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A short comment on an interesting manuscript:
It would be helpful if the authors could please note that GGCMI is an activity of the Agricultural 
Model Intercomparison and Improvement Project (AgMIP; Rosenzweig etal., 2013) and is an 
element of a broader AgMIP effort to explore cropping system responses to climate conditions and 
climate changes to facilitate applications including toward integrated assessment (Ruane et al., 
2017). 
This connection is particularly important given the voluntary nature of these efforts and as an 
indication of community willingness to systematically compare, open inputs and outputs for broader
scientific inquiry, and facilitate cross-scale and cross-disciplinary applications of crop models for 
basic research and societal benefit.

References: 
Rosenzweig, C., J.W. Jones, J.L. Hatfield, A.C. Ruane, K.J. Boote, P.Thorburn, J.M. Antle, G.C. 
Nelson, C. Porter, S. Janssen, S. Asseng, B. Basso, F.Ewert, D. Wallach, G. Baigorria, and J.M. 
Winter, 2013: The Agricultural Model In-tercomparison and Improvement Project (AgMIP): 
Protocols and pilot studies. Agric.Forest Meteorol., 170, 166-182, 
doi:10.1016/j.agrformet.2012.09.011.

Ruane, A.C., C. Rosenzweig, S. Asseng, K.J. Boote, J. Elliott, F. Ewert, J.W. Jones,P. Martre, S. 
McDermid, C. Müller, A. Snyder, and P.J. Thorburn, 2017: An AgMIP framework for improved 
agricultural representation in IAMs. Environ. Res. Lett., 12,no. 12, 125003, doi:10.1088/1748-
9326/aa8da6.

We thank A.C. Ruane for this comment and to point us the need to underline the connection with 
AgMIP. We totally agree in particular as it promotes the open-science aspects of AgMIP. We added 
the two above references and the first sentence given by A.C. Ruane in the new version of the 
manuscript (L197). 
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Great Job!

We thank the Referee #1 for his/her positive comment !
 



Anonymous Referee #2
Received and published: 5 December 2020

1.Overview 

Review of “Potential yield simulated by Global Gridded Crop Models: a process-based emulator to 
explain their differences” by Bruno Ringeval et al. Bruno Ringeval et al. build an emulator SMM 
with generic equations describing the processes to reproduce the simulation of aboveground 
biomass and potential yield of maize. They showed that with few carefully calibrated parameters, 
the SMM can capture the spatial distribution of aboveground biomass and potential yields, and the 
variations between different GGCMs. This SMM can thus provide a useful tool to compare different
GGCMs. For this manuscript, the texts are well written, the methods are clearly described, and the 
logic are easy to follow, thus I only have some minor comments.

We thank the Referee for his/her positive comments.

2. Comments:

1) A GMD paper must “include the title (concise but informative, including model name and 
version number if a model description paper)” in the title (https://www.geoscientific-model-
development.net/submission.html#manuscriptcomposition), so I suggest the authors to follow this 
instruction.

We understand this comment. However, our manuscript’s type is « Methods for assessment of 
models » (and not « Model description paper »). For this type, the rule for the title are less clear 
than for model description papers. We are a little bit reluctent to give a name + version number in 
the title as our model will be used in a near future to catch the spatial distribution of potential yield 
derived from empirical approach, and not to emulate GGCMs. Nevertheless, if the Editorial team 
asks us to follow this comment, we will add name and version (SMM version 1.0) in the title. 

2) Ln 222:..., varying in space as “a” function…
3) Ln 278:...It is likely “that” some GGCMs…

We correct the two mistakes underlined by the Referee in the new version of the draft (now L227 
and L283).

4) Ln 285: the authors admit that their RUE values are smaller than the commonly reported values, 
but why not increase the range of RUE tested? In the results, they show that for SMM of some 
models (e.g. pDSSAT), the RUE can reach the higher end of the tested values. If RUE is allowed to 
be larger than 3.0g DM MJ-1, will the best RUE and the results change?

In the previous version of the draft, 5 values of RUE were tested : 50, 75, 100, 125, 150 % of its 
initial estimate (equal to 2 gDM MJ-1), i.e.  : 1.0, 1.5, 2.0, 2.5, 3.0 gDM MJ-1. 

As we can see in the Fig.3 of the original draft, the optimized RUE values for each GGCM (e.g. in 
the simulation with C equal to its initial estimate : i.e. the magenta symbol in Fig.3) are :
1.0 gDM MJ-1 for : LPJ-GUESS
1.5 gDM MJ-1 for : GEPIC, EPIC-IIASA, pAPSIM, CLM-crop,
2.0 gDM MJ-1 for : CGMS-WOFOST and LPJmL
2.5 gDM MJ-1 for : pDSSAT.
The highest value of RUE allowed in the optimization procedure (i.e. 3.0) was not chosen during 
the optimization for any GGCM. Thus, it is likely that increasing the highest RUE allowed during 



the optimization does not change the optimized RUE and results. Only for LPJ-GUESS, the 
calibrated RUE reach one boundary (the lowest) of the range of values allowed. 

To assess further, we performed a sensitivity test in which we increased the range of values allowed 
in the optimization for RUE : 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0 gDM MJ-1 (with new values 
tested in bold). In such case, the Figure 3 would be Fig.R1. As expected, only LPJ-GUESS has a 
calibrated RUE different to the one of the original draft (0.75 in the sensitivity test vs 1 in the 
original version of the draft).  This would have a minor effect on the later results as the fit data vs 
model is alredy very good for LPJ-GUESS once a spatial variability in GDD1leaf is introduced 
(Fig.5). Also, we prefer not modifying the range of values allowed as it is difficult to justify such 
low values of RUE. The range of values allowed during the optimization and related issue of 
compensation are already discussed in the original version of the manuscript (L515-520). 

To respond precisely to the question of the Referee, allowing larger values for RUE in the 
optimization procedure (3.5, 4.0 gDM MJ-1) has no effect on the calibrated RUE and on the results.

Fig.R1 : update of the Figure 3 when the range of RUE values allowed during the optimization 
procedure is increased. 



5) Ln335: please clarify what are the two sub-groups, and what is a third variable?

To assess the mismatch between biomGGCM and biomSMM after SMM calibration for a given GGCM,
we aimed to assess how a variable related to climate or soil type can contribute to this mismatch. To
do so, we separated all grid-cells within two sub-groups according to the value of this variable (e.g.
one  sub-group corresponding to  grid-cells  with  high temperatures  and one sub-group with low
temperatures) and assess if the RMSE is different for the two sub-groups. If yes, it would suggest
that a process related to temperature (e.g. heat stress) could be missing in SMM. We clarified this
point in the new version of the draft (L340). 

6) Fig. 3: the listed values should be (RUE, C, RMSE) rather than (C, RUE, RMSE)?

True. Thanks for pointing to this mistake. We re-do Fig.3.

7) Ln 555-570: The RUE in SMM are much lower than GGCMs. Three SMMs havea best RUE to 
be 1.5. Comparing with the RUE (for the total biomass) at the lower end of the commonly reported 
values of 3.1 g DM MJ-1, the RUE of SMMs is two-fold smaller. The authors imply that the RUE 
corresponds to the aboveground biomass, such that it should be smaller than the RUE for total 
biomass. However, they show that the root:total ratios varying from 0.4 to 0.2 in GEPIC, which 
seems cannot explain the two-fold differences in RUE from SMM and GGCMs. The second 
argument is about the LAImax. But from Fig. 2, it seems that the best maxnleaf of the SMM for 
GEPIC is 9.5, which should translate to a LAImax in this SMM to be 1.8, again two-fold smallert 
han the original GEPIC (3.5 as the authors wrote), which contradicts to the authors’claim that 
LAImax is 5 and such that the LAImax can compensate lower RUE.

The two arguments mentioned by the Referee (aboveground vs total biomass ; LAImax) are used in 
our manuscript to explain the mismatch between the RUE calibrated for GEPIC in our SMM 
optimization (1.5 g DM MJ-1) and the true RUE prescribed to GEPIC (4.0 g DM MJ-1). We come 
back on these arguments below.

