively. The initial concentration of O\textsubscript{3} at 300 ppb, which is closed to the average among five most polluted sites from the measurement among Northeastern United States in the 1970’s [Cleveland et al., 1977], and the maximum value (286 ppb) measured within three main megalopolises in China (Jinjinji, Yangtze River Delta, and Pearl River Delta) from 1997 to 2016 [Wang et al., 2017]. During the simulations, the O\textsubscript{3} concentration stabilized, with summertime maximum hourly concentration around 200 ppb, which agree well with previous studies (National Research Council, 1992).

3.3.2 The initial concentrations and emission rates under the rural conditions

The simulations under the rural conditions were designed to simulate moderately polluted environments upwind of such current Asia megacities and early 1980’s US cities. The initial concentration of NO\textsubscript{x} was set to 7 ppb (Table S8), based on the average of 120 samples collected aloft upwind of six US cities (Dallas-Fort Worth, TX, Tulsa, OK, Birmingham, AL, Atlanta, GA, Philadelphia, PA, New York, NY) during summers of 1985 and 1986 [Altshuller, 1989]. The 7 ppb NO\textsubscript{x} also matches well with the value measured in Baltimore/Washington airshed in 2011 [He et al., 2013]. For rural condition, NO\textsubscript{y}/NO\textsubscript{x} ratio was set to 0.44, based on the average ratio among previous studies [Carroll et al., 1992; Fahey et al., 1986; National Research Council, 1992; Parrish et al., 1986; Williams et al., 1987]. NO/NO\textsubscript{y} ratio was set to 0.5, and we assumed the concentrations of HNO\textsubscript{3} and PAN are equal since they are minimal NO\textsubscript{x} compounds in this case. The initial concentration of each alkane and VOC species were based on the weighted average of the measurements, upwind of the six US cities. The 8.3 ppb initial concentration of total OC matches well with the recent year measurement in the rural area of Midwest, US [Sjostedt et al., 2011]. The initial concentration of O\textsubscript{3} was set to 50 ppb, based on the average summertime O\textsubscript{3} concentration among rural areas [Cooper et al., 2012, Janach, 1989; Logan, 1989]. To stabilize the concentration of NO\textsubscript{x} and O\textsubscript{3}, the emission rates of NO and total VOCs were set to 0.24 ppb h-1 and 0.59 ppb h-1, respectively.

3.3.3 The initial concentrations and emission rates under the forest conditions

The simulations under the forest conditions were designed to simulate low polluted environments (Table S8), with high emissions of biogenic VOCs such as isoprene. The initial concentration of NO\textsubscript{x} was set to 0.06 ppb, which is the minimum concentration at the central basin of Amazon tropical forest [Torres and Buchan, 1988]. Typically, at the remote sites (forest and marine condition), the ratio of NO\textsubscript{y}/NO\textsubscript{x} is between 0.1 and 0.2, HNO\textsubscript{3}/NO\textsubscript{x} is less than 5,
and PAN/NOx is less than 1 [Carroll et al., 1992]. To satisfy all three conditions, the initial concentration of HNO3 and PAN were set to 0.29 ppb and 0.05 ppb, respectively. NO/NOx ratio was set to 0.9. Thus, NO and NO2 equal to 0.054 ppb and 0.006 ppb, respectively. The initial concentrations of each VOC species were based on the median concentration of 81 samples in Amazon [Zimmerman et al., 1988]. The 6.7 ppb initial concentration of total VOC matches well with the recent year measurement in Amazon [Fuentes et al., 2016]. The initial concentration of O3 was set to 10 ppb, which is closed to the average hourly concentration during the summertime in Amazonia [Fuentes et al., 2016, Kirchhoff, 1988]. To stabilize the concentration of NOx and O3, the emission rates of NO and total VOCs were set to 9.4 ppt h⁻¹ and 0.35 ppb h⁻¹, respectively.

