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***Reply to RC1*** 
Interactive comment on “Evaluating Simulated Climate Patterns from theCMIP Archives Using 25 
Satellite and Reanalysis Datasets” by John T. Fasullo 
Anonymous Referee #1 
Received and published: 1 April 2020 
 
The manuscript describes an objective approach to evaluate biases in climate model 30 
simulations, providing scores based on pattern correlation between key model fields and the 
most up-to-date observational datasets. Variables are selected on the basis of the most 
relevant open issues raised on model performances, and are gathered in three realms: the 
energy budget realm, the water cycle realm, the dynamical realm. Overall scores are obtained, 
combining weighted scores from different variables, and different timescales are taken into 35 
account. The improvement (or lack of) across differ- ent generation of the CMIP experiments 
is also assessed. 
 
Overall, I think that the paper contains some interesting and useful comparisons, and, as far 
as I am aware of, it is the first time that such diverse metrics are gathered, in order to assess 40 
biases in coupled model simulations in a synthetic and comprehensive way. Extending the 
analysis to newly available CMIP6 datasets is also a valuable point. 
What I found lacking is a bit of context about other model diagnostics and a discussion of the 
physical relevance of biases. I also have a few remarks about the completeness in describing 
the methodology. I provide some suggestions on how the paper could be improved in the 45 
specific comments below. My general opinion is that the manuscript could be published, 
subject to minor revisions, as I detail in the following. 
 
Thank you for the time spent reviewing the manuscript and for your constructive 
comments, which I agree point toward worthwhile improvements in the manuscript. 50 
 
I have gone through the suggested literature and agree that these and various 
additional references (cited therein such as Gleckler et al. 2008, Pincus et al. 2008) 
provide important context. Discussion of these references is now integrated into the 
manuscript revision. I also emphasize that the advance of the current work lies in 1) its 55 
consideration of 3 CMIP generations, 2) its quantification of Internal variability on 
computed scores, 3) its use of more advanced and insightful fields, and 4) its 
consideration of recent expert elicitations on the fields that are key to model evaluation. 
In response to the concerns above, I have also considerably expanded discussion of 
the methods and expanded on the sources of bias in models, though that remains an 60 
area of active research.  
 
————- 
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Specific comments 
l. 52-58: I found that this paragraph, focusing on model diagnostics as a research community 65 
service, lacks a bit of context in terms of background on how diagnostics of model 
performances have been developed in the context of the IPCC and the PCMDI. I also think 
that this section might benefit of a survey of known sources of biases in models, e.g. the 
parametrisations, the unresolved scales, the choice of the grids, the numerical scheme. In this 
respect, the author might mention some of the diagnostics and metrics that have been most 70 
recently designed to address some of the specific issues that are considered here, as for 
example Greve et al. 2018, for the water cycle, precipitation and its regional downscaling, or 
Lembo et al. 2019, for radiative budgets and transports. 
 
lines 52-58: I agree that the manuscript would benefit for an enhancement of this kind 75 
of context. Toward this end I now include discussion of substantially more literature. 
 
l. 65-67: When data records are not available, I think that it is also important to weigh models 
beforehand, when the multi-model inter-comparison is performed (e.g. Knutti et al. 2017). 
These approach has been successfully applied to regional downscaling of global climate 80 
model projections (e.g Lorenz et al. 2018), proving that metrics are more relevant to the end 
user of the model exercise, if models are appropriately weighted. I wonder if it would be 
possible to adopt a similar approach, with relatively small effort, to the analysis here 
presented. 
   85 
lines 65-67: I am a bit unclear as to what is being suggested here since our focus is 
global rather than regional. The Lorenz paper develops a weighting scheme for a 
specific regional application (temperature projections over North America). Given that 
there is no analogous targeted application here, it doesn’t seem that such a weighting 
scheme would be appropriate. That said, the potential use of the model scores 90 
generated in this work may be of use to targeting applications and this is part of the 
reason for the distribution of datasets. Associated discussion has been added to 
highlight this.  
 
 l. 68: I think that the appropriate reference for this is Hourdin et al. 2017. Schmidt et al. 2017 95 
refer to a subset of US models from those analysed in Hourdin et al. 2017. 
 
line 68: Thank you, I agree. The Hourdin references is now added. 
 
ll. 112-113: I agree that from an observational-based point of view the net surface fluxes are 100 
the most challenging, especially if dealing with satellite measurements and inverse 
techniques. On the other hand, from a model perspective, surface fluxes are the result of 
several parametrisations and are thus straightforwardly provided, while the retrieval of the 



Confidential manuscript submitted to Journal of Geophysical Model Development 

 

4 
 

vertical integral of atmospheric energy divergence is made difficult by the vertical discretisation 
and numerical sources of mass imbalance, requiring offline corrections. I think this would be 105 
worth mentioning here. 
 
lines 112-113: Yes, the additional uncertainty of observed radiative fluxes means that 
the signal of model bias in surface fluxes is not nearly as large relative to uncertainty 
as it is for TOA. So long as atmospheric model components conserve energy well 110 
(relative to their biases, a condition that we find to be met for CMIP models), the vertical 
integral can reasonably be inferred from the TOA minus surface budgets (though lack 
of closure may exist in other components). This skirts the issue of offline calculations 
raised by the reviewer. 
 115 
l. 135: why is the 500hPa eddy geopotential height preferred to the 500hPa geopotential 
height, which is usually made available as an output of a climate model (e.g. in the ESGF 
repositories for CMIP datasets)? Sect. 2.2: this is the only sentence in the manuscript where 
the methodology is mentioned. Even though the usage of pattern correlation is a quite usual 
practice for performance scores, it would be good to have a more detailed description of the 120 
method, at least of how the averages are weighted. In general, for sake of clarity, I would 
suggest to rearrange this first part of the manuscript in order to include a Data and Methods 
section. 
 
line 135: The pattern correlation of eddy geopotential height (rather than geopotential 125 
height) is more of a challenge for modes and a better indicator of the dynamic flows 
that we are trying to diagnose, since the zonal mean temperature component is rather 
mundane yet can overwhelm the spatial variance of geopotential.  Additional motivation 
for the selection of variables, including 500 hPa eddy geopotential (readily derived from 
removing the zonal mean of 500 hPa geopotential) has been added.  130 
 
Another suggestion is that the author mentions other possible ways to attribute a per- 
formance score to models based on its consistency with observational-based mea- surements. 
One can refer, for instance, among others, to the Wasserstein distance, as in Breverman et al. 
2017, but there are many other examples... 135 
 
line 152: I don’t find explicit mention of the Wasserstein Distance in the Braverman et 
al. manuscript. Perhaps the reviewer is referring to the distance “Dl” defined in line 162 
of their manuscript? In the spirit of this suggestion, considerable additional discussion 
of other scoring approaches is now added. 140 
 
l. 152: I wonder if there is a non-empirical explanation for the choice of weighting the ENSO 
timescale less than the annual and seasonal timescales in CESM1-LE. 
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No, this choice is motivated purely by the desire to have a readily interpretable 145 
influence of internal variability in the overall scores, which is deemed to be very 
important. 
 
ll. 155-156: this seems to me a pretty strong assumption, because I see no particular reason 
why the impact on the overall score from internal variability in other models shall be 150 
comparable to the one found in CESM1-LE. 
 