RUE prescried to GEPIC is for total biomass while our RUE is for aboveground only. In GEPIC, 
root:shoot ratios vary between 0.4 at germination to 0.2 at maturity. Thus, RUE prescribed to 
GEPIC corrected to represent only aboveground biomass should vary between 2.4 at germination 
((1-0.4)*4.0) to 3.2 at maturity ((1-0.2)*4.0). This cannot explain totally the mismatch but can 
contribute to it, in particular in stages close to germination. We modified L577 to make this point 
clearer :
« Actual RUE prescribed to GEPIC after correction to make it represent only aboveground biomass 
should vary between 2.4 at germination to 3.8 g DM MJ-1 at maturity, and is closer (in particular in 
first growth stages), to our calibrated RUE for GEPIC.”

About LAImax : Fig.2 quoted by the Referee is for assessing the sensitivity of the global-averaged 
SMM biomass to each parameter. But during the calibration procedure, only C, RUE, GDD1leaf has 
been calibrated (C and RUE are constant in space ; RUE varies in space) while other parameters are
equal to their initial estimates (see L309). Thus, during the calibration of (C, RUE, GDD1leaf), 
maxnleaf (maximum number of leaves) is set to 19, corresponding to a LAImax of 5.
To go further, we performed a new sensitivity test, where we modified LAImax within SMM towards 
lower values and check how it modifies the calibrated RUE. The aim is to assess if it increases the 
consistency with the RUE prescribed to GEPIC.



The LAI is not used in SMM. Instead, it is a pronostic variable (Eq.9 of the original draft). LAImax 
can be derived from Eq.9 by prescribing nleaf (the number of leaves) equal to maxnleaf, i.e. :
LAImax=Sleaf∗d plant∗maxnleaf

with Sleaf is the individual leaf area and dplant is the plant density. Thus, in SMM, LAImax can be 
modified either by modifying maxnleaf or by modifying one of the other parameter Sleaf or dplant, with 
different effect on the aboveground biomass simulated : maxnleaf modifies the seasonal cycle in nleaf 
(Eq.3) while modifying Sleaf or dplant have a similar effect on APAR through their implication in the 
computation of C (Eq.5 and 8).

We modified maxnleaf by keeping C (thus Sleaf and dplant) at its initial estimate (C=0.12). We 
performed some SMM simulations in which different RUE values are tested for 3 different values 
of maxnleaf :

maxnleaf=19 (initial estimate as in the original draft)
maxnleaf=13, which is consistent with a LAImax of 3.5 as in GEPIC
maxnleaf=10, corresponding to LAImax of 2.7, that could be considered as a more extreme test. Figure 
R2 shows how the RMSE varies for each set of SMM simulations with RUE (line) and which RUE 
would be chosen as minimizing the RMSE (dot). As expected, calibrated RUE increases when 
maxnleaf decreases (i.e. from black to yellow then to red). The same effect is seen when modifying C 
and keeping maxnleaf constant (and equal to its initial estimates) (Fig.R3). Nevertheless, in both cases
(Fig.R2-R3), the effect of reducing LAImax in SMM to be more consistent with GEPIC (from black 
to yellow) on calibrated RUE is small. We added one sentence about this point in the discussion of 
the draft (L585): 
“Some additional sensitivity tests with varying LAImax (not shown) suggest nevertheless that the 
mismatch in LAImax between GEPIC and SMM contributes only slightly to the mismatch in RUE.”

Fig.R2 : Variation of RMSE between SMM and GEPIC as function of RUE for different maxnleaf 
values. With C equal to its initial estimate, the different values of maxnleaf tested here correspond to 
LAImax equal to 5 (as in the original draft, black), 3.5 (as GEPIC, yellow) and 2.6 (extreme case, 
red). Note that 20 SMM simulations have been done for each curve, i.e. the increment in RUE used 
here (~0.1 g DM MJ-1) is smaller than the one tested in the original draft (0.25 in Fig.3).



Fig.R3 : Variation of RMSE between SMM and GEPIC as function of RUE for different C values. 
With maxnleaf equal to its initial estimate, the different values of C tested here correspond to LAImax 
equal to 5 (as in the original draft), 3.5 (as GEPIC, yellow) and 2.6 (extreme case, red).

Overall, this first version of SMM is a simple emulator that only targets at the potential biomass and
yields and does not account for the water and nutrient stresses. Accounting for these stresses 
requires to describe quite a few new processes with more parameters, which will exponentially 
increase the demand for computing resources for the parameterization. I am keen to see how the 
next development of such a SMM will emerge in the near future.

We thank the Referee for his/her interest in next developments of SMM. It is true that the increase 
in number of parameters has a huge effect on the demand for computing resources. In the current 
stage, we are aiming to optimize SMM against empirical dataset of potential yield (Mueller et al. 
2012). This step has its own difficulties as the constraint from this dataset is small (no information 
about the potential biomass, only about the potential yield) but we think that it is important to 
confront SMM not only against GGCM (as in the current paper) but also against datasets more 
related to observations. 
Once parameters allowing SMM to fit empirical potential yield have been calibrated, we will use 
SMM to assess nutrient limitations. We hope that decoupling in time the calibration of parameters 
related to the achievement of potential biomass/yield and the investigations about nutrient limitation
(with additional parameterizations) will prevent us to issues related to computing resources.

Mueller, N. D., Gerber, J. S., Johnston, M., Ray, D. K., Ramankutty, N. and Foley, J. A.: Closing 
yield gaps through nutrient and water management, Nature, 490(7419), 254–257, 
doi:10.1038/nature11420, 2012.
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Abstract

How Global  Gridded  Crop  Models  (GGCMs)  differ  in  their  simulation  of  potential  yield  and

reasons for those differences have never been assessed. The GGCM Inter-comparison (GGCMI)

offers a good framework for this assessment. Here, we built an emulator (called SMM for Simple

Mechanistic Model) of GGCMs based on generic and simplified formalism. The SMM equations

describe crop phenology by a sum of growing degree days, canopy radiation absorption by the

Beer-Lambert  law,  and  its  conversion  into  aboveground  biomass  by  a  radiation  use  efficiency

(RUE). We fitted the parameters of this emulator against gridded aboveground maize biomass at the

end  of  the  growing  season  simulated  by  eight  different  GGCMs in  a  given  year  (2000).  Our

assumption  is  that  the  simple  set  of  equations  of  SMM, after  calibration,  could  reproduce  the

response of most GGCMs, so that differences between GGCMs can be attributed to the parameters

related to processes captured by the emulator. Despite huge differences between GGCMs, we show

that if we fit both a parameter describing the thermal requirement for leaf emergence by adjusting

its value to each grid-point in space, as done by GGCM modellers following the GGCMI protocol,

and a  GGCM-dependent  globally  uniform  RUE,  then  the  simple set  of  equations  of  the  SMM

emulator  is  sufficient  to  reproduce the spatial  distribution of the original  aboveground biomass

simulated by most GGCMs. The grain filling is simulated in SMM by considering a fixed in time

fraction of net primary productivity allocated to the grain (frac) once a threshold in leaves number

(nthresh) is reached. Once calibrated, these two parameters allow to capture the relationship between

potential yield and final aboveground biomass of each GGCM. It is particularly important as the

divergence among GGCMs is larger for yield than for aboveground biomass. Thus, we showed that

the divergence between GGCMs can be summarized by the differences in few parameters. Our

simple but mechanistic model could also be an interesting tool to test new developments in order to

improve the simulation of potential yield at the global scale.
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1. Introduction

Potential  yield corresponds to the yield achieved when an adapted crop cultivar  grows in non-

limiting environmental conditions (i.e. without water and nutrient stresses and in the absence of

damages from weeds,  pests  and diseases) under  a  given crop management  (e.g.  plant  density).

Fundamentally,  it  is  determined  by  a  reduced  number  of  environmental  variables:  prevailing

radiation,  temperature  and  atmospheric  CO2 concentration.  Biotic  variables  such  as  cultivar

characteristics (e.g. maturity group, leaf area index, root depth, harvest index), plant density and

sowing date modulate how the environmental conditions are converted into yield.  At local scale

(field, farm or small region), potential yields can be estimated from field experiments, yield census,

or by crop growth models (Lobell et al., 2009). Crop simulation models provide a robust approach

because  they  account  for  the  interactive  effects  of  genotype,  weather,  and  management  (van

Ittersum et al., 2013). These models are mathematical representations of our current understanding

of biophysical crop processes (phenology, carbon assimilation, assimilate allocation) and of crop

responses  to  environmental  factors.  Such  models  have  been  designed  to  separate  genotype  *

environment * management interactions, for example by factorial simulations where one driver is

varied at a time. Models require site-specific inputs, such as daily weather data, crop management

practices (sowing date, cultivar maturity group, plant density, fertilization and irrigation amounts

and dates), and soil characteristics; with some of them being not useful in the purpose to simulate

potential yield. At local scale, crop models can be calibrated to account for local specificities, in

particular for specificities related to the cultivar used at these sites (Grassini et al., 2011)

Potential yield is also a variable of interest at large (country, global) spatial scales, in particular as it

is required for yield gap analyses (van Ittersum et al., 2013; Lobell et al., 2009). Such analyses are

necessary to get a large-scale picture of yield limitations and to investigate questions related to

production  improvement  strategies,  food  security  and  management  of  resources  with  a  global

perspective. However, while crop models used at local scale can be calibrated to account for local

specificities, it  is much more complicated to model the spatial variations of yields at the global

scale.  Local  crop  models  have  been  applied  at  the  global  scale  either  directly  or  through  the

implementation  of  some of  their  equations  into  global  vegetation  models  (Elliott  et  al.,  2015).