3.3.4 The initial concentrations and emission rates under the marine conditions

The simulations under the marine conditions were designed to simulate remote, clean oceanic environments. The initial concentration of NOx was set to 0.03 ppb (Table S8), which is the medium value of 28,974 data points, measured simultaneously at Mauna Loa, Hawaii, from May 1 to June 4, 1988 [Carroll et al., 1992], as well as at Cape Norman, Canada, northern Atlantic coastal site, from February to April, 1996 [Yang et al., 2004]. Typically, at the remote sites (forest and marine condition), the ratio of NOx/NOx is between 0.1 and 0.2, HNO3/NOx is less than 5, and PAN/NOx is less than 1 [Carroll et al., 1992]. To satisfy all three conditions, the initial concentration of HNO3 and PAN were set to 0.145 ppb and 0.025 ppb, respectively. NO/NOx ratio was set to 0.9. Thus, NO and NO2 equal to 0.027 ppb and 0.003 ppb, respectively. The initial concentrations of each VOC species were based on the median values between the samples collected by two cruises over the tropical Pacific Ocean, during December 1982, and July 1982, respectively [Greenberg and Zimmerman, 1984]. The 5.4 ppb initial concentration of total VOC matches well with the recent year measurement over the western North Pacific and eastern Indian Ocean [Saito et al., 2000]. The initial concentration of O3 was set to 10 ppb, which the average summertime concentration among maritime sites in both the north and south hemispheres [Janach, 1989]. To stabilize the concentration of NOx and O3, the emission rates of NO and total VOCs were set to 12.48 ppt h⁻¹ and 0.234 ppb h⁻¹, respectively.

3.3.5 The simulated δ¹⁵N value under the urban conditions

The simulated δ¹⁵N values of NOx under the urban conditions have extreme diurnal oscillations and almost no weekly trend. The most striking feature is the extreme diurnal oscillations in NO and NO2 δ¹⁵N values. During the early nighttime (1/2, 6/2) the NO and NO2 δ¹⁵N values are similar (~ -5‰, Δδ¹⁵NNO2=+20 ‰), but they diverge over about a 6 hour period until reaching a maximum Δδ¹⁵NNO2=-35 +/− 5‰. At this point, the NO δ¹⁵N value has reached its minimum values of -38‰ (Jan 1) and -36‰ (June 1), which corresponds to minimums in the fNO and NO mixing ratio (SI Fig x). Meanwhile, the δ¹⁵N values of NO2 approach 0‰ as its mixing ratio and fNO2 have reached maximums. This indicates that the NOx isotopic exchange (fNO2= -35‰ at 298K) is dominating the NOx isotopic effects during the night and that under these conditions it requires about 6 hours for NOx to achieve full isotopic equilibrium.
In contrast, during the daytime, the NO and NO₂ δ¹⁵N values are influenced by photolysis and Leighton cycle isotope effects. In the morning, the split between NO and NO₂ δ¹⁵N values is eliminated as NO₂ is photolyzed. This is, in large part, a simple isotope mass balance effect because isotopically heavy (nighttime) NO₂ is now producing isotopically heavy NO causing the NO δ¹⁵N values to increase, closely following the f_NO (SI Fig. x). The NO₂ PHIFE (ε₁₃ = 2.3‰ at 45 degree of solar zenith angle), however, must also be in play otherwise NO₂ δ¹⁵N values would not decrease in the early morning. The NO₂ PHIFE, however, cannot account for the roughly 20‰ decrease in the NO₂ δ¹⁵N values over the course of the mid-morning. This extra decrease is the result of NO₂ + OH (ε₃₉a = 40‰) which depletes the residual NO₂ δ¹⁵N values and results in an HNO₃ δ¹⁵N increase, which maximizes around noon each day (Fig. 15). This ε₃₉a effect reduces in importance in the late afternoon as OH mixing ratios decrease and the rate of R39 decreases to zero. The NO₅ δ¹⁵N equivalence point (NO₂ δ¹⁵N ≈ NO δ¹⁵N) occurs around noon in June and early evening in January, and corresponds to the NO₂ δ¹⁵N minimum values of ~-15 to -20 ‰. This highlights the fact that actinic flux plays a key role in controlling the rate of NO₅ δ¹⁵N oscillation rates. The combined Leighton cycle isotope effects eventually push NO δ¹⁵N values above the NO₂ values, which occurs sooner in the June simulation than the Jan. because of higher NO₅ Leighton cycle turnovers caused by higher photolysis rates and O₃ mixing ratios (maximums 316 ppb, versus 236 ppb). Thus, unlike nighttime, when NO₅ isotope exchange controls NO₅ δ¹⁵N values, photolysis and Leighton cycle and R39 isotope effects control daytime NO₅ δ¹⁵N values that in turn control HONO and HNO₃ δ¹⁵N values.

