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and Kipp, 1980; Vuyst and Vignjevic, 2013TS40 ; Williams,
2019). Comparisons with observed fracture behaviour has in-
dicated the predictive value of these schemes (Xu et al., 2010;
Husek et al., 2016TS41 ). We combine the various approaches
to best fit the dynamical multi-phase mass movement model5

that is developed. Following Grady and Kipp (1980), we sim-
ulate a degradation of strength parameters. Our material con-
sists of a soil and rock matrix. We assume fracturing oc-
curs along the inter-granular or inter-rock contacts and bonds
(see also Cohen et al., 2009). Thus, cohesive strength is lost10

for any fractured contacts. We simulate degradation of co-
hesive strength according to a volume strain criteria. When
the stress state lies on the yield surface (the set of critical
stress states within the six-dimensional stress-space), during
plastic deformation, strain is assumed to contribute to fractur-15

ingCE10 . A critical volume strain is taken as a material prop-
erty, and the breaking of cohesive bonds occurs based on the
relative volume strain. Following Grady and Kipp (1980) and
Vuyst and Vignjevic (2013)TS42 , we assume that the degra-
dation behaviour of the strength parameter is distributed ac-20

cording to a probability density distribution. Commonly, a
Weibull distribution is used (Williams, 2019). Here, for sim-
plicity we use a uniform distribution of cohesive strength
between 0 and 2c0, although any other distribution can be
substituted. Thus, the expression governing cohesive strength25

becomes Eq. (26).

∂c

∂t
=

 −c0
1
2

(
εv
εv0

)
εc

f (I1,J2)≥ 0,c > 0
0 otherwise

(26)

Here c0 is the initial cohesive strength of the material, εv0 is
the initial volume,

(
εv
εv0

)
is the fractional volumetric strain

rate and εc is the critical fractional volume strain for fractur-30

ing.

2.2.3 Water partitioning

During the movement of the mixed mass, the solids can
thus be present as a structured matrix. Within such a ma-
trix, a fluid volume can be contained (e.g. as originating35

from a groundwater content in the original landslide ma-
terial). These fluids are typically described as groundwater
flow following Darcy’s law, which poses a linear relationship
between pressure gradients and flow velocity through a soil
matrix. In our case, we assumed the relative velocity of water40

flow within the granular solid matrix as very small compared
to both solid velocities and the velocities of the free fluids. As
an initial condition of the material, some fraction of the wa-
ter is contained within the soil matrix (ffc). Additionally, for
loss of cohesive structure within the solid phase, we trans-45

fer the related fraction of fluids contained within that solid

structure to the free fluids.
∂ffc

∂t
=−

∂ (1− ffc)

∂t

=

{
−ffc

c0
c

max(0.0,ε̇v)
εf

f (I1,J2)≥ 0,c > 0
0 otherwise

(27)

∂fsc

∂t
=−

∂ (1− fsc)

∂t

=

{
−fsc

c0
c

max(0.0,ε̇v)
εf

f (I1,J2)≥ 0,c > 0
0 otherwise

(28)

Beyond changes in ffc through fracturing of structured solid 50

materials, no dynamics are simulated for influx or outflux of
fluids from the solid matrix. The initial volume fraction of
fluids in the solid matrix defined by fffc and sfsc remains
constant throughout the simulation. The validity of this as-
sumption can be based on the slow typical fluid velocities in 55

a solid matrix relative to fragmented mixed fluid–solid flow
velocities (Kern, 1995; Saxton and Rawls, 2006). While the
addition of evolving saturation would extend the validity of
the model, it would require implementation of pre-transfer
functions for evolving material properties, which is beyond 60

the scope of this work. An important note on the points
made above is the manner in which fluids are re-partitioned
after fragmentation. All fluids in fragmented solids are re-
leased, but this does not equate to free movement of the flu-
ids or a disconnection from the solids that confined them. 65

Instead, the equations continue to connect the solids and flu-
ids through drag, viscous and virtual mass forces. Finally, the
density of the fragmented solids is assumed to be the initially
set solid density. Any strain-induced density changes are as-
sumed small relative to the initial solid density (ρc

ρs
� 1). 70

2.2.4 Fluid stresses

The fluid stress tensor is determined by the pressure and the
viscous terms (Eqs. 29 and 30). Confined solids are assumed
to be saturated and constant during the flow.

Tu = pfI+ τ f (29) 75

τ f = ηf
[
∇uu+ (∇uc)

t
]

−
ηf

αu
A(αu)(∇αc (uu−uc)+ (uc−uu)∇αc ) (30)

Here I is the identity tensor, τ f is the viscous stress tensor for
fluids , pf is the fluid pressure, ηf is the dynamic viscosity of
the fluids and A is the mobility of the fluids at the interface
with the solids that acts as a phenomenological parameter 80

(Pudasaini, 2012TS43 ).
The fluid pressure acts only on the free fluids here, as

the confined fluids are moved together with the solids. In
Eq. (30), the second term is related to the non-Newtonian vis-
cous force induced by gradients in solid concentration. The 85

effect as described by Pudasaini (2012)TS44 is induced by
a solid concentration gradient. In the case of unconfined flu-
ids and unstructured solids (fsf = 1,fsf = 1)CE11 . Within our
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