It is true that other models may have differing strengths of internal variability. That said, 
this is the first attempt we know of to score models with consideration of such 
influence. Future work will seek to improve this, though doing so will depend on 155 
multiple model realizations (not all CMIP6 simulations even meet this threshold). 
   
 ll. 166-168: a way to test the assumption mentioned in my previous comment could be to 
focus on a few CMIP models providing a reasonably large ensemble against the CESM1-LE. 
Would that be feasible? 160 
 
Yes, as alluded to in the manuscript the analysis of several large ensembles has been 
performed with results posted online. We find the CESM1-LE to do a reasonable job at 
estimating the range of internal variability. Including multiple large ensembles in the 
present manuscript does not change much and introduces a layer of confusion 165 
arguably that detracts from the work. We do hope to address this further in the future 
however. 
 
Sect. 4.0: at this point, the author starts to describe the main results of the analysis. I am a bit 
puzzled, though, by the fact that no convincing discussion has been provided on the choice of 170 
the variables. While for the energy budget and water cycle realm it is clear to me that the 
author follows from the expert consensus outlined in Burrows et al. 2018, the variables for the 
dynamical regime seem to me not supported by sufficient argumentation. For instance, why is 
the eddy geopotential height preferred to the potential vorticity in the free troposphere? If the 
idea is to meet the experts’ needs for key metrics, why not additionally considering the zonal 175 
mean wind or the potential vorticity at specific isobaric levels? These variables are 
fundamental for studies of the atmospheric dynamics, even though they have not been 
addressed in the paper by Burrows et al. 2018 or, if they are considered, they do not reach a 
(very) high consensus about their relevance. 
 180 
We acknowledge that the choice of variables has a subjective component. Our choice 
has been motivated in part by the feedback of modelers at various modeling centers 
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including NCAR. Note that Burrow et al. 2018 does cover SLP, which is one of our 
dynamic fields. 
 185 
ll. 266-268: stated like this, it seems to me more suggesting that only the central tercile is 
actually closing up to observations across the CMIP generations. . . 
 
In PC1 and PC2 space, CMIP6 terciles lie closer to GPCP in terciles 2/3 than CMIP3/5. In 
tercile 1, CMIP3 is slightly closer than CMIP6. Related discussion has been added to the 190 
text. 
 
ll. 317-319: I wonder if the author might want to comment on why this is the case, and whether 
this could be really considered as an improvement in the overall performance of the multi-
model mean. 195 
 
Added: “ In part this may be due to the elimination of very low resolution models in 
CMIP5/6, though improvements in model physics is also likely to play a role. ” 
 
l. 325: are these metrics telling something relevant about the behavior of subset of CMIP6 200 
models with high sensitivity. Can something be said about it? 
 
Given the limited degrees of freedom, we would rather await the completion of the 
CMIP6 simulations before speculating on this. 
 205 
Figure 1: please add in the captions what the blue, red and black meridional sections 
displayed next to each map describe. 
 
Added. Thank you. 
 210 
———————— Technical corrections 
 l. 36: replace “increasing” by “increasingly”. l. 217: replace “import” with “important”. 
 
Replaced. Thank you. 
 215 
l. 223: Replace “Select” with “Selected”. 
 
Replaced. Thank you. 
 
ll. 239-241 (and elsewhere): I think that it is sufficient to describe the layout of similar figures 220 
only once, when introducing Figure 6 and its panels. Considering removing the introductory 
sentence in this paragraph and in the successive ones. 
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I have condensed successive figure introductions rather than eliminate them entirely as 
I feel some context is needed. 225 
 
—————– References 
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Greve, P., Gudmundsson, L., and Seneviratne, S. I. Regional scaling of annual mean 230 
precipitation and water availability with global temperature change, Earth Syst. Dy- nam., 9, 
227–240, 2018 
Hourdin F, Mauritsen T, Gettelman A, et al. The Art and Science of Climate Model Tuning. Bull 
Am Meteorol Soc 98:589–602, 2017 
Knutti, R., Sedlácˇek, J., Sanderson, B. M., Lorenz, R., Fischer, E. M., and Eyring, V. A 235 
climate model projection weighting scheme accounting for performance and interde- 
pendence, Geophys. Res. Lett., 44, 1909–1918, 2017 
Lembo, V., Lunkeit, F., and Lucarini, V.: TheDiaTo (v1.0) – a new diagnostic tool for water, 
energy and entropy budgets in climate models, Geosci. Model Dev., 12, 3805– 3834, 2019 
Lorenz, R., Herger, N., Sedlácˇek, J., Eyring, V., Fischer, E. M., & Knutti, R. Prospects and 240 
caveats of weighting climate models for summer maximum temperature projections over North 
America. Journal of Geophysical Research: Atmospheres, 123, 4509–4526, 2018 
 
***Reply to RC2*** 
Interactive comment on “Evaluating Simulated Climate Patterns from theCMIP Archives Using 245 
Satellite and Reanalysis Datasets” by John T. Fasullo 
 
Anonymous Referee #2 
The manuscript “Evaluating Simulated Climate Patterns from the CMIP Archives Using 
Satellite and Reanalysis Datasets“ by J.T. Fasullo describes a methodology how 250 
developments and improvements of Earth system models can tracked and objectively 
evaluated using observational datasets and their uncertainties. With the increasing complexity 
of the models participating in CMIP, a new way of evaluating their proximity to observed 
parameters is important. While there are already some evaluating and grading methods 
available, this new method uses some different fields than usual (seasonal differences, 255 
ENSO), and also takes into account observational uncertainties. The manuscript is mostly very 
well written and well structured. However, there are a few things that I think would help to 
improve the manuscript, and that I would suggest the author to consider while revising the 
manuscript. These comments are outlined below. 
 260 
Thank you for the time spent reviewing the manuscript and your constructive 
suggestions for improvement. 
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I therefore recommend the publication of the manuscript after minor revisions. 
General comments: 265 
• I think it would be helpful to put the method in perspective with other evaluation and grading 
methodologies (e.g. Gleckler et al., 2008; Reichler and Kim, 2008) that are available for the 
reader to understand the similarities and differences of the described method to already 
existing methods. 
 270 
Thank you - per this and the comments of Rev 1 significant new discussion of previous 
work has been added. 
 
• I agree with reviewer 1 that the methodology needs to be described in a lot more detail. At 
the moment it is not clear how the scores are calculated exactly. 275 
 
Thank you - per this and the comments of Rev 1 significant new description of methods 
has been added. 
 
• I think it would be helpful to show not just examples for the annual mean bias patterns, but 280 
also one of the seasonal patterns and one of the ENSO patterns. After all, these are different 
to other methods and are therefore definitely worth some more detailed description. 
 
Figure 1 shows such patterns in the middle and left columns, respectively. 
 285 
More specific comments: 
• l. 36: “increasing” -> should be “increasingly”? 
 
Fixed. Thank you. 
 290 
• l. 84: Why was the ENSO pattern chosen as one of the bias fields to be evalu- ated? Could 
you provide a little more background information about this decision here? 
 
Discussion added.  
 295 
• l. 129: “ERAI” -> should be “ERA-Interim”? 
 
Fixed. Thank you. 
 
• l. 142-153: This is the that, in my opinion, needs a lot more detail to be easily 300 
understandable. How are the scores for the different realms combined from the individual 
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variable scores? How exactly is the weighting determined? There is a brief example in line 
152-153, but even this does not make it clear how the weighting factor was determined. 
 
