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Abstract.  

 

An objective approach is presented for scoring coupled climate simulations through an evaluation against satellite and 

reanalysis datasets during the satellite era (i.e. since 1979). Here, the approach is described and applied to available Coupled 10 

Model Intercomparison Project (CMIP) archives and the Community Earth System Model Version 1 Large Ensemble 

archives, with the goal of benchmarking model performance and its evolution across CMIP generations. The approach 

adopted is designed to minimize the sensitivity of scores to internal variability, external forcings, and model tuning. Toward 

this end, models are scored based on pattern correlations of their simulated mean state, seasonal contrasts, and ENSO 

teleconnections. A broad range of feedback-relevant fields is considered and summarized on various timescales 15 

(climatology, seasonal, interannual) and physical realms (energy budget, water cycle, dynamics). Fields are also generally 

chosen for which observational uncertainty is small compared to model structural differences and error.  

 

Highest mean variable scores across models are reported for well-observed fields such as sea level pressure, precipitable 

water, and outgoing longwave radiation while the lowest scores are reported for 500 hPa vertical velocity, net surface energy 20 

flux, and precipitation minus evaporation. The fidelity of CMIP models is found to vary widely both within and across CMIP 

generations. Systematic increases in model fidelity across CMIP generations are identified with the greatest improvements in 

dynamic and energetic fields. Examples include 500 hPa eddy geopotential height and relative humidity, and shortwave 

cloud forcing. Improvements for ENSO scores are substantially greater than for the annual mean or seasonal contrasts. 

 25 

Analysis output data generated by this approach is made freely available online for a broad range of model ensembles, 

including the CMIP archives and various single-model large ensembles. These multi-model archives allow for an exploration 

of relationships between metrics across a range of simulations while the single-model large ensemble archives enable an 

estimation of the influence of internal variability on reported scores. The entire output archive, updated regularly, can be 

accessed at: http://webext.cgd.ucar.edu/Multi-Case/CMAT/index.html . 30 
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1 Introduction 

  Global climate models were first developed over half a century ago (Hunt et al. 1968, Manabe et al. 1975) and have 

provided insight into the climate system on a range of issues including the roles of various physical processes in the climate 

system and the attribution of climate events. They also are key tools for near-term initialized prediction and long-term 

boundary forced projections. Given their relevance for addressing issues of considerable socioeconomic importance, climate 35 

models are increasing being looked to for guiding policy-relevant decisions on long timescales and on regional levels. Many 

barriers exist however, chief amongst which are the biases in climate model representation of the physical system.  

  Adequate evaluation of climate models is nontrivial however. A key obstacle is that the longest observational records tend 

to monitor temperature and sea level pressure and therefore are not directly related to many of the fields thought to govern 

climate variability and change, such as for example cloud radiative forcing and rainfall (Burrows et al. 2018). Global direct 40 

observations of more physically relevant fields exist but are available exclusively from satellite and thus are limited in 

duration, with some of the most important data records beginning in recent decades. Over longer timescales, uncertainties in 

forcing external to the climate system further complicate model evaluation. Benchmarks of model performance must 

therefore be designed to deal with associated uncertainty by minimizing their influence.  

1.1 Motivations 45 

  Climate modeling centers continually refine their codes with the goal of improving their models. The Climate Model 

Intercomparison Project (CMIP) is an effort to systematically coordinate and release targeted climate model experiments of 

high interest in the science community and has thus far provided three major releases, including CMIP3 (Meehl et al. 2007), 

CMIP5 (Taylor et al. 2012), and CMIP6 versions (Eyring et al. 2016). Major advances have also recently been made in key 

observationally-based climate datasets (as discussed herein). An opportunity has therefore arisen to take stock of these 50 

simulation archives and conduct a retrospective assessment of progress that has been made and challenges that remain.   

While individual models are widely scrutinized, systematic surveys of model performance are relatively rare. It is the goal of 

this study to provide an initial benchmarking of models across CMIP generations using newly available and process-relevant 

observations that contextualizes model-observation differences with respect to internal variability and observational 

uncertainty. An additional goal is to provide related diagnostic outputs directly to the community. Both the graphical and 55 

data outputs generated may potentially be incorporated into broader community packages such as ESMValTool (Eyring et al. 

2020), thus providing a unique evaluation of fully-coupled physical climate states that includes both climatological means 

and variability, that accounts for key uncertainties, and that benchmarks models across CMIP generations.   

1.2 Challenges 

A number of challenges exist for efforts aimed at comprehensively assessing climate model fidelity. Observations of many 60 

fields that are central to climate variability and change (e.g. cloud microphysics, entrainment rates, aerosol-cloud 

https://doi.org/10.5194/gmd-2020-1
Preprint. Discussion started: 28 February 2020
c© Author(s) 2020. CC BY 4.0 License.



Confidential manuscript submitted to Journal of Geophysical Model Development 

 

3 
 

interactions) are not observed on the global, multi-decadal timescales required to comprehensively evaluate models. Fields 

for which observations do exist often contain observational uncertainties that are large, particularly at times when the spatial 

sampling of observing networks is poor (e.g. SST datasets) or for fields that contain significant uncertainty in satellite-based 

estimation (e.g. surface turbulent and radiative fluxes). For instances in which extended data records are unavailable, 65 

associated sensitivity to internal variability and externally imposed forcing, which also contains major uncertainties, must be 

considered, and evaluation of trends are particularly susceptible. In addition, model tuning approaches vary widely across 

centers (e.g. Schmidt et al. 2017), and in instances where climate fields are explicitly tuned, direct comparison against 

observations is unwarranted.  