Global Gridded Crop Models (GGCMs in the following) provide spatially explicit outputs, typically

at half degree resolution in latitude and longitude. Their simulations are prone to uncertainty. In

particular, it is quite difficult to get reliable information about the diversity of cultivars (Folberth et

al., 2019) or crop management at the global scale with large effects on the crop behavior (Drewniak
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et al., 2013).

Increasing our confidence in potential yield simulated by GGCMs is required to improve our ability

in replying to societal questions mentioned above. To do so, we need first to understand how and

why  GGCMs  potentially  diverge  in  potential  yield  simulation.  The  GGCM  Inter-comparison

(GGCMI phase I) provides a framework relevant to investigate the differences between GGCMs, as

all GGCM modellers followed the same protocol (Elliott et al., 2015). Model outputs are available

on  the  GGCMI  data  archive  (Müller  et  al.,  2019a).  In  the  GGCMI  framework,  a  simulation

performed with harmonized growing period, absence of nutrient stress and irrigated conditions (see

below) is particularly adapted to simulate potential yield. Figure 1 displays, for maize, the average

and coefficient of variation (CV) of such simulated aboveground biomass (biom) and yield (grain)

among 8 GGCMs participating to GGCMI that have been used in our following analysis. While the

GGCM divergence under potential conditions is lower than the GGCM divergence when limiting

factors are represented (Fig.S2), it remains relatively high. Figure 1 shows that the CV in potential

conditions is higher for grain than for biom and the CV for grain can reach locally more than 50%.

To understand what could explain these differences, we  built a mechanistic emulator of GGCMs

based on generic processes controlling the accumulation of biomass (phenology from the sum of

growing degree days, light absorption, radiation use efficiency) and the transformation of biomass

into grain yield (trigger of yield formation, allocation of net primary production (NPP) to yield). We

then  calibrated  the  parameters  of  the  emulator  independently  for  each  GGCM against  GGCM

simulated biom and GGCM simulated relationship between biom and grain. Our assumption is that

a simple set of equations, with calibrated parameters, can reproduce the outputs of most GGCMs

and could be used to explore the sources of differences between them. We choose to use a process-

based  (even  if  very  simple)  model  as  we  expect  that  this  model  could  propose  interesting

perspectives as explained in the Discussion.  In particular, if able to reproduce the results of an

ensemble of GGCMs, it could be an alternative to the model ensemble mean or median usually used

in inter-comparison exercises  (Martre et al., 2015). Running much faster than GGCMs, it would

also  be  an  interesting  tool  to  test  new  developments,  such  as  the  implementation  of  cultivar

diversity, to improve the simulation of potential yield at the global scale.

4

80

85

90

95

100

105



2. Methods

2.1. GGCM emulator

For any given day d of the growing season (defined here as the period between the planting day, tp,

and the crop maturity,  tm), we used the equations 1-7 which rely on concepts commonly used in

modelling of ecosystem productivity to compute the potential aboveground biomass (biom, in t DM

ha-1). Variables and parameters are summarized in Table 1 and a simplified flow chart is given in

Fig.S3.

For any d in [tp, tm], the thermal time (TT) is computed from the daily mean temperature (tas, in °C)

by using a reference temperature (T0):

TT (d)=tas(d)−T 0 (Eq.1)

GDD is the sum of growing degree days, defined as follows:

GDD(d )=∑
i≤d

max(0 ,  TT (i)) (Eq.2)

The number of leaves per plant (nleaf) is computed from GDD and one parameter representing the

thermal requirement for the emergence of any leaf (GDD1leaf):

nleaf (d)=min(maxnleaf ,  GDD(d)/GDD1 leaf ) (Eq.3)

where  maxnleaf is the maximum number of leaves. In our model, as soon as one leaf emerges, we

assumed that it reaches its fully expanded leaf area, which is the same for all leaves (individual leaf

area, called Sleaf hereafter). The incoming photosynthetic active radiation (PARinc) is derived from the

short-wave downwelling radiation (rsds in MJ m-2 day-1) and its active fraction, f: 

PARinc (d)=f∗rsds(d ) (Eq.4)

The  absorbed  PAR by  the  canopy  (APAR)  is  determined  by  assuming  an  exponential  function

according to the Beer-Lambert law:

APAR (d )=PAR inc(d )∗(1−exp (−C∗nleaf (d))) (Eq.5)

where  C is a constant (see below). The Net Primary Productivity dedicated to the aboveground

biomass (NPPbiom) is computed from APAR with a constant Radiation Use Efficiency (RUE in g DM

MJ-1): 

NPPbiom (d )=RUE∗APAR (d ) (Eq.6)

The aboveground biomass corresponds to the sum over time of NPPbiom:

biom(d)=∑
i≤d

(NPPbiom(i)) (Eq.7)
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The parameter C of Eq.5 can be decomposed in different parameters:

C=k∗S leaf∗dplant (Eq.8)

with k is the light extinction coefficient, Sleaf is the individual leaf area and dplant is the plant density.

The product of Sleaf, dplant and the number of leaves of a given day d (i.e. nleaf(d)), corresponds to the

Leaf Area Index (LAI) of the same day, i.e.:

LAI (d)=Sleaf∗d plant∗nleaf (d) (Eq.9)

in such a way that Eq.5 can be re-written as:

APAR (d )=PAR inc(d )∗(1−exp (−k∗LAI (d))) (Eq.5bis)

We preferred Eq.5 instead of Eq.5bis as we cannot calibrate separately the different parameters

composing  C and  because  we do not  have  any  information  about  the  LAI from GGCMs (see

discussion).

To compute the grain biomass at maturity, we first define the day kl such as :

nleaf (l)≥nthresh (Eq.10)

From day kl, a fixed fraction (frac) of NPPbiom constitutes the Net Primary Productivity dedicated to

the variable grain (called NPPgrain):

If d≥kl, NPPgrain(d)=frac∗NPPbiom(d ) (Eq.11)

If d<kl, NPPgrain(d)=0     (Eq.12)

And finally,

grain(d)=∑
i≤d

(NPPgrain(i )) (Eq.13)

The variable grain (in t DM ha-1) could be considered either as reproductive structures + grain, or

grain  only.  The  parameter  nthresh is  a  threshold  in  the  number  of  leaves  from which  either  the

formation of reproductive structures starts,  or the grains  form or the grain filling starts.  Above

equations aim to be generic and to reproduce the diversity of approaches in GGCMs. That is why

we  do  not  distinguish  here  the  production  of  reproductive  structures  and  the  accumulation  of

assimilates in grains after anthesis. 

Equations 1-7 and 10-13 are called SMM (for Simple Mechanistic Model) in the following. We

focused on biom and grain at maturity, i.e. computed on the last day of the growing season tm. They

are called biomSMM and grainSMM in the following: 

biomSMM=biom(tm) (Eq.14)

grainSMM=grain(tm) (Eq.15)
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The  variable  grainSMM is  used  to  approach  the  potential  yield.  Our  analysis  focuses  on  maize

because of the importance of cereals in human food and because of the widespread distribution of

this crop across latitudes. 

2.2 Set-up

We focused first on the computation of biomSMM, then on the relationship grainSMM vs biomSMM. The

sensitivity of SMM to each parameter involved in the computation of  biomSMM was first studied.

Then, we calibrated SMM against each GGCM to make the spatial distribution of biomSMM mimic

the  spatial  distribution  of  aboveground  biomass  at  maturity  simulated  by  each  GGCM (called

biomGGCM hereafter). This calibration happened in two steps. The 1st step concerned  C and  RUE

which have one value at the global scale. The 2nd step concerned GDD1leaf that we made varying in

space  to  mimic  procedure  used  by  GGCM  modellers  in  GGCMI  (see  below).  The  choice  of

focusing on C, RUE and GDD1leaf is justified below. In a last step (step 3), we calibrated nthresh and

frac to make SMM mimic the relationship grain vs biom of each GGCM. 