The discussion is expanded and clarified. 305 
 
• l. 155: What does the “0.04” mean? What kind of value range can be expected? 
 
This is just the +- 2 sigma range, admittedly a conservative bound. 
 310 
• l. 178-180: Explain the stippling and hatching in a little more detail. 
 
Added. Thank you. 
 
• l. 213: What exactly is cross correlated? All CMIP results at the same time? 315 
 
Reworded.  
 
• l. 217: “are” -> should be “as”? 
 320 
Fixed. Thank you. 
 
• l. 217: “import” -> should be “important”? 
 
Fixed. Thank you. 325 
 
• l. 235: I think it would be good to very briefly mention what it means in the plot when the bias 
diminishes. 
 
Mentioned.  330 
 
• l. 410: Figure 1. What do the three colored lines at the right edge of each global map show? 
They are not mentioned or explained anywhere. 
 
Their meaning is now mentioned. Thank you. 335 
 
• l. 413: “CESM-CERES differences exceed twice the estimated internal spread” -> this seems 
slightly different to the definition presented in the first paragraph of Section 3. Please adjust 
this so that it is clearer and the same in both parts. 
 340 
Changed. Thank you. 
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• l. 434: Figure 6. What do the colored lines to the right of the global maps represent in this 
figure? 
 345 
Zonal means - discussion now added. Thank you. 
 
References: 
• Gleckler et al., JGR, 2008, doi:10.1029/2007jd008972 
• Reichler and Kim, BAMS, 2008, doi:10.1175/bams-89-3-303 350 
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Evaluating Simulated Climate Patterns from the CMIP Archives 
Using Satellite and Reanalysis Datasets 
 355 
John T. Fasullo1 
1National Center for Atmospheric Research, Boulder, CO, 80302, USA 

Correspondence to: John T. Fasullo (fasullo@ucar.edu) 

Abstract.  

 360 

An objective approach is presented for scoring coupled climate simulations through an evaluation against satellite and 

reanalysis datasets during the satellite era (i.e. since 1979). The approach is motivated, described, and applied to available 

Coupled Model Intercomparison Project (CMIP) archives and the Community Earth System Model (CESM) Version 1 Large 

Ensemble archives with the goal of robustly benchmarking model performance and its evolution across CMIP generations. A 

scoring system is employed that minimizes sensitivity to internal variability, external forcings, and model tuning. Scores are 365 

based on pattern correlations of the simulated mean state, seasonal contrasts, and ENSO teleconnections. A broad range of 

feedback-relevant fields is considered and summarized on discrete timescales (climatology, seasonal, interannual) and 

physical realms (energy budget, water cycle, dynamics). Fields are also generally chosen for which observational uncertainty 

is small compared to model structural differences.  

 370 

Highest mean variable scores across models are reported for well-observed fields such as sea level pressure, precipitable 

water, and outgoing longwave radiation while the lowest scores are reported for 500 hPa vertical velocity, net surface energy 

flux, and precipitation minus evaporation. The fidelity of models is found to vary widely both within and across CMIP 

generations. Systematic increases in model fidelity in more recent CMIP generations are identified, with the greatest 

improvements occurring in dynamic and energetic fields. Such examples include shortwave cloud forcing and 500 hPa eddy 375 

geopotential height and relative humidity. Improvements in ENSO scores with time are substantially greater than for 

climatology or seasonal timescales. 

 

Analysis output data generated by this approach is made freely available online from a broad range of model ensembles, 

including the CMIP archives and various single-model large ensembles. These multi-model archives allow for an expeditious 380 

analysis of performance across a range of simulations while the CESM large ensemble archive allows for estimation of the 

influence of internal variability on computed scores. The entire output archive, updated and expanded regularly, can be 

accessed at: http://webext.cgd.ucar.edu/Multi-Case/CMAT/index.html . 
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1 Introduction 

  Global climate models were first developed over half a century ago (Hunt et al. 1968, Manabe et al. 1975) and have 410 

provided insight into the climate system on a range of issues including the roles of various physical processes in the climate 

system and the attribution of climate events. They also are key tools for near-term initialized prediction and long-term 

boundary forced projections. Given their relevance for addressing issues of considerable socioeconomic importance, climate 

models are increasingly being looked to for guiding policy-relevant decisions on long timescales and on regional levels. 

Many barriers exist however, chief amongst which are the biases in climate model representations of the physical system.  415 

  Adequate evaluation of climate models is nontrivial however. A key obstacle is that the longest observational records tend 

to monitor temperature and sea level pressure and are therefore not directly related to many of the fields thought to govern 

climate variability and change, such as for example cloud radiative forcing and rainfall (Burrows et al. 2018). Global direct 

observations of more physically relevant fields exist but are available exclusively from satellite and thus are limited in 

duration, with some of the most important data records beginning only in recent decades. Over longer timescales, 420 

uncertainties in forcing external to the climate system (e.g. anthropogenic aerosols) further complicate model evaluation. 

Benchmarks of model performance must therefore be designed to deal with associated uncertainties and minimize their 

influence.  

1.1 Motivations 

  Climate modeling centers continually refine their codes with the goal of improving their models. The Climate Model 425 

Intercomparison Project (CMIP) is an effort to systematically coordinate and release targeted climate model experiments of 

high interest in the science community and has thus far provided three major releases, including CMIP3 (Meehl et al. 2007), 

CMIP5 (Taylor et al. 2012), and CMIP6 versions (Eyring et al. 2016). Major advances have also recently been made in key 

observationally-based climate datasets (as discussed herein). An opportunity has therefore arisen to take stock of these 

simulation archives and conduct a retrospective assessment of progress that has been made and challenges that remain.   430 

While individual models are widely scrutinized, systematic surveys of model performance are relatively rare. Evaluation of 

single CMIP generations have been conducted and these have been uniquely useful for identifying canonical model biases 

(Gleckler 2008, Pincus et al. 2008) It is the goal of this study to provide a similar benchmarking of models, but considerably 

expanded in scope in considering multiple CMIP versions and using newly available process-relevant observations that 

contextualize model-observation differences with respect to both internal variability and observational uncertainty. An 435 

additional goal is to provide related diagnostic outputs directly to the community. Both the graphical and data outputs 

generated may potentially be incorporated into broader community packages such as ESMValTool (Eyring et al. 2020), thus 

providing a unique evaluation of fully-coupled physical climate states that encompasses both climatological means and 

temporal variations, that accounts for key uncertainties, and that benchmarks models across CMIP generations.   
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1.2 Challenges 

A number of challenges exist for efforts aimed at comprehensively assessing climate model fidelity. Observations of many 

fields that are central to climate variability and change (e.g. cloud microphysics, entrainment rates, aerosol-cloud 455 

interactions, Knutti et al. 2010) are not observed on the global, multi-decadal timescales required to comprehensively 

evaluate models. Fields for which observations do exist often entail uncertainties that are large, particularly at times when 

the spatial sampling of observing networks is poor (e.g. SST datasets) or for fields that contain significant uncertainty in 

satellite-based retrieval (e.g. surface turbulent and radiative fluxes). For instances in which extended data records are 

unavailable, associated sensitivity to internal variability and externally imposed forcing, which also contains major 460 

uncertainties, must be considered, and evaluation of trends are particularly susceptible. In addition, model tuning methods 

vary widely across centers (e.g. Hourdin et al. 2017, Schmidt et al. 2017), and in instances where climate fields are explicitly 

tuned, direct comparison against observations is unwarranted.  

