
In light of the two anonymous reviews, please find below our responses to the raised issues. 

First, we would like to gratefully thank the reviewers for their work in reading and reviewing the 
manuscript. Please know that all the proposed changes have been made to the manuscript. 

In response to anonymous referee #1. 

We thank the reviewer for this time in reading the manuscript. We have rewritten a large part of the 
introduction to clarify the scope and the potential application of this work. Now, the phenomena is 
first described, using terminology more commonly used within the literature. Afterwards, a short 
description of existing modelling approaches and their shortcomings is provided. Finally, the 
introduction ends with the objective of the research: development of a new generalized semi-
structured mass movement model. 

In terms of the nature of the movements, we have clarified that the model implements structured 
movements (dynamics of a coherent mass), but similarly can (if required, or if the underlying physics 
indicates it) simulates fragmentation of the material. 

We have addressed our usage of the term “debris-flow” in our work. Instead we use “mass 
movement”, as it more accurately reflects the generalized nature of the equations. Similarly to the 
work of Pudasaini (2012) and George and Iverson (2014) and Aaron and Hungr (2016), generalized 
sets of equations which are sometimes referred to as “debris flow” equations allow for simulation of 
a much wider range of phenomena.  

The applicability of the model to granular flow is, when cohesive strength is insignificant, at least as 
good as the generalized two-phase equations from Pudasaini (2012) which is the predominant 
underpinning of this work. The influence of the additional work on cohesive strength and 
fragmentation has been developed with general validity in mind. When fragmentation occurs in the 
model, further runout reduces to the two-phase equations of Pudasaini automatically. However, full 
validation of the model to runout of various types of cohesive matrices must be further investigated.  

Finally, all specific comments have been addressed based on the reviewer suggestion. 

In response to anonymous referee #2. 

We thank the reviewer for this time in reading the manuscript. All the specific comments provided by 
the reviewer have been addressed in the manuscript. The sections have been re-labeled to be 
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in this work. As with reviewer 1, we agree that mass movement (to be more generic) and specifically 
rock avalanches and landslide are more closely related to the applicability of this work. 

References:  

Aaron, J., & Hungr, O. (2016). Dynamic simulation of the motion of partially-coherent 
landslides. Engineering Geology, 205, 1-11. 

George, D. L., & Iverson, R. M. (2014). A depth-averaged debris-flow model that includes the effects 
of evolving dilatancy. II. Numerical predictions and experimental tests. Proceedings of the Royal 
Society A: Mathematical, Physical and Engineering Sciences, 470(2170), 20130820. 

Pudasaini, S. P. (2012). A general two‐phase debris flow model. Journal of Geophysical Research: 
Earth Surface, 117(F3). 

 



1 
 

Towards a model for structured mass movements: the 1 

OpenLISEM Hazard model 2.0a 2 
Bastian van den Bout*1 Theo van Asch2 Wei Hu2 Chenxiao X. Tang3 Olga Mavrouli1 Victor G.Jetten1 CeesJ. 3 
van Westen1 4 
1University of Twente, Faculty of Geo-Information Science and Earth Observation 5 
2Chengdu university of Technology, State key Laboratory of Geohazard Preventaion and GeoEnvironment 6 
Protection 7 
3Institute of Mountain Hazards and Environment, Chinese Academy of Sciences 8 

Correspondence to: Bastian van den Bout (b.vandenbout@utwente.nl) 9 

 10 

Abstract 11 

Mass movements such as debris flows and landslides differ in behavior due to their material properties and 12 
internal forces. Models employ generalized multi-phase flow equations to adaptively describe these complex 13 
flow types. Such models commonly assume unstructured and fragmented flow, where internal cohesive strength 14 
is insignificant. However, models commonly assume unstructured and fragmented flow after initiation of 15 
movement. In this work, existing work on two-phase mass movement equations are extended to include a full 16 
stress-strain relationship that allows for runout of (semi-) structured fluid-solid masses. The work provides both 17 
the three-dimensional equations and depth-averaged simplifications. The equations are implemented in a hybrid 18 
Material Point Method (MPM) which allows for efficient simulation of stress-strain relationships on discrete 19 
smooth particles. Using this framework, the developed model is compared to several flume experiments of clay 20 
blocks impacting fixed obstacles. Here, both final deposit patterns and fractures compare well to simulations. 21 
Additionally, numerical tests are performed to showcase the range of dynamical behavior produced by the 22 
model. Important processes such as fracturing, fragmentation and fluid release are captured by the model. While 23 
this provides an important step towards complete mass movement models, several new opportunities arise such 24 
as ground-water flow descriptions and application to fragmenting mass movements and block-slides and block-25 
slides. 26 

  27 
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1. Introduction 28 

The earths rock cycle involves sudden release and gravity-driven transport of sloping materials. These 29 
mass movements have a significant global impact in financial damage and casualties (Nadim et al., 2006; 30 
Kjekstad & Highland, 2009). Understanding the physical principles at work at their initiation and runout phase 31 
allows for better mitigation and adaptation to the hazard they induce (Corominas et al., 2014). Many varieties of 32 
gravitationally-driven mass movements have been categorized according to their material physical parameters 33 
and type of movement. Examples are slides, flows and falls consisting of soil, rocks or debris (Varnes, 1987). 34 
Major factors in determining the dynamics of mass movement runout are the composition of the moving material 35 
and the internal and external forces during initiation and runout.  36 

Within the cluster of existing mass movement processes, a distinction can be made based on the 37 
cohesive of the mass during movement. Post-release, a sloping mass might be unstructured, such as mud flows, 38 
where grain-grain cohesive strength is absent. Alternatively, the mass can be fragmentative, such as strongly-39 
deforming landslides or fragmenting of rock avalanches upon particle impacts. Finally, there are 40 
coherent/structured mass movements, such as can be the case in block-slides where internal cohesive strength 41 
can resist deformation for some period  (Varnes, 1987).  The general importance of the initially structured nature 42 
of mass movement material is observed for a variety of reasons. First, block slides are an important subset of 43 
mass movement types (Hayir, 2003; Beutner et al., 2008; Tang et al., 2008). This type of mass movement 44 
features some cohesive structure to the dynamic material in the movement phase. Secondly, during movement, 45 
the spatial gradients in local acceleration induce strain and stress that results in fracturing. This process, often 46 
called fragmentation in relation to structured mass movements, can be of crucial importance for mass movement 47 
dynamics (Davies & McSaveney, 2009; Delaney & Evans, 2014; Dufresne et al., 2018; Corominas et al. 2019). 48 
Lubricating effect from basal fragmentation can enhance velocities and runout distance significantly (Davies et 49 
al., 2006;Tang et al., 2009). Otherwise, fragmentation generally influences the rheology of the movement by 50 
altering grain-grain interactions (Zhou et al., 2005). The importance of structured material dynamics is further 51 
indicated by engineering studies on rock behavior and fracture models (Kaklauskas & Ghaboussi, 2001; Ngekpe 52 
et al., 2016; Dhanmeher, 2017). 53 

Dynamics of geophysical flows are complex and depend on a variety of forces due to their multi-phase 54 
interactions (Hutter et al., 1996). Physically-based models attempt to describe the internal and external forces of 55 
all these mass movements in a generalized form (David & Richard, 2011; Pudasaini, 2012; Iverson & George, 56 
2014). This allows these models to be applied to a wide variety of cases, while improving predictive range. 57 
Generally, understanding and prediction of geophysical flows takes place through numerical modelling of the 58 
flow. A variety of both one, two and three- dimensional sets of equations exist to describe the advection and 59 
forces that determine the dynamics of geophysical flows. A major assumption made for current models is the a 60 
fully mixed and fragmented nature of the material (Iverson & Denlinger 2001; Pudasaini & Hutter, 2003). 61 
Physically-based models attempt to describe the internal and external forces of all these mass movements in a 62 
generalized form (David & Richard, 2011; Pudasaini, 2012; Iverson & George, 2014). This allows these models 63 
to be applied to a wide variety of cases, while improving predictive range.  64 

 65 

For unstructured (fully fragmented) mass movements, a variety of models exist relating to mohr-66 
coulomb mixture theory. Dynamics of geophysical flows are complex and depend on a variety of forces due to 67 
their multi-phase interactions (Hutter et al., 1996). Generally, understanding and prediction of geophysical flows 68 
takes place through numerical modelling of the flow. A variety of both one, two and three- dimensional sets of 69 
equations exist to describe the advection and forces that determine the dynamics of geophysical flows. Examples 70 
that simulated a single mixed material (Rickenmann et al., 2006; O’Brien et al., 2007; Luna et al., 2012; van 71 
Asch et al., 2014). Two phase models describe both solids, fluids and their interactions and provide additional 72 
detail and generalize in important ways (Sheridan et al., 2005; Pitman & Le, 2005; Pudasaini, 2012;George & 73 
Iverson, 2014; Mergili et al., 2017). Recently, a three-phase model has been developed that includes the 74 
interactions between small and larger solid phases (Pudasaini & Mergili, 2019). Typically, implemented forces 75 
include gravitational forces and, depending on the rheology of the equations, drag forces, viscous internal forces 76 
and a plasticity-criterion.  77 

A major assumption made for current models is the a fully mixed and fragmented nature of the material 78 
(Iverson & Denlinger 2001; Pudasaini & Hutter, 2003). Theis assumption of unstructured flow is invalid for any 79 
structured mass movement. Some models do implement a non-Newtonian viscous yield stress based on depth-80 
averaged strain estimations (Boetticher et al., 2016; Fornes et al., 2017; Pudasaini & Mergili, 2019). However, 81 
this approach lacks the process of fragmentation and internal failure.  82 

For structured mass movements, with particle-particle cohesive strength, limited approaches are 83 
available. Aaron & Hungr developed a model for simulation of initially coherent rock avalanches (Aaron & 84 
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Hungr, 2016) as part of DAN3D Flex. Within their approach, a rigid-block momentum analysis is used to 85 
simulate initial movement of the block. After a specified time, the block is assumed to fragment, and a granular 86 
flow model using a Voellmy-type rheology is used for further runout. Their approach thus lacks a physical basis 87 
for the fragmenting behavior. Additionally, by dissecting the runout process in two stages (discrete block and 88 
granular flow), benefits of holistic two-phase generalized runout models are lost. Finally, Greco et al. (2019) 89 
presented a runout model for cohesive granular matrix. Their approach similarly lacks a description of the 90 
fragmentation process. Observations of mass movement types indicate that mixing and fracturing is not a 91 
necessary process (Varnes, 1987). Instead, block or slide movement can retain structure during their dynamic 92 
stage, as the material is able to resists the internal deformation stresses. Some models do a non-Newtonian 93 
viscous yield stress based on depth-averaged strain estimations (Boetticher et al., 2016; Fornes et al., 2017; 94 
Pudasaini & Mergili, 2019). However, this approach lacks the process of fragmentation and internal failure. 95 
Thus, within current mass movement models, there might be improvements available from assuming non-96 
fragmented movement. This would allow for description of structured mass movement dynamics. 97 

The general importance of the initially structured nature of mass movement material is observed for a 98 
variety of reasons. First, block slides are an important subset of mass movement types (Hayir, 2003; Beutner et 99 
al., 2008; Tang et al., 2008). This type of mass movement features some cohesive structure to the dynamic 100 
material in the movement phase. Secondly, during movement, the spatial gradients in local acceleration induce 101 
strain and stress that results in fracturing. This process, often called fragmentation in relation to structured mass 102 
movements, can be of crucial importance for mass movement dynamics (Davies & McSaveney, 2009; Delaney 103 
& Evans, 2014; Dufresne et al., 2018; Corominas et al. 2019). Lubricating effect from basal fragmentation can 104 
enhance velocities and runout distance significantly (Davies et al., 2006;Tang et al., 2009). Otherwise, 105 
fragmentation generally influences the rheology of the movement by altering grain-grain interactions (Zhou et 106 
al., 2005). The importance of structured material dynamics is further indicated by engineering studies on rock 107 
behavior and fracture models (Kaklauskas & Ghaboussi, 2001; Ngekpe et al., 2016; Dhanmeher, 2017) 108 

In this paper, a generalized mass movement model existing two-phase generalized debris flow equations 109 
are adapted is developed to describe runout of an arbitrarily structured two-phase Mohr-Coulomb material. The 110 
model extents on recent innovations in generalized models for mohr-coulomb mixture flow (Pudasaini, 2012; 111 
Pudasaini & Mergili, 2019). The second section of this work provides the derivation of the extensive set of 112 
equations that describe structured mass movements in a generalized manner. The third section validates the 113 
developed model by comparison with results from controlled flume runout experiments. Additionally, this 114 
section shows numerical simulation examples that highlight fragmentation behavior and its influence on runout 115 
dynamics. Finally, in section four, a discussion on the potential usage of the presented model is provided 116 
together with reflection on important opportunities of improvement. 117 

1.2. A set of debris flowmass movement equations incorporating internal structure 118 

2.11.1 Structured mass movements 119 

Initiation of gravitational mass flows occurs when sloping material is released. The instability of such 120 
materials is generally understood to take place along a failure plane (Zhang et al., 2011, Stead & Wolter, 2015). 121 
Along this plane, forces exerted due to gravity and possible seismic accelerations can act as a driving force 122 
towards the downslope direction, while a normal-force on the terrain induces a resisting force (Xie et al., 2006).  123 
When internal stress exceeds a specified criteria, commonly described using Mohr-Coulomb theory, fracturing 124 
occurs, and the material becomes dynamic. Observations indicate material can initially fracture predominantly at 125 
the failure plane (Tang et al., 2009 Davies et al., 2006). Full finite-element modelling of stability confirms no 126 
fragmentation occurs at initiation, and runout can start as a structured mass (Matsui & San, 1992; Griffiths & 127 
Lane, 1999).   128 

Once movement is initiated, the material is accelerated. Due to spatially non-homogeneous acceleration, 129 
either caused by a non-homogeneous terrain slope, or impact with obstacles, internal stress can build within the 130 
moving mass. The stress state can reach a point outside the yield surface, after which some form of deformation 131 
occurs (e.g. Plastic, Brittle, ductile) (Loehnert et al., 2008). In the case of rock or soil material, elastic/plastic 132 
deformation is limited and fracturing occurs at relatively low strain values (Kaklauskas & Ghaboussi, 2001; 133 
Dhanmeher., 2017). Rocks and soil additionally show predominantly brittle fracturing, where strain increments 134 
at maximum stress are small (Bieniawaski, 1967; Price, 2016; Husek et al., 2016). For soil matrices, cohesive 135 
bonds between grains originate from causes such as cementing, frictionl contacts and root networks (Cohen et 136 
al., 2009). Thus, the material breaks along either the grain-grain bonds or on the molecular level. In practice, this 137 
processes of fragmentation has been both observed and studied frequently. Cracking models for solids use stress-138 
strain descriptions of continuum mechanics (Menin et al., 2009; Ngekpe et al., 2016). Fracture models frequently 139 
use Smooth Particle Hydrodynamics (SPH) since a Lagrangian, meshfree solution benefits possible fracturing 140 
behavior (Maurel & Combescure, 2008; Xu et al., 2010; Osorno & Steeb, 2017). Within the model developed 141 
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below, knowledge from fracture-simulating continuum mechanical models is combined with finite element fluid 142 
dynamic models. 143 

The mohr-coulomb mixture models on which the developed model is based, can be found in Pitman & 144 
Le (2005), Pudasaini (2012), George & Iverson, 2014 and Pudasaini & Mergili (2019). While these are 145 
commonly names debris-flow models, their validity extends beyond this typical category of mass movement. 146 
This is both apparent from model applications (Mergili et al., 2018) and theoretical considerations (Pudasaini, 147 
2012). A major cause for the usage of debris flow as a term here is the assumption of unstructured flow, which 148 
we are aiming to solve in this work.  149 

21.2 Model description 150 

We define two phases, solids and fluids, within the flow, indicated by 𝑠𝑠 and 𝑓𝑓 respectively. A specified 151 
fraction of solids within this mixture is at any point part of a structured matrix. This structured solid phase, 152 
indicated by 𝑠𝑠𝑠𝑠 envelops and confines a fraction of the fluids in the mixture, indicates as 𝑓𝑓𝑓𝑓. The solids and 153 
fluids are defined in terms of the physical properties such as densities (𝜌𝜌𝑓𝑓 ,𝜌𝜌𝑠𝑠) and volume fractions (𝛼𝛼𝑓𝑓 =154 
𝑠𝑠𝑓𝑓
𝑓𝑓+𝑠𝑠