1.3 Approach 70 

In light of these challenges and opportunities, an effort is made here to evaluate models with best-estimates of feedback 

relevant fields. The effort is further motivated by reported shifts in model behavior, such as for example the apparent 

increase in climate sensitivity to carbon dioxide in some models (Gettelman et al. 2019, Golaz et al. 2019, Neubauer et al. 

2019). Do such shifts accompany systematic improvements in models and if so, in what fields? It is also of a more general 

interest to quantify canonical biases in models, their changes in successive model generations, and persistent biases affecting 75 

the most recent generations of climate models. The specific questions addressed here therefore include: what improvements 

have occurred across model generations and what persistent bias remain? What process-relevant well-observed fields are 

models most skillful in reproducing? To what extent are apparent improvements and persisting biases robustly detectible in 

the presence of internal climate variability, particularly as they relate to satellite records? 

 80 

2.0 Methods 

 

The analysis approach consists of computing a range of scores based on pattern correlations encompassing three climatic 

timescales: the climatological annual mean (annual), seasonal mean contrasts (JJA-DJF), and ENSO teleconnection patterns- 

computed from the 12-month July through June mean regressions against Niño3.4 sea surface temperatures (SST). Variables 85 

are classified according to three variable types (or realms) corresponding to the energy budget, water cycle, and dynamics. 

To reduce the influence of internal variability, the time period over which these fields are computed is at least 20 years, 

though the availability of some datasets allows for the use of longer period, further reducing susceptibility to internal 

variability. Contemporaneous time intervals are also selected as allowed for maximum overlap between available 

observations and simulated fields. The variables selected for consideration are chosen based on availability and judgement of 90 

their importance in simulating climate variability and change. In part this judgement is based on a recent community 

solicitation (Burrows et al. 2018) and many of the fields included are deemed by experts to be of highest relevance. 
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2.1 Observational Datasets 

 95 

 

The Energy Budget Realm 

Energy budget fields considered consist broadly of TOA radiative fluxes and cloud forcing, vertically integrated atmospheric 

energy divergence and tendency, and surface heat fluxes. Radiative fluxes at top of atmosphere (TOA) are taken from the 

Clouds and Earth’s Radiant Energy System (CERES) Energy Balance and Filled Version 4.1 dataset (EBAFv4.1, Loeb et al. 100 

2018). The dataset offers a number of improvements over earlier versions and datasets, with improved angular distribution 

models and scene identification, but is perhaps most notable for its recently updated derivation of cloud radiative forcing 

(CF). Historically CF has been estimated from differencing cloudy and neighboring clear regions, with the effect of aliasing 

meteorological contrasts between the regions (whereas models merely remove clouds from their radiative transfer scheme 

using collocated meteorology). In the EBAFv4.1, fields from NASA’s GEOS-5 reanalysis are used to estimate fluxes and CF 105 

for collocated atmospheric conditions.   From CERES, the TOA net shortwave (ASR), outgoing longwave (OLR), and net 

(RT) radiative fluxes are used. In addition, estimates of shortwave CF (SWCF) and longwave CF (LWCF) are used.  

 

Derived from the ERA-Interim reanalysis (Dee et al. 2011), vertical integrals of atmospheric energy are used to both assess 

the total energy divergence within the atmosphere (∇•AE) and its tendency (∂AE/ ∂t). This provides important insight into 110 

the regional generation of atmospheric transports and their cumulative influence on the global energy budget (e.g. Fasullo 

and Trenberth 2008). They are also an intrinsic component necessary for computing the net surface energy fluxes (as the 

residual of RT, ∇•AE , and ∂AE/ ∂t). Given the challenges of directly observing the net surface flux, a residual method is 

likely the best available for large-scale evaluation of the budget. The method has been demonstrated to achieve an accuracy 

on par with direct observations on reginal scales and have proven superior on large scales, where the atmospheric 115 

divergences on which they rely become small, converging to zero by definition in the global mean (Trenberth and Fasullo, 

2017). Uncertainty estimation of CERES fluxes is well documented (Loeb et al. 2018). 

 

The Water Cycle Realm 

Water cycle fields considered include precipitation (P), evaporation minus precipitation (EP), precipitable water (PRW), 120 

evaporation (LH), and near-surface relative humidity (RHS). As global evaporation fields from direct observations and 

estimated from satellite also contain substantial uncertainty, precipitation minus evaporation is estimated instead from the 

vertically integrated divergence of moisture simulated in ERA-Interim, which is also arguably the most accurate means of 

evaluating large scale patterns and variability (Trenberth and Fasullo 2013). Precipitation is estimated from the Global 

Precipitation Climatology Project (Huffman et al. 2013) Climate Data Record (Adler et al. 2016). The improved version 125 

takes advantage of improvements in the gauge records used for calibration and indirect precipitation estimation from 
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longwave radiances provided by NOAA leo-IR data. For other water cycle fields, output from the European Centre for 

Medium Range Weather Forecasts (ECMWF) Reanalysis Version 5 (ERA5, Hersbach et al. 2019) is used. ERA5 is the 

successor to ERAI, increasing the resolution of reported fields, the range of assimilated fields from recent satellite 

instruments, and accuracy as compared against a broad range of observations for various measures. For example, a 130 

comparison using the metrics described above applied to satellite data (CERES, GPCP) demonstrate reduced mean state 

annual and seasonal biases as compared to ERAI (not shown).  

 

The Dynamical Realm 

Dynamical fields considered include sea level pressure (SLP), wind speed (US), and 500 hPa eddy geopotential height (Z500), 135 

vertical velocity (W500), and relative humidity (RH500). ERA5, discussed above, is used for estimation of dynamical fields, as 

such fields are generally not provided from satellite (excepting RH500). Motivating its use, and among its notable 

improvements relative to earlier reanalyses, is ERA5’s improved representation of the tropospheric circulation that is core to 

the dynamical evaluation. 

