Responses$o Reviewer #1

We highly appreciate your time in reviewing our manuscript. The relevant comments have improved the quality of the
manuscript. We now revised the manuscript accordingly. The detail responses are listed below. The modifications & the articl

are marked inhe annotated manuscript.

Q1. This manuscript proposes a deep CNN with joint autoencoder and adversarial structures to predict the probability of
subsurface palaeovalleys (derived from airborne electromagnetic data) using 2D land surface tomograpigentdiaimed

that the trained model Aproduces a square error <the. 10
conclusion of a reliable model in reconstructing 3D palaeovalley patterns. This is consistent with thenregulte 3. If we

compare Figures 3d and 3f, it is quite clear that many structures that are present in the real 3D image are missing from th
simulated image and indeed these two images are not similar. On the other hand, Figure 3c and 3e are \@masimdar

set). This simple visual comparison reveals that the trained model is very overfitted and contradicts the claim of similar
performance in training and validation areas (Abstract:
produces a square error < 0.10 across 93% of the wvalidat
on the performance of the proposed model in validation areas. A 3D map showing the spatial distribution of errors (for both

validaion and training areas) would be useful.
Reply: Partially agree and changes made.

(1) ConsistenceWenow carefully checked through the calculations and the resulting values, and make sure that the expression
of Aproduces a square error < 0.10 across 93% of thhe va
training domain,ivas cal cul ated that the 0.991 quantile of error s
has a maxi mum squar e er r oThetraindd nelr@l detwiork has asquare erforo< 0.hOatrass 99%
of training domain both the abstract and the contexig Line 13,202and 213), to better express the findings.

(2) Overfitting. We now draw the 3D distribution of errors in the validation domain and also a plan view of errors averaged
over ten layers (now Fig. 4). The error distribution is compared to the mddgvalley pattern suggested by the MrVBF in

both validation and traing domains, because the paleovalley geometry inherits the pattern of rdageralley (comparing

Fig. 3a and 3c, 3b and 3d). It is illustrated that the distribution of large errors in the validation domain is unréhated to
modernday valley geometrynithe training domain, bsbmeconcentrate on the boundaries of surface valley in the validation
domain. The former confirmed that no overfitting problem occurs. The latter is induced by the convolution processes itself.

This is now expressed lrines 215225

A furthercomparisorbetween the neural network without and with fully connected layers is now addee §228-238 As
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a result,using relatively small filter and removing the fully connected layer to updexmeter the neural network model

helped reducing the overfitting risk.

Q2. The proposed model is used for subsurface structure mapping. Sub3DNet might be a better name for the model.
Re: Agree.

We now changed the model name as Sub3DNet.

Q3. Itis good to discuss some of the limitatiarishe deep CNN models. For instance, too many structures are available. (e.g.,
number of convolutional and pooling layers) and it is not clear which structure is the best for the study presented in this

manuscript.
Re: Agree.

We now added a Discussion 8en in Lines 228238, to (1) compagthe proposed CNN with the traditional structure, (2) to
clarify the limitation of CNN model. We also put the details of the CNN structure optimization (e.g. depth, width, &Rer siz

of neural networks) in the support materials.



Responses to Reviewef2

We highly appreciate your time in reading through this manuscript many times, and give us many constructive comments or
the background presentation. We have revised the introduction and study area sections accordingly, to better articulate th
researctproblems we aim to solve, among others. The detailed responses are listed below and the modifications are marke

in the annotated manusgati

Q1. My review of this paper is not favorable mainly because, despite repeated readings of it, | am inetiéytthe specific

research problem that the authors are seeking to solve, and because the case study used to demonstrate their method app
to be trivial in the context of subsurface characterization. Although it is possible my reactions stem flmm ma
misunderstanding of the descriptions of the objectives, methods and results, | have spent decades of my career mapping a
modeling paleochannels, including application of AEM and other geophysical methods, yet | am unable to reconcile the

separation étween what the authors are writing and what | would consider to be understandable or obvious contributions.

Reply We agree that the research problem was not well articulated and have made changes to support our claim the

work is novel with many practical applications to better mapping of shallow subsurface features and their geometries.

Werewrote the Introduction to better articulate the novel contribution in the method development. The major changes included

are:

() in the first paragraphL{nes 22-31), we now describe that big data sets on geologygammorphologyare globally
available either as land surface observations (typically remote sensing and topographical data and their derivatives), o
regionally available in a limited number of highdgweloped mining and oil fields (e.g., downhole, surface and airborne
geophysical interpretations). In Australia, the former are readily available at low cost, while the latter are eftastimgn

and expensive in remote desert areas where groundwatemfoisupply relies on access to shallow aquifers (Munday et al.,
2020a). In their study, Munday et al. (2020) interpreted 17,000 line km of airborne electromagnetic (AEM) data covering an
area of about 30,000 K fraction of the 422,000 KnGreat Victoia Desert in central Australia. Witm@EM line spacing

of 2 km, with smaller infill areas where line spacing was reduced to 250 and 500 m to provide greater detail of theesubsurfac
electrical conductivity, accurate mapping of palaeovaleys was achiblgtdy et al., 2020b). Application of such high
resolution data to much larger areas like the Victorian Desert would be cost prohibitive. Our goal is therefore to develop an
efficient and generic tool to express the relationship between aiceabjain ditaset and a more costly dataset for the specific
purpose of detecting palaeovalley features that would facilitate the discovery of new groundwater resources in arid and semi

arid regions. In other words, we seek to develop a novel method that uses AHbY oambdel development on a small training
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area while the application (i.e. detection of palaeovalleys across large areas) uses readily available landsurfaceninformatio

that otherwise (i.e., without AEM coupling through a training procedure) would faaMétte value for palaeovalley detection.