1.3 Approach 

The need for objective climate model analysis was highlighted in the 2010 IPCC Expert Meeting on Assessing and 465 

Combining Multi-Model Climate Projections (Knutti et al. 2010). Its synthesis report detailed a number of summary 

recommendations including the consideration of feedback-relevant, process-based fields, and the implementation of metrics 

that are both simple and statistically robust. In addition, fields were recommended for which observational uncertainty and 

internal variability are both quantifiable and small relative to model structural differences. The reliance on any single 

evaluation dataset was also deemed problematic in that doing so might be both susceptible to compensating errors and 470 

insufficient to fully characterize inter-model contrasts. The approach here is guided, in part, by these recommendations. 

 

Various model analysis efforts have focused on surface temperature (e.g. Braverman et al. 2017, Lorenz et al. 2019). A 

thorough evaluation of climate model thermodynamics is provided by the TheDiaTo as described in Lembo et al. (2019). 

The approach adopted here highlights instead the main components of the energy and water cycles using simple diagnostic 475 

measures. Objective assessments of CMIP3 performance based on the mean climate state using these fields were performed 

in Gleckler et al. (2008) and Pincus et al. (2008). The goal of this work is to complement and extend these efforts in 

including an analysis of both the mean state and variability across three generations of CMIP simulations while 

distinguishing between timescales and realms of diagnostics, and using improved observational datasets and constraints 

(described below). As the skill of a given climate model is likely to depend on the relevant application (Gleckler et al. 2008; 480 

Pierce et al. 2009, Knutti et al. 2017), the scores computed herein are made widely available to the community and may help 

guide formation of optimal model subsets for targeted applications. 
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The consideration of multiple CMIP generations is motivated in part by reported shifts in model behavior, such as for 

example the apparent increase in climate sensitivity to carbon dioxide in some models (Gettelman et al. 2019, Golaz et al. 

2019, Neubauer et al. 2019). Do such shifts accompany systematic improvements in models and if so, in what fields? It is 490 

also of a more general interest to quantify canonical biases in models, their changes in successive model generations, and 

persistent biases affecting the most recent generations of climate models. The specific questions addressed here therefore 

include: what improvements have occurred across model generations and what persistent biases remain? What process-

relevant well-observed fields are models most skillful in reproducing? To what extent are apparent improvements and 

persisting biases robustly detectible in the presence of internal climate variability, particularly as they relate to brief satellite 495 

records? 

 

2.0 Methods 

 

The analysis approach consists of computing a range of scores based on pattern correlations encompassing three climatic 500 

timescales: the climatological annual mean (annual), seasonal mean contrasts (JJA-DJF), and ENSO teleconnection patterns- 

computed from the 12-month July through June mean regressions against Niño3.4 sea surface temperatures (SST). The 

choice of ENSO as a model diagnostic is motivated in part by the demands involved in its accurate simulation arising from 

the highly coupled nature of the mode; which includes feedbacks between clouds, diabatic heating, and winds in the 

atmosphere, and currents and steric structure in the ocean (e.g. Cheng et al. 2018). Variables are classified according to three 505 

variable types (or realms) corresponding to the energy budget, water cycle, and dynamics. To reduce the influence of internal 

variability, the time period over which these fields are considered is at least 20 years, though the availability of some datasets 

allows for the use of longer periods, further reducing the susceptibility of the analysis to internal variability. 

Contemporaneous time intervals are also chosen to provide for maximum overlap between observed and simulated fields. 

The variables selected for consideration are chosen based on availability and judgment of their importance in simulating 510 

climate variability and change. In part this judgment is based on a recent community solicitation (Burrows et al. 2018) and 

some of the fields included (e.g. TOA fluxes) are deemed by experts to be optimal metrics for model evaluation (e.g. Baker 

and Taylor 2016). 

 

2.1 Observational Datasets 515 

 

The Energy Budget Realm 

Energy budget fields considered consist broadly of TOA radiative fluxes and cloud forcing, vertically integrated atmospheric 

energy divergence and tendency, and surface heat fluxes. Radiative fluxes at TOA are taken from the Clouds and Earth’s 

Radiant Energy System (CERES) Energy Balance and Filled Version 4.1 dataset (EBAFv4.1, Loeb et al. 2018). The dataset 520 
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offers a number of improvements over earlier versions and datasets, with improved angular distribution models and scene 

identification, but is perhaps most notable for its recently updated derivation of cloud radiative forcing (CF). Historically CF 

has been estimated from observations by differencing cloudy and neighboring clear regions, with the effect of aliasing 540 

meteorological contrasts between the regions (whereas models merely remove clouds from their radiative transfer scheme 

using collocated meteorology). In the EBAFv4.1, fields from NASA’s GEOS-5 reanalysis are used to estimate fluxes and CF 

for collocated (rather than remote) atmospheric conditions, thus providing for a more analogous comparison to models.   

From CERES, the TOA net shortwave (ASR), outgoing longwave (OLR), and net (RT) radiative fluxes are used. In addition, 

estimates of shortwave CF (SWCF) and longwave CF (LWCF) are used.  545 

 

Derived from the ERA-Interim reanalysis (Dee et al. 2011), vertical integrals of atmospheric energy are used to both assess 

the total energy divergence within the atmosphere (∇•AE) and its tendency (∂AE/ ∂t). This provides important insight into 

the regional generation of atmospheric transports and their cumulative influence on the global energy budget (e.g. Fasullo 

and Trenberth 2008). They are also an energy budget component necessary for computing the net surface energy fluxes from 550 

the residual of RT, ∇•AE , and ∂AE/ ∂t. Given the challenges of directly observing the net surface flux, a residual method is 

likely the best available method for estimating the large-scale evaluation of the surface heat budget. The method has been 

demonstrated to achieve an accuracy on par with direct observations on regional scales and has proven superior on large 

scales, where the atmospheric divergences on which they rely become small, converging to zero by definition in the global 

mean (Trenberth and Fasullo, 2017). Uncertainty estimation of CERES fluxes is also well documented (Loeb et al. 2018). 555 

 

The Water Cycle Realm 

Water cycle fields considered include precipitation (P), evaporation minus precipitation (EP), precipitable water (PRW), 

evaporation (LH), and near-surface relative humidity (RHS). The utility of P and EP as model diagnostics was highlighted by 

Greve et al. (2018) in selecting a subset of CMIP5 models. As global evaporation fields from direct observations and 560 

estimated from satellite also contain substantial uncertainty, precipitation minus evaporation is estimated here instead from 

the vertically integrated divergence of moisture simulated in ERA-Interim fields, which is also arguably the most accurate 

means of evaluating large scale patterns and variability (Trenberth and Fasullo, 2013). Precipitation is estimated from the 

Global Precipitation Climatology Project (Huffman et al. 2013) Climate Data Record (Adler et al. 2016). The improved 

version takes advantage of improvements in the gauge records used for calibration and indirect precipitation estimation from 565 

longwave radiances provided by NOAA leo-IR data. For other water cycle fields, output from the European Centre for 

Medium Range Weather Forecasts (ECMWF) Reanalysis Version 5 (ERA5, Hersbach et al. 2019) is used. ERA5 is the 

successor to ERA-Interim, increasing the resolution of reported fields, the range of fields assimilated from satellite 

instruments, and the simulation accuracy as compared against a broad range of observations for various measures. For 
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example, a comparison of ERA5 to satellite data (CERES, GPCP) demonstrates reduced mean state annual and seasonal 

biases as compared to ERA Interim (not shown).  

