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Abstract. This study introduces an efficient deep learning approach based on convolutional neural networks with joint 

autoencoder and adversarial structures for 3D subsurface mapping from surface observations. The method was applied to 10 

delineate palaeovalleys in an Australian desert landscape. The neural network was trained on a 6,400 km2 domain by using a 

land surface tomography as 2D input and an airborne electromagnetic (AEM)-derived probability map of palaeovalley 

presence as 3D output. The trained neural network has a squared error < 0.10 across 99% of the training domain and produces 

a squared error < 0.10 across 93% of the validation domain, demonstrating that it is reliable in reconstructing 3D palaeovalley 

patterns beyond the training area. Due to its generic structure, the neural network structure designed in this study and the 15 

training algorithm have broad application potential to construct 3D geological features (ore bodies, aquifer) from 2D land 

surface observations.  

1 Introduction 

Imaging the Earth’s subsurface is crucial for the exploration and management of mineral, energy and groundwater resources; 

its reliability depends on the availability and quality of geological data. Although the amount and quality of geological data 20 

obtained from borehole logs, geophysical prospecting and remote sensing has increased dramatically over the past decades, 

their spatial distribution is highly uneven. Most data exist as land surface observations in a limited number of highly-developed 

areas such as mining and oil fields. Predictive models are much-needed for extracting hidden information from local-scale 

rich/big datasets for predicting 3D regional-scale subsurface structures in data-poor areas. 

Commonly used methods for modelling complex geological structures include geostatistical approaches such as sequential 25 

Gaussian or indicator simulation (Lee et al., 2007), transition probability simulation (Felletti et al., 2006; Weissmann and Fogg, 

1999), or multiple-point simulation (MPS) methods (Hu and Chugunova, 2008; Mariethoz and Caers, 2014; Strebelle, 2002). 

However, they often present drawbacks such as not being able to represent elongated and connected geological structures such 

as palaeovalleys, being inefficient in capturing essential features and patterns from very large training datasets, or presenting 
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a high computational cost. A fast and reliable tool for high-resolution 3D subsurface imaging based on multiple-support big 30 

dataset is still lacking.  

Deep learning approaches specialised in big data mining have the potential to fill this gap (Gu et al., 2017; Hinton and 

Salakhutdinov, 2006; Marcais and de Dreuzy, 2017). Applications in the geosciences include earthquake detection based on 

seismic monitoring (Mousavi and Beroza, 2019; Perol et al., 2018), or disaster recognition from remote sensing data (Amit et 

al., 2016; Längkvist et al., 2016), among others. A recent breakthrough in deep learning is the 2D to 3D image processing (Niu 35 

et al., 2018; Sinha et al., 2017; Wu et al., 2016; Yi et al., 2017). Such approaches point out a novel way to rapidly and 

automatically identify covered 3D subsurface structures directly from readily-available 2D surface observations (digital 

elevation models, land cover maps, signals captured by airborne geophysical surveys).  

To this end, we designed a deep convolutional neural network (CNN) with joint autoencoder (Kingma and Welling, 2013) and 

adversarial structures (Goodfellow et al., 2014). The autoencoder component features large input and output images connected 40 

by a small latent space. This structure is advantageous for the fusion of complex input data and 3D image reconstruction. Its 

training involves direct back-propagation according to a voxel-wise independent heuristic criterion, and thus often needs a 

large training dataset to constrain the model and avoid overfitting (Laloy et al., 2018). The generative adversarial learning tries 

to generate multiple images inheriting the probability structure of one real image, which relaxes the need for very large training 

dataset. The proposed approach successfully generates regional-scale 3D palaeovalley patterns from 2D digital terrain 45 

information in an Australian desert landscape, demonstrating that the interplay between autoencoder and adversarial 

components provides a generic tool to exploit more effectively geophysical, land surface and other data to generate realistic 

regional-scale 3D geological structures. 