(2) in the second paragraphirfes 38-53), we describe the limitation of the existing methods. For example, the traditional
geostatistical methods are skillful in interpolation but not in extrapolation. Mi&verful in delineating complex subsurface
structures, but its effect depends on the availability of the training data. These methods are developed and emplayed based
the singlesupport dataset, that is, the data types employed to define spatiahsgtics presumed to be the same as those

data types employed to predict the subsurfacebgely. Theyare ofteninefficient in capturing essential features and patterns

from largeand multiplesupportdatasetsor can do so only at a high computationakt. This more or less limits their
application. The neural network model developed in this study, on the other hand, provides a framework with a flexible input
data type (e.g. 2D land surface observations and others) and complex output datasetpééegvalley pattern). It is capable

to define nonlinear relationships among multipleport datasets, and employ this relationship for prediction with merely

easyto-obtain input data.

Q2. My trouble with the objectives and problem definition can b¢ ilastrated by first considering the geologic system the
authors seek to better map in 3D. 6Pal eochannel sdé& can |
setting, but from what | can decipher from the introduction, methods an@ Fig. by 6 pal eochannel sd& t !
to incised valley fill deposits like those depicted in Fig. 2b, where the channels are bounded not by adjacent fluvitfacies

by granite. Setting aside for the moment that this looks more like a basinange style of geologic structure than a
paleochannel, based on the vague descriptions in the paper, | can only construe that the flattest portions of the DEM shown |
Fig. 2c represent the Quaternary alluvial bottomlands representative of the toappénent paleochannels (i.e., top of sed
facies in Fig. 2b). I f that is true, the reader d6Fromeact |

the topography it is already obvious where theseadled channel deposits locéte.

Summarizing the case study, it appears that the DEM already nicely identifies locations of the paleochannels, whicy apparentl
have been further characterized using AEM, presumably to better identify their depths or depth to bedrock perhaps This raise
the question of what is the problem the authors are attempting to address? If the problem is to betterydiecgfyoxs of

the secalled paleochannels, that would appear moot because the DEM already shows them, which also raises the question «
why you need DL. If the problem is to better identify paleochannel or incised sfdlldgpths, that has apparently already

been done with AEM; and furthermore, if the purpose is to use the DL algorithm to map the paleochannels depths so that AEN
would not beneeded, that also does not appear to make sense because the authors have not established a relationship betw:

the DEM flatness metric and paleochannel depths.



It is possible that i f the authors cael bef matrerepechéic
map and about what specifically they are trying to accomplish through the application of their ML methods, the above problems
would be cleared up. As written, however, the manuscript lacks sufficient definition ofdbkem, description of their

objectives, and description of how their research satisfies those objectives.

Reply: We agree that the problem should be better defined, with greater clarity of objectives and how those were

achieved. The following changes have been made in response to the comments.

(1) The Introduction provides background geological informatiortrenpalaeovalley system of interest, and why ML is

adopted to improve mapping of their location and their 2D/3D geommatry Lines 7494).

The case study area is a {ftkocene palaeovalley system in central Australia that has been postulated to signféigant
groundwater resources (Dodds and Sampson, 2000). However, their geometry and extent remain largely hidden from view b
a valley fill of Pliocene to Pleistocene sediments and overlying Quaternary sand dunes of the Great Victoria Desert (Lewis et
al., 2010). Although the thicker valley fill sequences seem to be coincident with contemporary lows or valleys in the more
subdued relief of the plains, the definition of the palaeovalley systems remains relatively poor (Munday et al., 2020a). This
has ben attributed to sandplain sediments forming a relatively continuous cover over much of the Musgrave Province down
to 3040 m depth; below this depth the definition of the palaeovalley systems becomes significantly clearer widetnedI|

network of mgor alluvial channels and tributary systems. As is evident from an analysis of AEM images, the palaeovalley
system has a highly irregular geometry with spatially varying depths to basement, and with heterogeneous infill resulting in

lithologically controled palaeovalley aquifers.

Our goal is therefore to develop an efficient and generic machine learning tool to express the relationship betwetn an easy
obtain dataset and a more costly dataset for the specific purpose of detecting palaeovalley Hattuoesdt facilitate the
discovery of new groundwater resources in arid and-sgichiregions. In other words, we seek to develop a novel method that
uses AEM only for model development on a small training area while the application (i.e. detectior@fglgs across

large areas) uses readily available landsurface information that otherwise (i.e., without AEM coupling through a training
procedure) would have had little value for palaeovalley detection. Moreover, in addition to detection of paldecuaiilthey

the method should also derive the 3D palaeovalley geometry. Such methodology is premised on the existence of a mechanist
connection between landsurface features and subsurface distribution of palaeovaleys. To what degree such corrglation exis
(and can be cast in a predictive framework) between palaeovalley geometry and landsurface features derived from digita
elevation data in the palaeovalley system of the Musgrave Province will be tested using a deep convolutional neural networ}

methodolog.

