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Abstract. This study introduces an efficient deep learning approach based on convolutional neural networks
with joint autoencoder and adversarial structures for 3D subsurface mapping from surface observations. The
method was applied to delineate palaeovalleys in an Australian desert landscape. The neural network was
trained on a 6,400 km’ domain by using a land surface tomography as 2D input and an airborne electromagnetic
(AEM)-derived probability map of palaeovalley presence as 3D output. The trained neural network has a
maximum square error < 0.10 and produces a square error < 0.10 across 93% of the validation areas,
demonstrating that it is reliable in reconstructing 3D palaeovalley patterns beyond the training area. Due to its
generic structure, the neural network structure designed in this study and the training algorithm have broad

application potential to construct 3D geological features (ore bodies, aquifer) from 2D land surface observations.

1 Introduction

Imaging the Earth’s subsurface is crucial for the exploration and management of mineral, energy and
groundwater resources; its reliability depends on the availability and quality of geological data. Although the
amount and quality of geological data obtained from borehole logs, geophysical prospecting and remote sensing

has increased 2l amatieat over the past decades, their spatial distribution is highly uneven. Most data existEL

in a limited number of hlghly-developed areas such as mining and oil fields.
ldlctlve models are much-needed for extrae [7]cal-scale rlcllrg datase’(JC}el=

Commonly used methods for modelling complex geological structures include geostatistical approaches such as
sequential Gaussian or indicator simulation (Lee et al., 2007), transition probability simulation (Felletti et al.,

2006; Weissmann and Fogg, 1999). or multiple-point simulation (MPS) methods (Hu and Chugunova, 2008;

Mariethoz and Caers, 2014; Strebelle, 2002). However, they often present drawbacks such aslz

s—being inefficient in capturing

essential features and patterns from very large training datasets, or presenting a high computational cost. A fast

and reliable tool for high-resolution 3D subsurface imaging based on multiple-support big dataset is-sti
Deep learning approaches specialised in big data mining have the potential to this gap (Gu et al., 2017,
Hinton and Salakhutdinov, 2006; Marcais and de Dreuzy, 2017). Applications in the geosciences include
earthquake detection based on seismic monitoring (Mousavi and Beroza, 2019; Perol et al., 2018), or disaster
recognition from remote sensing data (Amit et al., 2016; Léangkvist et al., 2016), among others. A recent
breakthrough in deep learning is the 2D to 3D image processing (Niu et al., 2018; Sinha et al., 2017; Wu et al.,
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2016; Yi et al., 2017). Such approaches point out a novel way to rapidly and automatically identify covered 3D
subsurface structures directly from readily-available 2D surface observations (qj}ital elevation models, land
cover maps, signals captured by airborne geophysical surveys).

To this end, we designed a deep convolutional neural network (CNN) with joint autoencoder (Kingma and
Welling, 2013) and adversarial structures (Goodfellow et al., 2014). The autoencoder component features large
input and output images connected by a small latent space. This structure is advantageous for the fusion of
complex input data and 3D image reconstruction. Its training involves direct back-propagation according to a
voxel-wise independent heuristic criterion, and thus often needs a large training dataset to constrain the model
and avoid overfitting (Laloy et al., 2018). The generative adversarial learning tries to generate multiple images
inheriting the probability structure of one real image, which relaxes the need for very large training dataset. The
proposed approach successfully generates regional-scale 3D palacovalley patterns from 2D digital terrain
information in an Australian desert landscape, demonstrating that the interplay between autoencoder and
adversarial components provides a generic tool to exploit more effectively geophysical, land surface and other

data to generate realistic regional-scale 3D geological structures.

2 Method

The adversarial neural network for 3D subsurface imaging involves three steps: (1) patch extraction and
representation, (2) nonlinear mapping and reconstruction, and (3) statistical expression of the generated image
(Fig. 1). The first step is referred to as ‘encoder’ (Fig. 1a), which is employed to fuse the information contained
in the 2D land surface observation images (input data) into a low-dimension layer by successive convolutions
(Hinton and Salakhutdinov, 2006):

h(x) = f(W-x+b), (1)

where f'is a nonlinear function referred to as “activation function”, W is a matrix of weights and b is a bias
vector in the encoder.

The encoder can be designed to contain multiple layers, where the number of layers is defined as ‘depth’. Each
layer can contain multiple images, with the number of images defined as ‘width’. The images in one layer are
convoluted to generate the elements in the image of the next layer by weight filters, and the elements in the low-
dimension layer of the encoder (the output) are called ‘code’. The process of convolution is illustrated in Fig. 1b,
which shows that with a filter size of 2x2 (for a 2D image convolution for example), one element in the output
layer is related to 4 elements in the input layer. Thus, the spatial correlation scale addressed by the convolutional
neural network can be controlled by the filter size in both vertical and horizontal directions.

The weight and bias in the encoder are trained to ensure that the code follows a standard normal distribution, by

minimizing the Kullback—Leibler divergence (L1), defined as (Kullback and Leibler, 1951):
L1l = %Z?’:l(uz + 0% —logo? — 1);, 2
where N is number of codes in the final output layer of the encoder, ¢ and ¢ are the mean and standard deviation

of the codes, respectively.
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3= —2log[D(G(2))], (C)

and

L4= —=log[D(V)] — ~log[1 — D(G(2))]. ©)

where V7 is the size of the output vector via the discriminator, and D(-) represents the calculations (Eq. 1) in the
discriminator. The weights in the discriminator are frained to minimize L4, which attempts to distinguish the
vectors generated from the real and simulated 3D images. The weights in the generator are frained to minimize
L3, which attempts to fool the discriminator to be unable to identify the vector generated from the simulated 3D
image. In such a way, the generator can produce images aligned with the real image in terms of probability
structure (Goodfellow et al., 2014).