 140 

2.2 Generation of Variable, Realm, and Overall Scores 

Scores for annual mean, seasonal mean, and ENSO timescale metrics are generated from the area-weighted pattern 

correlations (Rs) between each simulated variable and the corresponding observational dataset. Weighted averages of these 

Rs are then used to generate a Variable Score and for each simulation. Averages across the relevant Variable Scores are then 

used to generate Realm Scores, and the Realm Scores are averaged to generate an Overall Score. Timescale Scores are also 145 

generated by averaging Rs across variables for each timescale metric. The inclusion of both Realm and Timescale scores is 

motivated in part by the need to interpret the origin of changes in Overall Scores, which include a large number of Rs that 

may otherwise obscure an obvious physical interpretation for the Overall Score. 

 

The use of weights in generating Variable Scores is motivated by the desire to promote interpretation of differences in the 150 

Overall Score relative to the influence of internal variability. Using the Community Earth System Version 1 Large Ensemble 

(CESM1-LE, Kay et al. 2015), weights for ENSO scores are reduced to 0.978 (while for annual and seasonal means they are 

1.00) such that the standard deviation range in Overall Scores for the 40 members of the CESM1-LE is 0.01. This therefore 

can be used to interpret generally the approximate contribution of internal variability to inter-model Overall Scores in 

analysis of the CMIP archives, suggesting that differences between individual simulations of less than approximately 0.04 155 

are insignificant. Where available, multiple-simulation analyses provide an opportunity for further narrowing the accuracy of 

statements regarding inter-model comparisons of fidelity that can be made, and as will be seen, Overall Score ranges within 

and across the CMIP ensembles generally exceed the obscuring effects of internal variability. 
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2.3 CMIP Simulations 160 

As the goal of this work is to characterize the evolution of agreement between climate models generally across the CMIP 

archives, and observations, all available model submissions for which sufficient data fields are provided are included in the 

analysis (as summarized in Table 1). A major exception to the data availability requirement relates to near surface wind 

speed (US), which was not included as part of the CMIP3 variable list specification. Scores for the dynamical realm in 

CMIP3 therefore omit US as a scored variable and instead compute the dynamic Realm score from the remaining dynamic 165 

variable scores. While multiple ensemble members are provided in the CMIP archives for many models, and have been 

assessed, only a single member of each model is incorporated into the analysis here to avoid overweighting the influence of 

any single mode.   

 

3.0 Assessing CMIP Scores  170 

 
To illustrate the analysis approach and provide context for the magnitude of biases relative to internal variability and 

observational uncertainty, Figure 1 shows both observed and simulated SWCF fields across the timescales considered (Fig. 

1a, annual, 1b) seasonal, and 1c) ENSO) in the CESM Version 2 submission to CMIP6, CERES estimates (Fig. 1d-f), and 

their differences (Fig. 1g-i). Significant spatial structure characterizes all fields, with a strong SWCF cooling influence in the 175 

mean across much of the globe (Fig. 1a), seasonal contrasts (Fig. 1b) that vary between land and ocean and latitudinal zone, 

and ENSO teleconnections (Fig. 1c) that extend from the tropical Pacific Ocean to remote ocean basins and the extratropics. 

While (as will be seen), CESM2 scores among the best available climate models in CMIP6, large model-observation 

differences nonetheless exist. Regions where model-observation differences are larger than internal variability in the annual 

and seasonal means (stippled) are widespread and remain extensive where the uncertainty range is expanded to incorporate 180 

estimated observational uncertainty (hatched) from Loeb et al. 2018. Of particular note is the fact that it is the large-scale 

patterns of robust bias, where model-observational disagreement exceeds uncertainty bounds, that are the primary drivers of 

pattern correlations used in scoring. These are then combined into various aggregate measures, which include Variable, 

Realm, and Overall Scores.  

 185 

The color table summary of scores for CMIP3 (Figure 2) provides a visual summary of simulation performance across the 

models in the archive (abscissa), including Variable, Realm, Timescale, and Overall Scores (i.e. aggregate scores, ordinate). 

Simulations are sorted by Overall Scores (top row, descending scores toward right). Realm and Timescale Scores (rows 2 

through 7) also provide broad summaries of model performance. Mean Overall Scores (69±7, 1 sigma) are modest generally 

in CMIP3 and generally uniform across realms. CMIP3 simulations score particularly poorly for ENSO, where scores 190 

average to 47, are generally less than 60, and approach 0 in some models. Variable scores are highest for SLP, and PRW and 

OLR which are strongly tied to surface temperature, and less for other variables, with the lowest scores reported for RS and 

W500. Spread across models for RS is particularly large relative to other variables. Average scores are also poor for SWCF 
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(68), LWCF (71), and P (69), which are among the more important simulated fields according to expert consensus (Burrows 

et al. 2018). 195 

 

The color table summary of scores for CMIP5 (Figure 3) reveals scores that are considerably higher than most CMIP3 

simulations, with improvements in the average Overall Score of (75±5) and most notable improvements on the ENSO 

timescale, with an average of 57, though with considerable inter-model range (σ=10). A broad increase in scores in the 

highest performing models is apparent with numerous variable scores exceeding 85 (orange/red). As for CMIP3 the highest 200 

scoring variables are PRW, SLP, and OLR with RHS and W500 being the lowest scoring variables. Scores remain relatively 

low for SWCF (71), LWCF (75), and P (73). 