(2) The paleovalley pattern in this demonstration case is comparable to that of modern valley pattern. Thus, the MrVBF (a 2D
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land surface observations) is related to the 3D paleovalley structure; but it cannot directly suggest the depth ofypamidovalle
width of the paleovalley at different depths. AEMerpreted EC values is a direct index of 3D paleovalley structure (including
both depth and width), but it is not available everywhere. We employed our method to define a relationship between MrVBF
andAEM-interpreted EC in the datich area, and employed in those area where the AEM is not available to predict the 3D
paleovalley pattern based merely on the MrVBB&W Lines 167176).

(3) For the model verification, both the training and validationsangucted in those regions with AEMterpreted EC. The
weights in the neural network model is determined based on the data in the training area. The AEM data in the valiglation area
is just used to test the ability of the trained model in predictingeédBopalley structure, but do not participate in determining
the neural network modeh@w Lines 176178).

[1] Gallant, J. C. and Dowling, T. I.: A multiresolution index of valley bottom flatness for mapping depositional areas, 3MateeseesearcB9, 2003

[2] Ley-Cooper, A. and Munday, T.: Groundwater Assessment and Aquifer Characterization in the Musgrave Province, South Aesfriadtatiémt of
SPECTREM Airborne Electromagnetic Data, Goyder Institute for Water Research Technical Repor2&iSies

[3] Soerensen, C. C., Munday, T. J., Ibrahimi, T., Cabhill, K., and Gilfedder, M.: Musgrave Province, South Australia: praceseirggsion of airborne
electromagnetic (AEM) data: Preliminary results. 12325, Goyder Institute for Water ResglaiTechnical Report Series, 2016

Specific comments in the annotated PDF files

Line22.Del et e O6dramaticall yd

Reply: Change made.

Line2225.idata pooro contradicts fArich/ bigd, and others

Reply: This sentence is now rephrased.ines 22-24.

Line 29-30.This is most certainly not true of those method, although one might need to use them more expertly (e.g. through

zoning of the model region) when ngatationarities are presemitine 32./i s st i | |  acki ng dinet3® fwo L
Afil | .¥duhave ngtédentfied as a gap, but rather a potential way of improving upon other methods. Rewrite to better
describe the figapd and what your method potentially doe

Reply: This part is rewritten to present the limitations of existing methodstrenthajor problem we wanted to solve with

our developed neural networkijes 38-50 and Line 7494)
Line39:Add 6e. g. o
Reply: Change made.

Line 119121.Thi s woul d appear to represent existing fluvial d
DL model there would have to be a mechanistic connection between these surface features and the subsurface distribution

paleochannels. The is a big problem with this approach: modern geomorphic surface characteristics seldom represent or
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correlate to the morphology and distributions of subsurface facies or rock types.
Reply: Agree.

While the occurrence of palaeovalleys is correlated to the matdgrmalley pattern (Jiang et al., 2019), their exact location

and geometry in the case study area cannot simply be inferred from modern geometric surface features 2Ddkialsi pie
resolutionValley BottomFlatness (MrVBIy index (alculatedrom the digital elevation mode{§allant and Dowling, 2003)

The correlation is complicated by the presence of relatively continuous sandplain sediments that cover the palaeovalleys. O
the other hand, the vertical structure of a palaeovalley can be interpretedrfi@rborne electrmagnetic (AEM) survey
(Ley-Cooper and Munday, 2013; Soerensen et al., 20t MrVBF index exists across the entire Australia continent, while
AEM data of sufficient spatial granularity only exists in a limited number of prospective mining fields. Our meturaik

model establishes a relationship between the MrVBF index (high values are indicative of locations with a high probability of
deposition of alluvial sediments) and the AEMerpreted 3D palaeovalley structure. This relationship is then used totpred

the 3D palaeovalley structure in those areas with only MrVBF data but without the AEM datasétifes 167176).

An area80 kmwest of the training ardafirst used to validate the trained neural network in generating 3D PAI. The statistics

of squaed errors between the simulated 3D PAI and real PAI are calculated at all 200200xL0 »ax&t®wn in Fig. 3, the
squared error in thigainingdataset is below 0fbr 99% of the training domaiand with a mean valugf about 0.03, anthe

squared eor of the predicted 3D PAs$ well below<0.1 for93%of the validation domairwith a mean squared ermfrabout

0.04. The patterns of the generated palaeovalley in both horizontal and vertical directions align with those inferred from the
AEM-derived PA. This indicates that theeeplearning neural network structure developed in this work is capable of
incorporating the relationships between the MrVBF and the buried palaeovalley patterns, and allowing for reliable predictions
beyond the training ared ifies 200207).

Figure 2. No clear. Do the valley bottoms in Fig. 2¢ correspond each to the type of channel and facies depicted in 2b? If yes,

does that mean these are all incised into granite? In that case, the predictive geologic problem would &pipiéalio b

Reply: The valley bottom flatness data from Fig.2c represents the input data for the neural network model, natiag that
modernday valley pattern is correlated with the occurrence of palaeovalleys, however their exact location and geometry in
the case study area cannot simply be inferred fror@EhBultiple-resolutionValley Bottom Flatness (MrVBF indexalone.