The δ¹⁵N values of HONO mimic the δ¹⁵N values of NO during the daytime because of the production by the NO + OH reaction (R38). This mimicking is most obvious in the non-urban simulations where daytime HONO and NO δ¹⁵N values are the same during the day, afterward, the HONO δ¹⁵N decouples and remains constant during the night when OH is absent (Fig. 16-18). Interestingly, unlike the non-urban simulations, the urban nighttime HONO δ¹⁵N does not remain constant. There is a slight increase in HONO δ¹⁵N values earlier during the late evening, then the δ¹⁵N values of HONO decrease dramatically to approach the δ¹⁵N values of NO after midnight (Fig. 15). Since no HONO isotope effects included in the current aRACM, this nighttime effect was traced to nighttime OH production under high pollution conditions. During the daytime, OH
is produced by the reaction of water vapor with O$_1$D, which arises from ozone photolysis. In contrast, during the night, due to the absence of photolysis, the production of OH is usually assumed to be zero. However, under high VOCs, the i3RACM model simulates OH production through a 2-step process. First, production of HO$_2$ by VOC + NO$_3$ reactions (R91, R93, R96) followed by the production of OH by HO$_2$ + NO$_x$ reactions (R41-R44). Under the urban condition, the relatively high VOC concentration promotes the production of HO$_2$ by VOC + NO$_3$, and relatively high ozone concentration leads to higher NO$_2$ and NO$_3$ concentration during the early evening, resulting in the production of OH by HO$_2$ + NO$_3$ reactions (R41-R44). Because of the production of HONO by the NO + OH reaction (R38), the δ^{15}N values of HONO start approaching the nighttime δ^{15}N values of NO, when the concentration of OH becomes sufficiently high. This effect can be seen in the changing OH mixing ratios during the urban night (SI Fig. X).

The daily HNO$_3$ δ^{15}N values reach a daily maximum around noon each simulation day and trend toward 0‰ at night and by the end of the week. The initial HNO$_3$ δ^{15}N values are near 0‰ because the initial HNO$_3$ is set to 0‰ (Table S8). Afterward, the daily HNO$_3$ δ^{15}N values reach midday maximums, ~4‰ for Jan 1 and 3‰ for June 1 simulations, which corresponds to the maximums in OH concentration and HNO$_3$ produced by the R38 pathway. The δ^{15}N values of HNO$_3$ decrease during the late afternoons and nighttime, as the δ^{15}N of the reacting NO$_2$ decreases and as isotope effects of NO$_3$ +VOCs and N$_2$O$_5$ become effective. During this 5-day simulation, the HNO$_3$ concentrations gradually reach quasi-equilibrium, as an increasing amount of NO$_x$ is converted into HNO$_3$. As a result, the small diurnal cycle in HNO$_3$ δ^{15}N values becomes less obvious going from simulation day 1 to day 5 where it approaches 0‰, the default δ^{15}N of NO$_x$ emissions, which obeys the N isotope mass balance. In June 1 simulation, the rate and duration of ozone photolysis is higher, thus more O/P is produced, compared to Jan 1 simulation. As a result, the concentration of NO$_3$ during the late afternoon is higher, causing the isotope effect of NO$_3$ +VOCs reaction being stronger. Therefore, the δ^{15}N values of HNO$_3$ in June 1 simulation reaches the maximum value and approaches to 0‰ faster than in Jan 1 simulation.

