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We highly appreciate your time in reading through this manuscript many times, and give
us many constructive comments on the background presentation. We have revised
the introduction and study area sections accordingly, to better articulate the research
problems we aim to solve, among others. The detailed responses are listed below and
the modifications are marked in the annotated manuscript (in the supplement file).

Q1. My review of this paper is not favorable mainly because, despite repeated readings Printer-friendly version
of it,  am unable to identify the specific research problem that the authors are seeking
to solve, and because the case study used to demonstrate their method appears to Discussion paper

be trivial in the context of subsurface characterization. Although it is possible my reac-
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tions stem from major misunderstanding of the descriptions of the objectives, methods
and results, | have spent decades of my career mapping and modeling paleochannels,
including application of AEM and other geophysical methods, yet | am unable to rec-
oncile the separation between what the authors are writing and what | would consider
to be understandable or obvious contributions.

Reply:We agree that the research problem was not well articulated and have made
changes to support our claim the work is novel with many practical applications to
better mapping of shallow subsurface features and their geometries.

We rewrote the Introduction to better articulate the novel contribution in the method
development. The major changes included are:

(1) in the first paragraph (Lines 22-31), we now describe that big data sets on geol-
ogy and geopmorphology are globally available either as land surface observations
(typically remote sensing and topographical data and their derivatives), or regionally
available in a limited number of highly-developed mining and oil fields (e.g., downhole,
surface and airborne geophysical interpretations). In Australia, the former are readily
available at low cost, while the latter are often non-existing and expensive in remote
desert areas where groundwater for town supply relies on access to shallow aquifers
(Munday et al., 2020a). In their study, Munday et al. (2020) interpreted 17,000 line
km of airborne electromagnetic (AEM) data covering an area of about 30,000 km2, a
fraction of the 422,000 km2 Great Victoria Desert in central Australia. With a AEM line
spacing of 2 km, with smaller infill areas where line spacing was reduced to 250 and
500 m to provide greater detail of the subsurface electrical conductivity, accurate map-
ping of palaeovaleys was achieved (Munday et al., 2020b). Application of such high-
resolution data to much larger areas like the Victorian Desert would be cost prohibitive.
Our goal is therefore to develop an efficient and generic tool to express the relationship
between an easy-to-obtain dataset and a more costly dataset for the specific purpose
of detecting palaeovalley features that would facilitate the discovery of new groundwa-
ter resources in arid and semi-arid regions. In other words, we seek to develop a novel
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method that uses AEM only for model development on a small training area while the
application (i.e. detection of palaeovalleys across large areas) uses readily available
landsurface information that otherwise (i.e., without AEM coupling through a training
procedure) would have had little value for palaeovalley detection.

(2) in the second paragraph (Lines 38-53), we describe the limitation of the existing
methods. For example, the traditional geostatistical methods are skillful in interpolation
but not in extrapolation. MPS is powerful in delineating complex subsurface structures,
but its effect depends on the availability of the training data. These methods are devel-
oped and employed based on the single-support dataset, that is, the data types em-
ployed to define spatial relationship is presumed to be the same as those data types
employed to predict the subsurface geo-body. They are often inefficient in capturing
essential features and patterns from large and multiple-support datasets, or can do so
only at a high computational cost. This more or less limits their application. The neural
network model developed in this study, on the other hand, provides a framework with
a flexible input data type (e.g. 2D land surface observations and others) and complex
output datasets (e.g. 3D paleovalley pattern). It is capable to define nonlinear relation-
ships among multiple-support datasets, and employ this relationship for prediction with
merely easy-to-obtain input data (now Lines 61-63).

Q2. My trouble with the objectives and problem definition can be best illustrated by first
considering the geologic system the authors seek to better map in 3D. 'Paleochannels’
can take on a number of different meanings depending on the geologic setting, but from
what | can decipher from the introduction, methods and Fig. 2, by ’paleochannels’ the
authors are referring to incised valley fill deposits like those depicted in Fig. 2b, where
the channels are bounded not by adjacent fluvial facies, but by granite. Setting aside
for the moment that this looks more like a basin and range style of geologic structure
than a paleochannel, based on the vague descriptions in the paper, | can only construe
that the flattest portions of the DEM shown in Fig. 2c represent the Quaternary alluvial
bottomlands representative of the top of the apparent paleochannels (i.e., top of sed
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facies in Fig. 2b). If that is true, the reader’s reaction is inevitably: "Why is this even
considered a challenging problem? From the topography it is already obvious where
these so-called channel deposits locate." Summarizing the case study, it appears that
the DEM already nicely identifies locations of the paleochannels, which apparently
have been further characterized using AEM, presumably to better identify their depths
or depth to bedrock perhaps. This raises the question of what is the problem the
authors are attempting to address? If the problem is to better identify x-y locations of
the so-called paleochannels, that would appear moot because the DEM already shows
them, which also raises the question of why you need DL. If the problem is to better
identify paleochannel or incised valley-fill depths, that has apparently already been
done with AEM; and furthermore, if the purpose is to use the DL algorithm to map the
paleochannels depths so that AEM would not be needed, that also does not appear
to make sense because the authors have not established a relationship between the
DEM flatness metric and paleochannel depths.