2 Method 

The adversarial neural network for 3D subsurface imaging involves three steps: (1) patch extraction and representation, (2) 50 

nonlinear mapping and reconstruction, and (3) statistical expression of the generated image (Fig. 1). The first step is referred 

to as ‘encoder’ (Fig. 1a), which is employed to fuse the information contained in the 2D land surface observation images (input 

data)  into a low-dimension layer by successive convolutions (Hinton and Salakhutdinov, 2006): 

ℎ(𝐱) = 𝑓(𝐖 ∙ 𝐱 + 𝒃), 
(1)  

where f is a nonlinear function referred to as “activation function”, W is a matrix of weights and b is a bias vector in the 

encoder.  55 

The encoder can be designed to contain multiple layers, where the number of layers is defined as ‘depth’. Each layer can 

contain multiple images, with the number of images defined as ‘width’. The images in one layer are convoluted to generate 
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the elements in the image of the next layer by weight filters, and the elements in the low-dimension layer of the encoder (the 

output) are called ‘code’. The process of convolution is illustrated in Fig. 1b, which shows that with a filter size of 2×2 (for a 

2D image convolution for example), one element in the output layer is related to 4 elements in the input layer. Thus, the spatial 60 

correlation scale addressed by the convolutional neural network can be controlled by the filter size in both vertical and 

horizontal directions. 

The weight and bias in the encoder are trained to ensure that the code follows a standard normal distribution, by minimizing 

the Kullback–Leibler divergence (L1), defined as (Kullback and Leibler, 1951):  

𝐿1 =
1

2𝑁
∑ (𝜇2 + 𝜎2 − log𝜎2 − 1)𝑖
𝑁
𝑖=1 , 

(2)  

where N is number of codes in the final output layer of the encoder, 𝜇 and 𝜎 are the mean and standard deviation of the codes, 65 

respectively.  

 

 

Figure 1. (a) Adversarial convolution neural network composed of (1) encoder for input images patch extraction and representation, 

(2) decoder for nonlinear mapping and 3D image reconstruction, (3) discriminator for distinguishing the generated 3D image and 70 
real image after statistical expression; and features of the (b) convolution and (c) deconvolution processes with the colour 

representing the origin of the deconvoluted values. For mapping palaeovalley patterns in an Australian desert landscape, the input 
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data uses the 2D MrVBF (an index calculated from globally available digital elevation model); the output is a 3D probability map 

of palaeovalley presence. For convenience of 3D convolution, the 2D input image (800×800×1) is simply repeated in 10 layers to form 

a 3D input dataset (800×800×10). Following a structure optimization by trial-and-error, the encoder is designed to contain 4 layers, 75 
with a width of 64, 32, 32 and 1 in each layer, respectively; the decoder contains 6 layers, with a width of 1, 16, 32, 32, 64, and 128, 

respectively; the discriminator contains 4 layers with a width of 128, 64, 32, 1, respectively. 

In the second step, the codes are converted into a 3D output image by deconvolution (referred to as ‘decoder’, Fig. 1a), which 

is a process involving a zero-padding before the convolution (Fig. 1c). The combination of decoder and encoder forms a 

‘generator’, linking input and output images. The generated 3D image is referred to as ‘simulated image’.  80 

To ensure that the simulated image is comparable to a real image, a voxel-wise independent heuristic criterion is minimized. 

The mean squared error (L2) between simulated and real images at all voxels is used as criterion to update the weight and bias 

in the decoder, which is expressed as: 

L2=
1

𝑀
‖𝐺(𝐳) − 𝐘‖2, 

(3)  

where M is the number of voxels in the output 3D image, 𝐘 is the real image, z is the code generated from the encoder, and  

𝐺(∙) represents the convolutional calculations in the decoder (in the same form as Eq. 1).  85 

However, if only a limited number of real 3D images are available to train the network, the use of a voxel-wise independent 

criterion often leads to an overfitting problem. Goodfellow (2014) proposed a generative adversarial network structure, which 

adds a ‘discriminator’ to convert simulated and real images to a vector, respectively, by an identical convolution process (Fig. 

1a). Adversarial criteria are proposed, typically expressed by binary cross entropy functions as: 

L3= −
1

𝑉
log[𝐷(𝐺(𝐳))], 

(4)  

and 90 

L4= −
1

𝑉
log[𝐷(𝐘)] −

1

𝑉
log[1 − 𝐷(𝐺(𝐳))], 

(5)  

where V is the size of the output vector via the discriminator, and D(∙) represents the calculations (Eq. 1) in the discriminator. 