2.2.1. GGCMs and GGCMI simulations considered

The eight GGCMs considered in our approach were: LPJ-GUESS (Lindeskog et al., 2013; Smith et

al., 2001), LPJmL (Bondeau et al., 2007; Waha et al., 2012), CLM-crop  (Drewniak et al., 2013),

pDSSAT (Elliott et al., 2014; Jones et al., 2003), pAPSIM (Elliott et al., 2014; Keating et al., 2003),

CGMS-WOFOST (Boogaard et al., 2014), GEPIC (Williams et al., 1995)  (Folberth et al., 2012;

Izaurralde et al.,  2006; Liu et al.,  2007),  EPIC-IIASA (Williams et al.,  1995)  (Izaurralde et al.,

2006). GGCMs  simulations  are  provided  in  the  framework  of  the  GGCM  Intercomparison

(GGCMI) and described in (Müller et al., 2019a). GGCMI is an activity of the of the Agricultural

Model Intercomparison and Improvement Project (AgMIP;  (Rosenzweig et al.,  2013)) and is an

element of a broader AgMIP effort to explore cropping system responses to climate conditions and

climate  changes  to  facilitate  applications  including toward  integrated  assessment  (Ruane et  al.,

2017).  Six other GGCMs also participated in GGCMI but were not considered here as necessary

output  variables  (timing  and  duration  of  the  growing  season  for  EPIC-BOKU,  PEPIC,  EPIC-
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TAMU;  aboveground  biomass  for  ORCHIDEE-crop)  or  simulations  (for  PRYSBI2)  were  not

provided on the data archive of GGCMI.

In GCCMI, all GGCMs followed a common protocol and were forced by the same weather datasets.

We focused here on the simulations forced by one of them, the AgMERRA dataset  (Ruane et al.,

2015).  We used simulations  forced  by the  AgMERRA dataset  as  all  GGCMs performed  these

simulations. Three levels of harmonization have been used in GGCM simulations: default, fullharm,

harmnon. In fullharm simulations, all GGCMs have been forced by the same prescribed begin/end

of the growing season which were derived from a combination of two global datasets (MIRCA

(Portmann  et  al.,  2010) and  SAGE  (Sacks  et  al.,  2010),  (Elliott  et  al.,  2015)).  In  harmnon

simulations,  in  addition  to  forced  timing  and  duration  of  the  growing  season,  all  GGCMs

experienced no nutrient limitation, through prescribed fertilizer inputs. Besides this harmonization

level,  two  water  regimes  have  been  considered:  irrigated and  non-irrigated.  For  our  analysis

focusing on the simulation of potential yield, we decided to select the configuration (harmnon and

irrigated).  This is  true for all  GGCMs considered,  but  CGMS-WOFOST. In fact,  the  harmnon

simulation was not provided for CGMS-WOFOST but, because i) this model does not consider

nutrient limitation, and ii) the growing season was prescribed in the default simulation, we assumed

that the potential yield could be approached by the (default and irrigated) simulation.

For EPIC family models (here, GEPIC and EPIC-IIASA), we used a corrected biomGGCM computed

as below as it has been noticed that some issues related to the variable biom appeared in the outputs

available on the GGCMI data archive  likely related to the output time-step of specific variables

(Folberth, personnal communication, 2019):

biomGGCM=grainGGCM /HImax (Eq.16)

where HImax is the maximum harvest index (no unit), varying in space as a function of cultivars. In

EPIC, the actual  HI at harvest only differs to  HImax if a drought stress occurs in the reproductive

phase.  Because  this  stress  was  virtually  eliminated  by  sufficient  irrigation  in  the  harmnon x

irrigated simulations, the Eq.16 provides the most accurate estimate of aboveground biomass at

harvest.  Map of cultivar distribution, used as input to the EPIC models (Figure 1 and Table D in

(Folberth et al., 2019)), have been considered here to compute the corrected biomGGCM.

2.2.2 Input variables for SMM
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We focused our analysis  on the growing season starting in calendar year 2000 (and potentially

finishing in calendar year 2001). SMM was forced by the short-wave downwelling radiation (rsds

in MJ m-2 day-1) and the daily mean temperature (tas, in °C) from the AgMERRA weather dataset

(Ruane et al., 2015). SMM also needs the begin and end of the maize growing season and we used

respectively the planting day (tp) and the timing of maturity (tm), both being provided in the output

of  each  GGCM.  Despite  the  fact  that  all  GGCMs are  forced  by  the  same  growing  season  in

harmnon, some GGCMs allow flexibility in regards to tp and tm prescribed as input (Müller et al.,

2019b), as suggested by the  GGCMI protocol:  “crop variety parameters (e.g., required growing

degree  days  to  reach maturity,  vernalization  requirements,  photoperiodic  sensitivity)  should  be

adjusted as much as possible to roughly match reported maturity dates”. Thus, we cannot use tp and

tm from GGCM input files (Text S1). 

We performed SMM simulations (and thus, computed biomSMM and grainSMM) for each GGCM, i.e.

for each GGCM growing season. For a given GGCM, SMM simulations were performed only for

grid-cells considered in the given GGCM. In addition, grid-cells for which information about the

growing season from MIRCA and SAGE was not available are masked to prevent to consider grid-

cells where internal GGCM computation was performed. 

The maps of cultivar distribution used by EPIC models  (Folberth et al., 2019) were also used as

inputs to SMM in the simulation aiming to mimic the biom vs grain relationship of EPIC models

(see Sect.2.2.4.2).

2.2.3 Sensitivity of global biomSMM to SMM parameters

Except the active fraction of short  wave downward radiation (f in Eq.4) the value of which is

physically  well-known,  other  parameters  involved  in  the  computation  of  biomSMM (T0, maxnleaf,

GDD1leaf  , C, RUE) are relatively uncertain. The sensitivity of the global averaged biomSMM to these

parameters was assessed by performing 3125 (i.e. 55) SMM simulations allowing to combine 5

different values for each parameter.  In each of these SMM simulations,  a given parameter was

constant in space. The initial estimate of each parameter was provided in Table S1. While the initial

estimate of each parameter was based on literature, we chose quite arbitrarily the same range of

variation of [50-150%] (in % of the initial estimate) for all parameters, with the 5 values tested

uniformly distributed within the range of variation (i.e. 50, 75, 100, 125, 150% of initial guess). 

Following our current knowledge based on observations, it would be partly possible to choose a

different uncertainty range for each parameter: for instance, literature tends to show that  RUE is

relatively well constrained for maize  (Sinclair and Muchow, 1999) while the  C parameter, which
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depends on plant density, is expected to vary a lot as a function of the farming practices (Sangoi et

al.,  2002;  Testa  et  al.,  2016)  (Table  S1).  However,  SMM  aimed  to  mimic  GGCMs  and  not

observations, and it is quite difficult to know if parameter values used in GGCMs well reflect our

current knowledge. For instance, there is some confusion in values of RUE reported in the literature

following the diversity of experimental approaches and units of expression that have been used

(Sinclair and Muchow, 1999). Some confusion in RUE values exists in the literature between RUE

expressed in g of DM per MJ of intercepted solar radiation (called here RUE’) or in g of DM per MJ

of intercepted PAR (RUE’’, with RUE’’=RUE’/0.5) or in g of DM per MJ of absorbed PAR (RUE’’’,

with RUE’’’=RUE’/0.425) (Sinclair and Muchow, 1999) and this could lead to erroneous values in

GGCMs.  In  the  following,  we  used  MJ  of  absorbed  PAR,  to  be  consistent  with  our  Eq.6.

Observations also showed that RUE decreases during grain filling following the mobilization of leaf

nitrogen to the grain (Sinclair and Muchow, 1999). Thus,  RUE is larger during vegetative growth

(3.8-4.0 g DM (MJ of absorbed PAR) -1 (Kiniry et al., 1989)) than averaged over the whole season

(3.1-4.0 g DM MJ-1 (Sinclair and Muchow, 1999)). It is likely thatn some GGCMs used RUE values

which  are  not  representative  to  the  whole  growing season.   Thus,  we used  the  same range of

uncertainty for all parameters in our calibration procedure. Exploring a wider range of values also

allows for a more complete assessment of GGCM performance.

