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Abstract. This study introduces an efficient deep learning approach based on convolutional neural networks with joint
autoencoder and adversarial structures for 3D subsurface mapping from_2D surface observations. The method was applied to
delineate palaeovalleys in an Australian desert landscape. The neural network was trained on a 6,400 km? domain by using a
land surface tomography as 2D input and an airborne electromagnetic (AEM)-derived probability map of palaeovalley
presence as 3D output. The trained neural network has a squared error < 0.10 across 99% of the training domain and produces
a squared error < 0.10 across 93% of the validation domain, demonstrating that it is reliable in reconstructing 3D palaeovalley
patterns beyond the training area. Due to its generic structure, the neural network structure designed in this study and the
training algorithm have broad application potential to construct 3D geological features (ore bodies, aquifer) from 2D land

surface observations.

1 Introduction

Imaging the Earth’s subsurface is crucial for the exploration and management of mineral, energy and groundwater resources,
their reliability depending on the availability and quality of geological data. Although the amount and quality of geological
data obtained from borehole logs, geophysical prospecting and remote sensing has increased dramaticaHy-over the past decades,

their spatial distribution is highly uneven. Big data sets on geology and geopmorphology are globally available either as land

surface observations (typically remote sensing and topographical data and their derivatives), or only regionally available in a

limited number of highly-developed mining and oil fields (e.g., downhole, surface and airborne geophysical interpretations).

In Australia, the former are readily available at low cost, while the latter are often non-existing and expensive in remote desert

areas where a key challenge is to secure groundwater for town supply, often available only from shallow aquifers (Munday,

20204, b). In their study, Munday et al. (2020a, b) interpreted 17,000 line km of airborne electromagnetic (AEM) data covering

an area of about 30,000 km? within the much larger Great Victoria Desert in central Australia (422,000 km?). With a AEM

line spacing of 2 km, with smaller infill areas where line spacing was reduced to 250 and 500 m to provide greater detail of

the subsurface electrical conductivity, accurate mapping of palaeovaley aquifers was achieved (Munday, 2020a). Application
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of such high-resolution data to much larger areas like the entire Victorian Desert would be cost prohibitive. Mest-data-exist-as

Commonly used methods for modelling complex geological structures include geostatistical approaches such as sequential
Gaussian or indicator simulation (Lee et al., 2007), transition probability simulation (Felletti et al., 2006; Weissmann and Fogg,
1999), or multiple-point simulation (MPS) methods (Hu and Chugunova, 2008; Mariethoz and Caers, 2014; Strebelle, 2002).

Most geostatistical approaches are suitable for “interpolation”, which performs well in predicting 3D subsurface structures

within the data-rich region (Kitanidis, 1997). However, their ability to “extrapolate” a 3D subsurface structure is limited.

Alternatively, MPS is an advanced method to quantify the complex spatial structure based on training images. It transfers the

guantified structures to the data-scarce region for stochastic predictions; however, a realistic 3D training image is difficult to

obtain. Overall, most existing subsurface structure modelling approaches are developed to analyse a single-support dataset,

that is, the data types employed to define spatial structures are presumed to be identical to as those employed for predictive

purposes (de Marsily et al., 2005). Better defining and ultilizing the relationship among multiple-support datasets allows

regional-scale subsurface structure imaging based on easy-to-obtain dataset. However, these existing methods are often

inefficient in capturing essential features and patterns from large and multiple-support datasets, or can do so only at a high

computational cost (Laloy et al., 2018). The analysis of multiple support datasets, e.qg. downhole geophysical logs and 3D

seismic with lithofacies, is still based on subjective expert knowledge. However—they-oftenpresent-drawbacks-such-as-not

ing- A fast and reliable tool

capable of deriving a robust relationship among multiple-support big datasets is much-needed for high-resolution imaging of

3D subsurface structures.