It is possible that if the authors can be more specific about the geology of these ’pa-
leochannel’ features that they are trying to map and about what specifically they are
trying to accomplish through the application of their ML methods, the above problems
would be cleared up. As written, however, the manuscript lacks sufficient definition
of the problem, description of their objectives, and description of how their research
satisfies those objectives.

Reply: We agree that the problem should be better defined, with greater clarity of
objectives and how those were achieved. The following changes have been made in
response to the comments.

(1) The Introduction provides background geological information on the palaeovalley
system of interest, and why ML is adopted to improve mapping of their location and
their 2D/3D geometry (now Lines 74-94).

The case study area is a pre-Pliocene palaeovalley system in central Australia that has
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been postulated to contain significant groundwater resources (Dodds and Sampson,
2000). However, their geometry and extent remain largely hidden from view by a valley
fill of Pliocene to Pleistocene sediments and overlying Quaternary sand dunes of the
Great Victoria Desert (Lewis et al., 2010). Although the thicker valley fill sequences
seem to be coincident with contemporary lows or valleys in the more subdued relief of
the plains, the definition of the palaeovalley systems remains relatively poor (Munday
et al., 2020a). This has been attributed to sandplain sediments forming a relatively
continuous cover over much of the Musgrave Province down to 30-40 m depth; below
this depth the definition of the palaeovalley systems becomes significantly clearer with
a well-defined network of major alluvial channels and tributary systems. As is evident
from an analysis of AEM images, the palaeovalley system has a highly irregular geom-
etry with spatially varying depths to basement, and with heterogeneous infill resulting
in lithologically controlled palaeovalley aquifers.

Our goal is therefore to develop an efficient and generic machine learning tool to ex-
press the relationship between an easy-to-obtain dataset and a more costly dataset
for the specific purpose of detecting palaeovalley features that would facilitate the dis-
covery of new groundwater resources in arid and semi-arid regions. In other words,
we seek to develop a novel method that uses AEM only for model development on a
small training area while the application (i.e. detection of palaeovalleys across large
areas) uses readily available landsurface information that otherwise (i.e., without AEM
coupling through a training procedure) would have had little value for palaeovalley de-
tection. Moreover, in addition to detection of palaeovalley location, the method should
also derive the 3D palaeovalley geometry. Such methodology is premised on the ex-
istence of a mechanistic connection between landsurface features and subsurface dis-
tribution of palaeovaleys. To what degree such correlation exists (and can be cast in
a predictive framework) between palaeovalley geometry and landsurface features de-
rived from digital elevation data in the palaeovalley system of the Musgrave Province
will be tested using a deep convolutional neural network methodology.
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(2) The paleovalley pattern in this demonstration case is comparable to that of modern
valley pattern. Thus, the MrVBF (a 2D land surface observations) is related to the 3D
paleovalley structure; but it cannot directly suggest the depth of paleovalley and width
of the paleovalley at different depths. AEM-interpreted EC values is a direct index
of 3D paleovalley structure (including both depth and width), but it is not available
everywhere. We employed our method to define a relationship between MrVBF and
AEM:-interpreted EC in the data-rich area, and employed in those area where the AEM
is not available to predict the 3D paleovalley pattern based merely on the MrVBF (now
Lines 167-176).

(3) For the model verification, both the training and validations are conducted in those
regions with AEM-interpreted EC. The weights in the neural network model is deter-
mined based on the data in the training area. The AEM data in the validation areas is
just used to test the ability of the trained model in predicting 3D paleovalley structure,
but do not participate in determining the neural network model (now Lines 176-178).

Specific comments in the annotated PDF files

Line 22. Delete ‘dramatically’

Reply: Change made.

Line 22-25. “data poor” contradicts “rich/big”, and others
Reply: This sentence is now rephrased in Lines 22-24.

Line 29-30. This is most certainly not true of those method, although one might need
to use them more expertly (e.g. through zoning of the model region) when non-
stationarities are present; Line 32. “is still lacking” to “would be beneficial”; Line 33.
“fill this gap”. You have not identified as a gap, but rather a potential way of improv-
ing upon other methods. Rewrite to better describe the “gap” and what your method
potentially does.