,𝛼𝛼𝑠𝑠 = 𝑓𝑓𝑠𝑠
𝑓𝑓+𝑠𝑠

). The confined fractions of their respective phases are indicated as 𝑓𝑓𝑠𝑠𝑠𝑠 and 𝑓𝑓𝑓𝑓𝑓𝑓 for the volume 155 
fraction of confined solids and fluids respectively (Equations 1,2 and 3). 156 

1. 𝛼𝛼𝑠𝑠 + 𝛼𝛼𝑓𝑓 = 1 157 
2. 𝛼𝛼𝑠𝑠�𝑓𝑓𝑠𝑠𝑠𝑠 + (1 − 𝑓𝑓𝑠𝑠𝑠𝑠)� + 𝛼𝛼𝑓𝑓 �𝑓𝑓𝑓𝑓𝑓𝑓 + �1 − 𝑓𝑓𝑓𝑓𝑓𝑓�� = 1 158 

3. �𝑓𝑓𝑠𝑠𝑠𝑠 + (1 − 𝑓𝑓𝑠𝑠𝑠𝑠)� = �𝑓𝑓𝑓𝑓𝑓𝑓 + �1 − 𝑓𝑓𝑓𝑓𝑓𝑓��  =   1 159 

For the solids, additionally internal friction angle (𝜙𝜙𝑠𝑠) and effective (volume-averaged) material size 160 
(𝑑𝑑𝑠𝑠) are defined. We additionally define 𝛼𝛼𝑐𝑐 =  𝛼𝛼𝑠𝑠 + 𝑓𝑓𝑓𝑓𝑓𝑓𝛼𝛼𝑓𝑓 and 𝛼𝛼𝑢𝑢 = (1 − 𝑓𝑓𝑓𝑓𝑓𝑓)𝛼𝛼𝑓𝑓 to indicate the solids with 161 
confined fluids and free fluid phases respectively. These phases have a volume-averaged density 𝜌𝜌𝑠𝑠𝑠𝑠,𝜌𝜌𝑓𝑓. We let 162 
the velocities of the unconfined fluid phase (𝛼𝛼𝑢𝑢 == (1 − 𝑓𝑓𝑓𝑓𝑓𝑓)𝛼𝛼𝑓𝑓) be defined as 𝑢𝑢𝑢𝑢 = (𝑢𝑢𝑢𝑢 , 𝑣𝑣𝑢𝑢). We assume 163 
velocities of the confined phases (𝛼𝛼𝑐𝑐 =  𝛼𝛼𝑠𝑠 + 𝑓𝑓𝑓𝑓𝑓𝑓𝛼𝛼𝑓𝑓) can validly be assumed to be identical to the velocities of 164 
the solid phase, 𝑢𝑢𝑐𝑐 = (𝑢𝑢𝑐𝑐, 𝑣𝑣𝑐𝑐) = 𝑢𝑢𝑠𝑠 = (𝑢𝑢𝑠𝑠, 𝑣𝑣𝑠𝑠).  A schematic depiction of the represented phases is shown in 165 
Figure 1.  166 
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167 

 168 
Figure 1 A schematic depiction of the flow contents. Both structured and unstructured solids are 169 

present. Fluids can be either free, or confined by the structured solids. 170 

A major assumption is made here concerning the velocities of both the confined and free solids (sc and 171 
s), that have a shared averaged velocity (𝑢𝑢𝑠𝑠). We deliberately limit the flow description to two phases, opposed 172 
to the innovative work of Pudasaini & Mergili (2019) that develop a multi-mechanical three-phase model. This 173 
choice is motivated by considerations of applicability (reducing the number of required parameters), the infancy 174 
of three-phase flow descriptions and finally the general observations of the validity of this assumption (Ishii, 175 
1975; Ishii & Zuber, 1979; Drew, 1983; Jakob et al, 2005; George & Iverson, 2016). 176 

The movement of the flow is described initially by means of mass and momentum conservation 177 
(Equations 4 and 5). 178 

4. 𝜕𝜕𝛼𝛼𝑐𝑐
𝜕𝜕𝜕𝜕

+ ∇ ∙ (𝛼𝛼𝑐𝑐𝒖𝒖𝑐𝑐) = 0 179 

5. 𝜕𝜕𝛼𝛼𝑢𝑢
𝜕𝜕𝜕𝜕

+ ∇ ∙ (𝛼𝛼𝑢𝑢𝒖𝒖𝑢𝑢) = 0 180 

Here we add the individual forces based on the work of Pudasaini & Hutter (2003), Pitman & Le 181 
(2005), Pudasaini (2012), Pudasaini & Fischer (2016) and Pudasaini & Mergili (2019) (Equations 6 and 7). 182 

6. 𝜕𝜕
𝜕𝜕𝜕𝜕

(𝛼𝛼𝑐𝑐𝜌𝜌𝑐𝑐𝒖𝒖𝑐𝑐) + ∇ ∙ (𝛼𝛼𝑐𝑐𝜌𝜌𝑐𝑐𝒖𝒖𝑐𝑐 ⊗ 𝒖𝒖𝑐𝑐) =  𝛼𝛼𝑐𝑐𝜌𝜌𝑐𝑐𝒇𝒇 − ∇ ∙ 𝛼𝛼𝑐𝑐𝑻𝑻𝑐𝑐 + 𝑝𝑝𝑐𝑐∇𝛼𝛼𝑐𝑐 + 𝑴𝑴𝐷𝐷𝐷𝐷 + 𝑴𝑴𝑣𝑣𝑣𝑣 183 

7. 𝜕𝜕
𝜕𝜕𝜕𝜕 �𝛼𝛼𝑢𝑢𝜌𝜌𝑓𝑓𝒖𝒖𝑢𝑢� + ∇ ∙ �𝛼𝛼𝑢𝑢𝜌𝜌𝑓𝑓𝒖𝒖𝑢𝑢 ⊗ 𝒖𝒖𝑢𝑢� =  𝛼𝛼𝑢𝑢𝜌𝜌𝑓𝑓𝒇𝒇 − ∇ ∙ 𝛼𝛼𝑢𝑢𝑻𝑻𝑢𝑢 + 𝑝𝑝𝑓𝑓∇𝛼𝛼𝑢𝑢 −𝑴𝑴𝐷𝐷𝐷𝐷 −𝑴𝑴𝑣𝑣𝑣𝑣 184 

Where 𝒇𝒇 is the body force (among which is gravity), 𝑴𝑴𝐷𝐷𝐷𝐷 is the drag force, 𝑴𝑴𝑣𝑣𝑣𝑣 is the virtual mass 185 
force and 𝑻𝑻𝑐𝑐 ,𝑻𝑻𝑢𝑢 are the stress tensors for solids with confined fluids and unconfined phases respectively. The 186 
virtual mass force described the additional work required by differential acceleration of the phases. The drag 187 
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force describes the drag along the interfacial boundary of fluids and solids. The body force describes external 188 
forces such as gravitational acceleration and boundary forces. Finally, the stress tensors describe the internal 189 
forces arising from strain and viscous processes. Both the confined and unconfined phases in the mixture are 190 
subject to stress tensors (𝑇𝑇𝑐𝑐, and 𝑇𝑇𝑢𝑢), for which the gradient acts as a momentum source. Additionally, we follow 191 
Pudasaini (2012) and add a buoyancy force (𝑝𝑝𝑐𝑐∇𝛼𝛼𝑐𝑐  and 𝑝𝑝𝑓𝑓∇𝛼𝛼𝑢𝑢). 192 

Stress Tensors, Describing internal structure 193 

Based on known two-phase mixture theory, the internal and external forces acting on the moving 194 
material are now set up. This results in several unknowns such as the stress tensors (𝑻𝑻𝑐𝑐 and 𝑻𝑻𝑢𝑢, described by the 195 
constitutive equation), the body force (𝒇𝒇), the drag force (𝑴𝑴𝐷𝐷𝐷𝐷) and the virtual mass force (𝑴𝑴𝑉𝑉𝑉𝑉). This section 196 
will first describe the derivation of the stress tensors. These describe the internal stress and viscous effects. To 197 
describe structured movements, these require a full stress-strain relationship which is not present in earlier 198 
generalized mass movements model. Afterwards, existing derivation of the body, drag and virtual mass force are 199 
altered to conform the new constitutive equation. 200 

Our first step in defining the momentum source terms in equations 6 and 7 is the definition of the fluid 201 
and solid stress tensors. Current models typically follow the assumptions made by Pitman & Le (2005), who 202 
indicate: “Proportionality and alignment of the tangential and normal forces are imposed as a basal boundary 203 
condition is assumed to hold throughout the layer of flowing material … following Rankine (1857) and Terzaghi 204 
(1936), an earth pressure relation is assumed for diagonal stress components”. Here, the earth pressure 205 
relationship is a vertically-averaged analytical solution for lateral forces exerted by an earth wall. Thus, 206 
unstructured columns of moving mixtures are assumed. Here, we aim to use the full Mohr-Coulomb relations. 207 
Describing the internal stress of soil and rock matrices is commonly achieved be elastic-plastic simulations of 208 
the materials stress-strain relationship. Since we aim to model a full stress description, the stress tensor is equal 209 
to the elasto-plastic stress tensor (Equation 8).  210 

8. 𝑻𝑻𝑐𝑐 = 𝝈𝝈  211 

Where 𝝈𝝈 is the elasto-plastic stress tensor for solids. The stress can be divided into the deviatoric and 212 
non-deviatoric contributions (Equation 9). The non-deviatoric part acts normal on any plane element (in the 213 
manner in which a hydrostatic pressure acts equal in all directions). Note that we switch to tensor notation when 214 
describing the stress-strain relationship. Thus, superscripts (𝛼𝛼 and 𝛽𝛽) represent the indices of basis vectors (x, y 215 
or z axis in Euclidian space), and obtain tensor elements. Additionally, the Einstein convention is followed 216 
(automatic summation of non-defined repeated indices in a single term). 217 

9. 𝜎𝜎𝛼𝛼𝛼𝛼 =  𝑠𝑠𝛼𝛼𝛼𝛼 + 1
3
𝜎𝜎𝛾𝛾𝛾𝛾𝛿𝛿𝛼𝛼𝛼𝛼 218 

Where 𝑠𝑠 is the deviatoric stress tensor and 𝛿𝛿𝛼𝛼𝛼𝛼 = [𝛼𝛼 = 𝛽𝛽] is the Kronecker delta. 219 

Here, we define the elasto-plastic stress (𝜎𝜎) based on a generalized Hooke-type law in tensor notation 220 
(Equation 10 and 11) where plastic strain occurs when the stress state reaches the yield criterion (Spencer, 2004; 221 
Necas & Hiavecek, 2007; Bui et al., 2008). 222 

10. 𝜖𝜖𝑒̇𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝛼𝛼𝛼𝛼 = 𝑠̇𝑠𝛼𝛼𝛼𝛼

2𝐺𝐺
+ 1−2𝜈𝜈

𝐸𝐸
𝜎̇𝜎𝑚𝑚𝛿𝛿𝛼𝛼𝛼𝛼 223 

11. 𝜖𝜖𝑝̇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝛼𝛼𝛼𝛼 = 𝜆̇𝜆 𝜕𝜕𝜕𝜕

𝜕𝜕𝜎𝜎𝛼𝛼𝛼𝛼
 224 

Where 𝜖𝜖𝑒̇𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  is the elastic strain tensor, 𝜖𝜖𝑝̇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  is the plastic strain tensor, 𝜎̇𝜎𝑚𝑚 is the mean stress rate 225 
tensor, 𝜈𝜈 is Poisson’s ratio, 𝐸𝐸 is the elastic Young’s Modulus, 𝐺𝐺 is the shear modulus, 𝑠̇𝑠 is the deviatoric shear 226 
stress rate tensor, 𝜆̇𝜆 is the plastic multiplier rate and 𝑔𝑔 is the plastic potential function. Additionally, the strain 227 
rate is defined from velocity gradients as equation 12. 228 

12. 𝜖𝜖𝑡̇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝛼𝛼𝛼𝛼 = 𝜖𝜖𝑒̇𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

𝛼𝛼𝛼𝛼 + 𝜖𝜖𝑝̇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝛼𝛼𝛼𝛼 = 1

2 �
𝜕𝜕𝑢𝑢𝑐𝑐𝛼𝛼

𝜕𝜕𝑥𝑥𝛽𝛽
− 𝜕𝜕𝑢𝑢𝑐𝑐

𝛽𝛽

𝜕𝜕𝑥𝑥𝛼𝛼� 229 

By solving equations 9, 10 and 11 for 𝜎̇𝜎, a stress-strain relationship can be obtained (Equation 13) (Bui 230 
et al., 2008). 231 

13. 𝜎̇𝜎𝛼𝛼𝛼𝛼 = 2𝐺𝐺𝑒̇𝑒𝛾𝛾𝛾𝛾𝛿𝛿𝛼𝛼𝛼𝛼 + 𝐾𝐾𝜖𝜖̇𝛾𝛾𝛾𝛾𝛿𝛿𝛼𝛼𝛼𝛼 − 𝜆̇𝜆 ��𝐾𝐾 − 2𝐺𝐺
3 �

𝜕𝜕𝜕𝜕
𝜕𝜕𝜎𝜎𝑚𝑚𝑚𝑚 𝛿𝛿𝑚𝑚𝑚𝑚𝛿𝛿𝛼𝛼𝛼𝛼 + 2𝐺𝐺 𝜕𝜕𝜕𝜕

𝜕𝜕𝜎𝜎𝛼𝛼𝛼𝛼� 232 

Where 𝑒̇𝑒 is the deviatoric strain rate (𝑒̇𝑒𝛼𝛼𝛼𝛼 = 𝜖𝜖̇𝛾𝛾𝛾𝛾 − 1
3
𝜖𝜖̇𝛼𝛼𝛼𝛼𝛿𝛿𝛼𝛼𝛼𝛼), 𝜓𝜓 is the dilatancy angle and K is the 233 

elastic bulk modulus and the material parameters defined from from 𝐸𝐸 and 𝜈𝜈 (Equation 14). 234 

14. 𝐾𝐾 = 𝐸𝐸
3(1−2𝜈𝜈)

,   𝐺𝐺 = 𝐸𝐸
2(1+𝜈𝜈)

     235 
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Fracturing or failure occurs when the stress state reaches the yield surface, after which plastic 236 
deformation occurs. The rate of change of the plastic multiplier specifies the magnitude of plastic loading and 237 
must ensure a new stress state conforms to the conditions of the yield criterion. By means of substituting 238 
equation 13 in the consistency condition ( 𝜕𝜕𝜕𝜕

𝜕𝜕𝜎𝜎𝛼𝛼𝛼𝛼
𝑑𝑑𝜎𝜎𝛼𝛼𝛼𝛼 = 0), the plastic multiplier rate can be defined (Equation 239 

15) (Bui et al., 2008). 240 

15. 𝜆̇𝜆 =
2𝐺𝐺𝜖𝜖𝛼𝛼𝛼𝛼 𝜕𝜕𝜕𝜕

𝜕𝜕𝜎𝜎𝛼𝛼𝛼𝛼
+�𝐾𝐾−

2𝐺𝐺
3 �𝜖̇𝜖

𝛾𝛾𝛾𝛾 𝜕𝜕𝜕𝜕
𝜕𝜕𝜎𝜎𝛼𝛼𝛼𝛼

𝜎𝜎𝛼𝛼𝛼𝛼𝛿𝛿𝛼𝛼𝛼𝛼

2𝐺𝐺 𝜕𝜕𝜕𝜕
𝜕𝜕𝜎𝜎𝑚𝑚𝑚𝑚

𝜕𝜕𝜕𝜕
𝜕𝜕𝜎𝜎𝑚𝑚𝑚𝑚+�𝐾𝐾−

2𝐺𝐺
3 �

𝜕𝜕𝜕𝜕
𝜕𝜕𝜎𝜎𝑚𝑚𝑚𝑚𝛿𝛿𝑚𝑚𝑚𝑚 𝜕𝜕𝜕𝜕

𝜕𝜕𝜎𝜎𝑚𝑚𝑚𝑚𝛿𝛿𝑚𝑚𝑚𝑚
 241 

The yield criteria specifies a surface in the stress-state space that the stress state can not pass, and at 242 
which plastic deformation occurs. A variety of yield criteria exist, such as Mohr-Coulomb, Von Mises, Ducker-243 
Prager and Tresca (Spencer, 2004). Here, we employ the Ducker-Prager model fitted to Mohr-Coulomb material 244 
parameters for its accuracy in simulating rock and soil behavior, and numerical stability (Spencer, 2004; Bui et 245 
al., 2008) (Equation 16 and 17). 246 