Deep learning approaches specialised in big data mining have the potential to fill this gap (Gu et al., 2017; Hinton and
Salakhutdinov, 2006; Marcais and de Dreuzy, 2017). Applications in the geosciences include earthquake detection based on
seismic monitoring (Mousavi and Beroza, 2019; Perol et al., 2018), or disaster recognition from remote sensing data (Amit et
al., 2016; L&ngkvist et al., 2016), among others. A recent breakthrough in deep learning is the 2D to 3D image processing (Niu
et al., 2018; Sinha et al., 2017; Wu et al., 2016; Yi et al., 2017). Such approaches point out a novel way to rapidly and
automatically identify covered 3D subsurface structures directly from readily-available 2D surface observations (e.g. digital

elevation models, land cover maps, signals captured by airborne geophysical surveys). A neural network framework that

reliably transforms 2D input data into 3D output data is required that has the flexibility to fuse multiple types of geology and
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geophysical input data (e.g. 1D downhole logs, 2D surface and cross-sectional profiles, and 3D seismic interpretations) for

complex 3D geological subsurface structure imaging.

To this end, we designed a deep convolutional neural network (CNN) with joint autoencoder (Kingma and Welling, 2013) and
adversarial structures (Goodfellow et al., 2014). The autoencoder component features large input and output images connected
by a small latent space. This structure is advantageous for the fusion of complex input data and 3D image reconstruction. Its
training involves direct back-propagation according to a voxel-wise independent heuristic criterion, and thus often needs a
large training dataset to constrain the model and avoid overfitting (Laloy et al., 2018). The generative adversarial learning tries
to generate multiple images inheriting the probability structure of one real image, which relaxes the need for very large training
dataset. For method verification, the proposed appreach-approach is applied to an Australian desert landscape to generate

regional-scale 3D palaeovalley patterns from 2D digital terrain information. -inan-Australian-desert-tandscape We aim to
demonstrate that the interplay between autoencoder and adversarial components provides a generic tool to exploit more

effectively geophysical, land surface and other data to generate realistic regional-scale 3D geological structures.

The case study area is a pre-Pliocene palaeovalley system in central Australia that has been postulated to contain significant

groundwater resources (Dodds and Sampson, 2000). However, their geometry and extent remain largely hidden from view by

a valley fill of Pliocene to Pleistocene sediments and overlying Quaternary sand dunes of the Great Victoria Desert (Lewis et

al., 2010). Although the thicker valley fill sequences seem to be coincident with contemporary lows or valleys in the more

subdued relief of the plains, the definition of the palaeovalley systems remains relatively poor (Munday, 2020a). This has been

attributed to sandplain sediments forming a relatively continuous cover over much of the Musgrave Province down to 30-40

m depth; below this depth the definition of the palaeovalley systems becomes significantly clearer with a well-defined network

of major alluvial channels and tributary systems. As is evident from an analysis of AEM images, the palaeovalley system has

a highly irreqular geometry with spatially varying depths to basement, and with heterogeneous infill resulting in lithologically

controlled palaeovalley aquifers (Munday, 2020a).

Our goal is therefore to develop an efficient and generic machine learning tool to express the relationship between an easy-to-

obtain dataset and a more costly dataset for the specific purpose of detecting palaeovalley features that would facilitate the

discovery of new groundwater resources in arid and semi-arid regions. In other words, we seek to develop a novel method that

uses AEM only for model development on a small training area while the application (i.e. detection of palaeovalleys across

large areas) uses readily available landsurface information that otherwise (i.e., without AEM coupling through a training

procedure) would have had little value for palaeovalley detection. Moreover, in addition to detection of palaeovalley location,

the method should also derive the 3D palaeovalley geometry. Such methodology is premised on the existence of a mechanistic

connection between landsurface features and subsurface distribution of palaeovaleys. To what degree such correlation exists

(and can be cast in a predictive framework) between palaeovalley geometry and landsurface features derived from digital
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elevation data in the palaeovalley system of the Musgrave Province will be tested using a deep convolutional neural network

methodology.