3.3.6 The simulated δ^{15}N value under the rural conditions

The simulated δ^{15}N values of NO$_x$ under the rural conditions shows similar, yet strikingly different, diurnal and weekly trends compared to urban simulation. This difference is mainly due to the longer NO$_x$ isotope equilibrium timescale under lower NO$_x$ conditions. The $\Delta\delta^{15}$N$_{NO:NO_2}$ decreases

Figure 16. The δ^{15}N values of NO, NO$_2$, HNO$_3$, and HONO for rural condition for Jan 1 (top, a) and Jun 1 (bottom, b) simulation. The 5-day simulation was under the conditions list in Table S8.
during the nighttime and reaches the -15.3‰ (June 1) just before sunrise indicating that NOx isotopic exchange ($e_{NO_{x}NO} = -40\%$ at 298K) is not reaching full equilibration during the night.

Similar to urban simulation, $\Delta \delta^{15}N_{NO-NO_{2}}$ in Jan 1 simulation is lower than in June 1 simulation, caused by more remaining amount of NOx after weaker NO2 photolysis during the daytime. The NOx isotopic exchange is weaker, comparing to the urban simulation, due to the lower NOx concentrations. Therefore, the decrease of $\Delta \delta^{15}N_{NO-NO_{2}}$ during the nighttime is less obvious than urban simulation. The $\Delta \delta^{15}N_{NO-NO_{2}}$ gradually increases during the daytime, as the photolysis ($e_{R1a} = 2.3\%$ at 45 SZA), O$_3$ + NO ($e_{R48a} = -6.7\%$), and NO$_2$ + OH ($e_{R39a} = 40\%$) isotope effects become effective. The maximum daytime $\Delta \delta^{15}N_{NO-NO_{2}}$ reaches at sunset, showing 5.5‰ for Jan 1 simulation and 8.5‰ for June 1 simulation. The $\Delta \delta^{15}N_{NO-NO_{2}}$ increases by 37.6‰ and 23.8‰ during the daytime for Jan 1 and June 1 simulation, respectively, which indicates the dominance of NO$_2$ + OH reaction (R39). Compared to urban simulation, change of $\Delta \delta^{15}N_{NO-NO_{2}}$ during the daytime is smaller, caused by weaker isotope effect from O$_3$ + NO (R48) reaction, because of lower ozone concentration. The change of $\Delta \delta^{15}N_{NO-NO_{2}}$ during the daytime for June 1 simulation is larger than that for Jan 1 simulation, due to the higher rate and longer duration of NO2 photolysis.

Similar to the urban simulation, the $\delta^{15}N$ values of HONO mimics the $\delta^{15}N$ values of NO during the daytime because of the production by the NO + OH reaction (R38), of which the fractionation factor (α) is zero. Unlike urban simulation, however, the $\delta^{15}N$ values of HONO remain constant at night, since the concentration of HOx (OH + HO$_2$) is not enough to produce HONO, due to the relatively low VOC (3.3% of urban value) and ozone (16.7% of urban value) concentration. A key caveat about the $\delta^{15}N$ values of HONO is that we have excluded any KIE associated with the NO + OH reaction because it has not been measured or calculated. Since this is the termination reaction, any isotope effect in this reaction would have a large influence on HONO $\delta^{15}N$ values. In the forest and ocean environment simulations, the $\delta^{15}N$ values of HONO also mimic the $\delta^{15}N$ values of daytime NO so they will not be discussed in the subsequent sections of this paper.

The $\delta^{15}N$ values of HNO$_3$ increases during the mornings and reaches the maximum of 7.5‰ for Jan 1 simulation and 8.4‰ for June 1 simulation, as the isotope effects of NO$_2$ + OH ($e_{R39a} = 40\%$) greater than NO$_3$ +VOCs ($\Sigma e_{91a~97a} = -27.8\%$). The maximum $\delta^{15}N$ value of HNO$_3$ is higher than that in urban Figure 17. The $\delta^{15}N$ values of NO, NO$_2$, HNO$_3$, and HONO for forest condition for Jan 1 (top, a) and June 1 (bottom, b) simulation. The 5-day simulation was under the conditions list in Table S8.
simulation, as the lower VOC concentration weakens the NO$_3$ +VOCs reactions. The δ^{15}N values of HNO$_3$ decreases during the late afternoons and nighttime, as the isotope effects of NO$_3$ +VOCs are effective. The same as urban simulation, the diurnal trend of δ^{15}N(HNO$_3$) becomes less obvious from simulation day 1 to day 5 and approaches 0‰ at the end of the simulation, as an increasing amount of NO$_x$ being converted into HNO$_3$. Again, the δ^{15}N values of HNO$_3$ in June 1 simulation approaches to 0‰ faster than in Jan 1 simulation, due to more O(1D) from stronger O$_3$ photolysis.