The 2Dconceptual model of a palaeovalley (Fig. 2b) is a very simplified representation of the heterogeneous structure of the
palaeovalleys in the Musgrave Province. The valley bottoms of Fig 2c have a high likelihood to contain palaeovalley features,
incised ina more or less unweathered (resistive) basement rock. This does not make the geologic problem trivial: however, it
does provide the basis for delineating the palaeovalley base usingpH maistivity boundary. Without such resistivity

contrast betweebasement rock and conductive infill the AEM method would have difficulty in delineating any palaeovalley
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accurately fow Lines 155166).

Line 121-123.1s the point here to use AEM results as a ground truth and demonstrate that you could do asjoost, as

good, without the AEM and just using your DL approach based on surficial information? Not clear.

Reply: Yes.The MrVBF index exists across the entire Australia continent, while AEM data of sufficient spatial granularity
only exists in a limited mmber of prospective mining fields. Our neural network model establishes a relationship between the
MrVBF index (high values are indicative of locations with a high probability of deposition of alluvial sediments) and the
AEM-interpreted 3D palaeovalleyrstture. This relationship is then used to predict the 3D palaeovalley structure in those
areas with only MrVBF data but without the AEM dataset. For the method verification, both the training and prediction are
conducted in the area where AEM data is labédé. Note that the weights in the neural network are determined based on the
training area. The AEM data in the other areas are only used to test the predictive capability of the trained neur@dmetwork
Lines 176178).
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Abstract. This studyintroduces an efficient deep learningapproachbased onconvolutional neural netwoskwith joint
autoencoder anddversariabtructuredor 3D subsurface mappinfgom 2D surface observation¥he method was applied to
delineatepalaeovalleys in an Australian desert landscafiéie neural network was trainet a 6,400 krhdomainby usinga
land surface tomographgs 2D input andan airborne electromagnetiAEM)-derived probability map ofpalaeovalley
presences3D output.The trained neural network has a sqdaeor < 0.10acros€99% ofthetraining domairand produces
asquare error < 0.10 across3% of the validatiordomain demonstrating that is reliable in reconstructing 3D palaeovalley
patterns beyond the training ar€ue toits generic structurethe neural networkstructure designed in this studyd the
training algorithmhavebroad applicatiorpotentialto construct 3D geologicdeatures(ore bodies, aquifedrom 2D land

surface observations.

1 Introduction

|l maging the Earthdés subsur fmanagemems minenalueaeargg and draumdwatelsosirces x p | o
their reliability depenéhg on the availabilityand qualityof geological data. Although treemount and quality ofeological
data obtained from borehole logs, geophysical prospecting and remote sassiogeasd dramaticalyover the past decades,

their spatial distribution is highly unevelfig dda sets on geology and geomorphology are globally available either as land

surface observations (typically remote sensing and topographical data and their derivatives), or only regionally awailable in

limited number of highlydeveloped mining and oil figs (e.qg., downhole, surface and airborne geophysical interpretations).

In Australia, the former are readily available at low cost, while the latter are oftegxisiimg and expensive in remote desert

areas where a key challenge is to secure groundveatiown supply, often available only from shallow aquif@viinday,

20204, b)In their study, Munday et §R020a, bjnterpreted 17,000 line km of airborne electromagnetic (AEM) data covering

an area of about 30,000 kwithin the much larger Great Victoria Desert in central Australia (422,000. kitith a AEM

line spacing of 2 km, with smaller infill areas & line spacing was reduced to 250 and 500 m to provide greater detail of

the subsurface electrical conductivity, accurate mapping of palaeovaley aquifers was gdhimdzay, 2020a)Application

of such highresolution data to much larger areas like the entire Victorian Desert would be cost prolhlestrdataexistas
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Commonly used methoder modellingcomplex geological structures includeostatistical approaches suchsaguential

Gaussian or indicator simulatidibee et al., 2007 }ransition probabilitsimulation(Felletti et al., 2006; Weissmann and Fogg,
1999) or nrultiple-point simulation(MPS) methodgHu ard Chugunova, 2008; Mariethoz and Caers, 2014; Strebelle,.2002)

Mo s t geostatistical approaches are suitable for Ai nterp

within the daterich region(Kitanidis, 1997) However, their abiliit o fiext r apol ated a 3D subs:

Alternatively, MPS is an advanced method to quantify the complex spatial strbag@e on training images. It transfers the

quantified structures to the dagaarce region for stochastic predictions; howeveeatistic3D training image is difficult to

obtain.Overall, nost existing subsurface structure modelling approaches areodedeto analyse a singsipport dataset,

that is, the data types employed to define spatiacturesare presumed to be identical to as those employed for predictive

purposegde Marsily et al., 2005)Better defining and tilizing the relationship among multgsupport datasetallows

regionatscale subsurface structure imaging based on-teaslptain dataet However,theseexisting methodsare often

inefficient in capturing essential features and patterns from langemultiplesupportdatasetsor can do so only at a high

computational cosfLaloy et al., 2018)The analysis of mullie support datasets, e.qg. downhole geophysical logs and 3D

seismic with lithofacies, is still based on subjective expert knowlddgeaeverthey oftenpresent-drawbacks-such-as not

3
- rlacoy Q\, haina 1inaff an

ingA fast and reliable tool

capable of deriving a robust relationship amamgtiple-support big datasets muchneeded fohigh-resolutionimaging of

3D subsurfacestructures.