Finally, while the loss function L4 is minimized to optimize the weights in the discriminator, a comprehensive
loss function combining L1, L2 and L3 is employed to optimize the weights in the generator, which is expressed
as (Wu et al., 2016):

Lg=a-L1+b-L2+c-L3, (©)

where a, b, ¢ are the coefficients on each loss function. This loss function makes it convenient to vary the neural
network structure between semi-supervised learning with additional adversarial neural network by defining
coefficient c as non-zero value, and supervised learning with merely autoencoder neural network with c as zero.
The hyperparameters (including the width, depth, filter size and the coefficients in generator loss functions, etc.)
defining the neural network structure, are determined by trial-and-error tests (Supplementary materials). Weight
and bias in generator and discriminator are trained to minimize L, and L4 using the stochastic gradient descent
algorithm, referred to as adaptive moment estimation (ADAM) (Kingma and Ba, 2014). We implemented the
above convolution neural network using the Tensorflow Python library (Abadi et al., 2016). Once the neural
network is trained, the ‘generator’ in the network (Fig. 1a) is used independently to generate 3D subsurface

structures from the 2D land surface observations.

3 Results

We use a CSIRO dataset to test the effectiveness of our deep-learning approach in predicting 3D palaeovalley
patterns in the Anangu Pitjantjatjara Yankunytjatjara (APY) lands of South Australia (Fig. and 2b). mhe
dataset includes a 100-m, 2D Multiple-resolution Valley Bottom Flatness (MrVBF) index (calculated from the
digital elevation model) across the entire model domain (Gallant and Dowling, 2003), and aEb electrical
conductivity dataset (400-m horizontal and 10-m vertical resolution) interpreted from an airborne
electromagnetic (AEM) survey in the APY Lands (Ley-Cooper and Munday, 2013; Soerensen et al., 2016).
Previous hydrogeological characterization indicate that high bulk electrical conductivity values (EC) are a proxy
for palaeovalley presence (Jiang et al., 2019; Munday et al., 2013; Taylor et al., 2015). Thus, a palaeovalley
aquifer index (PAI) is defined as:

PAJ — —10810EQ)"10810(Emin Q)
log10(EC)max—10g10(EC)min

where max and min represent the maximum and minimum logarithm of EC values over the entire dataset,

respectively. PATI ranges from 0.0 to 1.0 and is calculated in the first 100 m depth at the AEM-surveyed area,
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This would appear to represent existing fluvial drainage characteristics. For this to be useful for training' the DL model
there would have to be a mechanistic connection (geologic) between these surface features and the subsurface
distribution of paleochannels. There is a big problem with this approach: modern geomorphic surface characteristics
seldom represent or correlate to the morphology and distributions of subsurface facies or rock types.
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Not clear. Do the valley bottoms in ¢ correspond each to the type of channel and facies depicted in b? If yes, does that
mean these are all incised into granite? In that case, the predictive geologic problem would appear to be trivial.
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~ Is the point here to use the AEM results as a ground truth and demonstrate that you could do as good, or almost as
good, without the AEM and just using your DL approach based on surficial information? Not clear.
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which is considered as a ground-truth 3D probability map of palaeovalley occurrences with a spatial resolution
of 400 m»400 mx10 m.
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Figure 2. Datasets for delineating 3D palaeovalley in the Anangu Pitjantjatjara Yankunytjatjara (APY) Lands of
South Australia: (a) location of the largest deserts in Australia and (b) general conceptual model of palaeovalley
sedimentary facies revealed by over 90% borehole lags, (c) multiple resolution valley bottom flatness index, and (d)
electrical conductivity (at depths of 30 to 40 m with a horizontal resolution of 400 m) inferred by airborne
electromagnetic surveys in the APY Lands, forming an indicator of palaeovalley occurrence.

A neural network simulator is established and trained to relate the IJ--IEM-derived PAI (output image) with 2D
MrVBEF data (input image). The training dataset covers part of the APY Lands (6,400 km2) (hereafter referred to
as ‘training area’). Both loss functions for discriminator and generator were monitored when training the model
to verify the network being trained sufficiently (Supplementary materials). Training of the network under
10,000 iterations on a high-performance computer (Tesla P-100-SXM2-M-16GB) required 100 to 150 minutes
of computation time. Once trained, generating of 3D image from 2D MrVBF required less than five seconds on
a desktop computer.

An area 80 km west of the training area is first used to validate the trained neural network in generating 3D PAL
The statistics of square errors between the simulated 3D PAI and real PAI are calculated at all 200%200x10
voxels. As shown in Fig. 3, the squared error in the training dataset is below 0.1 and with a mean value of about
0.03, and the squared error of the predicted 3D PAI is well below <0.1 for 93% of the validation domain, with a
mean squared error of about 0.04. The patterns of the generated palaeovalley in both horizontal and Iélartical
directions align with those inferred from the AEM-derived PAI This indicates that the deep-learning neural
network structure developed in this work is capable of incorporating the relationships between the MrVBF and

the buried palaeovalley patterns, and allowing for reliable predictions beyond the training area.
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The vertical extents appear to be extraordinarily thick, essentially extending over the total 100 m thickness of the
modeled region. This does not seem realistic unless these paleo vallies are just incised valley fill deposits produced by
long term hard-rock incision, followed by relatively simple aggradation within those vallies. As such, this does not appear
to be a difficult predictive test for the method, and the problem you are attempting to solve (or demonstrate) is even less
clear.