 

The Dynamical Realm 580 

Dynamical fields considered include sea level pressure (SLP), wind speed (US), 500 hPa eddy geopotential height (Z500), 

vertical velocity (W500), and relative humidity (RH500). The use of eddy geopotential rather than total geopotential, which 

contains significant spatial variance arising from meridional temperature contrasts, is motivated by its ability to resolve our 

main field of interest - the spatial structure of atmospheric circulations. ERA5, discussed above, is used for estimation of 

dynamical fields, as such fields are generally not provided from satellite (excepting RH500). Motivating its use, and among its 585 

notable improvements relative to earlier reanalyses, is ERA5’s improved representation of tropospheric waves and jets that is 

core to our dynamical evaluation. 

 

2.2 Generation of Variable, Realm, Timescale, and Overall Scores 

Scores for annual mean, seasonal mean, and ENSO timescale metrics are generated from the area-weighted pattern 590 

correlations (Rs) between each simulated variable and the corresponding observational dataset. Weighted averages of these 

three Rs are then used to generate a Variable Score for each field in a given simulation. Arithmetic averages across the 

relevant Variable Scores are then used to generate Realm Scores, and the Realm Scores for a simulation are arithmetically 

averaged to generate an Overall Score. Similarly, Timescale Scores are generated by averaging Rs for the relevant timescale 

across all variables. The inclusion of both Realm and Timescale scores is motivated in part by the need to interpret the origin 595 

of changes in Overall Scores, which include a large number of Rs that may otherwise obscure an obvious physical 

interpretation. Insights gained, for example, include the attribution of much of the Overall Score improvement across CMIP 

generations to the fidelity of simulated ENSO patterns. 

 

The use of weights in generating Variable Scores is motivated by the desire to assist in interpretation of differences in the 600 

Overall Score relative to the influence of internal variability. Using the Community Earth System Version 1 Large Ensemble 

(CESM1-LE, Kay et al. 2015), weights for ENSO scores are reduced from 1.000 to 0.978 (while for annual and seasonal 

scores they are 1.000) such that the standard deviation range in Overall Scores for the 40 members of the CESM1-LE is 

0.010. This therefore can be used to interpret generally the approximate contribution of internal variability to inter-model 

Overall Scores in analysis of the CMIP archives, suggesting that differences between individual simulations of less than 605 

approximately 0.040 (±2σ) are not statistically significant. Where available, multiple-simulation analyses provide an 

opportunity for further narrowing the uncertainty of statements regarding inter-model fidelity, and as will be seen, Overall 

Score ranges within and across the CMIP ensembles generally exceed the obscuring effects of internal variability. 

 

Deleted: using the metrics described above applied610 

Deleted: I

Deleted: and 

Deleted: the 

Deleted: circulation 

Deleted: the 615 

Deleted:  and

Deleted: simulation

Deleted: also 

Deleted: across 

Deleted: variables for each 620 
Deleted: metric

Deleted:  for the Overall Score

Deleted: promote 

Deleted: means 

Deleted: in625 

Deleted: accuracy 

Deleted: comparisons of 

Deleted:  that can be made



Confidential manuscript submitted to Journal of Geophysical Model Development 

 

17 
 

2.3 CMIP Simulations 

As the goal of this work is to characterize the evolution of agreement between climate models generally across the CMIP 630 

archives, and observations, all available model submissions for which sufficient data are provided are included in the 

analysis (as summarized in Table 1). A major exception to the data availability requirement relates to near surface wind 

speed (US), which was not included as part of the CMIP3 variable list specification. Scores for the dynamical realm in 

CMIP3 therefore omit US as a scored variable and instead compute the dynamic Realm score from the remaining dynamic 

variable scores. While multiple ensemble members are provided in the CMIP archives for many models, and have been 635 

assessed, only a single member of each model is incorporated into the analysis here to avoid overweighting the influence of 

any single mode.   

 

Lastly, in an effort to quantify the leading patterns of bias that differentiate models, a covariance matrix based principal 

component (PC) analysis is used where the array of bias patterns (lon x lat x model) is decomposed for its empirical 640 

orthogonal functions (EOFs). The EOFs are plotted as regressions against the normalized PC timeseries and therefore have 

the same units as the raw fields. Shown are the two leading EOFs and corresponding PC values, sorted by their values and 

averaged across terciles for each CMIP generation. Included in the PC analysis is an observational estimate (i.e. zero bias) to 

provide context for model differences. The leading EOFs are found to be both separable and explain significant variance in 

the bias matrix.  645 

 

3.0 Assessing CMIP Scores  

 
To illustrate the analysis approach and provide context for the magnitude of biases relative to internal variability and 

observational uncertainty, Figure 1 shows both observed and simulated SWCF fields across the timescales considered (Fig. 650 

1a, annual, 1b) seasonal, and 1c) ENSO) in the CESM Version 2 submission to CMIP6, CERES estimates (Fig. 1d-f), and 

their differences (CESM2-CERES, Fig. 1g-i). Significant spatial structure characterizes all fields, with a strong SWCF 

cooling influence in the mean across much of the globe (Fig. 1a), seasonal contrasts (Fig. 1b) that vary between land and 

ocean and latitudinal zone, and ENSO teleconnections (Fig. 1c) that extend from the tropical Pacific Ocean to remote ocean 

basins and the extratropics. While (as will be seen), CESM2 scores among the best available climate models, large model-655 

observation differences nonetheless exist. Regions where model-observation differences are larger than twice the ensemble 

standard deviation in the CESM1-LE in the annual and seasonal means (stippled) are widespread and remain extensive 

where the uncertainty range is expanded to incorporate estimated observational uncertainty (added in quadrature, hatched) 

from Loeb et al. 2018. Of particular note is the fact that it is the large-scale coherent patterns of bias, where model-

observational disagreement exceeds uncertainty bounds, that are the primary drivers of pattern correlations used in scoring, 660 

rather than synoptic scale noise.  
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The color table summary of scores for CMIP3 (mean pattern correlations scaled by 100, Figure 2) provides a visual summary 

of simulation performance across the models in the archive (abscissa), including Variable, Realm, Timescale, and Overall 670 

Scores (i.e. aggregate scores, ordinate). Simulations are sorted by Overall Scores (top row, descending scores toward right). 

Realm and Timescale Scores (rows 2 through 7) also provide broad summaries of model performance. Mean Overall Scores 

(69±7, 1 sigma) are modest generally in CMIP3 and generally uniform across realms. CMIP3 simulations score particularly 

poorly for ENSO, where scores average to 47, are generally less than 60, and approach 0 in some coarse-grid models. 

Variable scores are highest for PRW and OLR (which are strongly tied to surface temperature), and for SLP, and less for 675 

other variables, with the lowest scores reported for RS and W500. Spread across models for RS is particularly large relative to 

other variables. Average variable scores are also poor for SWCF (68), LWCF (71), and P (69), which are among the more 

important simulated fields according to expert consensus (Burrows et al. 2018). 