Potential confusion in units mentioned above also lead us to chose an initial estimate of RUE (2 g

DM MJ-1) lower than values commonly reported in the literature (3.1-4.0 g DM MJ-1) (Sinclair and

Muchow, 1999) but note that the highest values of RUE tested during our calibration (3.0 g DM MJ-

1) reach the literature-based range.

 

The global mismatch between each GGCM and SMM was quantified thanks to the Root Mean

Square Error (RMSE) computed as follows:

RMSE(u)=√1
N ∑

g=1

N

(biomSMM(u , g)−biomGGCM (g))2 (Eq.17)

where u is a combination of parameters and g is a grid-cell among the N grid-cells considered for

each GGCM. All  grid-cells  are  assumed independent  and have  the  same weight  in  the  RMSE

computation. RMSE has the same unit as biom (t DM ha-1).

2.2.4 SMM calibration against each GGCM

SMM was calibrated following 3 steps. The first two steps aimed to mimic biomGGCM distribution

10

270

275

280

285

290

295

300



while the last step aimed to make SMM reproduce the relationship grain vs biom of each GGCM.

The procedure of calibration was summarized in Table 2. “Emulated GGCM” is used from now to

define SMM output after SMM calibration aiming to mimic a given GGCM.

2.2.4.1 Parameters involved in the computation of   biom  SMM

Regarding the simulation of biom, we restricted the calibration to RUE, C and GDD1leaf as follows: f

is well constrained, maxnleaf has a small effect on global simulated biomSMM (see below the results of

the  analysis  prescribed  in  Sect.2.2.3),  T0 co-varies  with  GDD1leaf and  we  decided  to  focus  on

GDD1leaf (see below). These parameters (f, maxnleaf, T0) were prescribed equal to their initial estimate

and were the same for all SMM simulations.

We choose to make C and RUE globally constant and GGCM-dependent. The decision to not make

C and RUE vary in space is consistent with the rule of parsimony, that we aimed with SMM. It also

follows the procedure commonly used in GGCMs that involved similar approach. For instance,

GEPIC is based on a biomass-energy conversion coefficient that does not vary in space (Folberth et

al., 2016). Plant density (hidden in C) is constant in space in LPJmL (Schaphoff et al., 2018b). We

calibrated C and RUE at the same time to assess potential compensation between these parameters

in SMM. The three pairs (C, RUE) that minimized the most the global RSME computed following

Eq.17 among the pairs tested were chosen. A fourth pair corresponding to (C,  RUE), where  C is

equal to its  initial  estimate,  has been used.  The use of four different pairs  aimed to assess the

sensitivity of our conclusions to the parameter values. For each (C, RUE) pair, we finally calibrated

GDD1leaf. We made GDD1leaf vary in space as it it is allowed in the GGCMI exercise. In the GGCMI

protocol, accumulated  thermal requirements were adjusted to catch the growing season (duration

and timing) prescribed as input in the harmnon GGCM simulation. In SMM, the procedure slightly

differs as we calibrated thermal requirements to match  biomGGCM:  for each grid-cell,  GDD1leaf is

chosen among its  5  possible  values  to  minimize the absolute  difference between  biomGGCM and

biomSMM. Grid-cells were considered independently. 

The ability of SMM to match the spatial  distribution of  biomGGCM for each GGCM after  SMM

calibration was measured through: the bias, RMSE and Nash-Sutcliffe model efficiency coefficient

(NS) defined as:
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NS=1−

∑
g=1

N

(biomSMM (g)−biomGGCM (g))2

∑
g=1

N

(biomGGCM (g)−biomGGCM)
2

(Eq.18)

where  g refers to  any grid-cell  and  biomGGCM is  the average of  biomGGCM over  grid-cells.  NS=1

means that SMM perfectly matches the spatial distribution of biomGGCM. 

To assess the mismatch between biomGGCM and biomSMM after SMM calibration for a given GGCM,

we aimed to assess how a variable related to climate or soil type can contribute to this mismatch. To

do so, we separated all grid-cells within two sub-groups according to the value of this variable (e.g.

one  sub-group corresponding to  grid-cells  with  high temperatures  and one sub-group with low

temperatures) and assess if the RMSE is different for the two sub-groups. If yes, it would suggest

that a process related to this variable (e.g. heat stress) could be missing in SMM. we compared the

RMSE of two sub-groups of grid-cells that differ according to a third variable related to climate or

soil type.

2.2.4.2 Parameters involved in the computation of   grain  SMM

C, RUE and GDD1leaf determine biom simulated by SMM at each time-step. Two SMM parameters

are  involved  in  the  computation  of  grain for  any day from  biom,  namely  nthresh and  frac. The

calibration of these parameters aims to make SMM able to mimic the relationship between grain

and biom at the end of the growing season from each GGCM. One global and GGCM-dependent

pair (nthresh, frac) was chosen by using the following criteria:

if AGGCM=0, find u that minimizes Rslope (u)=|aGGCM−aSMM (u)| (Eq.19)

if AGGCM≠0, find u that maximizes Rareas(u)=(
AGGCM∩ASMM(u)
max (AGGCM , ASMM (u))

) (Eq.20)

where u corresponds to a given pair (nthresh , frac), AX is the area defined by the grid-cell clouds in

the  grain vs  biom space for  X,  aX is the slope of the linear regression  grainX~biomX, with  X in

{GGCM, SMM}.

In other words, if grainGGCM vs biomGGCM is a line, (nthresh , frac) is chosen to make the relationship

between grainSMM vs biomSMM linear with the same slope as the one of the GGCM. If grainGGCM vs

biomGGCM is not a line, the grid-cells in the space  grainGGCM vs  biomGGCM define an non-null area,

called AGGCM and (nthresh , frac) is chosen to make ASMM as similar as possible to AGGCM. EPIC family
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GGCMs introduced a cultivar diversity in parameters related to grain filling and in that case, the

calibration of (nthresh, frac), instead of being done at the global scale, was made for each cluster of

grid-cells corresponding to a given cultivar. The distribution of cultivars from EPIC was used as

input of SMM in that case.

2.3 Contribution of different processes to yield in SMM

We computed ratios between some SMM internal variables to assess the global contribution of

different processes represented in SMM to the achievement of grainSMM. The following ratios have

been  computed:  nleaf/tas, APAR/rsds,  APAR/nleaf,  biom/APAR,  grain/biom.  The  ratio  nleaf/tas

represents the phenology sensitivity to temperature;  APAR/rsds reflects how radiation is absorbed

by the canopy  and APAR/nleaf represents the absorption sensitivity to phenology, biom/APAR reflects

the conversion from absorbed radiation to biomass and grain/biom represents the harvest index. 

We also investigated how the contribution of the different processes to the achievement of grainSMM

varies  between  emulated  GGCMs.  Variations  in  these  ratios  reflects  the  difference  in  global

averaged  key  parameters  between  emulated  GGCMs.  For  instance,  variations  in  grain/biom

between emulated GGCMs reflects differences in calibrated nthresh and frac (Fig.S3). 

To compute the different ratios, averages over the growing season were used for tas, rsds, APAR and

nleaf, while the end of the growing season were used for  biom and  grain  (so called  biomSMM and

grainSMM, Eq. 14-15). A given ratio was computed for each grid-cell and its grid-cell distribution

was plotted in the following as barplot (Sect.3.4 and Fig.8). 
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3. Results

3.1 Global averaged biomSMM: sensitivity to each parameter and calibration of (C, RUE)

As expected when looking at Eq.6-7, the global averaged  biomSMM sensitivity to  RUE was large

(Fig.2). Varying RUE was the only way possible to capture the global averaged biomGGCM for LPJ-

GUESS (Fig.2). The global averaged  biomSMM was only slightly sensitive to other parameters as

compared to the sensitivity to  RUE. When all parameters are equal to their initial estimate,  RUE

minimizing the RMSE computed following Eq.17 was: 1.0 (LPJ-GUESS), 2.0 (LPJmL), 1.5 (CLM-

crop), 2.5 (pDSSAT), 1.5 (pAPSIM), 2.0 (CGMS-WOFOST), 1.5 (GEPIC), 1.5 g DM MJ -1 (EPIC-

IIASA). 