16. 𝑓𝑓(𝐼𝐼1, 𝐽𝐽2) = �𝐽𝐽2 + 𝛼𝛼𝜙𝜙𝐼𝐼1 − 𝑘𝑘𝑐𝑐 = 0 247 
17. 𝑔𝑔(𝐼𝐼1, 𝐽𝐽2) = �𝐽𝐽2 + 𝛼𝛼𝜙𝜙𝐼𝐼1 sin(𝜓𝜓)  248 

Where 𝐼𝐼1 and 𝐽𝐽2 are tensor invariants (Equation 18 and 19). 249 

18. 𝐼𝐼1 = 𝜎𝜎𝑥𝑥𝑥𝑥 + 𝜎𝜎𝑦𝑦𝑦𝑦 + 𝜎𝜎𝑧𝑧𝑧𝑧 250 
19. 𝐽𝐽2 = 1

2
𝑠𝑠𝛼𝛼𝛼𝛼𝑠𝑠𝛼𝛼𝛼𝛼 251 

Where the Mohr-Coulomb material parameters are used to estimate the Ducker-Prager parameters 252 
(Equation 20). 253 

20. 𝛼𝛼𝜙𝜙 = tan(𝜙𝜙)

�9+12 tan2 𝜙𝜙
,   𝑘𝑘𝑐𝑐 = 3𝑐𝑐

�9+12 tan2 𝜙𝜙
        254 

Using the definitions of the yield surface and stress-strain relationship, combining equations 13, 15, 16 255 
and 17, the relationship for the stress rate can be obtained (Equation 21 and 22). 256 

21. 𝜎̇𝜎 = 2𝐺𝐺𝑒̇𝑒𝛼𝛼𝛼𝛼 + 𝐾𝐾𝜖𝜖̇𝛾𝛾𝛾𝛾𝛿𝛿𝛼𝛼𝛼𝛼 − 𝜆̇𝜆 �9𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 𝛿𝛿𝛼𝛼𝛼𝛼 + 𝐺𝐺

�𝐽𝐽2
𝑠𝑠𝛼𝛼𝛼𝛼� 257 

22. 𝜆̇𝜆 =
3𝛼𝛼𝛼𝛼𝜖̇𝜖𝛾𝛾𝛾𝛾+�

𝐺𝐺
�𝐽𝐽2

�𝑠𝑠𝛼𝛼𝛼𝛼𝜖̇𝜖𝛼𝛼𝛼𝛼

27𝛼𝛼𝜙𝜙𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾+𝐺𝐺
 258 

In order to allow for the description of large deformation, the Joumann stress rate can be used, which is 259 
a stress-rate that is independent from a frame of reference (Equation 23). 260 

23. 𝜎𝜎� ̇ = 𝜎𝜎𝛼𝛼𝛼𝛼𝜔̇𝜔𝛽𝛽𝛽𝛽 + 𝜎𝜎𝛾𝛾𝛾𝛾𝜔̇𝜔𝛼𝛼𝛼𝛼 +  2𝐺𝐺𝑒̇𝑒𝛼𝛼𝛼𝛼 + 𝐾𝐾𝜖𝜖̇𝛾𝛾𝛾𝛾𝛿𝛿𝛼𝛼𝛼𝛼 − 𝜆̇𝜆 �9𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 𝛿𝛿𝛼𝛼𝛼𝛼 + 𝐺𝐺

�𝐽𝐽2
𝑠𝑠𝛼𝛼𝛼𝛼� 261 

Where 𝜔̇𝜔 is the spin rate tensor, as defined by equation 24. 262 

24. 𝜔̇𝜔𝛼𝛼𝛼𝛼 = 1
2 �

𝜕𝜕𝑣𝑣𝛼𝛼

𝜕𝜕𝑥𝑥𝛽𝛽
− 𝜕𝜕𝑣𝑣𝛽𝛽

𝜕𝜕𝑥𝑥𝛼𝛼� 263 

Due to the strain within the confined material, the density of the confined solid phase (𝜌𝜌𝑐𝑐) evolves 264 
dynamically according to equation 25. 265 

25. 𝜌𝜌𝑐𝑐 = 𝑓𝑓𝑠𝑠𝑠𝑠𝜌𝜌𝑠𝑠
𝜖𝜖𝑣𝑣0
𝜖𝜖𝑣𝑣

+ (1 − 𝑓𝑓𝑠𝑠𝑠𝑠)𝜌𝜌𝑠𝑠 + 𝑓𝑓𝑓𝑓𝑓𝑓𝜌𝜌𝑓𝑓 266 

Where 𝜖𝜖𝑣𝑣 is the total volume strain, 𝜖𝜖𝑣̇𝑣 ≈ 𝜖𝜖1 + 𝜖𝜖2 + 𝜖𝜖3, 𝜖𝜖𝑖𝑖 is one of the principal components of the 267 
strain tensor. Since we aim to simulate brittle materials, where volume strain remains relatively low, we assume 268 
that changes in density are small compared to the original density of the material (𝜕𝜕𝜕𝜕𝑐𝑐

𝜕𝜕𝜕𝜕
≪ 𝜌𝜌𝑐𝑐). 269 

Fragmentation 270 

Brittle fracturing is a processes commonly understood to take place once a material internal stress has 271 
reached the yield surface, and plastic deformation has been sufficient to pass the ultimate strength point (Maurel 272 
& Cumescure, 2008; Husek et al., 2016). A variety of approaches to fracturing exist within the literature (Ma et 273 
al., 2014; Osomo & Steeb, 2017). FEM models use strain-based approaches (Loehnert et al., 2008). For SPH 274 
implementations, as will be presented in this work, distance-based approaches have provided good results 275 
(Maurel & Cumbescure, 2008). Other works have used strain-based fracture criteria (Xu et al., 2010) . 276 
Additionally, dynamic degradation of strength parameters have been implemented (Grady & Kipp, 1980; Vuyst 277 
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& Vignjevic, 2013; Williams, 2019). Comparisons with observed fracture behavior has indicated the predictive 278 
value of these schemes (Xu et al., 2010; Husek et al., 2016). We combine the various approaches to best fit the 279 
dynamical multi-phase mass movement model that is developed. Following, Grady & Kipp (1980) and we 280 
simulate a degradation of strength parameters. Our material consists of a soil and rock matrix. We assume 281 
fracturing occurs along the inter-granular or inter-rock contacts and bonds (see also Cohen et al., 2009). Thus, 282 
cohesive strength is lost for any fractured contacts. We simulate degradation of cohesive strength according to a 283 
volume strain criteria. When the stress state lies on the yield surface (the set of critical stress states within the 6-284 
dimensional stress-space), during plastic deformation, strain is assumed to attribute towards fracturing. A critical 285 
volume strain is taken as material property, and the breaking of cohesive bonds occurs based on the relative 286 
volume strain. Following Grady & Kipp (1980) and Vuyst & Vignjevic (2013), we assume that the degradation 287 
behavior of the strength parameter is distributed according to a probability density distribution. Commonly, a 288 
Weibull-distribution is used (Williams, 2019). Here, for simplicity, we use a uniform distribution of cohesive 289 
strength between 0 and 2𝑐𝑐0, although any other distribution can be substituted. Thus, the expression governing 290 
cohesive strength becomes equation 26 291 

26. 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= �− 𝑐𝑐0
1
2

�
𝜖𝜖𝑣𝑣
𝜖𝜖𝑣𝑣0

� 

𝜖𝜖𝑐𝑐
                       𝑓𝑓(𝐼𝐼1, 𝐽𝐽2) ≥  0, 𝑐𝑐 > 0

0                                 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
 292 

Where 𝑐𝑐0 is the initial cohesive strength of the material, 𝜖𝜖𝑣𝑣0 is the initial volume, �
𝜖𝜖𝑣𝑣
𝜖𝜖𝑣𝑣0
� is the fractional 293 

volumetric strain rate, 𝜖𝜖𝑐𝑐 is the critical fractional volume strain for fracturing.  294 

 Water partitioning 295 

During the movement of the mixed mass, the solids can thus be present as a structured matrix. Within 296 
such a matrix, a fluid volume can be contained (e.g. as originating from a ground water content in the original 297 
landslide material). These fluids are typically described as groundwater flow following Darcy’s law, which poses 298 
a linear relationship between pressure gradients and flow velocity through a soil matrix. In our case, we assumed 299 
the relative velocity of water flow within the granular solid matrix as very small compared to both solid 300 
velocities and the velocities of the free fluids. As an initial condition of the material, some fraction of the water 301 
is contained within the soil matrix ( 𝑓𝑓𝑓𝑓𝑓𝑓). Additionally, for loss of cohesive structure within the solid phase, we 302 
transfer the related fraction of fluids contained within that solid structure to the free fluids.   303 

27. 𝜕𝜕𝑓𝑓𝑓𝑓𝑓𝑓
𝜕𝜕𝜕𝜕 

= −𝜕𝜕�1−𝑓𝑓𝑓𝑓𝑓𝑓�
𝜕𝜕𝜕𝜕

= �
−𝑓𝑓𝑓𝑓𝑓𝑓

𝑐𝑐0
𝑐𝑐
max (0.0,𝜖𝜖𝑣̇𝑣) 

𝜖𝜖𝑓𝑓
                𝑓𝑓(𝐼𝐼1 , 𝐽𝐽2) ≥  0, 𝑐𝑐 > 0

0                                 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
 304 

28. 𝜕𝜕𝑓𝑓𝑠𝑠𝑠𝑠
𝜕𝜕𝜕𝜕 

= −𝜕𝜕(1−𝑓𝑓𝑠𝑠𝑠𝑠)
𝜕𝜕𝜕𝜕

= �
−𝑓𝑓𝑠𝑠𝑠𝑠

𝑐𝑐0
𝑐𝑐
max (0.0,𝜖𝜖𝑣̇𝑣) 

𝜖𝜖𝑓𝑓
                𝑓𝑓(𝐼𝐼1, 𝐽𝐽2) ≥  0, 𝑐𝑐 > 0

0                                 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
 305 

Beyond changes in 𝑓𝑓𝑓𝑓𝑓𝑓 through fracturing of structured solid materials, no dynamics are simulated for 306 
in- or outflux of fluids from the solid-matrix. The initial volume fraction of fluids in the solid matrix defined by 307 
(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 and 𝑠𝑠 𝑓𝑓𝑠𝑠𝑠𝑠) remains constant throughout the simulation. The validity of this assumption can be based on the 308 
slow typical fluid velocities in a solid matrix relative to fragmented mixed fluid-solid flow velocities (Kern, 309 
1995; Saxton and Rawls, 2006). While the addition of evolving saturation would extend validity of the model, it 310 
would require implementation of pretransfer-functions for evolving material properties, which is beyond the 311 
scope of this work. An important note on the points made above is the manner in which fluids are re-partitioned 312 
after fragmentation. All fluids in fragmented solids are released, but this does not equate to free movement of the 313 
fluids or a disconnection from the solids that confined them. Instead, the equations continue to connect the solids 314 
and fluids through drag, viscous and virtual mass forces. Finally, the density of the fragmented solids is assumed 315 
to be the initially set solid density. Any strain-induced density changes are assumed small relative to the initial 316 
solid density (𝜌𝜌𝑐𝑐

𝜌𝜌𝑠𝑠
≪ 1). 317 

Fluid Stresses 318 
The fluid stress tensor is determined by the pressure and the viscous terms (Equations 29 and 30). 319 

Confined solids are assumed to be saturated and constant during the flow. 320 

29. 𝑻𝑻𝑢𝑢 = 𝑃𝑃𝑓𝑓𝑰𝑰 + 𝝉𝝉𝑓𝑓 321 
30. 𝝉𝝉𝑓𝑓 = 𝜂𝜂𝑓𝑓[∇𝒖𝒖𝑢𝑢 + (∇𝒖𝒖𝑐𝑐)𝑡𝑡] −

𝜂𝜂𝑓𝑓
𝛼𝛼𝑢𝑢
𝒜𝒜(𝛼𝛼𝑢𝑢)(∇𝛼𝛼𝑐𝑐(𝒖𝒖𝑢𝑢 − 𝒖𝒖𝑐𝑐) + (𝒖𝒖𝑐𝑐 − 𝒖𝒖𝑢𝑢)∇𝛼𝛼𝑐𝑐  ) 322 
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Where 𝑰𝑰 is the identity tensor, 𝝉𝝉𝑓𝑓 is the viscous stress tensor for fluids , 𝑃𝑃𝑓𝑓 is the fluid pressure, 𝜂𝜂𝑓𝑓 is the 323 
dynamic viscosity of the fluids and 𝒜𝒜 is the mobility of the fluids at the interface with the solids that acts as a 324 
phenomenological parameter (Pudasaini, 2012). 325 

The fluid pressure acts only on the free fluids here, as the confined fluids are moved together with the 326 
solids. In equation 30, the second term is related to the non-Newtonian viscous force induced by gradients in 327 
solid concentration. The effect as described by Pudasaini (2012) is induced by a solid-concentration gradient. In 328 
case of unconfined fluids and unstructured solids (𝑓𝑓𝑠𝑠𝑓𝑓 = 1, 𝑓𝑓𝑠𝑠𝑠𝑠 = 1). Within our flow description, we see no 329 
direct reason to eliminate or alter this force with a variation in the fraction of confined fluids or structured solids. 330 
We do only consider the interface between solids and free fluids as an agent that induces this effect, and 331 
therefore the gradient of the gradient of the solids and confined fluids (∇(𝛼𝛼𝑠𝑠 + 𝑓𝑓𝑓𝑓𝑓𝑓𝛼𝛼𝑓𝑓) = ∇αc) is used instead of 332 
the total solid phase (∇𝛼𝛼𝑠𝑠). 333 

Drag force and Virtual Mass 334 

Our description of the drag force follows the work of Pudasaini (2012) and Pudasaini (2018), where a 335 
generalized two-phase drag model is introduced and enhanced. We split their work into a contribution from the 336 
fraction of structured solids (𝑓𝑓𝑠𝑠𝑠𝑠) and unconfined fluids (1 − 𝑓𝑓𝑓𝑓𝑓𝑓) (Equation 31). 337 

31. 𝒞𝒞𝐷𝐷𝐷𝐷 = 𝑓𝑓𝑠𝑠𝑠𝑠𝛼𝛼𝑐𝑐𝛼𝛼𝑢𝑢�𝜌𝜌𝑐𝑐−𝜌𝜌𝑓𝑓�𝑔𝑔

𝑈𝑈𝑇𝑇,𝑐𝑐�𝒢𝒢(𝑅𝑅𝑅𝑅)�+𝑆𝑆𝑝𝑝
(𝒖𝒖𝑢𝑢 − 𝒖𝒖𝑐𝑐)|𝒖𝒖𝑢𝑢 − 𝒖𝒖𝑐𝑐|𝑗𝑗−1 +  (1−𝑓𝑓𝑠𝑠𝑠𝑠)𝛼𝛼𝑐𝑐𝛼𝛼𝑢𝑢�𝜌𝜌𝑠𝑠−𝜌𝜌𝑓𝑓�𝑔𝑔

𝑈𝑈𝑇𝑇,𝑢𝑢𝑢𝑢�𝒫𝒫ℱ�𝑅𝑅𝑒𝑒𝑝𝑝�+(1−𝒫𝒫)𝒢𝒢(𝑅𝑅𝑅𝑅)�+𝑆𝑆𝑝𝑝
(𝒖𝒖𝑢𝑢 − 𝒖𝒖𝑐𝑐)|𝒖𝒖𝑢𝑢 − 𝒖𝒖𝑐𝑐|𝑗𝑗−1  338 

Where 𝑈𝑈𝑇𝑇,𝑐𝑐 is the terminal or settling velocity of the structures solids, 𝑈𝑈𝑇𝑇,𝑢𝑢𝑢𝑢 is the terminal velocity of 339 
the unconfined solids, 𝒫𝒫 is a factor that combines solid- and fluid like contributions to the drag force, 𝒢𝒢 is the 340 
solid-like drag contribution, ℱ is the fluid-like drag contribution and 𝑆𝑆𝑝𝑝 is the smoothing function (Equation 32 341 
and 34). The exponent 𝑗𝑗 indicates the type of drag: linear (𝑗𝑗 = 0) or quadratic (𝑗𝑗 = 1). 342 