2 Method

The adversarial neural network for 3D subsurface imaging involves three steps: (1) patch extraction and representation, (2)
nonlinear mapping and reconstruction, and (3) statistical expression of the generated image (Fig. 1). The first step is referred
to as ‘encoder’ (Fig. 1a), which is employed to fuse the information contained in the 2D land surface observation images (input

data) into a low-dimension layer by successive convolutions (Hinton and Salakhutdinov, 2006):

h(x) = f(W - x + b), @
where f is a nonlinear function referred to as “activation function”, W is a matrix of weights and b is a bias vector in the

encoder.

The encoder can be designed to contain multiple layers, where the number of layers is defined as ‘depth’. Each layer can
contain multiple images, with the number of images defined as ‘width’. The images in one layer are convoluted to generate
the elements in the image of the next layer by weight filters, and the elements in the low-dimension layer of the encoder (the
output) are called ‘code’. The process of convolution is illustrated in Fig. 1b, which shows that with a filter size of 2> (for a
2D image convolution for example), one element in the output layer is related to 4 elements in the input layer. Thus, the spatial
correlation scale addressed by the convolutional neural network can be controlled by the filter size in both vertical and
horizontal directions.

The weight and bias in the encoder are trained to ensure that the code follows a standard normal distribution, by minimizing
the Kullback—Leibler divergence (L1), defined as (Kullback and Leibler, 1951):

1 2
L1=— N (u? + 0% —loga? — 1), )

where N is number of codes in the final output layer of the encoder, 1 and ¢ are the mean and standard deviation of the codes,

respectively.
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Figure 1. (a) Adversarial convolution neural network composed of (1) encoder for input images patch extraction and representation,
(2) decoder for nonlinear mapping and 3D image reconstruction, (3) discriminator for distinguishing the generated 3D image and
real image after statistical expression; and features of the (b) convolution and (c) deconvolution processes with the colour
representing the origin of the deconvoluted values. For mapping palaeovalley patterns in an Australian desert landscape, the input
data uses the 2D MrVBF (an index calculated from globally available digital elevation model); the output is a 3D probability map
of palaeovalley presence. For convenience of 3D convolution, the 2D input image (800>800xL) is simply repeated in 10 layers to form
a 3D input dataset (800>800x10). Following a structure optimization by trial-and-error, the encoder is designed to contain 4 layers,
with a width of 64, 32, 32 and 1 in each layer, respectively; the decoder contains 6 layers, with a width of 1, 16, 32, 32, 64, and 128,
respectively; the discriminator contains 4 layers with a width of 128, 64, 32, 1, respectively.

In the second step, the codes are converted into a 3D output image by deconvolution (referred to as ‘decoder’, Fig. 1a), which
is a process involving a zero-padding before the convolution (Fig. 1c). The combination of decoder and encoder forms a

‘generator’, linking input and output images. The generated 3D image is referred to as ‘simulated image’.

To ensure that the simulated image is comparable to a real image, a voxel-wise independent heuristic criterion is minimized.
The mean squared error (L2) between simulated and real images at all voxels is used as criterion to update the weight and bias
in the decoder, which is expressed as:

L2= %llG(z) —Y|1?, ®3)
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where M is the number of voxels in the output 3D image, Y is the real image, z is the code generated from the encoder, and

G (+) represents the convolutional calculations in the decoder (in the same form as Eq. 1).

However, if only a limited number of real 3D images are available to train the network, the use of a voxel-wise independent
criterion often leads to an overfitting problem. Goodfellow (2014) proposed a generative adversarial network structure, which
adds a ‘discriminator’ to convert simulated and real images to a vector, respectively, by an identical convolution process (Fig.