The weights in the discriminator are trained to minimize L4, which attempts to distinguish the vectors generated from the real 

and simulated 3D images. The weights in the generator are trained to minimize L3, which attempts to fool the discriminator to 

be unable to identify the vector generated from the simulated 3D image. In such a way, the generator can produce images 

aligned with the real image in terms of probability structure (Goodfellow et al., 2014).  95 

Finally, while the loss function L4 is minimized to optimize the weights in the discriminator, a comprehensive loss function 

combining L1, L2 and L3 is employed to optimize the weights in the generator, which is expressed as (Wu et al., 2016):  
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𝐿𝑔 = a ∙ 𝐿1 + b ∙ 𝐿2 + c ∙ 𝐿3, 
(6)  

where a, b, c are the coefficients on each loss function. This loss function makes it convenient to vary the neural network 

structure between semi-supervised learning with additional adversarial neural network by defining coefficient c as non-zero 

value, and supervised learning with merely autoencoder neural network with c as zero.    100 

The hyperparameters (including the width, depth, filter size and the coefficients in generator loss functions, etc.) defining the 

neural network structure, are determined by trial-and-error tests (Supplementary materials). Weight and bias in generator and 

discriminator are trained to minimize Lg and L4 using the stochastic gradient descent algorithm, referred to as adaptive moment 

estimation (ADAM) (Kingma and Ba, 2014). We implemented the above convolution neural network using the Tensorflow 

Python library (Abadi et al., 2016). Once the neural network is trained, the ‘generator’ in the network (Fig. 1a) is used 105 

independently to generate 3D subsurface structures from the 2D land surface observations.  

3 Results 

We use a CSIRO dataset to test the effectiveness of our deep-learning approach in predicting 3D palaeovalley patterns in the 

Anangu Pitjantjatjara Yankunytjatjara (APY) lands of South Australia (Fig. 2a and 2b). The dataset includes a 100-m, 2D 

Multiple-resolution Valley Bottom Flatness (MrVBF) index (calculated from the digital elevation model) across the entire 110 

model domain (Gallant and Dowling, 2003), and a 3D electrical conductivity dataset (400-m horizontal and 10-m vertical 

resolution) interpreted from an airborne electromagnetic (AEM) survey in the APY Lands (Ley-Cooper and Munday, 2013; 

Soerensen et al., 2016). Previous hydrogeological characterization indicate that high bulk electrical conductivity values (EC) 

are a proxy for palaeovalley presence (Jiang et al., 2019; Munday et al., 2013; Taylor et al., 2015). Thus, a palaeovalley aquifer 

index (PAI) is defined as: 115 

PAI =
log10(𝐸𝐶)−log10(𝐸𝐶)𝑚𝑖𝑛

log10(𝐸𝐶)𝑚𝑎𝑥−log10(𝐸𝐶)𝑚𝑖𝑛
 , 

(7)  

where max and min represent the maximum and minimum logarithm of EC values over the entire dataset, respectively. PAI 

ranges from 0.0 to 1.0 and is calculated in the first 100 m depth at the AEM-surveyed area, which is considered as a ground-

truth 3D probability map of palaeovalley occurrences with a spatial resolution of 400 m×400 m×10 m.  
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 120 
Figure 2. Datasets for delineating 3D palaeovalley in the Anangu Pitjantjatjara Yankunytjatjara (APY) Lands of South Australia: 

(a) location of the largest deserts in Australia and (b) general conceptual model of palaeovalley sedimentary facies revealed by over 

90% borehole logs, (c) multiple resolution valley bottom flatness index, and (d) electrical conductivity (at depths of 30 to 40 m with 

a horizontal resolution of 400 m) inferred by airborne electromagnetic surveys in the APY Lands, forming an indicator of 

palaeovalley occurrence. 125 

A neural network simulator is established and trained to relate the AEM-derived PAI (output image) with 2D MrVBF data 

(input image). The training dataset covers part of the APY Lands (6,400 km2) (hereafter referred to as ‘training area’). Both 

loss functions for discriminator and generator were monitored when training the model to verify the network being trained 

sufficiently (Supplementary materials). Training of the network under 10,000 iterations on a high-performance computer 

(Tesla P-100-SXM2-M-16GB) required 100 to 150 minutes of computation time. Once trained, generating of 3D image from 130 

2D MrVBF required less than five seconds on a desktop computer.   