Within the drag, the following functions are defined: 343 

32. 𝐹𝐹 = 𝛾𝛾
180 �

𝛼𝛼𝑓𝑓
𝛼𝛼𝑠𝑠
�
3
𝑅𝑅𝑒𝑒𝑃𝑃,  𝐺𝐺 = 𝛼𝛼𝑓𝑓

𝑀𝑀�𝑅𝑅𝑒𝑒𝑝𝑝�−1 344 

33. 𝑆𝑆𝑝𝑝 = (𝒫𝒫
𝛼𝛼𝑐𝑐

+ 1−𝒫𝒫
𝛼𝛼𝑢𝑢

)𝒦𝒦 345 
34. 𝒦𝒦 = |𝛼𝛼𝑐𝑐𝒖𝒖𝑐𝑐 + 𝛼𝛼𝑢𝑢𝒖𝒖𝑢𝑢| ≈ 10 𝑚𝑚𝑠𝑠−1 346 

Where 𝑀𝑀 is a parameter that varies between 2.4 and 4.65 based on the Reynolds number (Pitman & Le, 347 
2005). The factor 𝒫𝒫 that combines solid-and fluid like contributions to the drag, is dependent on the volumetric 348 

solid content in the unconfined and unstructured materials (𝒫𝒫 = �
𝛼𝛼𝑠𝑠(1−𝑓𝑓𝑠𝑠𝑠𝑠)
𝛼𝛼𝑓𝑓�1−𝑓𝑓𝑓𝑓𝑓𝑓�

�
𝑚𝑚

 with 𝑚𝑚 ≈ 1. Additionally we 349 
assume the factor 𝒫𝒫, is zero for drag originating from the structured solids. As stated by Pudasaini & Mergili 350 
(2019) “As limiting cases: 𝒫𝒫 suitably models solid particles moving through a fluid”. In our model, the drag 351 
force acts on the unconfined fluid momentum (𝑢𝑢𝑢𝑢𝑢𝑢𝛼𝛼𝑓𝑓(1 − 𝑓𝑓𝑓𝑓𝑓𝑓)). For interactions between unconfined fluids and 352 
structured solids, larger blocks of solid structures are moving through fluids that contains solids of smaller size. 353 

Virtual mass is similarly implemented based on the work of Pudasaini (2012) and Pudasaini & Mergili 354 
(2019) (Equation 35). The adapted implementation considers the solids together with confined fluids to move 355 
through a free fluid phase. 356 

35. 𝒞𝒞𝑉𝑉𝑉𝑉𝑉𝑉 = 𝛼𝛼𝑐𝑐𝜌𝜌𝑢𝑢 �
1
2 �

1+2𝛼𝛼𝑐𝑐
𝛼𝛼𝑢𝑢

�� ��
𝜕𝜕𝑢𝑢𝑢𝑢
𝜕𝜕𝜕𝜕

+ 𝑢𝑢𝑢𝑢 ∙ ∇𝑢𝑢𝑢𝑢� − �
𝜕𝜕𝑢𝑢𝑐𝑐
𝜕𝜕𝜕𝜕

+ 𝑢𝑢𝑐𝑐 ∙ ∇𝑢𝑢𝑐𝑐�� 357 

Where 𝐶𝐶𝐷𝐷𝐷𝐷 = 1
2 �

1+2𝛼𝛼𝑐𝑐
𝛼𝛼𝑢𝑢

� is the drag coefficient. 358 

bBoundary conditions 359 

Finally, following the work of Iverson & Denlinger (2001), Pitman & Le (2005) and Pudasaini (2012), a 360 
boundary condition is applied to the surface elements that contact the flow (Equation 36). 361 

36. |𝑺𝑺| = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝜙𝜙) 362 

Where 𝑁𝑁 is the normal pressure on the surface element and 𝑺𝑺 is the shear stress. 363 

1.3 2.3 Depth-Averaging 364 

The majority of the depth-averaging in this works is analogous to the work of Pitman & Le (2005), 365 
Pudasaini (2012) and Pudasini & Mergili (2019). Depth-averaging through integration over the vertical extent of 366 
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the flow can be done based on several useful and often-used assumptions: 1
ℎ ∫ 𝑥𝑥 𝑑𝑑ℎℎ

0 = 𝑥̅𝑥 , for the velocities (𝑢𝑢𝑢𝑢 367 
and 𝑢𝑢𝑐𝑐), solid, fluid and confined fractions (𝛼𝛼𝑓𝑓, 𝛼𝛼𝑠𝑠, 𝑓𝑓𝑓𝑓𝑓𝑓 and 𝑓𝑓𝑠𝑠𝑠𝑠) and material properties (𝜌𝜌𝑢𝑢, 𝜙𝜙 and 𝑐𝑐). Besides 368 
these similarities and an identical derivation of depth-averaged continuity equations, three major differences 369 
arise. 370 

i)Fluid pressure  371 
Previous implementations of generalized two-phase debris flow equations have commonly assumed hydrostatic 372 
pressure (𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 𝑔𝑔𝑧𝑧) (Pitman & Le, 2005; Pudasaini, 2012; Abe & Konagai, 2016). Here we follow this 373 

assumption for the fluid pressure at the base and solid pressure for unstructured material (Equations 37 and 38 ).  374 

37. 𝑃𝑃𝑏𝑏𝑠𝑠,𝑢𝑢 = −(1 − 𝛾𝛾)𝛼𝛼𝑠𝑠𝑔𝑔𝑧𝑧ℎ 375 
38. 𝑃𝑃𝑏𝑏𝑢𝑢 = −𝑔𝑔𝑧𝑧ℎ 376 

Where 𝛾𝛾 = 𝜌𝜌𝑓𝑓
𝜌𝜌𝑠𝑠

 is the density ratio (not to be confused with a tensor index when used in superscript) (-).  377 

However, larger blocks of structure material can have contact with the basal topography. Due to density 378 
differences, larger blocks of solid structures are likely to move along the base (Pailhia & Pouliquen, 2009; 379 
George & Iverson, 2014). If these blocks are saturated, water pressure propagates through the solid matrix and 380 
hydrostatic pressure is retained. However, in cases of an unsaturated solid matrix that connects to the base, 381 
hydrostatic pressure is not present there. We introduce a basal fluid pressure propagation factor ℬ(𝜃𝜃𝑒𝑒𝑒𝑒𝑒𝑒 ,𝑑𝑑𝑠𝑠𝑠𝑠����, . . )  382 
which describes the fraction of fluid pressure propagated through a solid matrix (with 𝜃𝜃𝑒𝑒𝑒𝑒𝑒𝑒  the effective 383 
saturation, 𝑑𝑑𝑠𝑠𝑠𝑠���� the average size of structured solid matrix blocks). This results in a basal pressure equal to 384 
equation 39. 385 

39. 𝑃𝑃𝑏𝑏𝑐𝑐 = −(1 − 𝑓𝑓𝑠𝑠𝑠𝑠)(1 − 𝛾𝛾) (1−𝑓𝑓𝑠𝑠𝑠𝑠)𝛼𝛼𝑠𝑠
�1−𝑓𝑓𝑓𝑓𝑓𝑓�𝛼𝛼𝑓𝑓

 𝑔𝑔𝑧𝑧ℎ − 𝑓𝑓𝑠𝑠𝑠𝑠(1 − 𝛾𝛾)ℬ (𝑓𝑓𝑠𝑠𝑠𝑠)𝛼𝛼𝑠𝑠
�𝑓𝑓𝑓𝑓𝑓𝑓�𝛼𝛼𝑓𝑓

𝑔𝑔𝑧𝑧ℎ 386 

The basal pressure propagation factor (ℬ) should theoretically depend, similarly to the pedotransfer 387 
function, mostly on saturation level, as a full saturation means perfect propagation of pressure through the 388 
mixture, and low saturation equates to minimal pressure propagation (Saxton and Rawls., 2006). Additionally it 389 
should depend on pedotransfer functions, and the size distribution of structured solid matrices within the 390 
mixture. For low-saturation levels, it can be assumed no fluid pressure is retained. Combined with an assumed 391 
soil matrix height identical to the total mixture height, this results in ℬ = 0. Assuming saturation of structures 392 
solids results in a full propagation of pressures and ℬ = 1. 393 

ii)Stress-Strain relationship  394 
Depth-averaging the stress-strain relationship in equations 22 and 23 requires a vertical solution for the 395 

internal stress. First, we assume any non-normal vertical terms are zero (Equation 40). Commonly, Rankines 396 
earth pressure coefficients are used to express the lateral earth pressure by assuming vertical stress to be induced 397 
by the basal solid pressure (Equation 41 and 42) (Pitman & Le, 2005; Pudasaini, 2012; Abe & Konagai, 2016).  398 

40. 𝜎𝜎𝑧𝑧𝑧𝑧 =  𝜎𝜎𝑧𝑧𝑧𝑧 =  𝜎𝜎𝑦𝑦𝑦𝑦 =  𝜎𝜎𝑥𝑥𝑥𝑥 = 0 399 
41. 𝜎𝜎𝑧𝑧𝑧𝑧����� = 1

2
𝑃𝑃𝑏𝑏𝑠𝑠 ,𝜎𝜎

𝑧𝑧𝑧𝑧|𝑏𝑏 = 𝑃𝑃𝑏𝑏𝑠𝑠 400 

42. 𝐾𝐾𝑎𝑎 = 1−sin(𝜙𝜙)
1+sin (𝜙𝜙)

,   𝐾𝐾𝑝𝑝 = 1−sin(𝜙𝜙)
1+sin (𝜙𝜙)

 401 

Here we enhance this with Bell’s extension for cohesive soils (Equation 45) (Richard et al., 2017). This 402 
lateral normal-directed stress term is added to the full stress-strain solution. 403 

43. 𝜎𝜎𝑥𝑥𝑥𝑥���� = 𝐾𝐾𝜎𝜎𝑧𝑧𝑧𝑧|𝑏𝑏 − 2𝑐𝑐√𝐾𝐾 + 1
ℎ ∫ 𝜎𝜎𝑥𝑥𝑥𝑥

ℎ
0 𝑑𝑑ℎ 404 

Finally, the gradient in pressure of the lateral interfaces between the mixture is added as a depth-405 
averaged acceleration term (Equation 44). 406 

44. 𝑆𝑆𝑥𝑥𝑐𝑐 = 𝛼𝛼𝑐𝑐( 1
ℎ �

𝜕𝜕(ℎ𝜎𝜎𝑥𝑥𝑥𝑥)
𝜕𝜕𝜕𝜕

+ 𝜕𝜕(ℎ𝜎𝜎𝑦𝑦𝑦𝑦)
𝜕𝜕𝜕𝜕 �) + ⋯   407 

iii)Depth-averaging other terms 408 

While the majority of terms allow for depth-averaging as proposed by Pudasaini (2012), an exception 409 
arises. Depth-averaging of the vertical viscosity terms is required. The non-Newtonian viscous terms for the fluid 410 
phase were derived assuming a vertical profile in the volumetric solid phase content. Here, we alter the 411 
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derivation to use this assumption only for the non-structured solids, as opposed to the structured solids where 412 
𝜕𝜕𝛼𝛼𝑠𝑠
𝜕𝜕𝜕𝜕

= 0. 413 

45. ∫
𝜕𝜕
𝜕𝜕𝜕𝜕 �

𝜕𝜕𝛼𝛼𝑠𝑠
𝜕𝜕𝜕𝜕

(𝑢𝑢𝑢𝑢 − 𝑢𝑢𝑐𝑐)�
𝑠𝑠
𝑏𝑏 𝑑𝑑𝑑𝑑 = �

𝜕𝜕𝛼𝛼𝑠𝑠
𝜕𝜕𝜕𝜕

(𝑢𝑢𝑢𝑢 − 𝑢𝑢𝑐𝑐)�
𝑏𝑏

𝑠𝑠
= (𝑢𝑢𝑢𝑢��� − 𝑢𝑢𝑐𝑐���) �

𝜕𝜕𝛼𝛼𝑠𝑠
𝜕𝜕𝜕𝜕 �𝑏𝑏

𝑠𝑠
= (𝑢𝑢𝑢𝑢��� − 𝑢𝑢𝑐𝑐���) �

𝜕𝜕𝛼𝛼𝑠𝑠
𝜕𝜕𝜕𝜕 �𝑏𝑏

𝑠𝑠
=414 

(𝑢𝑢𝑢𝑢����−𝑢𝑢𝑐𝑐����)(1−𝑓𝑓𝑠𝑠𝑠𝑠)𝜁𝜁 𝛼𝛼𝑠𝑠����
ℎ

  415 

Where 𝜁𝜁 is the shape factor for the vertical distribution of solids (Pudasaini, 2012). Additionally, the 416 
momentum balance of Pudasaini (2012) ignores any deviatoric stress (𝜏𝜏𝑥𝑥𝑥𝑥 = 0), following Savage and Hutter 417 
(2007), and Pudasaini and Hutter (2007). Earlier this term was included by Iverson and Denlinger (2001), Pitman 418 
and Le (2005) and Abe &Kanogai (2016). Here we include these terms since a full stress-strain relationship is 419 
included. 420 

Basal frictions 421 
Additionally we add the Darcy-Weisbach friction, which is a Chezy-type friction law for the fluid phase 422 

that provides drag (Delestre et al., 2014).  This ensures that, without solid phase, a clear fluid does lose 423 
momentum due to friction from basal shear. This was successfully done in Bout et al. (2018) and was similarly 424 
assumed in Pudasaini and Fischer (2016) for fluid basal shear stress. 425 

46. 𝑆𝑆𝑓𝑓 = 𝑔𝑔 
𝑛𝑛2

𝐮𝐮𝐮𝐮|𝐮𝐮𝐮𝐮|

ℎ
4
3

  426 

Where 𝑛𝑛 is Manning’s surface roughness coefficient. 427 

Depth-averaged equations 428 

The following set of equations is thus finally achieved for depth-averaged flow over sloping terrain (Equations 429 
47-71).  430 

47. 𝜕𝜕ℎ
𝜕𝜕𝜕𝜕

+ 𝜕𝜕
𝜕𝜕𝜕𝜕

[ℎ(𝛼𝛼𝑢𝑢𝑢𝑢𝑢𝑢 + 𝛼𝛼𝑐𝑐𝑢𝑢𝑐𝑐)]  + 𝜕𝜕
𝜕𝜕𝜕𝜕

[ℎ(𝛼𝛼𝑢𝑢𝑢𝑢𝑢𝑢 + 𝛼𝛼𝑐𝑐𝑢𝑢𝑐𝑐)] = 𝑅𝑅 − 𝐼𝐼 431 

48. 𝜕𝜕𝛼𝛼𝑐𝑐ℎ
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝛼𝛼𝑐𝑐ℎ𝑢𝑢𝑐𝑐
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝛼𝛼𝑐𝑐ℎ𝑣𝑣𝑐𝑐
𝜕𝜕𝜕𝜕

= 0 432 

49. 𝜕𝜕𝛼𝛼𝑢𝑢ℎ
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝛼𝛼𝑢𝑢ℎ𝑢𝑢𝑢𝑢
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝛼𝛼𝑢𝑢ℎ𝑣𝑣𝑢𝑢
𝜕𝜕𝜕𝜕

= 𝑅𝑅 − 𝐼𝐼 433 

50. 𝜕𝜕
𝜕𝜕𝜕𝜕

[𝛼𝛼𝑐𝑐ℎ(𝑢𝑢𝑐𝑐 − 𝛾𝛾𝑐𝑐𝐶𝐶𝑉𝑉𝑉𝑉(𝑢𝑢𝑢𝑢 − 𝑢𝑢𝑐𝑐))] +  𝜕𝜕
𝜕𝜕𝜕𝜕 �𝛼𝛼𝑐𝑐ℎ�𝑢𝑢𝑐𝑐

2 − 𝛾𝛾𝑐𝑐𝐶𝐶𝑉𝑉𝑉𝑉(𝑢𝑢𝑢𝑢2 − 𝑢𝑢𝑐𝑐2)�� +  𝜕𝜕
𝜕𝜕𝜕𝜕

 �𝛼𝛼𝑐𝑐ℎ�𝑢𝑢𝑐𝑐𝑣𝑣𝑐𝑐 −434 
𝛾𝛾𝛾𝛾(𝑢𝑢𝑢𝑢𝑣𝑣𝑢𝑢 − 𝑢𝑢𝑐𝑐𝑣𝑣𝑐𝑐)�� = ℎ𝑆𝑆𝑥𝑥𝑐𝑐 435 

51. 𝜕𝜕
𝜕𝜕𝜕𝜕

[𝛼𝛼𝑐𝑐ℎ(𝑣𝑣𝑐𝑐 − 𝛾𝛾𝑐𝑐𝐶𝐶𝑉𝑉𝑉𝑉(𝑣𝑣𝑢𝑢 − 𝑣𝑣𝑐𝑐))] +  𝜕𝜕
𝜕𝜕𝜕𝜕 �𝛼𝛼𝑐𝑐ℎ�𝑢𝑢𝑠𝑠𝑣𝑣𝑠𝑠 − 𝛾𝛾𝑐𝑐𝐶𝐶𝑉𝑉𝑉𝑉(𝑢𝑢𝑢𝑢𝑣𝑣𝑢𝑢 − 𝑢𝑢𝑐𝑐𝑣𝑣𝑐𝑐)�� + 𝜕𝜕