 

The color table summary of scores for CMIP6 (Figure 4) illustrates scores that are considerably higher than both CMIP3 and 

CMIP5 simulations, with improvements in the average Overall Score of (79±4) and most continued improvements on the 205 

ENSO timescale, though again with considerable inter-model range. A continued increase in scores in the highest performing 

models is again apparent, with scores reaching the mid- to upper 70s and numerous variable scores exceeding 90 (red). The 

highest scoring variables again include PRW, SLP, and OLR though scores are also high for RH500, one of the more 

important simulated fields according to expert consensus (Burrows et al., 2018). Scores also increase for SWCF (78), LWCF 

(80), and P (77). 210 

 

To highlight connections between variables, and the main variables driving variance in aggregate scores across the CMIP 

archives, cross correlations are shown in Figure 5. Correlations between variables and realms reveal variables that exhibit 

strong connections to other variables and aggregate scores. For Overall Scores, these include strong connections to P, E-P 

and OLR, fields strongly connected to atmospheric heating, dynamics, and deep convection and therefore broadly relevant to 215 

all realms considered. Strong connections also exist for SWCF, LWCF, and RH500, consistent with the expert consensus in 

highlighting these fields are being particularly import (Burrows et al. 2018).   An approximately equal correlation exists 

across Realms with the Overall Score, while for timescales, ENSO exhibits the strongest overall correlation as it contains the 

greatest inter-model variance and thus explains a greater portion of the Overall Score variance. Notable as well is that some 

variables for which scores are high in the mean, such as SLP and PRW, exhibit little correlation with the Overall Score as the 220 

uniformly high scores across models impart relatively little variance to the spread in Overall Scores across models. 

 

4.0 Derived Bias Patterns for Select Variables 

 

The observational estimate for SWCF from CERES is shown in Figure 6a along with mean bias patterns for CMIP3 (b) and 225 

CMIP6 (c). A principal component (PC) analysis of the bias across the CMIP archives is also shown with the leading 
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principal components and their tercile mean values within each CMIP version being shown (d) along with the characteristics 

of the two leading patterns of bias (Fig. 6d-f). In the PC analysis, the observational benchmark field is also included to gauge 

improvements or degradation of model PCs across CMIP generations. The mean observational field (Fig. 6a) is characterized 

by negative values in nearly all locations (except over ice) and the strongest cooling influence in the deep tropics, subtropical 230 

stratocumulus regions, and midlatitude oceans. Mean bias patterns demonstrate considerable improvement across the CMIP 

generations, with major reductions in negative biases in the subtropics and tropics over ocean. Variance across models is 

characterized by differing tropical-extratropical contrasts in SWCF (EOF1), which explain 24% of the inter-model variance, 

and land-ocean contrasts (EOF2), which explain 16% of the variance. The expression of both patterns of biases is 

demonstrated to diminish across CMIP generations and terciles in their PC weights (Fig. 6d), with CMIP6 values lying 235 

closer to observational estimates than CMIP PC1/2 weights. Improvements are not in general monotonic across the CMIP 

generations, with improvements and degradations notable in some aspects of the PC1/2 transition from CMIP3 to CMIP5. 

 

The observational estimate for LWCF from CERES is shown in Figure 7a along with mean bias patterns for CMIP3 (b) and 

CMIP6 (c). A PC analysis of the bias across the CMIP archives is also shown with the leading PC weights and their tercile 240 

mean values within each CMIP version being shown (d) along with the two leading patterns of bias (Fig. 7e, f). 

Observational fields are characterized by a strong heating influence in regions of deep tropical convection and in the 

extratropical ocean regions in which SWCF was also strong while weak heating is evident in the subtropics and polar regions. 

Significant changes characterize mean bias patterns between CMIP3 and CMIP6, with positive biases across most ocean 

regions in CMIP3 and negative biases in many of the same regions in CMIP6. On average however, the magnitude of biases 245 

are reduced across CMIP generations. This is evident for example in the PC analysis of bias (Fig. 7e-f), where the leading 

mode (EOF1, Fig. 7e) exhibits strong weightings over the warm pool, is negatively correlated with both the mean pattern and 

bias, and explains 37% of the inter-model variance. In contrast, EOF2 exhibits a strong tropical-extratropical contrast and 

explains only 13% of the bias variance. The PC1/2 tercile weights for these modes show a considerable reduction in EOF1 

spread and lower tercile bias and generally improved agreement across model terciles from CMIP3 to CMIP6, though as 250 

with SWCF, the improvement is not monotonic nor uniform across all terciles and PCs. 

 

The observational estimate for precipitation from GPCP is shown in Figure 8a along with mean bias patterns for CMIP3 (b) 

and CMIP6 (c). The PC analysis of the bias across the CMIP archives is also shown with the leading PC tercile mean values 

for each CMIP version being shown (d) along with the two leading patterns of bias (Fig. 8e, f). The annual mean pattern 255 

resolves key features of the climate system, including strong precipitation in the Inter-Tropical Convergence Zone (ITCZ) 

and low precipitation in the subtropics and at high latitudes. Biases are large in both CMIP3 and CMIP6 on average and are 

characterized generally by excessive subtropical precipitation and deficient precipitation in the ITCZ, South America, and at 

high latitudes. Earlier work has generally characterized model bias in terms of its ITCZ structure (Oueslati et al. 2015), an 

https://doi.org/10.5194/gmd-2020-1
Preprint. Discussion started: 28 February 2020
c© Author(s) 2020. CC BY 4.0 License.