Deeplearning approachespecialisedn big data mininghave the potential to fill this gagGu et al., 2017; Hinton and
Salakhutdinov, 2006; Marcais and de Dreuzy, 20Applicationsin the geosciencesaclude earthquake detection based on
seismic monitoringMousavi and Beroza, 2019; Perol et al., 20b8)isaster recognition fra remote sensing dafAmit et

al., 2016; Langkvist et al., 2016 among otherA recentbreakthrough in deep learnirgthe2D to 3D image processir{yliu

et al., 2018; Sinha et al., 2017; Wu et al., 2016; Yi et al., RAEch approachegsoint outa novel way torapidly and
automaticallyidentify covered 3D subsurface structidérectly from readilyavailable2D surface observations.@. digital

elevation mode] land cover maps, signals captured by airborne geophysical surgegysyral network framework that

reliably transforms 2D jput data into 3D output dais required that has tHkexibility to fuse multiple types of geology and

geophysical input data (e.g. 1D downhole logs, 2D surface andswoisnal profiles, and 3D seismic interpretations) for

complex 3D geological subsurface structure imaging.

10



65

70

75

80

85

90

To this endwe designedhdeepconvolutonal neural network (CNN) with joint autoencodk€mgma and Welling, 2013nd
adversarial structurg&oodfellow et al., 2014 he aitoencodecomponenteatures large input and output images connected
by a small latent spacé:his structure is advantagusfor the fusion of compleinput data and 3D image reconstructitia.
training involvesdirect backpropagation according ta voxetwise independent heuristic criterioandthus often needsa
largetraining dataset toonstrairthe modelbnd avoid overfittindLaloy et al., 2018)Thegenerativeadversarial learnintgies
to generatenultipleimages inhédting theprobability structure obnereal imagewhichrelaxes the need feerylarge training
datasetFor methodverification the proposecppreachapproachis applied toan Australian desert landscammegenerag
regionalscale 3D palaeovalley pattarfrom 2D digital terrain informationin-an-Australian-desertlandseayée aim to

demonstrat that he interplay between autoencoder and adversepalponentgrovides agenerictool to exploit more

effectively geophysical, land surface and other dageteerate realistic regionatale 3D geological structures.

The case studgrea is a prliocene palaeovalley system in central Australia that has been postulated to contain significant

groundwater resourc€Podds and Sampson, 2008)owever, their geostry and extent remain largely hidden from view by

a valley fill of Pliocene to Pleistocene sediments and overlying Quaternary sand dunes of the Great Victolleeisett

al., 20D). Although the thicker valley fill sequences seem to be coincident with contemporary lows or valleys in the more
subdued relief of the plains, the definition of the palaeovalley systems remains relativdMpoday, 2020a)This has been

attributed to sandplain sediments forming a relatively continuous cover over much of the Musgrave Province del@n to 30

m depth; below thidepth the definition of the palaeovalley systems becomes significantly clearer withdefiredld network

of major alluvial channels and tributary systems. As is evident from an analysis of AEM images, the palaeovalley system has

a highly irreqular geomst with spatially varying depths to basement, and with heterogeneous infill resulting in lithologically

controlled palaeovalley aquife(Munday, 2020a)

Our goal ighereforeto develop an efficierdand generic machine learnit@pl to express the relationship betwegreasyto-

obtain dataset anal morecosty datasefor the specific purpose of detecting palaeovalley features that would facilitate the

discovery of new groundwater resources in arid and-sgithiregionsin other words, we seek to develop a novel method that

uses AEM only for model development on a Brraining area while the application (i.e. detection of palaeovalleys across

large areas) uses readily available landsurface information that otherwise (i.e., without AEM coupling through a training

procedure) would have had little value for palaeovalletection. Moreover, in addition to detection of palaeovalley location,

the method should also derive the 3D palaeovalley geometry. Such methodology is premised on the existence of a mechanist

connection between landsurface features and subsurfadbulisir of palaeovaleys. To what degree such correlation exists

(and can be cast in a predictive framework) between palaeovalley geometry and landsurface features derived from digita

elevation data in the palaeovalley system of the Musgrave Provindeeviélsted using a deep convolutional neural network

methodology.
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95 2Method

The adversarial neural network for 3D subsurface imaginglvesthree steps(1) patch extraction and representati@®),
nonlinear mapping and reconstruction, &BYstatistical expressioaf the generated imad€ig. 1). The first step is referred
t o as 0 e ra),which is @mplpyed tgfuse the information contained in th&aRBsurfaceobservationmagesinput
data) into a lowdimension layer bguccessiveonvolutiors (Hinton and Salakhutdinov, 2006)

00 0f B (1)

100 wherefi s a nonlinear functi on Meid amatrieiweightsandbsis afbiasvedioriathed o n
encoder.
The encodecan be designed to contain multiple layers, whelee number of |l ayers is defi.
contain multiple i mages, with the number of i mages defi

the elements in the imagf the next layer by weight filters, and the elements in thediovension layer of the encoder (the

105 output) are called 6coded. Th elb,whichshewsghatwith a filterrsizecnt 2e2t(fora n i
2D image convolutiondr example), one element in the output layer is related to 4 elements in the input layer. Thus, the spatial
correlation scale addressed by the convolutional neural network can be controlled by the filter size in both vertical and
horizontal directions.
Theweight and bias in the encoder are trainedrsurethat the code follows a standard normal distribution, by minimizing

110 the Kullback Leibler divergencel(l), defined agKullback and Leibler, 1951)

op —B < , 110,C p, ()

whereN is number of codes in tHimal output layer of the encodér,and, are the mean and standard deviation of the codes,

respectively.