𝜕𝜕𝜕𝜕
 �𝛼𝛼𝑐𝑐ℎ�𝑣𝑣𝑐𝑐2 −436 

𝛾𝛾𝐶𝐶𝑉𝑉𝑉𝑉(𝑣𝑣𝑢𝑢2 − 𝑣𝑣𝑐𝑐2)�� = ℎ𝑆𝑆𝑦𝑦𝑐𝑐 437 
52. 𝜕𝜕

𝜕𝜕𝜕𝜕 �𝛼𝛼𝑢𝑢ℎ �𝑢𝑢𝑢𝑢 −
𝛼𝛼𝑐𝑐
𝛼𝛼𝑢𝑢
𝐶𝐶𝑉𝑉𝑉𝑉(𝑢𝑢𝑢𝑢 − 𝑢𝑢𝑐𝑐)�� +  𝜕𝜕

𝜕𝜕𝜕𝜕 �𝛼𝛼𝑢𝑢ℎ �𝑢𝑢𝑢𝑢
2 − 𝛼𝛼𝑐𝑐

𝛼𝛼𝑢𝑢
𝐶𝐶𝑉𝑉𝑉𝑉(𝑢𝑢𝑢𝑢2 − 𝑢𝑢𝑐𝑐2) + 𝛽𝛽𝑥𝑥𝑢𝑢ℎ

2 �� + 𝜕𝜕
𝜕𝜕𝜕𝜕

 �𝛼𝛼𝑢𝑢ℎ�𝑢𝑢𝑢𝑢𝑣𝑣𝑢𝑢 −438 
𝛾𝛾𝑐𝑐𝐶𝐶𝑉𝑉𝑉𝑉(𝑢𝑢𝑢𝑢𝑣𝑣𝑢𝑢 − 𝑢𝑢𝑐𝑐𝑣𝑣𝑐𝑐)�� = ℎ𝑆𝑆𝑥𝑥𝑢𝑢 − 𝐼𝐼𝑢𝑢𝑢𝑢 439 

53. 𝜕𝜕
𝜕𝜕𝜕𝜕 �𝛼𝛼𝑢𝑢ℎ �𝑣𝑣𝑢𝑢 −

𝛼𝛼𝑐𝑐
𝛼𝛼𝑢𝑢
𝐶𝐶𝑉𝑉𝑉𝑉(𝑣𝑣𝑢𝑢 − 𝑣𝑣𝑐𝑐)�� +  𝜕𝜕

𝜕𝜕𝜕𝜕 �𝛼𝛼𝑢𝑢ℎ �𝑢𝑢𝑢𝑢𝑣𝑣𝑢𝑢 −
𝛼𝛼𝑐𝑐
𝛼𝛼𝑢𝑢
𝐶𝐶𝑉𝑉𝑉𝑉(𝑢𝑢𝑢𝑢𝑣𝑣𝑢𝑢 − 𝑢𝑢𝑐𝑐𝑣𝑣𝑐𝑐)�� +  𝜕𝜕

𝜕𝜕𝜕𝜕
 �𝛼𝛼𝑢𝑢ℎ �𝑣𝑣𝑢𝑢2 −440 

𝛾𝛾𝑐𝑐𝐶𝐶𝑉𝑉𝑉𝑉(𝑣𝑣𝑢𝑢2 − 𝑣𝑣𝑐𝑐2)  + 𝛽𝛽𝑦𝑦𝑢𝑢ℎ
2 �� = ℎ𝑆𝑆𝑦𝑦𝑢𝑢 − 𝐼𝐼𝑣𝑣𝑢𝑢 441 

 442 
54. 𝑆𝑆𝑥𝑥𝑐𝑐 = 𝛼𝛼𝑐𝑐 �𝑔𝑔𝑥𝑥 + 1

ℎ �
𝜕𝜕(ℎ𝜎𝜎𝑥𝑥𝑥𝑥)

𝜕𝜕𝜕𝜕
+ 𝜕𝜕(ℎ𝜎𝜎𝑦𝑦𝑦𝑦)

𝜕𝜕𝜕𝜕 � − 𝑃𝑃𝑏𝑏𝑐𝑐( 𝑢𝑢𝑐𝑐
|𝑢𝑢𝑐𝑐����⃗ |

tan𝜙𝜙 + ϵ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

)� − 𝜖𝜖𝛼𝛼𝑐𝑐𝛾𝛾𝑐𝑐𝑝𝑝𝑏𝑏𝑢𝑢 �
𝜕𝜕ℎ
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕� +443 

𝐶𝐶𝐷𝐷𝐷𝐷(𝑢𝑢𝑢𝑢 − 𝑢𝑢𝑐𝑐)|𝒖𝒖𝑢𝑢 − 𝒖𝒖𝑐𝑐|𝐽𝐽−1    444 
55. 𝑆𝑆𝑦𝑦𝑐𝑐 = 𝛼𝛼𝑐𝑐 �𝑔𝑔𝑦𝑦 + 1

ℎ �
𝜕𝜕(ℎ𝜎𝜎𝑥𝑥𝑥𝑥)

𝜕𝜕𝜕𝜕
+ 𝜕𝜕(ℎ𝜎𝜎𝑦𝑦𝑦𝑦)

𝜕𝜕𝜕𝜕 � − 𝑃𝑃𝑏𝑏𝑐𝑐( 𝑣𝑣𝑠𝑠
|𝑢𝑢��⃗ 𝑠𝑠|

tan𝜙𝜙 + ϵ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

)� − 𝜖𝜖𝛼𝛼𝑐𝑐𝛾𝛾𝑐𝑐𝑝𝑝𝑏𝑏𝑢𝑢 �
𝜕𝜕ℎ
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕� +445 

𝐶𝐶𝐷𝐷𝐷𝐷(𝑣𝑣𝑢𝑢 − 𝑣𝑣𝑐𝑐)|𝒗𝒗𝑢𝑢 − 𝒗𝒗𝑐𝑐|𝐽𝐽−1 446 

 447 

56. 𝑆𝑆𝑥𝑥𝑢𝑢 = 𝛼𝛼𝑢𝑢 �𝑔𝑔𝑥𝑥 −
1
2𝑃𝑃𝑏𝑏𝑢𝑢ℎ

𝛼𝛼𝑢𝑢

𝜕𝜕𝛼𝛼𝑐𝑐
𝜕𝜕𝜕𝜕

+ 𝑃𝑃𝑏𝑏𝑢𝑢
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝒜𝒜𝜂𝜂𝑢𝑢

𝛼𝛼𝑢𝑢
�2 𝜕𝜕2𝑢𝑢𝑢𝑢

𝜕𝜕𝑥𝑥2
+ 𝜕𝜕

2𝑣𝑣𝑢𝑢
𝜕𝜕𝜕𝜕𝜕𝜕

+  𝜕𝜕
2𝑢𝑢𝑢𝑢
𝜕𝜕𝑦𝑦2

− Χ𝑢𝑢𝑢𝑢
𝜖𝜖2ℎ2� + 𝒜𝒜𝜂𝜂𝑢𝑢

𝛼𝛼𝑢𝑢
�2 𝜕𝜕

𝜕𝜕𝜕𝜕 �
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝑢𝑢𝑢𝑢 − 𝑢𝑢𝑐𝑐)� +448 

𝜕𝜕
𝜕𝜕𝜕𝜕 �

𝜕𝜕𝛼𝛼𝑐𝑐
𝜕𝜕𝜕𝜕

(𝑣𝑣𝑢𝑢 − 𝑣𝑣𝑐𝑐) + 𝜕𝜕𝛼𝛼𝑢𝑢
𝜕𝜕𝜕𝜕

(𝑢𝑢𝑢𝑢 − 𝑢𝑢𝑐𝑐) �� −
𝒜𝒜𝜂𝜂𝑢𝑢𝜁𝜁𝛼𝛼𝑠𝑠(1−𝑓𝑓𝑠𝑠𝑠𝑠)(𝑢𝑢𝑢𝑢−𝑢𝑢𝑐𝑐)

𝛼𝛼𝑢𝑢ℎ2
− 𝑔𝑔 

𝑛𝑛2
uu|𝐮𝐮𝐮𝐮|

ℎ
4
3
� −

1
𝛾𝛾𝑐𝑐
𝐶𝐶𝐷𝐷𝐷𝐷(𝑢𝑢𝑢𝑢 −449 

𝑢𝑢𝑐𝑐)|𝑢𝑢𝑢𝑢����⃗ − 𝑢𝑢𝑐𝑐����⃗ |𝐽𝐽−1   450 
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57. 𝑆𝑆𝑦𝑦𝑢𝑢 = 𝛼𝛼𝑢𝑢 �𝑔𝑔𝑦𝑦 −
1
2𝑃𝑃𝑏𝑏𝑢𝑢ℎ

𝛼𝛼𝑓𝑓

𝜕𝜕𝛼𝛼𝑐𝑐
𝜕𝜕𝜕𝜕

+ 𝑃𝑃𝑏𝑏𝑢𝑢
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝒜𝒜𝜂𝜂𝑢𝑢

𝛼𝛼𝑢𝑢
�2 𝜕𝜕2𝑢𝑢𝑓𝑓

𝜕𝜕𝑦𝑦2
+  𝜕𝜕

2𝑣𝑣𝑓𝑓
𝜕𝜕𝜕𝜕𝜕𝜕

+ 𝜕𝜕
2𝑢𝑢𝑓𝑓
𝜕𝜕𝑥𝑥2

− Χ𝑢𝑢𝑓𝑓
𝜖𝜖2ℎ2� + 𝒜𝒜𝜂𝜂𝑢𝑢

𝛼𝛼𝑐𝑐
�2 𝜕𝜕

𝜕𝜕𝜕𝜕 �
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝑣𝑣𝑢𝑢 −451 

𝑣𝑣𝑐𝑐)� + 𝜕𝜕
𝜕𝜕𝜕𝜕 �

𝜕𝜕𝛼𝛼𝑐𝑐
𝜕𝜕𝜕𝜕

(𝑢𝑢𝑢𝑢 − 𝑢𝑢𝑐𝑐) + 𝜕𝜕𝛼𝛼𝑐𝑐
𝜕𝜕𝜕𝜕

(𝑣𝑣𝑢𝑢 − 𝑣𝑣𝑐𝑐) �� −
𝒜𝒜𝜂𝜂𝑢𝑢𝜁𝜁𝛼𝛼𝑠𝑠(1−𝑓𝑓𝑠𝑠𝑠𝑠)(𝑣𝑣𝑢𝑢−𝑣𝑣𝑐𝑐)

𝛼𝛼𝑢𝑢ℎ2
− 𝑔𝑔 

𝑛𝑛2
𝐯𝐯𝐮𝐮|𝐮𝐮𝐮𝐮|

ℎ
4
3
� −

1
𝛾𝛾𝑐𝑐
𝐶𝐶𝐷𝐷𝐷𝐷(𝑣𝑣𝑢𝑢 −452 

𝑣𝑣𝑐𝑐)|𝑢𝑢𝑢𝑢����⃗ − 𝑢𝑢𝑐𝑐����⃗ |𝐽𝐽−1    453 

 454 

58. 𝑃𝑃𝑏𝑏𝑐𝑐 = −(1 − 𝑓𝑓𝑠𝑠𝑠𝑠)(1 − 𝛾𝛾) (1−𝑓𝑓𝑠𝑠𝑠𝑠)𝛼𝛼𝑠𝑠
�1−𝑓𝑓𝑓𝑓𝑓𝑓�𝛼𝛼𝑓𝑓

 𝑔𝑔𝑧𝑧ℎ − 𝑓𝑓𝑠𝑠𝑠𝑠(1 − 𝛾𝛾) (𝑓𝑓𝑠𝑠𝑠𝑠)𝛼𝛼𝑠𝑠
�𝑓𝑓𝑓𝑓𝑓𝑓�𝛼𝛼𝑓𝑓

𝑔𝑔𝑧𝑧ℎ 455 
 456 

59. 𝑃𝑃𝑏𝑏𝑢𝑢 = −𝑔𝑔𝑧𝑧ℎ 457 
 458 

60. 𝛾𝛾𝑐𝑐 = 𝜌𝜌𝑢𝑢
𝜌𝜌𝑐𝑐

, 𝛾𝛾 = 𝜌𝜌𝑓𝑓
𝜌𝜌𝑠𝑠

 459 

61. 𝐶𝐶𝐷𝐷𝐷𝐷 =  𝑓𝑓𝑠𝑠𝑠𝑠𝛼𝛼𝑐𝑐𝛼𝛼𝑢𝑢�𝜌𝜌𝑐𝑐−𝜌𝜌𝑓𝑓�𝑔𝑔
𝑈𝑈𝑇𝑇,𝑐𝑐�𝒢𝒢(𝑅𝑅𝑅𝑅)�+𝑆𝑆𝑝𝑝

+ (1−𝑓𝑓𝑠𝑠𝑠𝑠)𝛼𝛼𝑐𝑐𝛼𝛼𝑢𝑢�𝜌𝜌𝑠𝑠−𝜌𝜌𝑓𝑓�𝑔𝑔

𝑈𝑈𝑇𝑇,𝑢𝑢𝑢𝑢�𝒫𝒫ℱ�𝑅𝑅𝑒𝑒𝑝𝑝�+(1−𝒫𝒫)𝒢𝒢(𝑅𝑅𝑅𝑅)�+𝑆𝑆𝑝𝑝
 460 

62. 𝑆𝑆𝑝𝑝 = (𝒫𝒫
𝛼𝛼𝑐𝑐

+ 1−𝒫𝒫
𝛼𝛼𝑢𝑢

)𝒦𝒦 461 
63. 𝒦𝒦 = |𝛼𝛼𝑐𝑐𝒖𝒖𝑐𝑐 + 𝛼𝛼𝑢𝑢𝒖𝒖𝑢𝑢| 462 
64. 𝐹𝐹 = 𝛾𝛾

180 �
𝛼𝛼𝑓𝑓
𝛼𝛼𝑠𝑠
�
3
𝑅𝑅𝑒𝑒𝑃𝑃,  𝐺𝐺 = 𝛼𝛼𝑓𝑓

𝑀𝑀�𝑅𝑅𝑒𝑒𝑝𝑝�−1,  𝑅𝑅𝑒𝑒𝑝𝑝 = 𝜌𝜌𝑓𝑓𝑑𝑑𝑈𝑈𝑡𝑡
𝜂𝜂𝑓𝑓

, 𝑁𝑁𝑅𝑅 = �𝑔𝑔𝑔𝑔𝐻𝐻𝜌𝜌𝑓𝑓
𝛼𝛼𝑓𝑓𝜂𝜂𝑓𝑓

, 𝑁𝑁𝑅𝑅𝑅𝑅 = �𝑔𝑔𝑔𝑔𝐻𝐻𝜌𝜌𝑓𝑓
𝐴𝐴𝜂𝜂𝑓𝑓

 463 

65. 𝐶𝐶𝑉𝑉𝑉𝑉 = �
1
2 �

1+2𝛼𝛼𝑐𝑐
𝛼𝛼𝑢𝑢

�� 464 

66. 𝜎𝜎� ̇ = 𝜎𝜎𝛼𝛼𝛼𝛼𝜔̇𝜔𝛽𝛽𝛽𝛽 + 𝜎𝜎𝛾𝛾𝛾𝛾𝜔̇𝜔𝛼𝛼𝛼𝛼 +  2𝐺𝐺𝑒̇𝑒𝛼𝛼𝛼𝛼 + 𝐾𝐾𝜖𝜖̇𝛾𝛾𝛾𝛾𝛿𝛿𝛼𝛼𝛼𝛼 − 𝜆̇𝜆 �9𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 𝛿𝛿𝛼𝛼𝛼𝛼 + 𝐺𝐺