In Fig.3, we plotted how RMSE changes according to both C and RUE varying at the same time, all

other  parameters  being  equal  to  their  initial  estimate.  Figure  3  shows  that  C and  RUE can

compensate in SMM. Calibrating (C,  RUE) (with one global value for each parameter) allows to

reach RMSE around 4 t DM ha-1 for all GGCMs but LPJ-GUESS and LPJmL (around 2 and 3 t DM

ha-1 respectively) (Fig.3). We chose 3 pairs (C, RUE) among the 25 tested couples that minimized

the RMSE to assess the sensitivity of our conclusions to the pair chosen. Using a fourth pair with

the same C for all GGCMs equal to its initial estimate decreased only slightly the ability of SMM to

match the GGCMs (magenta dots in Fig.3) and did not change drastically the RUE compared to the

ones when both C and RUE were calibrated. 

3.2 Calibration of GDD1leaf 

Once (C, RUE) was globally chosen, a spatially varying GDD1leaf was calibrated. After calibration,

SMM was able to catch the spatial variability of  biomGGCM for most GGCMs  (Fig.4 and Fig.5a).

Difference in percent can be large, especially for regions with small biom but the global distribution

was relatively well captured (Fig.4).

Global RMSE reaches between ~1 (LPJ-GUESS) and 3.3 t DM ha -1 (EPIC-IIASA) (Fig.5a). The

Nash-Sutcliffe coefficient (NS) is large (≥0.6) for all GGCMs but CLM-crop (0.46) and pAPSIM

(0.41). RMSE is greater if computed for grid-cells that experience some days with temperature

above 30°C than if computed for grid-cells without such days, for LPJ-GUESS (1.5 t DM ha-1 vs

0.8),  GEPIC  (4.4  vs  2.3),  EPIC-IIASA (4.2  vs  2.8)  and  pAPSIM  (3.5  vs  2.3)  (not  shown).

Nevertheless, the implementation of a heat stress within SMM (TextS S2) increases only slightly

the fit of SMM vs GGCM for these GGCMs: e.g. NS increases from 0.41 (without heat stress) to
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0.52 (with heat stress) for pAPSIM (Fig.S5). The limited increase can be explained by the fact that

optimized GDD1leaf in the SMM simulation without heat stress encompasses a part of the heat stress

for these grid-cells. 

EPIC family GGCMs simulate some other stresses, such as stresses related to salinity and aeration,

that could have an effect on the potential yield even in the (harmnon  and irrigated) simulations

(Müller et al., 2019a). The intensity of some of these stresses (aeration) depends on soil orders and

should be particularly important in vertisols (C.Folberth, personal communication, 2019). However,

RMSE is only slightly different for grid-cells characterized by vertisols  vs others soil orders for

GEPIC (3.4 for vertisols vs 3.2 for other soil orders) and EPIC-IIASA (3.8 vs 3.3).

CLM-crop (NS=0.46) and pAPSIM (NS=0.52 for SMM configuration with heat stress) are the two

GGCMs for which the GGCM vs SMM agreement remains relatively poor. 

When using  other  (C, RUE)  pairs,  the fit  SMM vs GGCM overall  slightly  decreases  for  most

GGCMs as the (C, RUE) chosen tends to lower global fit when GDD1leaf is constant (see RMSE for

the different pairs given in Fig.3) but same conclusions as above are reached: the fit are relatively

correct, except for CLM-crop and pAPSIM (Fig.S6). Calibrating  GDD1leaf when the 4th (C,  RUE)

pair is used leads to reasonable fit between SMM and GGCM (Fig.5b): calibrating C is of second

order as compared to calibration of RUE.

The  distribution  of  calibrated  GDD1leaf is  provided  in  Fig.6.  This  distribution  varies  between

GGCMs. Most of the grid-cells are characterized by extreme GDD1leaf values. The distribution of

GDD1leaf is also sensitive to the chosen (C, RUE) pair, in particular for LPJ-GUESS and LPJmL. For

these  GGCMs,  the  difference  (biomGGCM –  biomSMM)  is  small  and  has  the  same  sign  almost

everywhere (Fig.4, last column). The sign is sensitive to the chosen (C, RUE): for instance, the

difference is negative for the 1st (C, RUE) pair and positive for the 2nd one for LPJ-GUESS. The

calibration of  GDD1leaf, as it happens after the calibration of (C, RUE), tends to compensate this

systematic bias and varies between pairs. 

A SMM simulation where the range of variation allowed for  GDD1leaf during the step 2 of the

calibration is increased (from [50-150%]  * initial estimate in default calibration to [25-200%]  *

initial  estimate)  allows  to  significantly  improve  the  match  GGCM  vs  SMM:  NS  coefficient

increases for CLM-CROP (from 0.46 to 0.66) and pAPSIM (from 0.41 to 0.60) (2nd line of Fig.S7).

Increasing the sensitivity  to  temperature by letting both  GDD1leaf and  T0 vary at  the same time
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during the calibration give similar results (3rd line of Fig.S7). These results are obvious as allowing

more variation in SMM allows a best fit to GGCM in more grid-cells. This underlines the difficulty

to make SMM functioning as a mechanistic model (see Discussion).

3.3 Calibration of parameters involved in grain computation (nthresh, frac)

Varying (nthresh, frac) allows the dots (corresponding to the different grid-cells) to define different

shapes in the space  yieldSMM vs  biomSMM (Fig.S8 for pDSSAT as example).  nthresh=0 leads to linear

relationship between yieldSMM and biomSMM with a slope equal to frac (left panels of Fig.S8). Non-

null nthresh make some grid-cells deviate to this linear relationship and the number of such grid-cells

increases with nthresh (Fig.S8). For all GGCMs, we found a (nthresh, frac) combination that allows the

relationship yieldSMM vs biomSMM to fit the relationship yieldGGCM vs biomGGCM (Fig.7). For CLM-crop,

we are not able to reproduce the cloud of dots corresponding to grid-cells where the potential yield

is below the line grain=80%*biom. For EPIC family GGCMs, a calibration per cluster of grid-cells

sharing the same cultivar is required.

3.4 Contribution of different processes to the achievement of grainSMM

The ratio  nleaf/tas is relatively constant among the emulated GGCMs and this is true whatever the

(C, RUE) pair chosen (Fig.8a). The ratio nleaf/tas reflects GDD1leaf. The calibrated GDD1leaf, even if

its spatial distribution varies from one GGCM to the other (see previous section), remains relatively

constant at the global scale between GGCMs.

The ratios APAR/rsds and APAR/nleaf (Fig.8b-c) vary a lot between GGCMs but this variation is of

the same order of magnitude as the one between (C, RUE) pairs. These ratios reflect  C, which is

highly variable between GGCMs and between pairs.

The ratio  biom/APAR (Fig.8d) reflects global  RUE. Calibrated  RUE varies a lot between GGCMs

and only slightly between pairs for a given GGCM. 

The ratio grain/biom (Fig.8e) varies a lot between GGCMs and is only slightly sensitive to the (C,

RUE)  pair.  This  ratio  reflects  a  combination  of  nthresh and  frac.  GGCMs with  nthresh equal  to  0

(LPJmL, EPIC-IIASA) have no grid-cell variability in grain/biom (Fig.8e). Overall, and whatever

the GGCM variability at grid-cell scale, we can distinguish i) emulated GGCMs that convert a large

fraction of biom to grain, as CLM-crop, ii) emulated GGCMs that convert around 50% of biom to

grain, as LPJmL, pDSSAT, GEPIC, pAPSIM, EPIC-IIASA and iii) emulated GGCMs that convert

around  30-40%  of  biom to  grain as  LPJ-GUESS  and  CGMS-WOFOST.  Large  variation  of
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grain/biom between GGCMs is consistent with the fact that difference in grain among GGCMs is

larger than the one in biom (Fig.1).
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4. Discussion & Conclusions

We showed that a simple set of equations  with one GGCM-dependent global  RUE and spatially

variable  thermal  requirement  (GDD1leaf)  is  able  to  mimic  spatial  distribution  of  aboveground

biomass of most GGCMs. Calibrating one additional global parameter at the same time as  RUE

(namely C) improves only slightly the fit between SMM and GGCM and modified in a small extent

the calibrated value of RUE.  RUE represents canopy photosynthesis and GDD1leaf determines crop

duration,  i.e.  the  two  main  drivers  of  crop  productivity  (Sinclair  and  Muchow,  1999).  The

relationship  between  potential  yield  and  aboveground  biomass  of  GGCM  is  captured  by  the

calibration of two additional global parameters: one that triggers the start of grain filling and one

corresponding to a time-invariant fraction of NPP allocated to the grain.  These two parameters

allow to catch the relationship between biom and grain from all GGCMS. This feature of SMM is

particularly important as we showed that the divergence between GGCMs is larger for grain than

for  biom (Fig.1).  Cultivar diversity regarding these latter  parameters is  nevertheless required to

catch the behavior of some GGCMs. Despite apparent complexity in GGCMs, we showed that

differences between them in regards to potential yield can be explained by differences in few key

parameters. 