Confidential manuscript submitted to Journal of Geophysical Model Development 

 

9 
 

important aspect of the bias, though systematic bias is also apparent here outside of the tropical Pacific. In addition, the PC 260 

decomposition of CMIP precipitation biases (Fig. 8d-f) suggests that the bias is comprised to two distinct leading patterns 

that together explain 15% and 11% of the variance across models (i.e. a separable single leading pattern is not starkly 

evident). The first pattern is characterized by weakness in precipitation across the equatorial oceans, with elevated rates in 

the Maritime continent and in the Pacific Ocean near 15N/S. The second mode of precipitation bias is characterized by 

loadings over Africa and South America, and just south of the climatological Pacific ITCZ location (Fig. 8a), with negative 265 

values in the subtropical ocean basins. Based on the evolution of weights in PC terciles, slight improvement across CMIP 

generations is evident, as tercile values lie closer to observations for all terciles of PC1/2 in CMIP6 versus CMIP3, with the 

exception of the upper terciles of PC2 and the lower terciles of PC1. 

 

The observational estimate for RH500 from ERA5 is shown in Figure 9a along with mean bias patterns for CMIP3 (b) and 270 

CMIP6 (c). A principal component analysis of the bias across the CMIP archives is also shown with the leading principal 

components and their tercile mean values within each CMIP version being shown (d) along with the two leading patterns of 

bias (Fig. 9e, f). The observed RH500 field is characterized by very dry conditions in the subtropics, with values generally 

below 30% across broad regions that were largely unresolved in CMIP3 (e.g. Fasullo and Trenberth 2012), and positive 

humidity biases in regions of frequency deep convection (i.e. Maritime Continent, Amazon) and at high latitudes. The 275 

CMIP3 mean bias field is negatively correlated with the mean state, with patterns that lack sufficient spatial variability, are 

too moist in the subtropics, and too dry in the Maritime continent, the Amazon, and at high latitudes. The magnitude of mean 

RH500 biases in CMIP6 are substantially smaller (roughly 50%) than CMIP3, though a similar overall pattern exists. The PC 

analysis of bias reveals a leading pattern of bias that explains 50% of the intermodal variance and is positively correlated 

with both the CMIP-mean bias and observed mean field (0.45). The second leading pattern (Fig. 9f) explains considerably 280 

less variance (14%) and exhibits a zonally uniform structure characterized by tropical-extratropical contrast. The weights for 

PC1/2 reveal systematic bias in PC1 across models, and considerable improvement across CMIP generations as CMIP6 

weights lie significantly closer to observations that CMIP3 weights for all terciles. Very slight corresponding improvement 

in PC2, while suggested for the upper terciles, is not however evident in the lower tercile of models, though this comprises a 

small fraction of variance in CMIP bias.  285 

 

In the effort to summarize the evolution of the full distributions of scores across the CMIP archives, whisker plots 

encompassing the median, interquartile, and 10th-90th percentile ranges are shown for various aggregate metrics and key 

fields in Figure 10. Also shown are the equivalent ranges for scores computed from the CESM1-LE to provide context for 

the uncertainty in scores associated with internal variability for each distribution. A steady progression in the Overall Scores 290 

is evident across CMIP versions. The improvements are also evident across Realm Scores and particularly for the poorest 

scoring models in the Dynamics Realm. Scores for Annual and Seasonal timescales are generally high across archives, 
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though internal variability is also small and is substantially less than the median improvements across archives. The range of 

scores for ENSO is significantly greater than other timescales, as is the range of internal variability, and substantial 

improvements have been realized for the lowest scoring models across successive CMIP generations. Noteworthy are the 295 

substantial improvements in SWCF, LWCF, and P, with the best CMIP3 simulations scoring near the median value for CMIP6 

and changes in median values exceeding uncertainty arising from internal variability. Scores for RH500 have also improved, 

although the spread within the CMIP3 archives is substantial and uncertainty arising from internal variability is somewhat 

greater than for other variables, and RH500 scores are generally higher than for cloud forcing and P. For SLP, median scores 

are uniformly high across the CMIP generations, with small but steady improvement in median and interquartile scores, with 300 

the main exception being the low scoring 10-25% range of CMIP3 simulations. 

 

5.0 Discussion 

 

An objective model evaluation tool has been developed that uses feedback-relevant fields and takes advantage of recent 305 

advances in satellite and reanalysis observations. In its application to the CMIP archives, the tool is shown to be useful for 

computing model scores across variables, realms, and timescales, using the best available satellite and observational 

estimates of present-day climate. The tool also provides visual summaries of model performance across the CMIP archives, 

which readily allow for the survey of a broad suite of climate performance scores.  

 310 

Based on the pattern correlation approach adopted, a number of statements can be made regarding the overall performance of 

climate models across CMIP generations. Also noteworthy is that, as gauged by analysis of the CESM1-LE, and consistent 

with the motivations and design of the approach used here, these statements are robust to the obscuring influence of internal 

climate variability. In general, computed scores have increased steadily across CMIP generations, with improvements 

exceeding the uncertainty associated with internal variability. Associated with these improvements, the leading patterns of 315 

bias across models are shown to have been reduced.  Improvements are large and particularly noteworthy for ENSO 

teleconnection patterns, as the poorest scoring models in each CMIP generation have improved substantially. The overall 

range of model performance has also decreased in conjunction with increases in median scores, as improvements in the 

worst models has outpaced that of the median. Reductions in systematic patterns of bias (e.g. Figs. 6-9) across the CMIP 

archives have been particularly pronounced for fields deemed in expert solicitations to have disproportionate importance, 320 

including SWCF, LWCF, and RH500. 

  

Also relevant for climate feedbacks, Variable Scores for SWCF, LWCF, RH500, and precipitation have increased steadily 

across the CMIP generations (e.g. Fig. 10), with magnitudes exceeding the uncertainty associated with internal variability. 