�𝐽𝐽2
𝑠𝑠𝛼𝛼𝛼𝛼� 465 

67. 𝜆̇𝜆 =
3𝛼𝛼𝛼𝛼𝜖̇𝜖𝛾𝛾𝛾𝛾+�

𝐺𝐺
�𝐽𝐽2

�𝑠𝑠𝛼𝛼𝛼𝛼𝜖̇𝜖𝛼𝛼𝛼𝛼

27𝛼𝛼𝜙𝜙𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾+𝐺𝐺
 466 

68. 𝐾𝐾 = 𝐸𝐸
3(1−2𝜈𝜈)

,𝐺𝐺 = 𝐸𝐸
2(1+𝜈𝜈)

   467 

69. 𝜎𝜎𝛼𝛼𝛼𝛼 =  𝑠𝑠𝛼𝛼𝛼𝛼 + 1
3
𝜎𝜎𝛾𝛾𝛾𝛾𝛿𝛿𝛼𝛼𝛼𝛼 468 

70. 𝜖𝜖̇𝛼𝛼𝛼𝛼 = 1
2 �

𝜕𝜕𝑣𝑣𝛼𝛼

𝜕𝜕𝑥𝑥𝛽𝛽
− 𝜕𝜕𝑣𝑣𝛽𝛽

𝜕𝜕𝑥𝑥𝛼𝛼�       𝜔̇𝜔𝛼𝛼𝛼𝛼 = 1
2 �

𝜕𝜕𝑣𝑣𝛼𝛼

𝜕𝜕𝑥𝑥𝛽𝛽
− 𝜕𝜕𝑣𝑣𝛽𝛽

𝜕𝜕𝑥𝑥𝛼𝛼� 469 

71. 𝛼𝛼𝜙𝜙 = tan(𝜙𝜙)

�9+12 tan2 𝜙𝜙
       𝑘𝑘𝑐𝑐 = 3𝑐𝑐

�9+12 tan2 𝜙𝜙
 470 

Where Χ is the shape factor for vertical shearing of the fluid (Χ ≈ 3 in Iverson & Denlinger, 2001), 𝑅𝑅 is the 471 
precipitation rate and 𝐼𝐼 is the infiltration rate.  472 
 473 

Closing the equations 474 
Viscosity is estimated using the empirical expression from O’Brien and Julien (1985), which relates dynamic 475 
viscosity to the solid concentration of the fluid (Equation 72). 476 

72. 𝜂𝜂 =  𝛼𝛼𝑒𝑒𝛽𝛽𝛽𝛽𝑠𝑠  477 

Where α is the first viscosity parameter and β the second viscosity parameter. 478 

Finally, the settling velocity of small (d < 100 𝜇𝜇𝜇𝜇) grains is estimated by Stokes equations for a 479 
homogeneous sphere in water. For larger grains ( > 1mm),the equation by Zanke (1977) is used (Equation 30). 480 

73. 𝑈𝑈𝑇𝑇  = 10 
𝜂𝜂
𝜌𝜌𝑓𝑓

2

𝑑𝑑

⎝

⎜
⎛�1 +

0.01�
�𝜌𝜌𝑠𝑠− 𝜌𝜌𝑓𝑓�

𝜌𝜌𝑓𝑓
𝑔𝑔𝑑𝑑3�

𝜂𝜂
𝜌𝜌𝑓𝑓

− 1

⎠

⎟
⎞ 481 

In which UT is the settling (or terminal) velocity of a solid grain, η is the dynamic viscosity of the fluid, 482 
ρf is the density of the fluid, ρs is the density of the solids, d is the grain diameter (𝑚𝑚) 483 

 484 
21.4 Implementation in the Material Point Method numerical scheme 485 
Implementing the presented set of equations into a numerical scheme requires considerations of that 486 

schemes limitations and strengths (Stomakhin et al., 2013). Fluid dynamics are almost exclusively solved using 487 
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an Eulerian finite element solution (Delestre et al., 2014; Bout et al., 2018). The diffusive advection part of such 488 
scheme typically doesn’t degrade the quality of modelling results. Solid material however is commonly 489 
simulated with higher accuracy using an Lagrangian finite element method or discrete element method (Maurel 490 
& Cumbescure, 2008; Stomakhin et al., 2013). Such schemes more easily allow for the material to maintain its 491 
physical properties during movement. Additionally, advection in these schemes does not artificially diffuse the 492 
material since the material itself is discretized, instead of the space (grid) on which the equations are solved. In 493 
our case, the material point method (MPM) provides an appropriate tool to implement the set of presented 494 
equations (Bui et al., 2008; Maurel & Cumbescure, 2008; Stomakhin et al., 2013). Numerous existing modelling 495 
studies have implemented in this method (Pastor et al., 2007; Pastor et al., 2008; Abe & Kanogai, 2016). Here, 496 
we use the MPM method to create a two-phase scheme. This allows the usage of finite elements aspects for the 497 
fluid dynamics, which are so successfully described by the that method (particularly for water in larger areas, see 498 
Bout et al., 2018). 499 

Mathematical Framework  500 

The mathematic framework of smooth-particles solves differential equations using discretized volumes 501 
of mass represented by kernel functions (Libersky & Petschek, 1991; Bui et al., 2008; Stomakhin et al., 2013). 502 
Here, we use the cubic spline kernel as used by Monaghan (2000) (Equation 74). 503 

74. 𝑊𝑊(𝑟𝑟, ℎ) =

⎩
⎨

⎧
10

7𝜋𝜋ℎ2 �1 − 3
2
𝑞𝑞2 + 3

4
𝑞𝑞3�                         0 ≤ |𝑞𝑞| ≥ 2        

10
28𝜋𝜋ℎ2

(2 − 𝑞𝑞)3                                       1 ≤  |𝑞𝑞| < 2       
0                                                       |𝑞𝑞| ≥ 2 | 𝑞𝑞 < 0

 504 

Where r is the distance, h is the kernel size and 𝑞𝑞 is the normalized distance (𝑞𝑞 = 𝑟𝑟
ℎ
) 505 

 506 
Figure 2 Example of a kernel function used as integration domain for mathematical operations. 507 

Using this function mathematical operators can be defined. The average is calculated using a weighted 508 
sum of particle values (Equation 75) while the derivative depends on the function values and the derivative of 509 
the kernel by means of the chain rule (Equation 76) (Libersky & Petschek, 1991; Bui et al., 2008). 510 

75. 〈𝑓𝑓(𝑥𝑥)〉 = ∑
𝑚𝑚𝑗𝑗

𝜌𝜌𝑗𝑗
𝑓𝑓�𝑥𝑥𝑗𝑗�𝑊𝑊(𝑥𝑥 − 𝑥𝑥𝑗𝑗 , ℎ)𝑁𝑁

𝑗𝑗=1  511 

76. 〈𝜕𝜕𝜕𝜕(𝑥𝑥)
𝜕𝜕𝜕𝜕

〉 = ∑
𝑚𝑚𝑗𝑗

𝜌𝜌𝑗𝑗
𝑓𝑓�𝑥𝑥𝑗𝑗�

𝜕𝜕𝑊𝑊𝑖𝑖𝑖𝑖

𝜕𝜕𝑥𝑥𝑖𝑖
𝑁𝑁
𝑗𝑗=1  512 

Where 𝑊𝑊𝑖𝑖𝑖𝑖 = 𝑊𝑊(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗 , ℎ) is the weight of particle j to particle I, 𝑟𝑟 = � 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗�  is the distance 513 
between two particles. The derivative of the weight function is defined by equation 77. 514 

77. 𝜕𝜕𝑊𝑊𝑖𝑖𝑖𝑖

𝜕𝜕𝑥𝑥𝑖𝑖
=

𝑥𝑥𝑖𝑖−𝑥𝑥𝑗𝑗
𝑟𝑟

𝜕𝜕𝑊𝑊𝑖𝑖𝑖𝑖

𝜕𝜕𝜕𝜕
     515 

Using these tools, the momentum equations for the particles can be defined (Equations 78-84). Here, we 516 
follow Monaghan (1999) and Bui et al. (2008) for the definition of artificial numerical forces related to stability. 517 
Additionally, stress-based forces are calculated on the particle level, while other momentum source terms are 518 
solved on a Eulerian grid with spacing ℎ (identical to the kernel size).  519 

78. 𝑑𝑑𝑣𝑣𝑖𝑖
𝛼𝛼

𝑑𝑑𝑑𝑑
= 1

𝑚𝑚𝑖𝑖
�𝐹𝐹𝑔𝑔 + 𝐹𝐹𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔� + ∑ 𝑚𝑚𝑗𝑗 �

𝜎𝜎𝑖𝑖
𝛼𝛼𝛼𝛼

𝜌𝜌𝑖𝑖
2 +

𝜎𝜎𝑗𝑗
𝛼𝛼𝛼𝛼

𝜌𝜌𝑗𝑗
2 + 𝐹𝐹𝑖𝑖𝑖𝑖𝑛𝑛𝑅𝑅𝑖𝑖𝑖𝑖

𝛼𝛼𝛼𝛼 + Π𝑖𝑖𝑖𝑖𝛿𝛿𝛼𝛼𝛼𝛼�𝑁𝑁
𝑗𝑗=1

𝜕𝜕𝑊𝑊𝑖𝑖𝑖𝑖

𝜕𝜕𝑥𝑥𝑖𝑖
𝛽𝛽  520 

79. 𝜖𝜖̇𝛼𝛼𝛼𝛼 = 1
2 �∑

𝑚𝑚𝑗𝑗

𝜌𝜌𝑗𝑗
�𝑣𝑣𝑗𝑗𝛼𝛼 − 𝑣𝑣𝑖𝑖𝛼𝛼�𝑁𝑁

𝑗𝑗=1
𝜕𝜕𝑊𝑊𝑖𝑖𝑖𝑖

𝜕𝜕𝑥𝑥𝑖𝑖
𝛽𝛽 + ∑

𝑚𝑚𝑗𝑗

𝜌𝜌𝑗𝑗
�𝑣𝑣𝑗𝑗

𝛽𝛽 − 𝑣𝑣𝑖𝑖
𝛽𝛽�𝑁𝑁

𝑗𝑗=1
𝜕𝜕𝑊𝑊𝑖𝑖𝑖𝑖

𝜕𝜕𝑥𝑥𝑖𝑖
𝛼𝛼 �       521 
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80. 𝜔̇𝜔𝛼𝛼𝛼𝛼 = 1
2 �∑

𝑚𝑚𝑗𝑗

𝜌𝜌𝑗𝑗
�𝑣𝑣𝑗𝑗𝛼𝛼 − 𝑣𝑣𝑖𝑖𝛼𝛼�𝑁𝑁

𝑗𝑗=1
𝜕𝜕𝑊𝑊𝑖𝑖𝑖𝑖

𝜕𝜕𝑥𝑥𝑖𝑖
𝛽𝛽 − ∑

𝑚𝑚𝑗𝑗

𝜌𝜌𝑗𝑗
�𝑣𝑣𝑗𝑗

𝛽𝛽 − 𝑣𝑣𝑖𝑖
𝛽𝛽�𝑁𝑁

𝑗𝑗=1
𝜕𝜕𝑊𝑊𝑖𝑖𝑖𝑖

𝜕𝜕𝑥𝑥𝑖𝑖
𝛼𝛼 � 522 

81. 𝑑𝑑𝜎𝜎𝛼𝛼𝛼𝛼
𝑑𝑑𝑑𝑑

= 𝜎𝜎𝑖𝑖
𝛼𝛼𝛼𝛼𝜔̇𝜔𝑖𝑖

𝛽𝛽𝛽𝛽 + 𝜎𝜎𝑖𝑖
𝛾𝛾𝛾𝛾𝜔̇𝜔𝑖𝑖

𝛼𝛼𝛼𝛼 +  2𝐺𝐺𝑖𝑖𝑒̇𝑒𝑖𝑖
𝛼𝛼𝛼𝛼 + 𝐾𝐾𝑖𝑖𝜖𝜖̇𝛾𝛾𝛾𝛾𝛿𝛿𝑖𝑖

𝛼𝛼𝛼𝛼 − 𝜆𝜆𝚤̇𝚤 �9𝐾𝐾𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝜓𝜓𝑖𝑖  𝛿𝛿𝛼𝛼𝛼𝛼 + 𝐺𝐺𝑖𝑖
�𝐽𝐽2𝑖𝑖

𝑠𝑠𝑖𝑖
𝛼𝛼𝛼𝛼� 523 

82. 𝜆𝜆𝚤̇𝚤 =
3𝛼𝛼𝛼𝛼𝜖̇𝜖𝑖𝑖

𝛾𝛾𝛾𝛾+�
𝐺𝐺𝑖𝑖

�𝑗𝑗2𝑖𝑖 
�𝑠𝑠𝑖𝑖

𝛼𝛼𝛼𝛼𝜖𝜖𝚤̇𝚤
𝛼𝛼𝛼𝛼

27𝛼𝛼𝜙𝜙𝐾𝐾𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝜓𝜓𝑖𝑖+𝐺𝐺𝑖𝑖
 524 

Where 𝑖𝑖, 𝑗𝑗 are indices indicating the particle, Π𝑖𝑖𝑖𝑖 is an artificial viscous force as defined by equations 83 525 
and 84 and 𝐹𝐹𝑖𝑖𝑖𝑖𝑛𝑛𝑅𝑅𝑖𝑖𝑖𝑖

𝛼𝛼𝛼𝛼 is an artificial stress term as defined by equations 85 and 86. 526 

83. Π𝑖𝑖𝑖𝑖 = �
𝛼𝛼Π𝑢𝑢𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝜙𝜙𝑖𝑖𝑖𝑖+𝛽𝛽Π𝜙𝜙

2

𝜌𝜌𝑖𝑖𝑖𝑖
    𝑣𝑣𝑖𝑖𝑖𝑖  ∙ 𝑥𝑥𝑖𝑖𝑖𝑖 < 0

0                                  𝑣𝑣𝑖𝑖𝑖𝑖  ∙ 𝑥𝑥𝑖𝑖𝑖𝑖 ≥ 0
 527 

84. 𝜙𝜙𝑖𝑖𝑖𝑖 =
ℎ𝑖𝑖𝑖𝑖𝑣𝑣𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖

�𝑥𝑥𝑖𝑖𝑖𝑖�
2
+0.01ℎ𝑖𝑖𝑖𝑖

2  ,    𝑥𝑥𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗  ,   𝑣𝑣𝑖𝑖𝑖𝑖 = 𝑣𝑣𝑖𝑖 − 𝑣𝑣𝑗𝑗   ,    ℎ𝑖𝑖𝑖𝑖 = 1
2 �ℎ𝑖𝑖 + ℎ𝑗𝑗� 528 

85. 𝐹𝐹𝑖𝑖𝑖𝑖𝑛𝑛𝑅𝑅𝑖𝑖𝑖𝑖
𝛼𝛼𝛼𝛼 = �

𝑊𝑊𝑖𝑖𝑖𝑖

𝑊𝑊(𝑑𝑑0,ℎ)�
𝑛𝑛

(𝑅𝑅𝑖𝑖
𝛼𝛼𝛼𝛼 + 𝑅𝑅𝑗𝑗

𝛼𝛼𝛼𝛼) 529 

86. 𝑅𝑅𝚤𝚤
𝛾𝛾𝛾𝛾����� = − 𝜖𝜖0𝜎𝜎𝚤𝚤

𝛾𝛾𝛾𝛾������

𝜌𝜌𝑖𝑖
2  530 

Where 𝜖𝜖0 is a small parameter ranging from 0 to 1, 𝛼𝛼Π and 𝛽𝛽Π are constants in the artificial viscous 531 
force (often chosen close to 1), 𝑢𝑢𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is the speed of sound in the material. 532 

The conversion from particles to gridded values and reversed depends on a grid basis function that 533 
weighs the influence of particle values for a grid center. Here, a function derived from dyadic products of one-534 
dimensional cubic B-splines is used as was done by Steffen et al. (2008) and Stomakhin et al. (2013) (Equation 535 
84). 536 

87. 𝑁𝑁(𝒙𝒙) = 𝑁𝑁(𝑥𝑥𝑥𝑥) ∗ 𝑁𝑁(𝑥𝑥𝑦𝑦),    𝑁𝑁(𝑥𝑥) = �

1
2

|𝑥𝑥|3 − 𝑥𝑥2 + 2
3

                            0 ≤ |𝑥𝑥| ≥ 2      

−1
6

|𝑥𝑥|3 + 𝑥𝑥2 − 2|𝑥𝑥| + 4
3

         1 ≤  |𝑥𝑥| < 2    
0                                                       |𝑥𝑥| ≥ 2 | 𝑥𝑥 = 0