Our approach has few caveats. First,  SMM could be able to fit individual GGCMs for the wrong

reasons, i.e. following a compensation between SMM internal processes which is not representative

of the considered GGCM. We think that this issue is nevertheless minimized in our approach. First,

we investigated how parameters can compensate, e.g. by calibrating at the same time RUE and C.

We showed that calibration of  C is of second order importance and getting calibrated  RUE less

varying among emulated GGCMs would require very extreme values for C, well behind the range

of values allowed in our calibration. The parameter C encompasses different parameters (see Eq.8)

and a better alternative would be to separate them as well as to explicitly simulate the Leaf Area

Index  (LAI)  variable.  SMM-simulated  LAI would  be  compared  to  GGCM  output  and  this

comparison would reduce further the risk of compensation between processes in SMM. However,

LAI was not available neither from GGCMI data archive nor upon request to GGCM modellers. We

stress  the  need  to  incorporate  this  output  variable  in  next  inter-comparison exercise.  It  is  also

important to note that the average over the growing season of  LAI or  LAI at set fractions of the

growing  season  (including  anthesis)  would  be  more  interesting  than  LAI at  harvest  as,  under

potential conditions,  LAI at harvest is very likely close to maximum LAI allowed by the different

GGCMs.
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Then, the reasonable match between SMM-simulated aboveground biomass and GGCM-simulated

biom is made possible only because of the large range of variation allowed for RUE and GDD1leaf

during the calibration, i.e. [50,150%] of their initial estimate. This range should have a meaning in

term of values commonly used in GGCMs. Otherwise, the calibrated parameters could implicitly

encompass different mechanisms considered in  GGCMs but  not  in SMM and this  issue should

occur more likely as we choose a large range of variations. For instance, calibrated  GDD1leaf in

SMM could artificially encompass the sensitivity to temperature of processes not considered in

SMM, as we discussed for heat stress in Sect.3.2.  It is likely that the variation of  GDD1leaf also

encompasses  a  spatial  variation  of  emergence  in  GGCMs  as  in  SMM,  we  did  not  compute

emergence and plants starts to grow from the planting day.  In such cases, SMM should not be

considered as a pure mechanistic model but more as a meta-model and, purely statistical meta-

models should be more appropriate than our simplified process-based model. However, the range of

variation that we used for GDD1leaf ([50-150%] around the initial estimate of 43°C, corresponding to

~[22-65°C])  is  consistent  with  ranges  reported  by  observations  focusing  on  the  sensitivity  of

phyllochron (thermal requirement for the emergence of any leaf) to temperature (Fig.2 of (Birch et

al., 1998)) and cultivar (Padilla and Otegui, 2005). Our range of GDD1leaf cannot be straightforward

compared to the range of heat unit commonly used in GGCMs to catch the prescribed growing

season (e.g. ~[10-225°C] in GEPIC if we divide the values of heat units given in  (Minoli et al.,

2019) by a maximum number of leaves of 19, as in our study) or computed in (van Bussel et al.,

2015a) (~[25-160°C] if we divide the values given in Fig.2 of that reference by 19). Indeed, in our

approach, GDD1leaf*maxnleaf correspond to the thermal requirement up to the emergence of all leaves

while the sum of heat unit used in GEPIC or  (van Bussel et al., 2015a) is required to reach the

maturity and thus encompasses both the emergence of all leaves and the period from flowering

(concomitant to the end of leaves emergence) up to maturity. 

Some discrepancies remain between SMM and some GGCMs, especially CLM-crop and pAPSIM.

This  could  be  explained by differences  between GGCM and SMM in  the  choice  of  processes

represented (e.g. net productivity in SMM instead of balance between gross productivity and plant

respiration in some GGCMs) or for a given process, in the choice of equations used to represent it

(e.g.  Farquhar  (CLM-crop)  vs  RUE (SMM)  for  assimilation).  The  representation  of  stomatal

conductance  and  CO2 assimilation  rate  within  Farquhar  equations  introduces  a  sensitivity  to

variables not considered in the RUE-based approach (e.g. water vapour pressure deficit) in line with

observations that show that RUE is sensitive to many variables (Sinclair and Muchow, 1999). This

would lead to differences in the spatial variability of simulated aboveground biomass as compared
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to one simulated with spatially constant RUE. The succession of phenological stages with different

parametrizations in some GGCMs (e.g. in pAPSIM (Wang et al., 2002)) can also partly contribute

to differences with SMM as plant development is continuously simulated in SMM, as it is in other

GGCMs (e.g. LPJmL, (Schaphoff et al., 2018a)). Other possibility of mismatch is related to some

limiting factors (nutrients, water, etc.) that could exist in the harmnon and irrigated simulation for

GGCMs despite the protocol of these simulations and through different biases. First, GGCMs that

do not explicitly simulate nutrient limitations may have integrated these stresses implicitly in their

parametrizations (see next paragraph). Second,  irrigation in some GGCMs ensures that plants are

not limited by water supply. But plants can still experience water stress if the atmospheric demand

is higher than the plant hydraulic structure can service. This could likely explain the lower yield for

the group of grid-cells below the line corresponding to grainGGCM=80%*biomGGCM for CLM-Crop in

Fig.7.  Finally,  some other stresses (salinity, aeration, etc.) are present in few GGCMs (e.g. EPIC

family models) and are not alleviated in harmnon simulation. However, it seems that these stresses,

restricted to few grid-cells, cannot significantly contribute to the GGCM vs SMM mismatch.

Despite  some  confusion  in  values  of  RUE reported  in  the  literature  arising  from  diversity  of

experimental approaches and units of expression that have been used ((Sinclair and Muchow, 1999);

Sect.2.2.3), RUE is relatively well constrained from observations ([3.1-4.0] g DM MJ-1). Here, we

found that  calibrated  RUE in emulated GGCMs are lower than values derived from observations

and varied a lot among GGCMs: between 1 for LPJ-GUESS to 2.5 g DM MJ -1 for pDSSAT. The

values of calibrated RUE found in our study can be compared to values actually used in GGCMs

based on the same approach of conversion of radiation to  aboveground biomass.  RUE used in

GEPIC is equal to 4.0 g DM MJ-1 (C.Folberth, personal communication, 2020) while our calibrated

value for the same GGCM is of 2.0 g DM MJ-1. Our calibrated RUE is an apparent  RUE and the

mismatch  with  actual  RUE prescribed  to  GEPIC can  be  explained  as  follows.  First,  the  daily

increment of biomass in GEPIC derived from the conversion of radiation encompasses an increment

for both aboveground biomass and roots (with a ratio root:total varying from 0.4 at germination to

0.2 at  maturity) while both the  RUE values used in SMM and derived from most observations

(Sinclair and Muchow, 1999) concern aboveground biomass only. Actual RUE prescribed to GEPIC

after  correction  to  make  it  represent  only  aboveground  biomass  should  vary  between  2.4  at

germination to 3.8 g DM MJ-1   at maturity, and is closer (in particular in first growth stages), to our

calibrated RUE for GEPIC. Second, LAImax in GEPIC is lower than values used in SMM: in GEPIC,

LAImax which variesy with plant density and is equal to 3.5 at plant density of 5 used in the GGCMI

se simulations while LAImax in SMM (derived from Eq.9 when nleaf reaches its maximum) is equal to
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5 (. this value can be derived from Eq.9 when nleaf reaches its maximum, i.e. maxnleaf, whose the value

is prescribed during the calibration procedure; maxnleaf=19). Lower LAImax in GEPIC than SMM can

compensate higher RUE. Some additional sensitivity tests with varying LAImax (not shown) suggest

nevertheless that the mismatch in LAImax between GEPIC and SMM contributes only slightly to the

mismatch in  RUE.  Finally,  the seasonal dynamic of  LAI could be different between GEPIC and

SMM and this can counter-balance the lower increment of biomass computed in SMM than in

GEPIC once  LAImax is reached. As mentioned above, the values of  LAI computed by GGCMs at

different set fractions of the growing season would be very helpful.