Reply: This part is rewritten to present the limitations of existing methods, and the
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major problem we wanted to solve with our developed neural network (Line 38-50 and
Line 74-94)

Line 39: Add ‘e.g.
Reply: Change made.

Line 119-121. This would appear to represent existing fluvial drainage characteristics.
For this to be useful for ‘training’ the DL model there would have to be a mechanistic
connection between these surface features and the subsurface distribution of pale-
ochannels. There is a big problem with this approach: modern geomorphic surface
characteristics seldom represent or correlate to the morphology and distributions of
subsurface facies or rock types.

Reply: Agree.

While the occurrence of palaeovalleys is correlated to the modern-day valley pattern
(Jiang et al., 2019), their exact location and geometry in the case study area cannot
simply be inferred from modern geometric surface features such as the 2D Multiple-
resolution Valley Bottom Flatness (MrVBF) index (calculated from the digital elevation
model) (Gallant and Dowling, 2003). The correlation is complicated by the presence of
relatively continuous sandplain sediments that cover the palaeovalleys. On the other
hand, the vertical structure of a palaeovalley can be interpreted from an airborne elec-
tromagnetic (AEM) survey (Ley-Cooper and Munday, 2013; Soerensen et al., 2016).
The MrVBF index exists across the entire Australia continent, while AEM data of suf-
ficient spatial granularity only exists in a limited number of prospective mining fields.
Our neural network model establishes a relationship between the MrVBF index (high
values are indicative of locations with a high probability of deposition of alluvial sed-
iments) and the AEM-interpreted 3D palaeovalley structure. This relationship is then
used to predict the 3D palaeovalley structure in those areas with only MrVBF data but
without the AEM dataset (now Lines 167-176).
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An area 80 km west of the training area is first used to validate the trained neural
network in generating 3D PAI. The statistics of squared errors between the simulated
3D PAIl and real PAI are calculated at all 200x200x10 voxels. As shown in Fig. 3,
the squared error in the training dataset is below 0.1 for 99% of the training domain
and with a mean value of about 0.03, and the squared error of the predicted 3D PAI
is well below <0.1 for 93% of the validation domain, with a mean squared error of
about 0.04. The patterns of the generated palaeovalley in both horizontal and vertical
directions align with those inferred from the AEM-derived PAIl. This indicates that the
deep-learning neural network structure developed in this work is capable of incorpo-
rating the relationships between the MrVBF and the buried palaeovalley patterns, and
allowing for reliable predictions beyond the training area (Lines 200-207).

Figure 2. No clear. Do the valley bottoms in Fig. 2c correspond each to the type of
channel and facies depicted in 2b? If yes, does that mean these are all incised into
granite? In that case, the predictive geologic problem would appear to be trivial.

Reply: The valley bottom flatness data from Fig.2c represents the input data for the
neural network model, noting that the modern-day valley pattern is correlated with the
occurrence of palaeovalleys, however their exact location and geometry in the case
study area cannot simply be inferred from the 2D Multiple-resolution Valley Bottom
Flatness (MrVBF) index alone. The 2D conceptual model of a palaeovalley (Fig. 2b) is
a very simplified representation of the heterogeneous structure of the palaeovalleys in
the Musgrave Province. The valley bottoms of Fig 2c have a high likelihood to contain
palaeovalley features, incised in a more or less unweathered (resistive) basement rock.
This does not make the geologic problem trivial: however, it does provide the basis
for delineating the palaeovalley base using a cut-off resistivity boundary. Without such
resistivity contrast between basement rock and conductive infill the AEM method would
have difficulty in delineating any palaeovalley accurately (now Lines 155-166).

Line 121-1283. Is the point here to use AEM results as a ground truth and demonstrate
that you could do as good, or almost as good, without the AEM and just using your DL
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approach based on surficial information? Not clear.

Reply: Yes. The MrVBF index exists across the entire Australia continent, while AEM
data of sufficient spatial granularity only exists in a limited number of prospective mining
fields. Our neural network model establishes a relationship between the MrVBF index
(high values are indicative of locations with a high probability of deposition of alluvial
sediments) and the AEM-interpreted 3D palaeovalley structure. This relationship is
then used to predict the 3D palaeovalley structure in those areas with only MrVBF
data but without the AEM dataset. For the method verification, both the training and
prediction are conducted in the area where AEM data is available. Note that the weights
in the neural network are determined based on the training area. The AEM data in the
other areas are only used to test the predictive capability of the trained neural network
(now Lines 176-178).
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Please also note the supplement to this comment:
https://gmd.copernicus.org/preprints/gmd-2020-106/gmd-2020-106-AC2-
supplement.pdf
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