 537 

Particle placement 538 

Particle placement is typically done in a constant pattern, as initial conditions have some constant 539 
density. The simplest approach is a regular square or triangular network, with particles on the corners of the 540 
network. Here, we use an approach that is more adaptable to spatially-varying initial flow height. The 𝑅𝑅2 541 
sequence approaches, with a regular quasirandom sequence, a set of evenly distributed points within a square 542 
(Roberts, 2020) (Equation 85). 543 

88. 𝑥𝑥𝑛𝑛 = 𝑛𝑛𝜶𝜶 𝑚𝑚𝑚𝑚𝑚𝑚 1 ,  𝜶𝜶 = �
𝟏𝟏
𝒄𝒄𝒑𝒑

, 𝟏𝟏
𝒄𝒄𝒑𝒑𝟐𝟐
� 544 

Where 𝑥𝑥𝑛𝑛 is the relative location of the nth particle within a gridcell, 𝑐𝑐𝑝𝑝 = �
9+√69
18 �

1
3 + �

9−√69
18 �

1
3 ≈545 

1.32471795572 is the plastic constant.  546 

 547 
Figure 3 Example particle distributions using the 𝑅𝑅2 sequence, note that, while not all particles are 548 

equidistant, the method produces distributed particle patterns that adapt well to varying density. 549 

The number of particles placed for a particular flow height depends on the particle volume 𝑉𝑉𝐼𝐼, which is 550 
taken as a global constant during the simulation. 551 
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23.  Flume Experiments 552 
2.13.1 Flume Setup 553 

In order to validate the presented model, several controlled experiments were performed and reproduced 554 
using the developed equations. The flume setup consists of a steep incline, followed by a near-flat runout plane 555 
(Figure 3). A massive obstacle is placed on the separation point of the two planes. ThisOn the separation point of 556 
the two planes, a massive and attached obstacle is present that blocks the path of two fifths of the width of the 557 
moving material. For the exact dimensions of both the flume parts and the obstacle, see figure 3. 558 

 559 
Figure 4 The dimensions of the flume experiment setup used in this work. 560 

Two tests were performed whereby a cohesive granular matrix was released at the upper part of the 561 
flume setup. Both of these volumes had dimensions of 0.2x0.3x0.25 meter (height,length,width). For both of 562 
these materials, a mixture high-organic content silty-clay soils where used. The materials strength parameters 563 
were obtained using tri-axial testing (Cohesion, internal friction angle Youngs modulus and Poisson Ration. The 564 
first set of materials properties where 𝑐𝑐 = 26.7 kPa and 𝜙𝜙 = 28°. The second set materials properties where 𝑐𝑐 =565 
18.3 kPa and 𝜙𝜙 = 27°. For both of the events, pre-and post release elevations models were made using 566 
photogrammetry. The model was set up to replicate the situations using the measured input parameters. 567 
Numerical settings were chosen as �𝛼𝛼𝑠𝑠 = 0.5,𝛼𝛼𝑓𝑓 = 0.5, 𝑓𝑓𝑠𝑠𝑠𝑠 = 1.0, 𝑓𝑓𝑓𝑓𝑓𝑓 = 1.0,𝜌𝜌𝑓𝑓 = 1000,𝜌𝜌𝑠𝑠 = 2400,𝐸𝐸 = 12 ∙568 
106 𝑃𝑃𝑃𝑃,𝐾𝐾 = 23 ∙ 106 𝑃𝑃𝑃𝑃,𝜓𝜓 = 0,𝛼𝛼Π = 1,𝛽𝛽Π = 1,Χ, 𝜁𝜁, 𝑗𝑗 = 2,𝑢𝑢𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 600,𝑑𝑑𝑑𝑑 = 10,𝑉𝑉𝐼𝐼 = , ℎ = 10,𝑛𝑛 =569 
0.1,α = 1, β = 10, M = 2.4,ℬ = 0, NR = 15000,𝑁𝑁𝑅𝑅𝑅𝑅 = 30�. Calibration was performed by means of input 570 
variation. The solid fraction, and elastic and bulk modulus were varied between 20 and 200 percent of their 571 
original values with increments of 10 percent. Accuracy was assessed based on the percentage accuracy of the 572 
deposition (comparison of modelled vs observed presence of material). 573 

2.23.2 Results 574 

Both the mapped extent of the material after flume experiments, as the simulation results are shown in 575 
figure 5. Calibrated values for the simulations are {𝛼𝛼𝑠𝑠 = 0.45, 𝐸𝐸 = 21.6 ∙ 106 𝑃𝑃𝑃𝑃,𝐾𝐾 = 13.8 ∙ 106 𝑃𝑃𝑃𝑃}. 576 
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 577 
Figure 5 A comparison of the final deposits of the simulations and the mapped final deposits and cracks 578 

within the material. From left to right: Photogrammetry mosaic, comparison of simulation results to mapped 579 
flume experiment, strain, final strength fraction remaining. 580 

As soon as the block of material impacts the obstacle, stress increases as the moving objects is 581 
deformed. This stress quickly propagates through the object. Within the scenario with lower cohesive strength, 582 
as soon as the stress reached beyond the yield strength, degradation of strength parameters took place. In the 583 
results, a fracture line developed along the corner of the obstacle into the length direction of the moving mass. 584 
Eventually, this fracture developed to half the length of the moving body and severe deformation resulted. As 585 
was observed from the tests, the first material experienced a critical fracture while the second test resulted in 586 
moderate deformation near the impact location. Generally, the results compare well with the observed patters, 587 
although the exact shape of the fracture is not replicated. Several reasons might be the cause of the moderately 588 
accurate fracture patterns. Other studies used a more controlled setup where uncertainties in applied stress and 589 
material properties where reduced. Furthermore, the homogeneity of the material used in the tests can not 590 
completely assumed. Realistically, minor alterations in compression used to create the clay blocks has left spatial 591 
variation in density, cohesion and other strength parameters.  592 

4.3. Numerical Tests 593 

34.1 Numerical Setup 594 

In order to further investigate some of the behaviors of the model, and highlight the novel types of mass 595 
movement dynamics that the model implements, several numerical tests have been performed. The setup of these 596 
tests is shown in figure 6. 597 
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    598 

 599 
Figure 6 The dimensions of the numerical experiment setups used in this work. Setup 1 (left) and Setup 2 (right) 600 

Numerical settings were chosen for three different blocks with equal volume but distinct properties. 601 
Cohesive strength and the bulk modulus were varied (see figure 6). Remaining parameters were chosen as 602 
�𝛼𝛼𝑠𝑠 = 0.5,𝛼𝛼𝑓𝑓 = 0.5, 𝑓𝑓𝑠𝑠𝑠𝑠 = 1.0, 𝑓𝑓𝑓𝑓𝑓𝑓 = 1.0,𝜌𝜌𝑓𝑓 = 1000 𝑘𝑘𝑘𝑘𝑚𝑚−3,𝜌𝜌𝑠𝑠 = 2400 𝑘𝑘𝑘𝑘𝑚𝑚−3,𝐸𝐸 = 1𝑒𝑒12 𝑃𝑃𝑃𝑃 ,𝜓𝜓 = 0,𝛼𝛼Π =603 
1,𝛽𝛽Π = 1,Χ, 𝜁𝜁, 𝑗𝑗 = 2,𝑢𝑢𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 600 𝑚𝑚𝑠𝑠−1,𝑑𝑑𝑑𝑑 = 10 𝑚𝑚,𝑉𝑉𝐼𝐼 , ℎ = 10 𝑚𝑚,𝑛𝑛 = 0.1,α = 1, β = 10, M = 2.4,ℬ =604 
0, NR = 15000,𝑁𝑁𝑅𝑅𝑅𝑅 = 30�. 605 

4.23.1 Results 606 

Several time-slices for the described numerical scenarios are shown in figure 7 and 8.  607 
 608 
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 609 

Figure 7 Several time-slices for numerical scenarios 2(A/B/C). See figure 6 for the dimensions and 610 
terrain setup. 611 
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 612 
Figure 8 Several time-slices for numerical scenarios 3(A/B/C). See figure 6 for the dimensions and terrain setup. 613 
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Fractures develop in the mass movements based on acceleration differences and cohesive strength. For 614 
scenario 2A, the stress state does not reach beyond the yield surface, and all material is moved as a single block. 615 
Scenario 2B, which features lowered cohesive strength, fractures and the masses separate based on the 616 
acceleration caused by slopes.  617 

Fracturing behavior can occur in MPM schemes due to numerical limitations inherent in the usage of a 618 
limited integration domain. Here, validation of real physically-based fracturing is present in the remaining 619 
cohesive fraction. This value only reduces in case of plastic yield, where increasing strain degrades strength 620 
parameters according to our proposed criteria. Numerical fractures would thus have a cohesive fraction of 1. In 621 
all simulated scenarios, such numerical issues were not observed. 622 

Fragmentation occurs due to spatial variation in acceleration in the case of scenario 3A and 3B. For 623 
scenario 3A, the yield surface is not reached and the original structure of the mass is maintained during 624 
movement. For 3C, fragmentation is induced be lateral pressure and buoyancy forces alone. Scenario 3B 625 
experiences slight fragmentation at the edges of the mass, but predominantly fragments when reaching the 626 
valley, after which part of the material is accelerated to count to the velocity of the mass. For all the shown 627 
simulations, fragmentation does not lead to significant phase separation since virtual mass and drag forces 628 
converge the separate phase velocities to their mixture-averaged velocity. The strength of these forces partly 629 
depends on the parameters, effects of more immediate phase-separation could by studied if other parameters are 630 
used as input. 631 

54. Discussion 632 

A variety of existing landslide models simulate the behavior of lateral connected material through a 633 
non-linear, non-Newtonian viscous relationship (Boetticher et al., 2016; Fornes et al., 2017; Pudasaini & 634 
Mergili, 2019; Greco et al., 2019). These relationships include a yield stress and are usually regularized to 635 
prevent singularities from occurring. While this approach is incredibly powerful, it is fundamentally different 636 
from the work proposed here. These viscous approaches do not distinguish between elastic or plastic 637 
deformation, and typically ignore deformations if stress is insufficient. Additionally, fracturing is not 638 
implemented in these models. The approach taken in this work attempts to simulate a full stress-strain 639 
relationship with Mohr-Coulomb type yield surface. This does provides new types of behavior and can be 640 
combined with non-Newtonian viscous approaches as mentioned above. A major downside to the presented 641 
work is the steep increase in computational time required to maintain an accurate and stable simulation. 642 
Commonly, an increase of near a 100 times has been observed during the development of the presented model. 643 

The presented model shows a good likeness to flume experiments and numerical tests highlight 644 
behavior that is commonly observed for landslide movements. There are however, inherent scaling issues and the 645 
material used in the flume experiments is unlikely to form larger landslide masses. The measured physical 646 
strength parameters of the material used in the flume experiments would not allow for sustained structured 647 
movement at larger scales. There is thus the need for more, real-scale, validation cases. The application of the 648 
presented type of model is most directly noticeable for block-type landslide movements that have fragmented 649 
either upon impact of some obstacle or during transition phase. Of importance here is that the moment of 650 
fragmentation is often not reported in studies on fast-moving landslides, potentially due to the complexities in 651 
knowing the details on this behavior from post-event evidence. Validation would therefore have to occur on 652 
cases where deposits are not fully fragmented, indicating that this process was ongoing during the whole 653 
movement duration. The spatial extent of initiation and deposition would then allow validation of the model. 654 
Another major opportunity for validation of the novel aspects of the model is the full three-dimensional 655 
application to landslides that were reported to have lubrication effects due to fragmentation of lower fraction of 656 
flow due to shear.  657 

An important point of consideration in the development of complex multi-process generalized models is 658 
the applicability. As a detailed investigative research tool, these models provide a basic scenario of usage. 659 
However, both for research and beyond this, in applicability in disaster risk reduction decision support, the 660 
benefit drawn from these models depends on the practical requirement for parameterization and the 661 
computational demands for simulation. With an increasing complexity in the description of multi-process 662 
mechanics comes the requirement of more measured or estimated physical parameters. Inspection of the 663 
presented method shows that in principle, a minor amount of new parameters are introduced. The cohesive 664 
strength, a major focus of the model, becomes highly important depending on the type of movement being 665 
investigated. Additionally, the bulk and elastic modulus are required. These three parameters are common 666 
simulation parameters in geotechnical research and can be obtained from common tests on sampled material 667 
(Alsalman et al., 2015). Finally, the basal pressure propagation parameter (ℬ) is introduced. However, within 668 
this work, the value of this parameter is chosen to have a constant value of one. As a results, the model does 669 
require additional parameters, although these are relatively easy to obtain with accuracy.  670 
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There are a variety of aspects of the model that could be significantly improved. Here, we list several 671 
major opportunities of future research. 672 

1) Groundwater mechanics 673 
The presented model allows for the a solid or granular matrix to be present within the flow. We have 674 
assumed the flows in and out of these matrices are sufficiently small to be ignored. In reality, there is a 675 
fluid flux in and out of structured solids. This could occur both due to pressure differences as due to 676 
stress and strain of the structured solids. Implementing this kind of mechanics requires a dynamic, 677 
solid-properties dependent, soil water retention curve (Van Looy et al., 2017). An example of MPM soil 678 
mechanics with dynamic groundwater implementation can be found in Bandera et al. (2016). 679 

2) Implementing Entrainment and Deposition 680 
Current equations for entrainment (erosion with major grain-grain interactions) is limited to 681 
unstructured mixture flows (Iverson, 2012; Iverson & Ouyang, 2015; Cuomo et al., 2016; Pudasaini & 682 
Fischer, 2016). Extending these models to include a contribution from structured solids would be 683 
required to implement entrainment in the presented work. 684 

3) Separation of phases 685 
A major assumption in the presented work is that the velocities of structured solids, free solids and 686 
confined fluids are all equal. In reality, there might be separation of structured and free solids phases. 687 
Additionally, we already discussed the possibility of in-and outflux of confined fluids from the solid 688 
matrix. Recent innovations on three-phase mixture flows might be used to extend the presented work to 689 
a three, four or five-phase model by separating free solids, confined fluids or adding a Bingham-viscous 690 
solid-fluid phase (Pudasaini & Mergili, 2019). However, while this would implement an additional 691 
process, it would significantly increase complexity of the equations (in an exponential manner with 692 
relation to the number of phases) and the numerical solutions which could hinder practical applicability. 693 

4) Application to large, slow moving landslides. 694 
When confined fluids would act as a distinct phase, guided by the mechanics of water flow in granular 695 
matrix, ground water pressures and movement through the structured solids could be described. This 696 
might enable the model to do detailed deformation/groundwater simulation of large slow-moving 697 
landslides. 698 

5) Numerical Improvements  699 
Numerical techniques for particle-based discretized methods (SPH, MPM) have been proposed in the 700 
literature. A common issue is numerical fracturing of materials when particle strain increases beyond 701 
the length of the kernel function. Then, the connection between particles is lost and fracturing occurs as 702 
an artifact of the numerical method. This issue is partly solved by the artificial stress term as is also 703 
used by Bui et al. (2008). Additionally, geometric subdivide, as used by Xu et al. (2012) and Li et al. 704 
(2015), could counter these artificial fractures. Implementing this technique does require additional 705 
work to maintain mass and momentum conservation.  706 

6) Three-dimensional solutions 707 
In a variety of scenarios, the assumptions made in depth-averaged application of flow models are 708 
invalid. A common example is the impact of mass movements into lakes, or other large water bodies. In 709 
such cases, the vertical velocity and concentration variables are not well-described by their depth-710 
averaged counterparts. Additionally, the lubrication effect of basal fragmentation of landslides due to 711 
shear can not be described without velocity-profiles and a vertical stress-solution. Full three-712 
dimensional application would therefore have the potential to increase understanding on these important 713 
processes. 714 