3.3.7 The simulated δ^{15}N value under the forest conditions

The simulation of δ^{15}N values of NO$_x$ under the forest conditions shows similar, yet significantly different diurnal and weekly trend, comparing to urban and rural simulation. There are obvious differences between the daily oscillations in NO$_2$ δ^{15}N values in the forest relative to urban simulations. In the cleaner atmosphere, NO$_2$ δ^{15}N values only change daily by only about 5‰, whereas they oscillate by 30 to 40‰ in the urban case. Likewise, daily oscillations in NO δ^{15}N values are weaker in the forest conditions (5-10‰) than in the urban and suburban conditions (30-40‰). This results in a decrease in the $\Delta\delta^{15}$N$_{NO,NO2}$ during the nighttime, reaching minimum values of -11.0‰ (Jan 1) and -4.5‰ (June 1) compared to roughly -40‰ in the urban case. This shows that under low NO$_x$ conditions the NO$_x$ isotope exchange cannot occur fast enough to reach its full effect. This effect is more pronounced in June, due to the short daytime for June 1 simulation, as compared to the January simulations that have about 14 hours of darkness at this latitude. This is similar to urban and rural simulations, where $\Delta\delta^{15}$N$_{NO,NO2}$ in Jan 1 simulation is lower than in June 1 simulation, because of reduced NO$_2$ photolysis hours. The decrease of $\Delta\delta^{15}$N$_{NO,NO2}$ during the nighttime in the forest conditions is less obvious than urban and rural simulation. The $\Delta\delta^{15}$N$_{NO,NO2}$ gradually increases during the daytime, as the photolysis ($\epsilon_{R1a} = 4.2‰$, O$_3$ + NO ($\epsilon_{R8a} = -6.7‰$), and NO$_2$ + OH ($\epsilon_{39a} = 40‰$)) isotope effects become effective. This results in a decrease in NO δ^{15}N values that are less negative than those in NO$_2$, opposite of the urban case where NO$_2$ δ^{15}N values are either higher or equal to NO. As a consequence, the daytime $\Delta\delta^{15}$N$_{NO,NO2}$ values are positive (as opposed to negative in the urban case) and reach a maximum at sunset (6.5‰ for Jan 1, 7.1‰ for June 1). The $\Delta\delta^{15}$N$_{NO,NO2}$ increases by 17.5‰ and 13.3‰ during the daytime for Jan 1 and June 1 simulation, respectively, which indicates the dominance of NO$_2$ + OH reaction (R39). The change of $\Delta\delta^{15}$N$_{NO,NO2}$ during the daytime is smaller than both urban and rural simulation, due to lower ozone concentration. The change of $\Delta\delta^{15}$N$_{NO,NO2}$ during the daytime for June 1 simulation is larger than that for Jan 1 simulation, due to the higher rate and longer duration of NO$_2$ photolysis.

The most striking difference between the “clean” and “polluted” simulations is the separation of HNO$_3$ δ^{15}N values from the initial (emission) NO$_x$$\delta^{15}$N value (defined as 0‰). The δ^{15}N values of HNO$_3$ increases daily by about 1-4‰ due to the isotope effects of NO$_2$ + OH ($\epsilon_{39a} = 40‰$) but are constant or slightly decrease throughout the night due to NO$_3$ +VOCs reactions under these conditions. This leads to a stepwise increase in HNO$_3$ δ^{15}N values that reach maximum of about +10‰ by the end of the 5-day simulation. This is in contrast to the urban and suburban simulations where HNO$_3$ δ^{15}N values reach minimum (~ 0‰) at the end of the simulation. This is an isotope mass balance effect driven by how N is partitioned into NO$_x$ under different conditions. Under high NO$_x$ and VOC conditions (urban, rural) over 90% of emitted NO$_x$ has portioned into HNO$_3$ by the end of the 5-day simulation, thus the HNO$_3$ δ^{15}N value approaches that of the NO$_x$ emissions. In contrast, under low NO$_x$ and VOC conditions (forest,
only about 33% of emitted NO\textsubscript{x} has portioned into HNO\textsubscript{3}, with the bulk of remainder as NO\textsubscript{x} (21%) and organic nitrate (42%) and PAN (4%). In this case, the isotope effects incorporated into the reactions that are responsible for this partitioning manifest themselves in the δ^{15}N of the individual NOy compounds. For example, \textit{i}sRACM predicts that forest conditions will produce δ^{15}N values in organic nitrate even though there are no isotope effects associated with organic nitrate production or loss in \textit{i}sRACM. This highlights how the δ^{15}N values are tracing shifts in NO\textsubscript{y} oxidation pathways.