 

The color table summary of scores for CMIP5 (Figure 3) reveals scores that are considerably higher than most CMIP3 680 

simulations, with improvements in the average Overall Score of (75±5) and most notable improvements on the ENSO 

timescale, with an average of 57, though with considerable inter-model range (σ=10). A broad increase in scores in the 

highest performing models is apparent with numerous variable scores exceeding 85 (orange/red) and several Overall Scores 

of 80 or better. As for CMIP3 the highest scoring variables are PRW, SLP, and OLR, while RHS and W500 are among the 

lowest scoring variables. Mean variable scores remain relatively low for SWCF (71), LWCF (75), and P (73). 685 

 

The color table summary of scores for CMIP6 (Figure 4) illustrates scores that are considerably higher than both CMIP3 and 

CMIP5 simulations, with improvements in the average Overall Score of (79±4) and most continued improvements on the 

ENSO timescale, though again with considerable inter-model range. A continued increase in scores in the highest performing 

models is again apparent, with scores reaching the mid- to upper 70s and numerous variable scores exceeding 90 (red). The 690 

highest scoring variables again include PRW, SLP, and OLR though scores are also high for RH500, one of the more 

important simulated fields according to expert consensus (Burrows et al., 2018). Scores also increase for SWCF (78), LWCF 

(80), and P (77). 

 

To highlight connections between variables, and aid in identifying the main variables driving variance in aggregate scores 695 

across the CMIP archives, correlations amongst scores across all CMIP models are shown in Figure 5. For Overall Scores, 

these include strong connections to P, E-P and OLR, fields strongly connected to atmospheric heating, dynamics, and deep 

convection and therefore broadly relevant to model performance. Strong connections also exist for SWCF, LWCF, and RH500, 

consistent with the expert consensus in highlighting these fields as being particularly important (Burrows et al. 2018).   An 

approximately equal correlation exists across Realms with the Overall Score, while for timescales, ENSO exhibits the 700 

strongest overall correlation as it contains the greatest inter-model variance and thus explains a greater portion of the Overall 
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Score variance. Correlations between timescales is weak generally, consistent with the findings of Gleckler et al. (2008) 

where relationships were also examined between the mean state and interannual variability. Notable as well is that some 

variables for which scores are high in the mean, such as SLP and PRW, exhibit little correlation with the Overall Score as the 715 

uniformly high scores across models impart relatively little variance to the Overall Scores. 

 

4.0 Derived Bias Patterns for Selected Variables 

 

The observational estimate of SWCF from CERES is shown in Figure 6a along with mean bias patterns for CMIP3 (b) and 720 

CMIP6 (c). A principal component (PC) analysis of the bias across the broader CMIP archives is also conducted (see 

Methods) with the leading principal components and their tercile mean values within each CMIP version being shown (d) 

along with the two leading patterns of bias (Fig. 6e, f). The mean observational field (Fig. 6a) is characterized by negative 

values in nearly all locations (except over ice) and the strongest cooling influence in the deep tropics, subtropical 

stratocumulus regions, and midlatitude oceans. Mean bias patterns demonstrate considerable improvement across the CMIP 725 

generations, with major reductions in negative biases in the subtropical and tropical oceans. Variance across models is 

characterized by the degree of tropical-extratropical contrasts in SWCF (EOF1), which explains 24% of the inter-model 

variance, and land-ocean contrasts (EOF2), which explain 16% of the variance. The expression of both patterns of biases is 

demonstrated to diminish across CMIP generations and terciles in their PC weights (Fig. 6d), ordered sequentially (1-3) with 

CMIP6 values (dark blue) lying generally closer to observations than CMIP3/5. Improvements are not in however 730 

necessarily monotonic across the CMIP generations, with improvements and degradations notable in some aspects of the 

PC1/2 transition from CMIP3 to CMIP5 (i.e. instances in which tercile mean PC values are closer to CERES for CMIP3 than 

CMIP5). 

 

An analysis of LWCF is shown in Figure 7. Observational fields are characterized by a strong heating influence in regions of 735 

deep tropical convection and in the extratropical ocean regions in which SWCF is also strong (Fig. 6a) while weak heating is 

evident in the subtropics and polar regions. Significant changes characterize mean bias patterns between CMIP3 and CMIP6, 

with positive biases across most ocean regions in CMIP3 and negative biases in many of the same regions in CMIP6. On 

average however, the magnitude of biases are reduced across CMIP generations. This is evident for example in the PC 

analysis of bias (Fig. 7d), where CMIP6 values lie closer generally to CERES than for CMIP3 or CMIP5. The leading mode 740 

(EOF1, Fig. 7e) exhibits strong weightings over the warm pool, is negatively correlated with both the mean pattern and bias, 

and explains 36% of the inter-model variance. In contrast, EOF2 exhibits a strong tropical-extratropical contrast, little 

correlation to the mean pattern or bias, and explains only 13% of the variance. The PC1/2 tercile weights for these modes 

show a considerable reduction in EOF1 spread, smaller mean tercile biases generally, and improved agreement across model 

Deleted: spread in 745 
Deleted:  across models

Deleted: for 

Deleted: shown 

Deleted: characteristics of the 

Deleted: d750 
Deleted: -

Deleted: In the PC analysis, the observational benchmark field is 
also included to gauge improvements or degradation of model PCs 
across CMIP generations. 

Deleted: s755 
Deleted: s over 

Deleted: differing 

Deleted: al

Deleted: estimates 

Deleted:  PC1/2 weights760 
Deleted: general 

Deleted: The observational estimate for

Deleted: from CERES 

Deleted: a along with mean bias patterns for CMIP3 (b) and 
CMIP6 (c). A PC analysis of the bias across the CMIP archives is 765 
also shown with the leading PC weights and their tercile mean 
values within each CMIP version being shown (d) along with the 
two leading patterns of bias (Fig. 7e, f)

Deleted: was 

Deleted: e-f770 
Deleted: t

Deleted:  

Deleted: 7

Deleted: bias 

Deleted: and lower775 
Deleted: generally 



Confidential manuscript submitted to Journal of Geophysical Model Development 

 

20 
 

terciles from CMIP3 to CMIP6, though as with SWCF, the improvement is not monotonic nor uniform across all terciles and 

PCs. 

 

An analysis of precipitation is shown in Figure 8. The annual mean pattern resolves key climate system features, including 780 

strong precipitation in the Inter-Tropical Convergence Zone (ITCZ) and arid conditions in the subtropics and at high 

latitudes. Biases are large in both CMIP3 and CMIP6 on average and are characterized generally by excessive subtropical 

precipitation and deficient precipitation in the Pacific Ocean ITCZ, South America, and at high latitudes. Earlier work has 

generally characterized model bias in terms of its double ITCZ structure (Oueslati et al. 2015), though systematic bias is also 

apparent beyond the tropical Pacific Ocean. In addition, the PC decomposition of CMIP precipitation biases (Fig. 8d-f) 785 

suggests that the bias is comprised to two orthogonal leading patterns that together explain 15% and 11% of the variance 

across models, respectively. A separable unique leading pattern is therefore not evident. Rather, the leading pattern (Fig. 8e) 

is characterized by weakness in precipitation across the equatorial oceans, with elevated rates in the Maritime continent and 

in the Pacific Ocean near 15N/S. The second pattern (Fig. 8f) is characterized by loadings over Africa and South America, 

and on the southern fringe of the observed climatological Pacific ITCZ (Fig. 8a), with negative loadings in the subtropical 790 

ocean basins. Based on mean PC tercile values, slight improvement across CMIP generations is evident, as tercile values lie 

closer to observations for all terciles of PC1/2 in CMIP6 versus CMIP3, with the exception of the first tercile of PC1, where 

CMIP3 lies close to GPCP. 