Scores are particularly high for CMIP6 models for which high climate sensitivities have been reported, including CESM2, 325 
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SAM0-UNICON, GFDL-CM4, CNRM-CM6-1, E3SM, and EC-Earth3-Veg (though exceptions also exist such as in the case 

of MIRCO6).  These findings therefore echo the concerns voiced in Gettelman et al. 2019: “What scares us is not that the 

CESM2 ECS is wrong (all models are wrong, (Box, 1976)) but that it might be right.”. Further work examining the ties 

between metrics of performance in simulating the present-day climate, such as those provided here, and longer-term climate 

model behavior is warranted to bolster confidence in model projections of climate change.   330 
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Data Availability 

Data used in this study are available freely from the Earth System Grid at: https://www.earthsystemgrid.org 

NetCDF output for the fields generated herein is freely available at: http://webext.cgd.ucar.edu/Multi-

Case/CMAT/index.html 

 335 

Acknowledgements 

This material is based upon work supported by the National Center for Atmospheric Research, which is a major facility 

sponsored by the National Science Foundation under Cooperative Agreement No. 1852977. Portions of this study were 

supported by the Regional and Global Model Analysis (RGMA) component of the Earth and Environmental System 

Modeling Program of the U.S. Department of Energy's Office of Biological & Environmental Research (BER) via National 340 

Science Foundation IA 1844590.  

 

  

https://doi.org/10.5194/gmd-2020-1
Preprint. Discussion started: 28 February 2020
c© Author(s) 2020. CC BY 4.0 License.



Confidential manuscript submitted to Journal of Geophysical Model Development 

 

13 
 

References 

Adler, R., Sapiano, M., Huffman, G., Bolvin, D., Gu, G., Wang, J., ... and Schneider, U.: The new version 2.3 of the Global 345 

Precipitation Climatology Project (GPCP) monthly analysis product. University of Maryland, April, 1072-1084, 2016. 

Box, G. E. P.: Science and statistics. J. Amer. Statistical Assoc., 71(356), 791–799. 

https://doi.org/10.1080/01621459.1976.10480949, 1976. 

Burrows, S. M., Dasgupta, A., Reehl, S., Bramer, L., Ma, P. L., Rasch, P. J., and Qian, Y.: Characterizing the relative 

importance assigned to physical variables by climate scientists when assessing atmospheric climate model fidelity. Adv. 350 

Atm. Sci., 35(9), 1101-1113, doi: doi:10.1007/s00376-018-7300-x, 2018. 

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., ... and Bechtold, P.: The ERA-Interim 

reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy Met. Soc., 137(656), 553-597, 

doi: 10.1002/qj.828, 2011. 

Eyring, V., Bony, S. Meehl, G.A. Senior, C. A. Stevens, B. Stouffer R.J. and Taylor, K.E: Overview of the Coupled Model 355 

Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev. Disc., 9, 1937–

1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016. 

Eyring, V. and Coauthors: ESMValTool v2.0 – Extended set of large-scale diagnostics for quasi-operational and 

comprehensive evaluation of Earth system models in CMIP, Geosci. Model Dev. Disc., in review, 2020. 

Fasullo, J. T. and Trenberth, K. E. (2008). The annual cycle of the energy budget. Part I: Global mean and land–ocean 360 

exchanges. J. Clim., 21(10), 2297-2312, doi: 10.1175/2007JCLI1935.1, 2008. 

Fasullo, J. T., and Trenberth, K. E.: A less cloudy future: The role of subtropical subsidence in climate sensitivity. Science, 

338(6108), 792-794, doi: 10.1126/science.1227465, 2012. 

Gettelman, A., Hannay, C., Bacmeister, J.T., Neale, R., Pendergrass, A.G., Danabasoglu, G., ... Mills, M.J.: High climate 

sensitivity in the Community Earth System Model Version 2 (CESM2). Geophys. Res. Lett., 46(14), 8329-8337 doi: 365 

10.1029019GL083978, 2019. 

Golaz, J.C, et al.: The DOE E3SM coupled model version 1: Overview and evaluation at standard resolution." J. of Adv. in 

Modeling Earth Systems 11.7, 2089-2129, doi: 10.1029/2018MS001603, 2019. 

Hersbach, H., and Coauthors: Global reanalysis: goodbye ERA-Interim, hello ERA5. ECMWF, doi:10.21957/vf291hehd7. 

https://www.ecmwf.int/node/19027, 2019. 370 

Huffman, G. J., Adler, R.F., Bolvin, D.T. and Gu G.: Improving the global precipitation record: GPCP version 2.1.  

Geophys., Res., Lett., 36, L17808, doi:10.1029/2009GL040000, 2009. 

Hunt, B. G., and Manabe S.: Experiments with a stratospheric general circulation model: II. Large-scale diffusion of tracers 

in the stratosphere. Monthly Weather Review 96.8 (1968): 503-539, doi: 10.1175/1520-

0493(1968)096<0503:EWASGC>2.0.CO;2, 2009. 375 

https://doi.org/10.5194/gmd-2020-1
Preprint. Discussion started: 28 February 2020
c© Author(s) 2020. CC BY 4.0 License.



Confidential manuscript submitted to Journal of Geophysical Model Development 

 

14 
 

Kay, J. E., Deser, C., Phillips, A., Mai, A., Hannay, C., Strand G., ... and Holland, M.: The Community Earth System Model 

(CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate 

variability. Bull. Amer. Met. Soc., 96(8), 1333-1349, doi:10.1175/BAMS-D-13-00255.1, 2015. 

Loeb, N. G., Doelling, D. R., Wang, H., Su, W., Nguyen, C., Corbett, J. G., ... and Kato, S.: Clouds and the earth’s radiant 

energy system (CERES) energy balanced and filled (EBAF) top-of-atmosphere (TOA) edition-4.0 data product. J. 380 

Clim., 31(2), 895-918, doi: 10.1175/JCLI-D-17-0208.1, 2018. 