An area 80 km west of the training area is first used to validate the trained neural network in generating 3D PAI. The statistics 

of squared errors between the simulated 3D PAI and real PAI are calculated at all 200×200×10 voxels. As shown in Fig. 3, the 

squared error in the training dataset is below 0.1 for 99% of the training domain and with a mean value of about 0.03, and the 

squared error of the predicted 3D PAI is well below <0.1 for 93% of the validation domain, with a mean squared error of about 135 

0.04. The patterns of the generated palaeovalley in both horizontal and vertical directions align with those inferred from the 

AEM-derived PAI. This indicates that the deep-learning neural network structure developed in this work is capable of 

incorporating the relationships between the MrVBF and the buried palaeovalley patterns, and allowing for reliable predictions 

beyond the training area. 

 140 
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Figure 3. Multiple resolution valley bottom flatness (MrVBF) (a and b) converted to the 3D palaeovalley aquifer index (PAI) in the 

training area (c) and validation area (80 km west to the train area) (d) by the neural network simulator, compared with AEM-

derived PAI (ground truth data) (e) and (f) generated from airborne electromagnetic surveys. The trained neural network with the 

squared error < 0.10 across 99% of the training zone (a total of 200 ×200 ×10 voxels), results in a PAI error < 0.10 across 93% of 145 
this validation zone, with <1% of this validation zone having errors exceeding 0.20.   

Furthermore, in both the training and validation domains, the paleovalley geometry in each layer is generally comparable to 

the surface valley geometry indicated by the MrVBF index at land surface (compare Fig. 3a and 3c, Fig. 3b and 3d), with 

varying width at different depths. A comparison of the PAI error with the surface valley pattern in the validation domain (Fig. 

4) shows that the spatial distribution of the largest prediction errors is rather random, with some concentration at the boundaries 150 

of modern-day valleys. This is related to the convolution processes itself (see further). The error distribution in the validation 

domain is independent from the modern-day valley geometry in the training area, suggesting that no overfitting problem occurs.   
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Figure 4. (a) 3D distribution of squared errors between simulated PAI and real PAI in the validation domain, and (b) plan view of 

the mean of squared errors from ten layers, overlain by the surface (modern-day) valley indicated by the high MrVBF index.  155 

4. Discussion 

4.1 Neural network with and without fully connected layer  

The traditional convolution neural network is often ended by a fully connected layer in the encoder (e.g. Wu et al., 2016), to 

adequately fuse the input information for prediction. In this study, a 3D image with size of 25×25×5 is employed for the final 

output layer of the encoder (Fig. 1), without a fully connected layer. For comparison, a fully connected layer with a vector of 160 

3125 (25×25×5) elements is employed as well. As shown in Fig. 5, both models can be trained to generate the paleovalley in 

the training domain successfully (Fig. 5a to Fig. 5c and 5b, respectively). However, with a fully connected layer, the trained 

model fails to generate paleovalleys in the validation domain. Under an alternative MrVBF as input (Fig. 5d), the predicted 

paleovalley has a geometry very similar to that of the training domain (compare Fig. 5e and 5d). This suggests an apparent 

overfitting, caused by the fully connected operation fusing the input MrVBF globally.  165 
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Figure 5. Input MrVBF in (a) training area and (d) validation area, and (b) and (e) the generated PAI at depth of 30-40 m with fully 

connected operation in the encoder, and (c) and (f) without fully connected operation.  

Alternatively, the model without a fully connected layer can predict well the paleovalley following the MrVBF pattern. Without 

the fully connected layer, the convolution processes with 3D filter addressed the local relationship of MrVBF and PAI. The 170 

correlation scale is determined by the size of the filter; the lager the filter, the larger the correlation scale addressed. The filter 

size can be determined by a trial-and-error test, according to the misfit between the predicted geological variable and the 

ground truth data in both training and validation domains. In this study, a filter with a size of 4×4×2 is employed for the 

encoder and discriminator, while a filter with size of 5×5×2 is employed for the decoder (details in the supplementary materials).  

Training and validation suggest that using relatively small filter and removing the fully connected layer to under-parameter 175 

the neural network model helped reducing the overfitting risk. Although the performance of the neural network model with 

this given structure is acceptable, relatively large errors still occur at the boundaries of the paleovalley where the MrVBF 

values vary sharply. This is because local convolution potentially broadens the influence of large MrVBFs; adaptive 

optimization of filter size in each convolution layer potentially solves this problem.  