1a). Adversarial criteria are proposed, typically expressed by binary cross entropy functions as:

L3= — %log[D(G(Z))]: X
and
La= —log[D(V)] - ;log[1 — D(G(@)], 7

where V is the size of the output vector via the discriminator, and D(-) represents the calculations (Eg. 1) in the discriminator.
The weights in the discriminator are trained to minimize L4, which attempts to distinguish the vectors generated from the real
and simulated 3D images. The weights in the generator are trained to minimize L3, which attempts to fool the discriminator to
be unable to identify the vector generated from the simulated 3D image. In such a way, the generator can produce images

aligned with the real image in terms of probability structure (Goodfellow et al., 2014).

Finally, while the loss function L4 is minimized to optimize the weights in the discriminator, a comprehensive loss function

combining L1, L2 and L3 is employed to optimize the weights in the generator, which is expressed as (Wu et al., 2016):

L,=a-L1+b-L2+c"L3, ©)

9

where a, b, ¢ are the coefficients on each loss function. This loss function makes it convenient to vary the neural network
structure between semi-supervised learning with additional adversarial neural network by defining coefficient ¢ as non-zero

value, and supervised learning with merely autoencoder neural network with c as zero.

The hyperparameters (including the width, depth, filter size and the coefficients in generator loss functions, etc.) defining the
neural network structure, are determined by trial-and-error tests (Supplementary materials). Weight and bias in generator and
discriminator are trained to minimize Ly and L4 using the stochastic gradient descent algorithm, referred to as adaptive moment
estimation (ADAM) (Kingma and Ba, 2014). We implemented the above convolution neural network using the Tensorflow
Python library (Abadi et al., 2016). Once the neural network is trained, the ‘generator’ in the network (Fig. 1a) is used

independently to generate 3D subsurface structures from the 2D land surface observations.
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3 Results

We use a CSIRO dataset to test the effectiveness of our deep-learning approach in predicting 3D palaeovalley patterns in the
Anangu Pitjantjatjara Yankunytjatjara (APY) lands of South Australia (Fig. 2a and 2b). As demonstrated in Fig. 2b, the

palaeovalley networks in the APY lands are remnants of the Early Cenozoic inset valleys with Tertiary coarse-to-fine grained

sands infill and a thin and variable Quaternary eolian sediments cover (Magee, 2009). The 2D conceptual model of a

palaeovalley (Fig. 2b) is a very simplified representation of the heterogeneous structure of the palaeovalleys in the Musgrave

Province (Munday, 2020a). The valley bottom flatness data from Fig.2c represents the input data for the neural network model,

noting that the modern-day valley pattern is correlated with the occurrence of palaeovalleys, however their exact location and

geometry in the case study area cannot simply be inferred from the 2D Multiple-resolution Valley Bottom Flatness (MrVBF)

index alone (Gallant and Dowling, 2003). The valley bottoms of Fig. 2c have a high likelihood to contain palaeovalley features,

incised in a more or less unweathered (resistive) basement rock. This does not make the geologic problem trivial: however, it

does provide the basis for delineating the palaeovalley base using a cut-off resistivity boundary. Without such resistivity

contrast between basement rock and conductive infill the AEM method would have difficulty in delineating any palaeovalley

accurately.

While the occurrence of palaeovalleys is correlated to the modern-day valley pattern (Jiang et al., 2019), their exact location

and geometry in the case study area cannot simply be inferred from modern geometric surface features such as the 2D Multiple-

resolution Valley Bottom Flatness (MrVBF) index (calculated from the digital elevation model). The correlation is complicated

by the presence of relatively continuous sandplain sediments that cover the palaeovalleys. On the other hand, the vertical

structure of a palaeovalley can be interpreted from an airborne electromagnetic (AEM) survey (Ley-Cooper and Munday, 2013;

Soerensen et al., 2016). The MrVBF index exists across the entire Australia continent, while AEM data of sufficient spatial

granularity only exists in a limited number of prospective mining fields. Our neural network model establishes a relationship

between the MrVBFE index (high values are indicative of locations with a high probability of deposition of alluvial sediments)

and the AEM-interpreted 3D palaeovalley structure. This relationship is then used to predict the 3D palaeovalley structure in

those areas with only MrVBF data but without the AEM dataset. For the method verification, both the training and prediction

are conducted in the area where AEM data is available. Note that the weights in the neural network are determined based on

the training area. The AEM data in the other areas are only used to test the predictive capability of the trained neural network.