3.3.8 The simulated δ^{15}N value under the marine conditions

The simulation of δ^{15}N values of NO\textsubscript{y} under the marine conditions is very similar to the forest simulation. The daily oscillations and weekly change in the δ^{15}N of NO\textsubscript{x}, HONO and HNO\textsubscript{3} all follow the same pattern as the forest simulations but with slight amplification in all compounds. The nighttime change in NO δ^{15}N is 15‰ (Jan) and 10‰ (June) is about 5‰ larger than in the forest simulation. Similarly, the ocean condition nighttime change in NO\textsubscript{2} δ^{15}N (9 to 12‰) is about 5‰ larger than in the forest simulation. The result is that the $\Delta \delta^{15}$N\textsubscript{NO-NO2} values decrease during the nighttime, reaching minimum values of -13.5‰ (Jan 1) and -3.6‰ (June 1). Again this shows that under low NO\textsubscript{x} conditions the NO\textsubscript{x} isotopic exchange is not occurring fast enough to reach its full effect ($\text{i}_{\text{NO/NO2}} = -35‰$ at 298K) and is more pronounced in the summer months due to the short night, relative to the January simulations that have about 14 hours of darkness at this latitude. Similar to the forest simulation the δ^{15}N values of HNO\textsubscript{3} increase stepwise during the daytime and reach the maximum of 16‰ for both the Jan and June simulations. This is about 5‰ larger than in the forest simulation and 15‰ higher than the urban case. Similar to forest simulation, the emission rate of NO\textsubscript{x} is higher than the conversion rate of NO\textsubscript{x} to HNO\textsubscript{3}. As a result, the amount of NO\textsubscript{x} increases from simulation day 1 to day 5. The abundant NO\textsubscript{x} promotes the production of HNO\textsubscript{3} during the daytime by NO\textsubscript{2} + OH reaction (R39), which leads to the overall increasing trend throughout the simulation period.

3.4. Model comparison with observations

There are a number of challenges when trying to compare the \textit{i}sRACM model predictions of NO\textsubscript{y} δ^{15}N values with observations in real world. First, there has yet to be a study where the
δ¹⁵N values of NO, NO₂, and NO₃⁻ have been simultaneously measured. The most abundant data on the δ¹⁵N value of NO₃⁻ in aerosols or rainwater. Even with these studies, a direct comparison is difficult because of the δ¹⁵N value of the source NOₓ may be variable in space and time. The δ¹⁵N value of NOₓ sources can range from -40 to +20‰ and both NOₓ sources and NO₃⁻ deposition will be a strong function of the transport history of the air mass that is sampled. Without a 3-D chemical transport model that includes the iₙRACM mechanism, a direct comparison with most NO₃⁻ δ¹⁵N studies would be tenuous. In addition, most NOₓ δ¹⁵N studies provide neither trace gas concentrations (NOₓ, O₃, CO, VOC) nor local trace gas emissions that would be required to constrain iₙRACM for it make an accurate prediction of secondary pollutants or δ¹⁵N values.