4.2 Adversarial neural network versus autoencoder neural network 180 
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Furthermore, another 19 validation areas west to the training domain (Fig. 2d) are used to monitor the decay in the accuracy 

of predicted palaeovalley patterns. This is done using two different models: semi-supervised learning with additional 

adversarial neural network and supervised learning with only autoencoder neural network (controlled by coefficient c in Eq. 

6).  

 185 
Figure 6. Squared errors between the true 3D palaeovalley aquifer index (PAI) directly calculated from AEM-derived electrical 

conductivity, and PAI predicted by (a) autoencoder neural network using supervised learning and (b) adversarial neural network 

using semi-supervised learning in the areas west to the training area, with separation distance varying from 0 to 80 km; and (c) an 

overfitting test with a random 2D MrVBF as input to predict PAI at depth of 30-40 m following adversarial learning and only 

autoencoder.  190 

As shown in Fig. 6, an extremely small error (<0.01) can be achieved when constructing palaeovalleys in the training area by 

supervised learning using only the autoencoder neural network. The mean error resulting from the semi-supervised learning 

with additional adversarial network is higher, i.e. about 0.03. Within the 19 validation areas, the mean squared errors in 

predicting palaeovalley patterns by both neural networks are well below 0.04. 

While the autoencoder learning generally performs better than the adversarial learning in terms of mean squared errors, its 195 

prediction errors (especially the 95% quantile) increase much faster with the separation distance between validation and 
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training areas. This indicates that using the autoencoder only can potentially lead to very large errors (or poor predictions) in 

case of discrepancies between training and prediction areas. We hypothesize that these errors are due to model overfitting in 

the case of using only the autoencoder learning. To confirm this, we conduct an overfitting test based on a synthetic ground 

being a random MrVBF input following a uniform distribution (i.e. non-informative) ranging from 0 to 1, which should result 200 

in a uniform PAI distribution. As shown in Fig. 6c, a uniform PAI can be generated by adversarial learning, while the predicted 

PAI by using only the autoencoder learning results in structured patterns. This means that the weights trained by purely 

supervised learning inherit too much information hidden in the training dataset, which is inflexible in predicting 3D 

palaeovalley patterns with strong variations from the input image. On the other hand, adversarial learning is much more robust 

to discrepancies and the accuracy decays only slightly in predicting 3D structures in areas further away from the training area, 205 

which is a highly desired property in real world applications.  

4 Conclusions 

This study developed an efficient and reliable adversarial convolutional neural network simulator for generating 3D subsurface 

structures directly from 2D land-surface data. The proposed generic structure of the convolutional neural network was 

composed of an ‘encoder’ to fuse 2D input data into low-dimension codes following a normal distribution, a ‘decoder’ to 210 

nonlinearly map the low-dimension codes into 3D subsurface images, and a ‘discriminator’ to statistically express the 

generated and real subsurface image into a vector for adversarial semi-supervised learning based on a single training image.  

The neural network was successfully tested in mapping the 3D palaeovalley systems in the northeast Great Victoria Desert, 

Australia. Training and validation involved using the multiple resolution valley bottom flatness (MrVBF) (input) and 3D 

palaeovalley aquifer index (PAI) (output) on an area of 80×80 km2. The neural network trained to a maximum error <0.1 can 215 

predict 3D PAI with errors <0.1 at over 90% of the validation zones.  

The outstanding performance of the deep-learning neural network for 3D subsurface structure imaging has applications as a 

generic novel tool for making better use of existing multiple-support geophysical, land surface, and remote sensing data for 

better management of limited resources such as groundwater.  

Codes/Data Availability 220 

The original data of MrVBF and AEM were provided by John Gallant and Tim Munday, respectively, and are available freely 

from CSIRO Data Access Portal https://doi.org/10.4225/08/5701C885AB4FE and https://doi.org/10.25919/5d0868d48591e. 

The codes for neural network developed in Tensorflow are now provided in https://doi.org/10.7910/DVN/DDEIUV. 

https://doi.org/10.7910/DVN/DDEIUV
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