5. Conclusions 715 
We have presented a novel generalized mass movement model that can describe both unstructured 716 

mixture flows and Structured movements of Mohr-Coulomb type material. The presented equations are part of 717 
the continuous development of the OpenLISEM Hazard model, an open-source tool for physically-based multi-718 
hazard simulations. The model builds on the works of Pudasaini (2012) and Bui et al. (2008) to develop a single 719 
holistic set of equations. The model was implemented in a GPU-based Material Point Method (MPM) Code. The 720 
equations were validated on flume experiments and numerical tests, that highlight the new movement dynamics 721 
possible with the presented model. The integration of cohesive structure and a full stress-strain relationship for 722 
the structured solids allows for movement of block-type slides as a single whole. Interactions with terrain, other 723 
flow masses or obstacles lead to elastic-plastic deformation and eventually fragmentation. This type of self-724 
alteration of flow properties is novel with mass movement models. Although the presented equations can provide 725 
additional detail for specific mass movement types, applicability of the model for real events need to be 726 
investigated as computational costs are significantly increased.  727 
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The presented simulation both validate the basic behavior of the model, as well as highlight the types of 728 
flow dynamics made possible by the presented equations. The models dependency of breaking to cohesive 729 
strength and internal friction angle matches the flume experiments. The numerical examples show commonly-730 
described behavior for landslide movements. Although the simulations compare well to the flume experiments, 731 
validation is required for real-scale application to various types of mass movements. Additionally, the presented 732 
equations still lack descriptions of processes that might become important. Separating the fluid and solid phases 733 
such as done by Pudasaini & Mergili (2019), could improve flow dynamics and phase separation. With added 734 
ground-water mechanics, such as done in Bandera et al. (2016), slow-moving landslide simulations might be 735 
described.  736 

6. Code and Data Availability 737 
All code and data used within this work are made open-source as part of the continuous development of 738 

the OpenLISEM Hazard model under the GNU General Public Licence v3.0. The code and the data are hosted 739 
on Github (https://github.com/bastianvandenbout/OpenLISEM-Hazard-2.0-Pre-Release). Both binaries 740 
and a copy of the source code are also available on Sourceforge, where the manual and compilation guide can 741 
similarly be found (https://sourceforge.net/projects/lisem/). Finally, more information can be found at the blog 742 
(https://blog.utwente.nl/lisem/) 743 

The software, and its user interface, are written for windows, but platform independent libraries are 744 
used and compilation might be performed on other platforms.  745 
Hardware requirements for the usage of the model are a 64-bit Operating system that can compile all required 746 
external libraries (see the manual for a full list and description). A graphical processing unit conforming to at 747 
least the OpenCL 1.2 standard and support for both OpenGL 4.2 and OpenGL/OpenCL interoperability. 748 
Additionally, an approximate 500 mb of hard drive space and 750 mb of memory must be available. 749 

  750 
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Appendix A. List of Symbols 751 

ℎ is the flow height 752 
𝑠𝑠 is the solid phase 753 
𝑓𝑓 is the fluid phase 754 
𝑠𝑠𝑠𝑠 is the structured solid phase 755 
𝑓𝑓𝑓𝑓 is the confined fluid phase 756 
𝜌𝜌𝑓𝑓 is the density of fluids 757 
𝜌𝜌𝑠𝑠 is the density of solids 758 
𝛼𝛼𝑓𝑓 is the volumetric fluid phase fraction 759 
𝛼𝛼𝑠𝑠 is the volumetric solid phase fraction  760 
𝑓𝑓𝑠𝑠𝑠𝑠 is the fraction of solids that is structured (confining) 761 
𝑓𝑓𝑓𝑓𝑓𝑓is the fraction of fluids that is confined 762 
𝛼𝛼𝑐𝑐 is the volumetric fraction of solids, structured solids and confined fluids 763 
𝛼𝛼𝑢𝑢 is the volumetric fraction of free fluids (unconfined phase). 764 
𝜌𝜌𝑠𝑠𝑠𝑠 is the volume-averaged density of the solids and confined fluids 765 
𝒖𝒖𝒖𝒖 is the velocity of the unconfined phase (free fluids) 766 
𝒖𝒖𝒄𝒄 is the velocity of the solids, confining solids and confined fluids  767 
𝒖𝒖𝒔𝒔 is the velocity of the solids 768 
𝒇𝒇 is the body force 769 
𝑴𝑴𝐷𝐷𝐷𝐷 is the drag force 770 
𝑴𝑴𝑣𝑣𝑣𝑣 is the virtual mass force 771 
𝑻𝑻𝑐𝑐 is the stress tensor for eh solids, confining solids and confined fluids 772 
𝑻𝑻𝑢𝑢 is the stress tensor for the free fluid phase 773 
𝝈𝝈 is the stress tensor 774 
𝑠̇𝑠 is the deviatoric shear stress rate tensor 775 
𝛿𝛿 is the Kronecker delta 776 
𝜖𝜖𝑝̇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  is the plastic strain rate 777 
𝜖𝜖𝑒̇𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  is the elastic strain rate 778 
𝜆𝜆 is the plastic multiplier rate 779 
𝑔𝑔 is the plastic potential function 780 
𝜖𝜖𝑡̇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is the total strain rate 781 
𝑒̇𝑒 is the deviatoric strain rate 782 
𝜈𝜈 is Poisson’s ratio 783 
𝐸𝐸 is the elastic Young’s Modulus 784 
𝐺𝐺 is the shear modulus 785 
𝐾𝐾 is the Bulk elastic modulus 786 
𝑓𝑓(𝐼𝐼1, 𝐽𝐽2) is the yield surface, or yield criterion 787 
𝑔𝑔(𝐼𝐼1, 𝐽𝐽2) is the plastic potential function 788 
𝜓𝜓  is the dilatancy angle 789 
𝐼𝐼1 is the first stress invariant 790 
𝐽𝐽2 is the second stress invariant 791 
𝛼𝛼𝜙𝜙 is the first Ducker-Prager material constant 792 
𝑘𝑘𝑐𝑐 is the second Ducker-Prager material constant 793 
𝜔̇𝜔 is the spin rate tensor 794 
𝜖𝜖𝑣𝑣0 is the initial volumetric strain 795 
𝜖𝜖𝑣𝑣 is the volumetric strain 796 
𝑐𝑐0 is the initial cohesion 797 
𝝉𝝉𝑓𝑓 is the fluid Gauchy stress tensor 798 
𝑃𝑃𝑓𝑓 is the fluid pressure 799 
𝜂𝜂𝑓𝑓 is the fluids dynamic viscosity 800 
𝒜𝒜 is the mobility of the fluid at the interface 801 
𝒞𝒞𝐷𝐷𝐷𝐷 is the drag coefficient 802 
𝑈𝑈𝑇𝑇,𝑐𝑐 is the settling velocity of the solids, structured solids and confined fluids 803 
𝑈𝑈𝑇𝑇,𝑢𝑢𝑢𝑢 is the settling velocity of the unstructured solids 804 
ℱ is the drag contribution from solid-like drag 805 
𝒢𝒢 is the drag contribution from fluid-like drag 806 
𝑆𝑆𝑝𝑝 is the smoothing function 807 
𝒦𝒦  is the absolute total mass flux 808 
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𝑀𝑀�𝑅𝑅𝑒𝑒𝑝𝑝� is an empirical function weakly dependent on the Reynolds number 809 
𝒫𝒫 the partitioning parameter for the fluid and solid like contributions to drag 810 
𝑚𝑚 is an exponent for 𝒫𝒫 811 
𝒞𝒞𝑉𝑉𝑉𝑉𝑉𝑉  is the virtual mass coefficient 812 
|𝑺𝑺| is the norm of the shear force 813 
𝑁𝑁  is the normal force on a plane element 814 
𝑔𝑔 is the gravitational acceleration 815 
𝑃𝑃𝑏𝑏𝑠𝑠,𝑢𝑢 is the basal pressure from  816 
𝑃𝑃𝑏𝑏𝑢𝑢 is the basal pressure from the free fluids 817 
𝑃𝑃𝑏𝑏𝑐𝑐 is the basal pressure from the solids, structured solids and confined fluids 818 
ℬ is the pressure propagation factor for structured solids 819 
𝐾𝐾𝑎𝑎 is the active lateral earth pressure coefficient 820 
𝐾𝐾𝑝𝑝 is the passive lateral earth pressure coefficient 821 
𝜁𝜁 is a shape factor for the vertical gradient in solid concentration 822 
𝑛𝑛 is Mannings surface roughness coefficient 823 
Χ is the shape factor for the vertical fluid velocity profile 824 
𝑅𝑅𝑒𝑒𝑝𝑝 is the particle Reynolds Number 825 
𝑁𝑁𝑅𝑅 is the Reynolds Number  826 
𝑁𝑁𝑅𝑅𝑅𝑅 is the interfacial Reynolds Number 827 
𝐻𝐻 is the typical height of the flow 828 
𝐿𝐿 is the typical length of the flow 829 
α is the first viscosity parameter 830 
β the second viscosity parameter 831 
d is the grain diameter 832 
𝑊𝑊 is the kernel weight function 833 
𝑟𝑟 is the distance 834 
ℎ is the kernel width (not to be confused with the flow height) 835 
𝑞𝑞 is the normalized particle distance 836 
Π𝑖𝑖𝑖𝑖 is an artificial viscosity term 837 
𝐹𝐹𝑖𝑖𝑖𝑖𝑛𝑛𝑅𝑅𝑖𝑖𝑖𝑖

𝛼𝛼𝛼𝛼 is an artificial stress term 838 
𝜖𝜖0 is a constant parameter for the artificial stress term 839 
𝛼𝛼Π and 𝛽𝛽Π are constants in the artificial viscous force 840 
𝑢𝑢𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is the speed of sound in the material 841 
𝑁𝑁(𝒙𝒙)  is the Grid-kernel function 842 
𝑐𝑐𝑝𝑝 is the plastic coefficient 843 
 844 
   845 

  846 
 847 
 848 

 849 
 850 

  851 
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Appendix B. Stress Remapping 852 

If, either due to degradation of strength parameters, or building numerical errors, the state of the stress 853 
tensor lies beyond the yield surface, a correction must be applied. We implement the correction scheme used by 854 
Bui et al. (2008). This scheme considers two primary ways in which the stress can have an undesired state: 855 
Tension cracking, and imperfectly plastic stress.  856 

Tension Cracking 857 
In the case of tension cracking, the stress state has moved beyond the apex of the yield surface, as 858 

described by Chen & Mizuno (1990). The employed solution in this case is to re-map the stress tensor along the 859 
𝐼𝐼1 axis to be at this apex. The apex is provided by the yield function (Equation 89) 860 

89. −𝛼𝛼𝜙𝜙𝐼𝐼1 + 𝑘𝑘𝑐𝑐 < 0 861 

To solve for this condition, the non-deviatoric stress state is increased (since 𝐼𝐼1 −
𝑘𝑘𝑐𝑐
𝛼𝛼𝜙𝜙

 is negative) to lie 862 
perpendicular to the apex point on the 𝐼𝐼1 axis (Equation ). 863 

90. 𝜎𝜎𝛾𝛾𝛾𝛾� = 𝑟𝑟𝑠𝑠𝛾𝛾𝛾𝛾 − 1
3 �𝐼𝐼1 −

𝑘𝑘𝑐𝑐
𝛼𝛼𝜙𝜙
� 864 

Imperfect Plastic Stress 865 

Imperfect plastic stress described the state where the stress tensor lies above the apex, but beyond the 866 
yield criterion, thus have more stress than supported by the failure criteria that is set. This criteria is simply the 867 
yield surface itself (Equation 91). 868 

91. −𝛼𝛼𝜙𝜙𝐼𝐼1 + 𝑘𝑘𝑐𝑐 < �𝐽𝐽2 869 

For this state, re-mapping is done by scaling of the 𝐽𝐽2 value (Equations 92, 93 and 94). 870 

92. 𝑟𝑟 =  −𝛼𝛼𝜙𝜙𝐼𝐼1+𝑘𝑘𝑐𝑐
�𝐽𝐽2

 871 

93. 𝜎𝜎𝛾𝛾𝛾𝛾� = 𝑟𝑟𝑠𝑠𝛾𝛾𝛾𝛾 + 1
3
𝐼𝐼1 872 

94. 𝜎𝜎𝑥𝑥𝑥𝑥� = 𝑟𝑟𝑠𝑠𝑥𝑥𝑥𝑥 ,𝜎𝜎𝑥𝑥𝑥𝑥� = 𝑟𝑟𝑠𝑠𝑥𝑥𝑥𝑥 ,𝜎𝜎𝑥𝑥𝑥𝑥� = 𝑟𝑟𝑠𝑠𝑦𝑦𝑦𝑦 873 

 874 
 875 

  876 
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Appendix C. Software Implementation 877 

The model presented in this article is part of the continued development of the OpenLISEM modelling 878 
tools. The most recent set of equations of implemented in the open-source alpha version of OpenLISEM Hazard 879 
2. Here, we describe the details of the implementation of the model into software. 880 

Hybrid MPM 881 

We utilize the MPM framework to be able to discretize part of the equations on a Eulerian regural grid, 882 
and part of the equations on the Lagrangian particles. Our distinct take on this method is the representation of the 883 
fluid phase completely as a finite element solution, while solids are simulated as discrete particle volumes. This 884 
allows the model to use the major benefits that are present when depth-averaged fluid flow is simulated in a grid. 885 
Both numerical efficiency, and high-accuracy coupling with hydrology are lacking in particle methods. For the 886 
solid phase, non-dissapative advection, fracturing and stiffness is a major benefit of the MPM approach. Since 887 
our model assumed confined fluids share their velocity with the solids, we advect the confined fluids as part of 888 
the particles. Total fluid volume is then calculated from the free fluids in the finite element data, and the gridded 889 
particle data. A flowchart of the software setup is provided in figure 6.  890 

891 
Figure 9 The sub-steps taken by the software to complete a single step of numerical integration. 892 

Finite element solution 893 

We use a regular cartesian grid to describe the modelling domain. Terrain and cell-boundary based 894 
variables are re-produces using the MUSCL piecewise linear reconstruction (Delestre et al., 2014). For each cell-895 
boundary, a left and right estimation of acceleration terms, velocity updates and new discharges is made. The left 896 
estimates use left-reconstructed variables while the other uses right-reconstructed variables. The final average 897 
flux through the boundary determines actual mass and momentum transfer. Local acceleration is averaged from 898 
the right estimate of the left boundary and left estimate of the right boundary. An additional benefit of the used 899 
scheme is the automatic estimation of continuous and discontinuous terrain. The piecewise linear reconstructions 900 
do not guarantee smooth terrain, for sharp locally variable terrain, pressure terms from vertical walls arise that 901 
block momentum. These terms allow for better estimation of momentum loss by barriers, but can be turned off if 902 
required for the simulated scenario.  903 
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 904 
Figure 10 Piecewise linear reconstruction is used by the MUSCL scheme to estimate values of flow 905 

heights, velocities and terrain at cell-boundaries. 906 

GPU acceleration using OpenCL/OpenGL 907 
In order to create a more efficient setup, both the finite element and particle interactions are performed 908 

on the GPU. We utilize the OpenCL API to compile kernels written in c-style language. These kernels are 909 
compiled at the start of the simulation, and thereby allow for easy customization by users. While the usage of 910 
OpenCL 1.1 forces the usage of single precision floating point numbers, it allows for a wider range of GPU types 911 
to be supported. Finite element solutions on the GPU are straightforward, as maps are a basic data storage type 912 
for graphical processing units. Particles are stored as single-precision floating point arrays. Within the 913 
framework of MPM, iteration of particles within a kernel is required for each timestep and particle. This 914 
effectively means 𝑂𝑂(𝑛𝑛2) operations are required. Significant efficiency improvements are obtained by pre-915 
calculation sorting. Particles are sorted based on their location within the finite element grid. Based on the id of 916 
the gridcell, a bitonic mergesort is performed. This sorting algorithm works seamlessly on parallel architecture 917 
and operates as 𝑂𝑂�𝑛𝑛𝑛𝑛𝑛𝑛𝑔𝑔2(𝑛𝑛)� (Batcher, 1968). The then, a raster is allocated to store the first indexed occurrence 918 
within the sorted list of particles of that gridcell. Since the kernel used for the presented work extends at most to 919 
a full width of two gridcells, we must iterate over all particles present in 9 neighboring grid cells.  920 

 921 

Figure 11 By limiting the kernel with and sorting particles before calculation, only the distance of 922 
particles in neighboring cells need to be checked, significantly reducing computational load, particularly for 923 
larger datasets. 924 

A final benefit to the usage of OpenCL is direct access to simulation variables for visualization in 925 
OpenGL using the OpenGL/OpenCL interoperability functionality. The built-in viewing window of OpenLISEM 926 
Hazard 2.0 alpha directly uses the data to draw both particles, shapefiles and grid data using customizable 927 
shaders written in the openGL shader language. 928 
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