 

An analysis of RH500 from ERA5 is shown in Figure 9. The observed RH500 field is characterized by positive humidity biases 795 

in regions of frequent deep convection (i.e. Maritime Continent, Amazon) and at high latitudes, and very dry conditions in 

the subtropics, with values generally below 30% across the subtropics, features that were poorly resolved in CMIP3 (e.g. 

Fasullo and Trenberth 2012). The CMIP3 mean bias field is negatively correlated with the mean state, with patterns that lack 

sufficient spatial contrast, are too moist in the subtropics, and too dry in Africa, the Maritime continent, the Amazon, and at 

high latitudes. The magnitude of mean RH500 biases in CMIP6 are substantially smaller (roughly 50%) than CMIP3, though 800 

they share a similar overall pattern reflecting weakness in spatial contrasts. The PC analysis of bias reveals a leading pattern 

that explains 50% of the intermodal variance and is negatively correlated with observations (-0.44). The second leading 

pattern (Fig. 9f) explains considerably less variance (15%) and exhibits a zonally uniform structure characterized by tropical-

extratropical contrast. The weights for PC1/2 reveal systematic bias in PC1 across models (all lie to the right of ERA5), and 

considerable improvement across CMIP generations as CMIP6 weights lie significantly closer to ERA5 that CMIP3 weights 805 

for all terciles (1-3). Small improvements are also evident in terciles 1 and 2 of PC2, though this comprises a small fraction 

of variance in overall CMIP bias.  
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In the effort to summarize the evolution of the full distributions of scores across the CMIP archives, whisker plots 

encompassing the median, interquartile, and 10th-90th percentile ranges are shown for various aggregate metrics and key 

fields in Figure 10. Also shown are the equivalent ranges for scores computed from the CESM1-LE to provide an estimate of 

the influence of internal variability for each distribution. A steady improvement in the Overall Scores is evident across CMIP 870 

versions, a progression that is also evident across Realm Scores and particularly for the poorest scoring models in the 

Dynamics Realm. Scores for Annual and Seasonal timescales are generally high across archives, though internal variability 

is also small and is substantially less than the median improvements across the archives. The range of scores for ENSO is 

significantly greater than other timescales, as is the range of internal variability, and substantial improvements have been 

realized for the lowest scoring models across successive CMIP generations. Noteworthy are the substantial improvements in 875 

SWCF, LWCF, and P, with the best CMIP3 simulations scoring near the median value for CMIP6 and improvements in 

median values from CMIP3 to CMIP6 exceeding uncertainty arising from internal variability. Scores for RH500 have also 

improved, although the spread within the CMIP3 archives is substantial and uncertainty arising from internal variability is 

somewhat greater than for other variables. RH500 scores in CMIP6 are generally higher than for cloud forcing and P. For 

SLP, median scores are uniformly high across the CMIP generations, with small but steady improvement in median and 880 

interquartile scores, with the main exception of high scores being the low scoring 0-25% range of CMIP3 simulations. 

 

5.0 Discussion 

 

An objective model evaluation approach has been developed that uses feedback-relevant fields and takes advantage of recent 885 

expert elicitations of the climate modeling community and advances in satellite and reanalysis datasets. In its application to 

the CMIP archives, the analysis is shown to provide an objective means for computing model scores across variables, 

realms, and timescales. Visual summaries of model performance across the CMIP archives are also generated, which readily 

allow for the survey of a broad suite of climate performance scores. As there is unlikely to be a single model best-suited to 

all applications (Gleckler et al. 2008, Knutti et al. 2010, 2017), in providing online access to model scores and the fields used 890 

to compute them, the results herein are intended to aid the community in informing model ensemble optimization for 

targeted applications. 

 

Based on the pattern correlation approach adopted, a number of statements can be made regarding the overall performance of 

climate models across CMIP generations. Noteworthy is that, as informed by analysis of the CESM1-LE and consistent with 895 

the design of the approach used, these statements are robust to the obscuring influence of internal climate variability. In 

general, computed scores have increased steadily across CMIP generations, with improvements exceeding the range of 

internal variability. Associated with these improvements, the leading patterns of bias across models are shown to have been 

reduced.  Improvements are large and particularly noteworthy for ENSO teleconnection patterns, as the poorest scoring 
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models in each CMIP generation have improved substantially. In part this may be due to the elimination of very low 920 

resolution models in CMIP5/6, though improvements in model physics is also likely to play a role. The overall range of 

model performance within CMIP versions has also decreased in conjunction with increases in median scores, as 

improvement in the worst models has generally outpaced that of the median. Reductions in systematic patterns of bias (e.g. 

Figs. 6-9) across the CMIP archives have been pronounced for fields deemed in expert solicitations to have particular 

importance, including SWCF, LWCF, and RH500. 925 

  

Also relevant for climate feedbacks, Variable Scores for SWCF, LWCF, RH500, and precipitation have increased steadily 

across the CMIP generations (e.g. Fig. 10), with magnitudes exceeding the uncertainty associated with internal variability. 

Scores are particularly high for CMIP6 models for which high climate sensitivities have been reported, including CESM2, 

SAM0-UNICON, GFDL-CM4, CNRM-CM6-1, E3SM, and EC-Earth3-Veg (though exceptions also exist such as in the case 930 

of MIRCO6). These findings therefore echo the concerns voiced in Gettelman et al. 2019: “What scares us is not that the 

CESM2 ECS is wrong (all models are wrong, (Box, 1976)) but that it might be right.”. The fields provided by CMAT allow 

for an expedited analysis of the sources of these improvements, such as for example the simulation of supercooled liquid 

clouds (e.g. Kay et al. 2016). Further work examining the ties between metrics of performance in simulating the present-day 

climate, such as those provided here, and longer-term climate model behavior is warranted to bolster confidence in model 935 

projections of climate change.   
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Data Availability 

Data used in this study are available freely from the Earth System Grid at: https://www.earthsystemgrid.org 

NetCDF output for the fields generated herein is freely available at: http://webext.cgd.ucar.edu/Multi-