12



(a)

Generator

[
800800

r Encoder
I Patch extraction & representation

Ea 200x200x10
E 50x50x5
5 (32)
(=%
£

{) == Convolution
' ==p Deconvolution
1200x200x10  Size of image
H (64) Number of images in each layer

! Loss 1
i Loss 2
i Loss 3

Minimize Kullback_|eiber divergence
Minimize mean square error

Minimize {-log[D(simulated)]}

Minimize {-log[1-D(simulated)]-log[D(real)]}

Decoder
| Nonlinear mapping & reconstruction

>

N(0,1)

25x25x5  50x50x10 100x100x10' 200%200x10
(1) (42) (64) (32)
T 200%200x10
Output 3D image
T > Simulated 3D image
tatistical expression
Loss 3 | H
100x100x5
o 7x7x5  50x30x5 200x200x10
X — = -
& Jreshape (32) (64) L -~
(128)
Loss 4 e .
Statistical expression I Real 3D image

| |
Discriminator

(b) Convolution

Input image (3x3)

]

> Output image (2x2)
Strike:1 Filter: 2x2

(c) Deconvolution

Convolution
—>

Input image (2x2) Output image (3x3)

<
Strike:1  Filter: 2x2

115 Figure 1. (a) Adversarial convolution neural network composeaf (1) encoder forinput images patch extraction and representation,
(2) decoder for nonlinear mapping and 3D image reconstruction, (3) discriminator for distinguishing the generated 3D imagedan
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real image after statistical expression

; and features of the (b) convolution and (c) decahwtion processeswith the colour

represening the origin of the deconvoluted valuesFor mapping palaeovalley patterrsin an Australian desert landscape, the input
data uses the 2D MrVBF (an index calculated from globally available digital elevation mode); the output is a 3D probability map
of palaeovalleypresence For convenienceof 3D convolution,the 2D input image B00>800x1) is simply repeated in 10 layers to form
a 3D input dataset 800>x800x10). Following astructure optimization by trial-and-error, the encoder is designed to contain 4 layers,
with awidth of 64, 32, 32 and 1 in each layer, respectivelthe decoder contains 6 layers, witta width of 1, 16, 32, 32, 64, and28,
respectively; thediscriminator contains4 layers witha width of 128, &, 32, 1, respectively.

In the second step, the codes are convented a

6generator o,

| i imigesn gT h en pgie n eamalt edit PDti mage i s

3D output image by

To ensure thathe simulatedmageis comparable to a reathage a voxetlwise independent heuristcriterion is minimized.

The mean squageerror (2) between simulated and real images at all voxels is used as criterion to update the weight and bias

in the decoder, which is expressed as:

L2 —£00 f&,

®3)

13

decomhaywhicit i on
is a process involving a zepadding before the convolution (Figc). The combination of decoder and encoder forms a

referred
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whereM is the number of voxels in the output 3D imagés therealimage,z is the code generated from the encoder, and

"OJrepresents the convolutional calculations in the decoder (in the same formlas Eq.

However,if only a limitednumber ofreal 3Dimages areavailable to train the network, the use of a vewele independent
criterion often leads to an overfitting problem. Goodfell@®14)proposed a generative adversarial network structure, which
adds a 6discriminatordéd to convert simulated and r dgl i m

1a). Adversarial criteria are proposed, typically expressed by binary cross entropy functions as:

L3 -i T@od , 4)
and
4 -1i@h -1ig 008 , ()

whereV is the size of the output vector via the discriminator, (@ represents the calculations (Bin the discriminator.

The weights in the discriminator are trained to mininiizewhich attempts to distinguish the vectors generated from the real

and simulated 3D images. The weights in the generator are traiméginoize L3, which attempts to fool the discriminator to

be unable to identify the vector generated from the simulated 3D image. In such a way, the generator can produce image

aligned with the real image terms ofprobability structur¢Goodfellow et al., 2014)

Finally, while the loss functioh4 is minimized to optimize the weights fine discriminator, a comprehensive loss function
combiningLl, L2 andL3 is employed to optimize the weights in the generator, which is expres@dd a&$ al., 2018)

0 Adp Adc Ado, ©)

where a, b, ¢ are the coefficients on each loss funciibis. loss function makes @onveniento vary theneuralnetwork
structurebetween semsupervised learning with additional adversarialralnetwork by defining coefficienAas norzero

value, and supervised learning with merely autoencoeeralnetwork withAas zero.