The dataset includes a 100-m, 2D MrVBF _index across the entire model domain (Gallant and Dowling, 2003), and a 3D
electrical conductivity dataset (400-m horizontal and 10-m vertical resolution) interpreted from AEM survey in the APY Lands
(Ley-Cooper and Munday, 2013; Soerensen et al., 2016). Previous hydrogeological characterization indicates that high bulk
electrical conductivity values (EC) are a proxy for palaeovalley presence (Jiang et al., 2019; Munday et al., 2013; Taylor et al.,

2015). Thus, a palaeovalley aquifer index (PAI) is defined as:
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_ log1o(EC)=log10(EC)min )
PAI = ,
log10(EC)max—10810(EC)min

where max and min represent the maximum and minimum logarithm of EC values over the entire dataset, respectively. PAI
ranges from 0.0 to 1.0 and is calculated in the first 100 m depth at the AEM-surveyed area, which is considered as a ground-

truth 3D probability map of palaeovalley occurrences with a spatial resolution of 400 m>400 m>10 m.
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Figure 2. Datasets for delineating 3D palaeovalley in the Anangu Pitjantjatjara Yankunytjatjara (APY) Lands of South Australia:
(a) location of the largest deserts in Australia and (b) general conceptual model of palaeovalley sedimentary facies revealed by over
90% borehole logs, (c) multiple resolution valley bottom flatness index, and (d) electrical conductivity (at depths of 30 to 40 m with
a horizontal resolution of 400 m) inferred by airborne electromagnetic surveys in the APY Lands, forming an indicator of
palaeovalley occurrence.

A neural network simulator is established and trained to relate the AEM-derived PAI (output image) with 2D MrVBF data
(input image). The training dataset covers part of the APY Lands (6,400 km?) (hereafter referred to as ‘training area’). Both
loss functions for discriminator and generator were monitored when training the model to verify the network being trained
sufficiently (Supplementary materials). Training of the network under 10,000 iterations on a high-performance computer
(Tesla P-100-SXM2-M-16GB) required 100 to 150 minutes of computation time. Once trained, generating of 3D image from

2D MrVBF required less than five seconds on a desktop computer.

An area 80 km west of the training area is first used to validate the trained neural network in generating 3D PAI. The statistics

of squared errors between the simulated 3D PAI and real PAI are calculated at all 20020010 voxels. As shown in Fig. 3, the
8
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squared error in the training dataset is below 0.1 for 99% of the training domain and with a mean value of about 0.03, and the
squared error of the predicted 3D PAI is well below <0.1 for 93% of the validation domain, with a mean squared error of about
0.04. The patterns of the generated palaeovalley in both horizontal and vertical directions align with those inferred from the
AEM-derived PAI. This indicates that the deep-learning neural network structure developed in this work is capable of
incorporating the relationships between the MrVBF and the buried palaeovalley patterns, and allowing for reliable predictions

beyond the training area.
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(e) Real palaeovalley aquifer index (f) Real palaeovalley aquifer index

Figure 3. Multiple resolution valley bottom flatness (MrVBF) (a and b) converted to the 3D palaeovalley aquifer index (PAI) in the
training area (c) and validation area (80 km west to the train area) (d) by the neural network simulator, compared with AEM-
derived PAI (ground truth data) (e) and (f) generated from airborne electromagnetic surveys. The trained neural network with the
squared error < 0.10 across 99% of the training zone (a total of 200 <200 <10 voxels), results in a PAI error < 0.10 across 93% of
this validation zone, with <1% of this validation zone having errors exceeding 0.20.