Case/CMAT/index.html 
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Table 1: Sorted summary of CMIP models considered in this work, sorted by Overall Scores. 
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CMIP3 CMIP5 CMIP6 
gfdl_cm2_0 (0.78) CESM1-BGC (0.81) CESM2 (0.86) 
gfdl_cm2_1 (0.75) CNRM-CM5-2 (0.81) MIROC6 (0.85) 
cccma_cgcm3_1_t63 (0.75) CESM1-FASTCHEM (0.81) CESM2-WACCM (0.85) 
mri_cgcm2_3_2a (0.75) CESM1-CAM5 (0.81) GISS-E2-1-H (0.85) 
mpi_echam5 (0.75) ACCESS1-0 (0.81) SAM0-UNICON (0.84) 
miub_echo_g (0.74) NorESM1-ME (0.80) GFDL-CM4 (0.84) 
csiro_mk3_5 (0.74) CESM1-WACCM (0.80) EC-Earth3-Veg (0.84) 
ingv_echam4 (0.73) CESM1-CAM5-1-FV2 (0.80) EC-Earth3 (0.83) 
ukmo_hadcm3 (0.73) MIROC5 (0.80) UKESM1-0-LL (0.82) 
cccma_cgcm3_1 (0.73) CMCC-CMS (0.80) MRI-ESM2-0 (0.82) 
cnrm_cm3 (0.73) HadGEM2-ES (0.80) E3SM-1-0 (0.81) 
ncar_ccsm3_0 (0.72) NorESM1-M (0.79) CNRM-CM6-1 (0.81) 
csiro_mk3_0 (0.71) BNU-ESM (0.79) CNRM-ESM2-1 (0.81) 
miroc3_2_medres (0.71) ACCESS1-3 (0.78) MIROC-ES2L (0.81) 
bccr_bcm2_0 (0.71) HadGEM2-AO (0.78) FGOALS-g3 (0.79) 
iap_fgoals1_0_g (0.69) bcc-csm1-1-m (0.77) CAMS-CSM1-0 (0.79) 
miroc3_2_hires (0.69) GFDL-CM2p1 (0.76) BCC-CSM2-MR (0.77) 
ukmo_hadgem1 (0.68) CanESM2 (0.76) BCC-ESM1 (0.77) 
ipsl_cm4 (0.67) CMCC-CESM (0.75) CanESM5 (0.77) 
ncar_pcm1 (0.61) IPSL-CM5B-LR (0.75) IPSL-CM6A-LR (0.74) 
inmcm3_0 (0.60) MRI-ESM1 (0.75) GISS-E2-1-G (0.74) 
giss_model_e_r (0.60) MPI-ESM-LR (0.75) NorESM2-LM (0.74) 
giss_aom (0.59) MPI-ESM-MR (0.74)  
giss_model_e_h (0.46) MPI-ESM-P (0.74)  
 MRI-CGCM3 (0.74)  
 FGOALS-g2 (0.74)  
 GFDL-ESM2G (0.72)  
 GISS-E2-R-CC (0.72)  
 IPSL-CM5A-MR (0.71)  
 MIROC-ESM (0.70)  
 GISS-E2-H-CC (0.69)  
 IPSL-CM5A-LR (0.68)  
 CSIRO-Mk3-6-0 (0.68)  
 MIROC-ESM-CHEM (0.68)  
 inmcm4 (0.68)  
 GISS-E2-H (0.67)  
 CESM1-BGC (0.81)  
 CNRM-CM5-2 (0.81)  
 CESM1-FASTCHEM (0.81)  
 CESM1-CAM5 (0.81)  
 ACCESS1-0 (0.81)  
 NorESM1-ME (0.80)  
 CESM1-WACCM (0.80)  
 CESM1-CAM5-1-FV2 (0.80)  
 MIROC5 (0.80)  
 CMCC-CMS (0.80)  
 HadGEM2-ES (0.80)  
 NorESM1-M (0.79)  
 BNU-ESM (0.79)  
 ACCESS1-3 (0.78)  
 HadGEM2-AO (0.78)  
 bcc-csm1-1-m (0.77)  
 GFDL-CM2p1 (0.76)  
 CanESM2 (0.76)  
 CMCC-CESM (0.75)  
 IPSL-CM5B-LR (0.75)  
 MRI-ESM1 (0.75)  
 MPI-ESM-LR (0.75)  
 MPI-ESM-MR (0.74)  
 MPI-ESM-P (0.74)  
 MRI-CGCM3 (0.74)  
 FGOALS-g2 (0.74)  
 GFDL-ESM2G (0.72)  
 GISS-E2-R-CC (0.72)  
 IPSL-CM5A-MR (0.71)  
 MIROC-ESM (0.70)  
 GISS-E2-H-CC (0.69)  
 IPSL-CM5A-LR (0.68)  
 CSIRO-Mk3-6-0 (0.68)  
 MIROC-ESM-CHEM (0.68)  
 inmcm4 (0.68)  
 GISS-E2-H (0.67)  
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Figure 1: Mean simulated fields of SWCF in CESM2 from 1995-2014 for A) the annual mean, B) seasonal contrasts, and C) 
regressed against Niño3.4 SST anomalies using July through June averages. Observed CERES EBAF4.1 estimated SWCF for 2000-
2018 for analogous metrics (D-F) and CESM2-CERES differences (G-I) are also shown. Stippling indicates regions where CESM2-1065 
CERES differences exceed twice the ensemble standard deviation of the CESM1-LE. Hatching indicates regions where differences 
exceed the same spread plus observational uncertainty (added in quadrature, applied to all panels in each column). Units are W m-

2 except for regressions (right column) where units are W m-2 K-1. Zonal means (right panels) include land (red), ocean (blue), and 
global (black). 
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Figure 2: Overall, Realm, Timescale, and Variable scores (ordinate) for historical (20c3m) simulations submitted to the CMIP3 1080 
archives (abscissa) sorted by overall score (top row) based on methods employed (see Methods). Simulations and variables are 
ordered in descending score order from left to right using the Overall Score and from top to bottom using average Variable Score, 
respectively. 
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Figure 3: As in Fig. 2 except for historical simulations submitted to the CMIP5 archive. 
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Figure 4: As in Fig. 2 except for historical simulations submitted to the CMIP6 archive.  
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Figure 5: Cross correlations between variable and aggregate scores computed for the all CMIP archives sorted in order of 1100 
decreasing correlations from left to right and top to bottom. 
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Figure 6: Analysis of the annual mean SWCF bias in the combined historical CMIP3/5/6 archive including A) the observed estimate 
from CERES EBAFv4.1, the mean biases in (B) CMIP3 and (C) CMIP6, and (D) the first two PCs of biases and their tercile 1105 
averages across the CMIP archives, and the associated first (E) and second (F) EOFs of biases. All units are W m-2, except for the 
PCs, which are unitless. Zonal means (right panels) include land (red), ocean (blue), and global (black). 
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 1110 

Figure 7: Analysis of the annual mean LWCF bias in the combined historical CMIP3/5/6 archive including A) the observed estimate 
from CERES EBAFv4.1, the mean biases in (B) CMIP3 and (C) CMIP6, and (D) the first two PCs of biases and their tercile 
averages across the CMIP archives, and the associated first (E) and second (F) EOFs of biases. All units are W m-2, except for the 
PCs, which are unitless. Zonal means (right panels) include land (red), ocean (blue), and global (black). 
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Figure 8: Analysis of the annual mean precipitation bias in the combined historical CMIP3/5/6 archive including A) the observed 
estimate from GPCP CDR, the mean biases in (B) CMIP3 and (C) CMIP6, and (D) the first two PCs of biases and their tercile 
averages across the CMIP archives, and the associated first (E) and second (F) EOFs of biases. All units are mm day-1, except for 1120 
the PCs, which are unitless. Zonal means (right panels) include land (red), ocean (blue), and global (black). 
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Figure 9: Analysis of the annual mean RH500 bias in the combined historical CMIP3/5/6 archive including A) the observed estimate 1125 
from ERA5, the mean bias in (B) CMIP3 and (C) CMIP6, and (D) the first two PCs of biases and their tercile averages across the 
CMIP archives, and the associated first (E) and second (F) EOFs of biases. All units are %, except for the PCs, which are unitless. 
Zonal means (right panels) include land (red), ocean (blue), and global (black). 
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Figure 10: Evolution of the distribution of aggregate and selected variable scores across the CMIP archives and the CESM1-1135 

LE. 
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