The hyperparameters (including the width, depth, filter size and the coefficients in generator loss functions, etc.jhaefining
neural network structurere determined hiyial-and-error tess (Supplementary materials). Weight and bias in generator and
discriminator are trained to minimitg andL4 using the stochastic gradient descent algorithm, referred to as adaptive moment
estimation (ADAM)(Kingma and Ba, 2014)NVe implemented the above convolution neural network using the Tensorflow
Python library(Abadi et al.,, 2016) Once the neur al net wor k is trlaisuosd, tr

independently to generate 3Dbsurfacetructure from the 2Dland surface observations

14
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3 Results

We use a CSIRO dataset to test the effectivenessrafeeplearningapproachn predicting 3D padeovalley pattersiin the

Anangu Pitjantjatjara Yankunytjatjara (APY) lands of South Austrgiig. 2a and 2b)As demonstrated in Fig. 2bhé

pala®mvalley networks irthe APY landsare remnants of the Early Cenozoic inset valleys with Terti@aayseto-fine grained

sandsinfill and a thin and variable Quaternaeplian sedimentsover (Magee, 2009)The 2D conceptual model of a

palaeovalley (Fig. 2b) is a very simplified representation of the heterogeneous structure of the palaeovalleys in the Musgrav

Province(Munday, 2020a)The valley bottom flatness data from Fig.2c represents the input data for the neural network model,

noting thatthe moderrday valley pattern is correlated with the occurrence of palaeovalleys, howdvexts location and

geometry in the case study area cannot simply be inferred frogDthdultiple-resolutionValley Bottom Flatness (MrVBF

indexalone(Gallant and Dowling, 2003Y he valley bottoms of Fig. 2c have a high likelihood to dogalaeovalley features,

incised in a more or less unweathered (resistive) basement rock. This does not make the geologic problem trivial: however, |

does provide the basis for delineating the palaeovalley base usinepH egistivity boundary. Withat such resistivity

contrast between basement rock and conductive infill the AEM method would have difficulty in delineating any palaeovalley

accurately.

While the occurrence of palaeovalleys is correlated to the maldgrwalley patterifJiang et al., 2019}heir exact location

and geometrin the case study area cannot simply be inferred from modern geometric surface features s@€hMslthme-

resolutionValley BottomFlatness (MrVBF index alculatedrom the digital elevation modelfhe correlation is complicated

by the presence of relatively continuous sandplain sediments that cover the palaeovalleys. On the other hand, the vertic:

structure ofa palaeovalley can be interpreted franairborne electromagnetic (AEM) survéyey-Cooper and Munday, 2013;

Soerensen et al., 2016)he MrVBE index exists across the entire Australia continent, while AEMaaafficient spatial

granularity only exists in a limited number of prospective mining fields.r@@ural network model establishes a relationship

betweerthe MrVBF index (high values are indicative of locations with a high probability of deposition of alluvial sediments)

and the AEMinterpreted 3D palaeovalley structure. This relationship is then used to predict the 3D palaeovalley structure in

those areawith only MrVBF data but withouthe AEM dataset. For the method verification, both the training and prediction

are conducted in the area where AEM data is available. Note that the weights in the neural network are determined based c

the training area. e AEM data in the other areas are only used to test the prediggebility of the trained neural network.

The dataset includes 00-m, 2D MrVBF_index aross theentire model domaifiGallant and Dowling, 2003)anda 3D
electrical conductivitgateset @00-m horizontal and 1-0n verticalresolution)interpreted from AEM survey ithe APY Lands
(Ley-Cooper and Munday, 2013; Soerensen et al., 2@r8yious hydrogeological characterizatiodicates thathigh bulk
electrical conductivity valug€C) area proxy for palaeovalley presengkang et al., 2019; Munday et al., 2013; Taylor et al.,
2015) Thus apalaeovalley aquifer index (PAI) is defined as:
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wheremaxandmin represent the maximum and minimum logarithm of EC values over the entire dasgettively. PAI
ranges from 0.0 to 1.0 and is calculatedhefirst 100 m depttat the AEMsurveyed area, which is considered as a ground

truth 3D probability map gbalaeovalley occurrencegth a spatial resolution gf00 m>x400 mxL0 m.

(a) Deserts in Australia (c) Multiple resolution valley bottom flattness
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Figure 2. Datasets for delineating 3D paleovalley inthe Anangu Pitjantjatjara Yankunytjatjara (APY) Lands of South Australia:

(a) location of the largest deserts in Australiaand (b) generalconceptual model ofpalacovalley sedimentaryfaciesrevealed byover
90% borehole logs (c) multiple resolution valley bottom flatness index, andd) electrical conductivity (at depths of 30 to 40 nwith

a horizontal resolution of 400 m) inferred by airborne electromagnetic surveysin the APY Lands, forming an indicator of
palaeovalley occurrence.

A neural network simulator is established and trained to relate the-ddtMed PAI(output image)with 2D MrVBF data
(input image) The training datasatovers part of the APY Lands@®0knf) ( hereafter r af @ Bohe d
loss functions for discriminator and generator were monitored when traméngnodetlto verify the network being trained
sufficiently (Supplementary materialsjraining of the networkunder 10,000 iterations on a higperformance computer
(Tesla P100-SXM2-M-16GB) requiredl00 to 150minutes of computation time. Once traingeénerating of 3D image from

2D MrVBF requiredless tharfive seconds on a desktop computer

An area80 kmwest of the training argafirst used to validate the tragd neural network in generating 3D PAI. The statistics

of squared errors between the simulated 3D PAI and real PAI are calculated at all 200X200x10 vexshsown in Fig. 3, the
16
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squared error in thigainingdataset is below 0fbr 99% of the traininglomainandwith a mean valuef about 0.03, anthe
squared error of the predicted 3D Réivell below<0.1 for93%of the validation domairwith a mean squared ermfrabout
0.04. The patterns of the generated palaeovalley in both horizontal ancaveitiections align with those inferred from the
AEM-derived PAI.This indicates that théeeplearning neural network structure developed in this work is capable of

incorporating the relationships between the MrVBF and the buried palaeovalley pattdraléowaimg for reliable predictions

beyond the training area.