Manabe, S., Bryan, K., and Spelman, M. J.: A global ocean-atmosphere climate model. Part I. The atmospheric circulation. 

J. Phys. Ocn., 5(1), 3-29, doi: 10.1175/1520-0485(1975)005<0003:AGOACM>2.0.CO;2, 1975. 

Meehl, G. A. and Coauthors: The WCRP CMIP3 multimodel dataset: a new era in climate change Research. Bull. Am. Met.. 

Soc. 88, 1383–1394 (2007), doi: 10.1175/JCLI3675.1, 2007. 385 

Neubauer, D., Ferrachat, S., Drian, S. L., Stier, P., Partridge, D. G., Tegen, I., ... and Lohmann, U.: The global aerosol-

climate model ECHAM6. 3-HAM2. 3–Part 2: Cloud evaluation, aerosol radiative forcing and climate sensitivity. 

Geosci. Mod. Dev. Disc., doi: 10.5194/gmd-12-3609-2019, 2019. 

Oueslati, B., and Bellon, G.: The double ITCZ bias in CMIP5 models: interaction between SST, large-scale circulation and 

precipitation. Clim. Dyn., 44(3-4), 585-607, doi: 10.1007/s00382-015-2468-6, 2015. 390 

Schmidt, G. A., Bader, D., Donner, L. J., Elsaesser, G. S., Golaz, J. C., Hannay, C., ... and Saha, S.: Practice and philosophy 

of climate model tuning across six US modeling centers. Geosci. Model Dev. Disc., 10(9), 3207, doi: 10.5194/gmd-10-

3207-2017, 2017. 

Taylor, K. E., R.J. Stouffer, and Meehl G.A.: An overview of CMIP5 and the experiment design, Bull. Amer. Met. Soc. 93, 

485–498, https://doi.org/10.1175/BAMS-D-11-00094.1, 2012. 395 

Trenberth, K. E., and Fasullo, J. T.: Regional energy and water cycles: Transports from ocean to land. J. Clim., 26(20), 7837-

7851, doi: 10.1175/JCLI-D-13-00008.1, 2013. 

Trenberth, K. E., and Fasullo, J. T.: Atlantic meridional heat transports computed from balancing Earth's energy locally. 

Geo. Res. Lett. 44(4), 1919-1927, doi: 10.1002/2016GL072475, 2017. 

  400 

https://doi.org/10.5194/gmd-2020-1
Preprint. Discussion started: 28 February 2020
c© Author(s) 2020. CC BY 4.0 License.



Confidential manuscript submitted to Journal of Geophysical Model Development 

 

15 
 

 
Tables 
 
Table 1: Sorted summary of CMIP models considered in this work, sorted by Overall Scores. 
  405 
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CMIP3 CMIP5 CMIP6 
gfdl_cm2_0 (0.78) CESM1-BGC (0.81) CESM2 (0.86) 
gfdl_cm2_1 (0.75) CNRM-CM5-2 (0.81) MIROC6 (0.85) 
cccma_cgcm3_1_t63 (0.75) CESM1-FASTCHEM (0.81) CESM2-WACCM (0.85) 
mri_cgcm2_3_2a (0.75) CESM1-CAM5 (0.81) GISS-E2-1-H (0.85) 
mpi_echam5 (0.75) ACCESS1-0 (0.81) SAM0-UNICON (0.84) 
miub_echo_g (0.74) NorESM1-ME (0.80) GFDL-CM4 (0.84) 
csiro_mk3_5 (0.74) CESM1-WACCM (0.80) EC-Earth3-Veg (0.84) 
ingv_echam4 (0.73) CESM1-CAM5-1-FV2 (0.80) EC-Earth3 (0.83) 
ukmo_hadcm3 (0.73) MIROC5 (0.80) UKESM1-0-LL (0.82) 
cccma_cgcm3_1 (0.73) CMCC-CMS (0.80) MRI-ESM2-0 (0.82) 
cnrm_cm3 (0.73) HadGEM2-ES (0.80) E3SM-1-0 (0.81) 
ncar_ccsm3_0 (0.72) NorESM1-M (0.79) CNRM-CM6-1 (0.81) 
csiro_mk3_0 (0.71) BNU-ESM (0.79) CNRM-ESM2-1 (0.81) 
miroc3_2_medres (0.71) ACCESS1-3 (0.78) MIROC-ES2L (0.81) 
bccr_bcm2_0 (0.71) HadGEM2-AO (0.78) FGOALS-g3 (0.79) 
iap_fgoals1_0_g (0.69) bcc-csm1-1-m (0.77) CAMS-CSM1-0 (0.79) 
miroc3_2_hires (0.69) GFDL-CM2p1 (0.76) BCC-CSM2-MR (0.77) 
ukmo_hadgem1 (0.68) CanESM2 (0.76) BCC-ESM1 (0.77) 
ipsl_cm4 (0.67) CMCC-CESM (0.75) CanESM5 (0.77) 
ncar_pcm1 (0.61) IPSL-CM5B-LR (0.75) IPSL-CM6A-LR (0.74) 
inmcm3_0 (0.60) MRI-ESM1 (0.75) GISS-E2-1-G (0.74) 
giss_model_e_r (0.60) MPI-ESM-LR (0.75) NorESM2-LM (0.74) 
giss_aom (0.59) MPI-ESM-MR (0.74)  
giss_model_e_h (0.46) MPI-ESM-P (0.74)  
 MRI-CGCM3 (0.74)  
 FGOALS-g2 (0.74)  
 GFDL-ESM2G (0.72)  
 GISS-E2-R-CC (0.72)  
 IPSL-CM5A-MR (0.71)  
 MIROC-ESM (0.70)  
 GISS-E2-H-CC (0.69)  
 IPSL-CM5A-LR (0.68)  
 CSIRO-Mk3-6-0 (0.68)  
 MIROC-ESM-CHEM (0.68)  
 inmcm4 (0.68)  
 GISS-E2-H (0.67)  
 CESM1-BGC (0.81)  
 CNRM-CM5-2 (0.81)  
 CESM1-FASTCHEM (0.81)  
 CESM1-CAM5 (0.81)  
 ACCESS1-0 (0.81)  
 NorESM1-ME (0.80)  
 CESM1-WACCM (0.80)  
 CESM1-CAM5-1-FV2 (0.80)  
 MIROC5 (0.80)  
 CMCC-CMS (0.80)  
 HadGEM2-ES (0.80)  
 NorESM1-M (0.79)  
 BNU-ESM (0.79)  
 ACCESS1-3 (0.78)  
 HadGEM2-AO (0.78)  
 bcc-csm1-1-m (0.77)  
 GFDL-CM2p1 (0.76)  
 CanESM2 (0.76)  
 CMCC-CESM (0.75)  
 IPSL-CM5B-LR (0.75)  
 MRI-ESM1 (0.75)  
 MPI-ESM-LR (0.75)  
 MPI-ESM-MR (0.74)  
 MPI-ESM-P (0.74)  
 MRI-CGCM3 (0.74)  
 FGOALS-g2 (0.74)  
 GFDL-ESM2G (0.72)  
 GISS-E2-R-CC (0.72)  
 IPSL-CM5A-MR (0.71)  
 MIROC-ESM (0.70)  
 GISS-E2-H-CC (0.69)  
 IPSL-CM5A-LR (0.68)  
 CSIRO-Mk3-6-0 (0.68)  
 MIROC-ESM-CHEM (0.68)  
 inmcm4 (0.68)  
 GISS-E2-H (0.67)  
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 410 
Figure 1: Mean simulated fields of SWCF in CESM2 from 1995-2014 for A) the annual mean, B) seasonal contrasts, and C) 
regressed against Niño3.4 SST anomalies from July-June. Observed CERES EBAF4.1 estimated SWCF for 2000-2018 for 
analogous metrics (D-F) where stippling indicates regions where CESM-CERES differences exceed twice the estimated internal 
spread from CESM-LE. Hatching indicates regions where these differences (G-I) exceed the same spread and observational 
uncertainty (added in quadrature, applied to all panels in each column). Units are W m-2 except for right column where units are 415 
W m-2 K-1. 
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Figure 2: Overall, Realm, Timescale, and Variable scores (ordinate) for historical (20c3m) simulations submitted to the CMIP3 
archives (abscissa) sorted by overall score (top row) based on methods employed (see text). Simulations and variables are ordered 420 
in descending score order from left to right using overall score and from top to bottom using average variable score, respectively. 

