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2016; Yi et al., 2017). Such approaches point out a novel way to rapidly and automatically identify covered 3D 

subsurface structures directly from readily-available 2D surface observations (digital elevation models, land 

cover maps, signals captured by airborne geophysical surveys).  40 
To this end, we designed a deep convolutional neural network (CNN) with joint autoencoder (Kingma and 

Welling, 2013) and adversarial structures (Goodfellow et al., 2014). The autoencoder component features large 

input and output images connected by a small latent space. This structure is advantageous for the fusion of 

complex input data and 3D image reconstruction. Its training involves direct back-propagation according to a 

voxel-wise independent heuristic criterion, and thus often needs a large training dataset to constrain the model 45 
and avoid overfitting (Laloy et al., 2018). The generative adversarial learning tries to generate multiple images 

inheriting the probability structure of one real image, which relaxes the need for very large training dataset. The 

proposed approach successfully generates regional-scale 3D palaeovalley patterns from 2D digital terrain 

information in an Australian desert landscape, demonstrating that the interplay between autoencoder and 

adversarial components provides a generic tool to exploit more effectively geophysical, land surface and other 50 
data to generate realistic regional-scale 3D geological structures. 

2 Method 

The adversarial neural network for 3D subsurface imaging involves three steps: (1) patch extraction and 

representation, (2) nonlinear mapping and reconstruction, and (3) statistical expression of the generated image 

(Fig. 1). The first step is referred to as ‘encoder’ (Fig. 1a), which is employed to fuse the information contained 55 
in the 2D land surface observation images (input data)  into a low-dimension layer by successive convolutions 

(Hinton and Salakhutdinov, 2006): 

ℎ(𝐱) = 𝑓(𝐖 ∙ 𝐱 + 𝒃), (1)  

where f is a nonlinear function referred to as “activation function”, W is a matrix of weights and b is a bias 

vector in the encoder.  

The encoder can be designed to contain multiple layers, where the number of layers is defined as ‘depth’. Each 60 
layer can contain multiple images, with the number of images defined as ‘width’. The images in one layer are 

convoluted to generate the elements in the image of the next layer by weight filters, and the elements in the low-

dimension layer of the encoder (the output) are called ‘code’. The process of convolution is illustrated in Fig. 1b, 

which shows that with a filter size of 2×2 (for a 2D image convolution for example), one element in the output 

layer is related to 4 elements in the input layer. Thus, the spatial correlation scale addressed by the convolutional 65 
neural network can be controlled by the filter size in both vertical and horizontal directions. 

The weight and bias in the encoder are trained to ensure that the code follows a standard normal distribution, by 

minimizing the Kullback–Leibler divergence (L1), defined as (Kullback and Leibler, 1951):  

𝐿1 = 1
2𝑁
∑ (𝜇2 + 𝜎2 − log𝜎2 − 1)𝑖𝑁
𝑖=1 , (2)  

where N is number of codes in the final output layer of the encoder, 𝜇 and 𝜎 are the mean and standard deviation 

of the codes, respectively.  70 
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