Furthermore, in both the training and validation domains, the palaeovalley geometry in each layer is generally comparable to
the surface valley geometry indicated by the MrVBF index at land surface (compare Fig. 3a and 3c, Fig. 3b and 3d), with
varying width at different depths. A comparison of the PAI error with the surface valley pattern in the validation domain (Fig.
4) shows that the spatial distribution of the largest prediction errors is rather random, with some concentration at the boundaries

9



of modern-day valleys. This is related to the convolution processes itself (see further). The error distribution in the validation

220 domain is independent from the modern-day valley geometry in the training area, suggesting that no overfitting problem occurs.

(a) Voxel squared errors

Surface valley
(validation domai

/Fig.3b

Surface valley 5
(training domain)
Fig.3a \.

0 20 40 60 80km

Figure 4. (a) 3D distribution of squared errors between simulated PAI and real PAI in the validation domain, and (b) plan view of

the mean of squared errors from ten layers, overlain by the surface (modern-day) valley (validation and training domains). The

large errors, to some extent, focus on the edge of modern-day valley in the validation domain, but are unrelated to the modern-day
225 valley in the training domain, suggesting that the overfitting does not occur.

4. Discussion

4.1 Neural network with and without fully connected layer

The traditional convolution neural network is often ended by a fully connected layer in the encoder (e.g. Wu et al., 2016), to
adequately fuse the input information for prediction. In this study, a 3D image with size of 25>25>& is employed for the final

230 output layer of the encoder (Fig. 1), without a fully connected layer. For comparison, a fully connected layer with a vector of

3125 (25>25>5) elements is employed as well. As shown in Fig. 5, both models can be trained to generate the paleovalley in

10
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the training domain successfully (Fig. 5a to Fig. 5¢ and 5b, respectively). However, with a fully connected layer, the trained
model fails to generate paleovalleys in the validation domain. Under an alternative MrVBF as input (Fig. 5d), the predicted
paleovalley has a geometry very similar to that of the training domain (compare Fig. 5e and 5d). This suggests an apparent
overfitting, caused by the fully connected operation fusing the input MrVBF globally.

(a) Input MRVBEF (training) (b) PAl at 30-40 m (c) PAl at 30-40 m
80 —
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0.5
<0.6
0 — . 0 s
0 40 80 km 0 40 80 km
With full-connected layer in encoder Without full conencted layer
= 50
(d) Input MRVBF (validation) (e) PAl at 30-40 m
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Figure 5. Input MrVBF in (a) training area and (d) validation area, and (b) and (e) the generated PAI at depth of 30-40 m with fully
connected operation in the encoder, and (c) and (f) without fully connected operation.

Alternatively, the model without a fully connected layer can predict well the paleovalley following the MrVBF pattern. Without
the fully connected layer, the convolution processes with 3D filter addressed the local relationship of MrVBF and PAI. The
correlation scale is determined by the size of the filter; the lager the filter, the larger the correlation scale addressed. The filter
size can be determined by a trial-and-error test, according to the misfit between the predicted geological variable and the
ground truth data in both training and validation domains. In this study, a filter with a size of 4>4>2 is employed for the

encoder and discriminator, while a filter with size of 556> is employed for the decoder (details in the supplementary materials).