(a) Normalized MrVBF for training (b) Normalized MrVBF for validation
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(e) Real palaeovalley aquifer index (f) Real palaeovalley aquifer index

Figure 3. Multiple resolution valley bottom flatness (MrVBF) (a and b) converted to the 30palaeovalley aquifer index (PAI) in the
training area (c) and validation area (80 km west to the train area) (dpy the neural network simulator, compared with AEM -
derived PAI (ground truth data) (e) and (f) generated from airborne electromagnetic surveys. The trainedeural network with the
squared error < 0.10 across 99% of the training zone (a total of 208200 %10 voxelg, resultsin a PAI error < 0.10 across93% of

this validation zone, with <1% of this validation zone having errors exceeding 0.20.

Furthermorein both the training and validation domains, theapavalley geometry in each layer is generally comparable to
the surfacevalley geometryindicatedby the MrVBF index at land surfacécompae Fig. 3a and 3c, Fig. 3b and 3d), with
varying width at different depths. domparisorof the PAI errorwith thesurfacevalley pattern in the validation domain (Fig.
4) shows that the spatial distribution of the |astgeediction errors is rather randowith someconcentrabn at theboundaries

17



of moderndayvalleys. This is related to the convolution procesisedf (see further). The error distribution in the validation

220 domain is independefromthemoderndayvalley geometry in the training areaggeesting thamno overfitting problem occ

(a) Voxel squared errors

Surface valley | ;
(validation domain

/ Fig. 3b

Surface valley
(training domai

Fig. 3a ¥ "

0 20 40 60 80km

Figure 4. (a) 3D distribution of squarel errors between simulated PAI and real PAI in the validation domain, and (b) plan view of

the mean of squarel errors from ten layers,overlain by the surface (modern-day) valley (validation and training domains). The

large errors, to some extent, focus on the edge of modeday valley in the validation domain, butare unrelated to the modern-day
225 valley in the training domain, suggesting that the overfitting does not occur.

4. Discussion

4.1 Neural network with and without fully connectedlayer

The traditional convolution neural network is often entdga fully conneatdlayerin the encodefe.g. Wu et al., 2016}o
adequately fuse the inpinformation for predictionin this study, a 3D image with size of 25X25i§employed for the final

230 output layer of the encodéFig. 1), withouta fully conneced layer. For comparisona fully conneadlayer with a vector of

3125 (25X25x5) elementss employedas well As shown in Fig. 5, both models can be trained to generate the paleovalley in
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the training domain successfully (Fig. 5a to Figahd %, respectively) However, with a fully conneetl layer, the trained
model faik to generatgaleoalleysin the validation domain. Under an alternative MrVBF as input (Fig. 5d), the predicted
paleovalley haa geometryery similar to that ofthe training domain (comparFig. 5e and 5d). Thisuggestsan apparent

overfitting, caused byhe fully conneatd operation fugg the input MrVBF globally.

(a) Input MRVBEF (training) (b) PAl at 30-40 m (c) PAl at 30-40 m
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Figure 5. Input MrVBF in (@) training area and (d) validation area, and (b) and (e) the generated PAI at depth of 3@0 m with fully
conneced operation in the encoder, and (c) and (f) witbut fully connectd operation.

Alternatively, the model withowtfully connecedlayer can prediowell the paleovalley following thBlrVBF pattern Without

the fully connectd layer, the convolution processes with 3D filter addressed the local relationship of MrVBF and PAI. The
correlation scale is determined by the size of the filter; the thgditter, the largetthe correlation scale addressed. The filter
size can be detmined bya trial-and-error test, according to the misfit between the predicted gealogariable and the
ground truthdatain both training and validation domains. In this study, a filter with a size of 4id>@mployed for the

encoder and discriminatavhile afilter with size of 56X is employed for the decoder (details in the supplementary materials).

Training and validation suggest that using relatively small filter and removing the fully connected layer tpanadeter
the neural networknodel helgd reducing the overfitting riskAlthough the performance ¢ifie neural network model with

this given structure is acceptabteatively large errorsstill occur at theboundariesof the paleovalleywhere the MrVBF
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values vary sharply. This ibecause local convolution potentially broadens the influence of large MrV&faptive

optimization of filter size in each convolution layer potentially solves this problem.
4.2 Adversarial neural network versus autoencoder neural network

Furthermoreanother 1%alidationareas west to the training domdfig. 2d)are used tanonitor the decay in thaccuracy
of predicted palaeovalley patternsThis is done using two differemhodels: semsupervisedlearning with additional
adversariaheuralnetworkand supervised learningith only autoencoder neural netwaitontrolledby coefficientc in Eq.
6).

Figure 6. Squared errors between the true 3D palaeovalley aquifer index (PAI) dirély calculated from AEM-derived electrical
conductivity, and PAI predicted by (a) autoencodemeural network using supervised learning and (b)adversarial neural network
using semisupervised learningin the areas west to the training area, with separation distance varying from 0 to 80 kmand (c) an
overfitting test with a random 2D MrVBF as input to predict PAI at depth of 30-40 m following adversarial learning andonly
autoencoder.

As shown in Fig6, an extremelygmallerror (<0.01) can bachievedwvhen constructing patovalleysin the trainingarea by

supervised learningsing only theautoencodeneuralnetwork The mean error resulting from the sesnpervised learning
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