https://doi.org/10.5194/gmd-2020-1
Preprint. Discussion started: 28 February 2020
c© Author(s) 2020. CC BY 4.0 License.



Confidential manuscript submitted to Journal of Geophysical Model Development 

 

19 
 

 

Figure 3: As in Fig. 2 except for historical simulations submitted to the CMIP5 archive. 
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Figure 4: As in Fig. 2 except for historical simulations submitted to the CMIP6 archive.  425 
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Figure 5: Cross correlations between variable and aggregate scores computed for the all CMIP archives sorted in order of 430 
decreasing correlations from left to right and top to bottom. 
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Figure 6: Analysis of the annual mean SWCF bias in the combined historical CMIP3/5/6 archive including A) the observed estimate 
from CERES EBAFv4.1, the bias in (B) CMIP3 and (C) CMIP6, and (D) the first two PCs of biases and their tercile averages 435 
across the CMIP archives, and the associated first (E) and second (F) EOFs of biases. All units are W m-2, except for the PCs, 
which are unitless. 
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Figure 7: Analysis of the annual mean LWCF bias in the combined historical CMIP3/5/6 archive including A) the observed estimate 440 
from CERES EBAFv4.1, the bias in (B) CMIP3 and (C) CMIP6, and (D) the first two PCs of biases and their tercile averages 
across the CMIP archives, and the associated first (E) and second (F) EOFs of biases. All units are W m-2, except for the PCs, 
which are unitless. 

  

https://doi.org/10.5194/gmd-2020-1
Preprint. Discussion started: 28 February 2020
c© Author(s) 2020. CC BY 4.0 License.



Confidential manuscript submitted to Journal of Geophysical Model Development 

 

24 
 

 445 

Figure 8: Analysis of the annual mean precipitation bias in the combined historical CMIP3/5/6 archive including A) the observed 
estimate from GPCP CDR, the bias in (B) CMIP3 and (C) CMIP6, and (D) the first two PCs of biases and their tercile averages 
across the CMIP archives, and the associated first (E) and second (F) EOFs of biases. All units are mm day-1, except for the PCs, 
which are unitless. 
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Figure 9: Analysis of the annual mean RH500 bias in the combined historical CMIP3/5/6 archive including A) the observed estimate 
from ERA5, the bias in (B) CMIP3 and (C) CMIP6, and (D) the first two PCs of biases and their tercile averages across the CMIP 
archives, and the associated first (E) and second (F) EOFs of biases. All units are %, except for the PCs, which are unitless. 

 455 

 

 

  

https://doi.org/10.5194/gmd-2020-1
Preprint. Discussion started: 28 February 2020
c© Author(s) 2020. CC BY 4.0 License.



Confidential manuscript submitted to Journal of Geophysical Model Development 

 

26 
 

 

 460 
Figure 10: Evolution of the distribution of aggregate and selected variable scores across the CMIP archives and the CESM1-

LE. 
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