Training and validation suggest that using relatively small filter and removing the fully connected layer to under-parameter
the neural network model helped reducing the overfitting risk. Although the performance of the neural network model with

this given structure is acceptable, relatively large errors still occur at the boundaries of the paleovalley where the MrVBF

11
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values vary sharply. This is because local convolution potentially broadens the influence of large MrVBFs; adaptive

optimization of filter size in each convolution layer potentially solves this problem.
4.2 Adversarial neural network versus autoencoder neural network

Furthermore, another 19 validation areas west to the training domain (Fig. 2d) are used to monitor the decay in the accuracy
of predicted palaeovalley patterns. This is done using two different models: semi-supervised learning with additional
adversarial neural network and supervised learning with only autoencoder neural network (controlled by coefficient ¢ in Eq.
6).
0.16

(a) Semi-supervised (adversarial) learning 0.16 1 (b) Supervised (autoencoder) learning
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Figure 6. Squared errors between the true 3D palaeovalley aquifer index (PAI) directly calculated from AEM-derived electrical
conductivity, and PAI predicted by (a) autoencoder neural network using supervised learning and (b) adversarial neural network
using semi-supervised learning in the areas west to the training area, with separation distance varying from 0 to 80 km; and (c) an
overfitting test with a random 2D MrVBF as input to predict PAI at depth of 30-40 m following adversarial learning and only
autoencoder.

As shown in Fig. 6, an extremely small error (<0.01) can be achieved when constructing palaeovalleys in the training area by

supervised learning using only the autoencoder neural network. The mean error resulting from the semi-supervised learning

12
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with additional adversarial network is higher, i.e. about 0.03. Within the 19 validation areas, the mean squared errors in

predicting palaeovalley patterns by both neural networks are well below 0.04.

While the autoencoder learning generally performs better than the adversarial learning in terms of mean squared errors, its
prediction errors (especially the 95% quantile) increase much faster with the separation distance between validation and
training areas. This indicates that using the autoencoder only can potentially lead to very large errors (or poor predictions) in
case of discrepancies between training and prediction areas. We hypothesize that these errors are due to model overfitting in
the case of using only the autoencoder learning. To confirm this, we conduct an overfitting test based on a synthetic ground
being a random MrVBF input following a uniform distribution (i.e. non-informative) ranging from 0 to 1, which should result
in a uniform PAI distribution. As shown in Fig. 6c¢, a uniform PAI can be generated by adversarial learning, while the predicted
PAI by using only the autoencoder learning results in structured patterns. This means that the weights trained by purely
supervised learning inherit too much information hidden in the training dataset, which is inflexible in predicting 3D
palaeovalley patterns with strong variations from the input image. On the other hand, adversarial learning is much more robust
to discrepancies and the accuracy decays only slightly in predicting 3D structures in areas further away from the training area,

which is a highly desired property in real world applications.

4 Conclusions

This study developed an efficient and reliable adversarial convolutional neural network simulator for generating 3D subsurface
structures directly from 2D land-surface data. The proposed generic structure of the convolutional neural network was
composed of an ‘encoder’ to fuse 2D input data into low-dimension codes following a normal distribution, a ‘decoder’ to
nonlinearly map the low-dimension codes into 3D subsurface images, and a ‘discriminator’ to statistically express the

generated and real subsurface image into a vector for adversarial semi-supervised learning based on a single training image.

The neural network was successfully tested in mapping the 3D palaeovalley systems in the northeast Great Victoria Desert,
Australia. Training and validation involved using the multiple resolution valley bottom flatness (MrVBF) (input) and 3D
palaeovalley aquifer index (PAI) (output) on an area of 80>80 km?2. The neural network trained to a maximum error <0.1 can

predict 3D PAI with errors <0.1 at over 90% of the validation zones.

The outstanding performance of the deep-learning neural network for 3D subsurface structure imaging has applications as a
generic novel tool for making better use of existing multiple-support geophysical, land surface, and remote sensing data for

better management of limited resources such as groundwater.
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Codes/Data Availability

The original data of MrVBF and AEM were provided by John Gallant and Tim Munday, respectively, and are available freely
from CSIRO Data Access Portal https://doi.org/10.4225/08/5701C885AB4FE and https://doi.org/10.25919/5d0868d48591e.
The codes for neural network developed in Tensorflow are now provided in https://doi.org/10.7910/DVN/DDEIUV.
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