The most complete dataset for which to evaluate the iₙRACM mechanism is from Riha (2013) in a study in Tucson AZ, USA. In that study PM₂.₅ and PM₁₀ were collected weekly (24-hour period) for one year (2006) and the δ¹⁵N value of water soluble NO₃⁻ was determined (Figure 1). Into PM mass and NO₃⁻ δ¹⁵N data, local measurements of traces gases (accept VOCs) and meteorology (temperature, relative humidity, wind) were available. In addition, detailed local primary pollutant emission inventories have been developed (Diem and Comrie, 2001). Tucson is a city with little industry or power generation so roughly 80% of the NOₓ is due to vehicles and the relative proportion of all NOₓ sources is invariant throughout the year. Further, Tucson is surrounded by a desert landscape and by and large not influences by regional pollution sources outside the city. These factors overcome some of the uncertainties discussed above. iₙRACM was initialized with observed trace gas concentrations and NOₓ and VOC emissions were based on previous work (Riha, 2013) and the source NOₓ δ¹⁵N value was set to -3‰, typical of vehicle emissions (Walter et al., 2015) and run on the first day of each month. The predicted NO₃⁻ (as HNO₃) δ¹⁵N values (After 48 hours) matched remarkably well with the observed values in PM₂.₅ and PM₁₀ (Figure 19). Observed maximums were in the winter months, peaking January at 15% close to the model maximum in January of 17%. The minimum δ¹⁵N values (-2‰) are measured in July, similar to model predictions of 0‰ during July. The model captures the

Figure 19. Upper panel is the observed NO₃⁻ δ¹⁵N values of PM in the city of Tucson (Riha, 2013). Lower panel is the NO₃⁻ δ¹⁵N values of HNO₃ predicted by the iₙRACM mechanism. Minimums, maximums, and seasonal change in δ¹⁵N in PM NO₃⁻ can be explained by the EIE, KIE, and PHIFE occurring during NOₓ cycling.
seasonal trend quite well, including the Spring plateau. This suggests that at this location, the observed seasonal variation in PM NO$_3$ δ^{15}N values can be explained isotope effects associated with the photochemical conversion of NOx into HNO$_3$.

4. Conclusion

We have developed the first 0-D photochemical box model for 15N compounds in the tropospheric NO$_x$-NO$_3$ cycle. It was shown that of the 100’s of N reactions in the RACM mechanism only a handful significantly impact the main NO$_x$ compounds (NO$_3$, HONO, HNO$_3$). Primarily these are Leighton cycle reactions, NO$_2$ + OH, and NO$_x$ isotope exchange, with N$_2$O$_5$ and nitrate radical reactions having a significant, but minor influence on NO$_3$ δ^{15}N values. It was also shown that there were two factors that can dramatically influence the simulated NO$_3$ δ^{15}N values. The first is the size of the isotope fractions factors (KIE, EIE, PHIFE) for any given reaction. For example, the large EIE (assumed) for NO$_2$ + OH was much more important than the small KIE associated with NO$_3$ + VOC reactions. This highlights the need for direct or computational measurements of KIE, EIE, PHIFE in NO$_3$ reactions, particularly R39. The second is that shifts in oxidation pathways caused by pollutant loading are being reflected in the NO$_3$ δ^{15}N values. In particular, high NO$_x$ + VOC environments with aerosols tend to favor δ^{15}N that reflects NO$_x$ isotope exchange and N$_2$O$_5$ uptake, while clean environments favor δ^{15}N that reflects NO$_x$ cycle and OH oxidation reactions. This highlights that NO$_3$ δ^{15}N values are not only related to NO$_x$ sources but also affected by NO$_x$ chemistry.