The  diversity  in  apparent  RUE found  between  GGCMs raises  the  question  about  the  physical

meaning of the parameters used in each GGCM. GGCMs are tools first dedicated to simulate actual

yield and could have been tuned in that purpose against local observations. During that tuning,

processes  not  explicitly  represented  in  a  given  GGCM  could  be  implicitly  incorporated  in

parametrizations of other processes. For instance,  it  could be the case for GGCMS that do not

incorporate explicitly nutrient limitations. Potential yield is a variable that has been computed in a

second step and that could suffer from these implicit incorporations.  At the end, the divergence in

potential yield between GGCMs raise the questions about their ability to reproduce real process at

the basis of actual yield as this latter depends on the combination between potential yield and many

limiting factors.

Our study has some implications for GGCMs modellers in regards to the simulation of potential

yield. We showed that differences between GGCMs can be explained by differences in few key

parameters, namely the RUE and parameters driving the grain filling (nthres and frac). For RUE, we

recommend  to  GGCMs  modellers  to  investigate  why  each  individual  GGCM  has  a  so  small

(explicit or implicit) apparent RUE. We showed that nthresh and frac vary a lot between GGCMs. For

GGCMs with nthresh equal to 0, a parametrization based on a better distinction between emergence of

all leaves and the period from flowering to maturity could be interesting. We also showed that nthresh

and frac determines harvest index (HI) and we showed that HI vary a lot between GGCMs. Thus,

we advice that more effort needs to be directed in assembling a global dataset of  HI for either

parametrization  or  evaluation  of  GGCMs.  Maximum  HI that  plant  can  reach  is  a  cultivar

characteristic and one possibility to build such dataset could partly rely on information from seed

companies. Finally, we suggested that next inter-comparison exercise encompass LAI and the begin-

end of the different growing season periods (vegetative period, flowering, etc.) for GGCMs that

distinguish such stages.
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Model  ensemble  mean  or  median  from  inter-comparison  exercise  is  commonly  preferred  to

individual GGCM as it has better skill in reproducing the observations (Asseng et al., 2014; Martre

et al., 2015). Our mechanistic-model tuned against GGCMs could be a viable alternative to this

ensemble mean/median as it allows to keep tracks of processes leading to the final variable, namely

here  the  potential  yield.  Once tuned,  SMM could  be  forced  by an  ensemble  of  parameters  to

reproduce  the  ensemble  of  GGCMs.  Our  emulator  could  also  offer  a  potential  for  GGCMs

evaluation  and analysis  of  their  structural  uncertainty.  Its  use  under  different  climate  and  CO2

conditions would nevertheless require the implementation of some missing mechanisms (e.g. heat

stress and effect of CO2).

In purpose to simulate potential yield at the global scale, our emulator forced by daily temperature

and  radiation,  growing  season  and  with  few  adjustable  parameters  could  be  considered  as  an

interesting  alternative  to  GGCMs  as  they  are  easier  to  manipulate  and  allow  much  faster

simulations.  For instance, our model could be used to  investigate the implementation of cultivar

diversity at the global scale. The introduction of cultivar diversity is a keystone in development of

crop models at the global scale (Boote et al., 2013). Cultivar diversity considered at the global scale

was mainly related to phenological development through  sensitivity to photoperiod, sensitivity to

temperature (and vernalization for winter cultivars) (van Bussel et al., 2015b). The effect of cultivar

diversity on allometry (e.g. through variability in harvest index) was considered in a less extensive

extent at the global scale and restricted to some EPIC models (Folberth et al., 2019) or pDSSAT in a

specific  study  (Gbegbelegbe  et  al.,  2017).  Through  protocol  of  GGCMI  in  which  thermal

requirements are tuned to match the growing season, a cultivar diversity was implicitly accounted

for. The same applies for SMM. The parameters of the emulator, here fitted to reproduce GGCM

output could also be fitted to global dataset based on census/observations in a manner similar to that

done with PEGASUS (Deryng et al., 2011) but here applied on potential yield (against real yield for

PEGASUS). For instance, SMM could be calibrated against global dataset of potential yield based

on statistical approach (Mueller et al., 2012) and the spatial variation of calibrated parameters could

be compared to existing knowledge about the spatial distribution of cultivars.  Finally, our model

because it allows temporal dynamic simulation could be coupled with simulation of limiting factors

(water, nutrients) to investigate the limitation of potential yield at the global scale in a simple but

mechanistic manner.
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Data and Code availability

Scripts at the basis of this study are made available on this link:

https://doi.org/10.15454/9EIJWU 

They encompass three python scripts and shell scripts + directories to use these python scripts. First

python script (called SIM.Py) encompasses SMM equations and performs SMM simulations for

different  combinations  of  parameters  and  for  each  GGCM  growing  season.  Second  one

(ReadMultiparam_WriteOPTIM.py)  performs the  SMM calibration  against  each  GGCM output.

Third one (ReadPlotOPTIM.py) performs the main plots. GGCM inputs and outputs required to

force or calibrate SMM are available following (Müller et al., 2019a).
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Tables

Table 1. List of variables and parameters in SMM.
 Definition Unit Status

tas Daily mean temperature °C Input variable

TT Thermal time °C Internal variable

GDD Sum of growing degree days °C Internal variable

nleaf Number of leaves per plant - Internal variable

rsds
Short wave downward

radiation
MJ m-² day-1 Input variable

PARinc
Incoming Photosynthetic

Active Radiation
MJ m-² day-1 Internal variable

APAR
Canopy absorbed incoming

PAR
MJ m-² day-1 Internal variable

NPPbiom

Net primary productivity
dedicated to aboveground

biomass
g DM m-² day-1 Internal variable

biom Aboveground biomass g DM m-²

Internal variable. The study
focuses on biom at the end of the
growing season, called biomSMM,

and converted in tDM ha-1

NPPgrain
Net primary productivity

dedicated to grains 
g DM m-² day-1 Internal variable

grain Grain biomass (yield) g DM m-²

Internal variable. The study
focuses on grain at the end of the
growing season, called grainSMM.,

and converted in tDM ha-1

T0 Zero of vegetation °C Parameter

GDD1leaf

Sum of growing degree day
required for each leaf

(phyllochron)
°C Parameter

maxnleaf
Maximum number of leaves

per plant
- Parameter

f
Active fraction of short wave

downward radiation 
- Fixed parameter (f=0.48)

C

C=k*Sleaf*dplant with k:
coefficient of extinction of

radiation in canopy, Sleaf: the
specific leaf area of any leaf
and dplant: the plant density

- Parameter

RUE Radiation Use Efficiency
g DM MJ-1

(Here, MJ refers
to absorbed PAR)

Parameter
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nthresh

Number of leaves from which
either the formation of

reproductive structures starts,
or the grains form or the grain

filling start

- Parameter

frac

Fraction of NPPbiom going
towards the variable grain

when n>nthresh

- Parameter

Table 2. Strategy of SMM calibration for each parameter

Step of calibration Parameters
Values used in SMM

simulations
GGCM variable used for the

calibration

f, T0, maxnleaf

One value at the
global scale and same

for all GGCMs
None

1 C, RUE One value at the
global scale and

GGCM-dependent

Global averaged biom

3 nthresh, frac* Relationship grain vs biom

2 GDD1leaf

Variable in space and
GGCM-dependent

variability
Spatial variability of biom

*: nthres and frac are variable in space as function of the cultivar when SMM aims to mimic EPIC 
family models as these latter consider some cultivar diversity in harvest index.
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Supplementary Information

Text S1: Growing season as input/output of GGCMs
Text S2: Implementation of heat stress

Table S1: Parameter values during the calibration procedure

Fig.S1: Average and coefficient of variation for both aboveground biomass (biom) and yield (grain)
of 11 GGCMs for simulations approaching potential yield in GGCM
Fig.S2:  GGCM divergence in  yield  simulated  for  different  GGCMI simulations:  (harmnon and
irrigated), (harmnon and rainfed) and (default and rainfed)
Fig.S3: Simplified flow chart of SMM
Fig.S4: Comparison of growing season between GGCM input and GGCM output
Fig.S5: biomGGCM vs biomSMM and effect of the implementation of a heat stress
Fig.S6: biomGGCM vs biomSMM and sensitivity to the chosen (C, RUE) pair
Fig.S7: biomGGCM vs biomSMM for different calibrations
Fig.S8: Relationship  grainGGCM vs  biomGGCM and comparison to  grainSMM vs  biomSMM for different
(nthresh, frac) combinations
Fig.S9: Parametrization of temperature stress in EPIC models and in SMM
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