The 15RACM model makes a number of predictions that could be tested by measuring the δ^{15}N values of various NO$_x$ compounds in different environments and at different temporal scales. First, the model predicts very large diurnal changes in NO$_x$ δ^{15}N values in all environments, ranging from 10 to 40‰, which could be easily be detected with even the crudest isotope methods (± 2‰). Second, it predicts that in highly polluted environments the δ^{15}N value of HNO$_3$ will be close to the δ^{15}N value of the NO$_x$ sources in the area, but in clean environments, it will be 10 to 15‰ heavier. Third, it predicts seasonal and latitudinal trends in HNO$_3$ δ^{15}N values driven by sunlight and the shifting photochemical pathways associated with it. It predicts higher winter HNO$_3$ δ^{15}N values, as NO$_x$ isotope exchange becomes more important relative Leighton and OH reactions that become dominant in the summer. This effect should be more pronounced as a function of latitude. There should be relatively minor changes in equatorial HNO$_3$ δ^{15}N values since sunlight hours do not vary, significant changes at mid-latitudes (50% seasonal sunlight change) change, and essentially a bimodal change at the poles (ignoring snowpack recycling effects). Fourth, it predicts there will be δ^{15}N variations in key NO$_x$ reservoirs yet to be measured such as organic nitrates and PAN. Finally, the 15RACM model predicts that the most dramatic changes in NO$_3$ δ^{15}N changes will occur after rain events where NO$_x$ is largely removed from the atmosphere by wet depositions. Post rain, the NO$_3$ δ^{15}N values effectively “reset”, particularly HNO$_3$, and will have their biggest difference relative to the NO$_x$ δ^{15}N before trending to the NO$_x$ source over time. The 15RACM model suggests that knowing how is NO$_3$ partitioned and the δ^{15}N value of one (or more) compound that the δ^{15}N of the NO$_3$ source can be determined. This, in turn, can be used as a constraint on NO$_3$ budgets from the local to regional and global scale.

This effect that tropospheric photochemistry has on NO$_x$ δ^{15}N values was tested and shown to general initially lead to higher δ^{15}N values in HNO$_3$ relative to the initial NO$_x$. The difference between the δ^{15}N of HNO$_3$ relative to the initial (emitted) NO$_x$ was typically ~ +10‰
by the 2nd and 3rd day of the simulation. This seems consistent with observations that show NO$_3^-$
δ^{15}N values (positive δ^{15}N) are typically higher than most NO$_x$ sources (negative δ^{15}N). This
difference between NO$_x$ source and HNO$_3$ δ^{15}N values tends to diminish as the simulation
progresses as either all of the initial NO$_x$ is oxidized to HNO$_3$ (no emission simulations) or the
proportion of HNO$_3$ to total N approaches 1 (emission scenarios). This type of bias can be
eliminated by incorporating iRACM into 3-D chemical transport models that account for time-
dependent deposition and emission of NO$_y$.

The model accuracy and its validation could be improved with additional research. The
iRACM model could be refined by additional theoretical and/or experimental determination of
the isotope fractionation factors for the N reactions. First and foremost the fractionation factor
for the NO$_2$ + OH reaction needs evaluating in a more robust manner. Likewise, the
fractionation factor for the NO + OH, another 3-body reaction, will have a large influence on
HONO δ^{15}N values and determining its value will be key for interesting future HONO δ^{15}N data.
The fractionation factor for NO$_2$ photolysis requires attention given the limitation of the ΔZPE
PHIFE model [Blake et al., 2003; Liang et al., 2004; Miller and Yung, 2000]. On the validation
end, the simultaneous measurement of δ^{15}N in multiple NO$_x$ compounds would expose the
accuracy or limitations of the iRACM model in a quantitative way. Repeating these
simultaneous measurements in a range of environments would test the predictions made by out
test case simulations.

Code availability: Fortran code and associated input files are archived on Zenodo.org
https://zenodo.org/. DOI/10.5281/zenodo.3834920. An online version of this iRACM model is
available for public use at https://mygeohub.org/tools/sbox/

Author contribution: Greg Michalski was the lead investigator for the project designed the
modeling experiments, organized the tasks, and wrote the manuscript. Huan Fang and David
Mase modified the RACM code to include 15N isotopes, assisted in writing and editing the
manuscript. Wendell W Walters derived EIE, KIE, and PHIFE used in the model and assisted in
writing and editing the paper.

Acknowledgements: We would like to thank the Purdue Research Foundation and the Purdue
Climate Change Research Center for providing funding for the project. We would like to thank
Bo Sun for helping with the Fortran coding and data generation.

The authors declare that they have no conflict of interest.
References

Michalski, G., R. Jost, D. Sugny, M. Jatney, and M. Thiems (2004), Dissociation energies of six NO2 isotopologues by laser induced fluorescence and zero point energy of some triatomic molecules *Journal of Chemical Physics, 121*(15), 7153-7161.

Riha, K. M. (2013). The use of stable isotopes to constrain the nitrogen cycle. Purdue University, West Lafayette, IN.

