

Comments to the Author:

Minor comment: I do not think that the surface statistics presented in Table 1 and 2 suggest “the importance of including the contributions of this source for improving the spatial and temporal variability in model predictions”. They show a very marginal gain. It is not surprising because the base model is “tuned” (input parameters and schemes adjusted) to match as well as possible existing observations. Therefore, even by making the model more realistic in terms of emissions or physics, one may degrade initially the model performances. Overall, regarding the importance of LNO, results are much more convincing for the free troposphere. I do not think you need to add “suggesting...predictions” here. The point is made more naturally in the conclusion.

The topical editor has made a very good point and we completely agree. We have now revised the manuscript by removing the sentence “suggesting ... predictions” on Page 7 Lines 200 – 201. And made minor changes to make the sentence flow smoothly.

1 **Simulating Lightning NO_x Production in CMAQv5.2 Using mNLDN, hNLDN,**
2 **and pNLDN Schemes: Performance Evaluations**

3

4 Daiwen Kang^{1*}, Kristen Foley¹, Rohit Mathur¹, Shawn Roselle¹, Kenneth Pickering², and Dale
5 Allen²

6

7 ¹Computational Exposure Division, National Exposure Research Laboratory, U.S.
8 Environmental Protection Agency, Research Triangle Park, NC 27711, USA

9 ²Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD,
10 USA

11
12
13
14
15
16
17
18
19
20
21
22

23 *Corresponding author: Daiwen Kang, US EPA, 109 T.W. Alexander Drive, Research Triangle Park, NC
24 27711, USA. Tel.: 919-541-4587; fax: 919-541-1379; e-mail: kang.daiwen@epa.gov

25

Abstract

This study assesses the impact of the lightning NO_x (LNO_x) production schemes in the CMAQ model (Kang et al., 2019) on ground-level air quality as well as aloft atmospheric chemistry through detailed evaluation of model predictions of nitrogen oxides (NO_x) and ozone (O₃) with corresponding observations for the U.S. For ground-level evaluations, hourly O₃ and NO_x from the US EPA's AQS monitoring network are used to assess the impact of different LNO_x schemes on model prediction of these species in time and space. Vertical evaluations are performed using ozonesonde and P-3B aircraft measurements during the DISCOVER-AQ campaign conducted in the Baltimore/Washington region during July 2011. The impact on wet deposition of nitrate is assessed using measurements from the National Atmospheric Deposition Program's National Trends Network (NADP/NTN). Compared with the base model (without LNO_x), the impact of LNO_x on surface O₃ varies from region to region depending on the base model conditions. Overall statistics suggest that for regions where surface O₃ mixing ratios are already overestimated, the incorporation of additional NO_x from lightning generally increased model overestimation of mean daily maximum 8-hr (DM8HR) O₃ by 1-2 ppb. In regions where surface O₃ is underestimated by the base model, LNO_x can significantly reduce the underestimation and bring model predictions close to observations. Analysis of vertical profiles reveals that LNO_x can significantly improve the vertical structure of modeled O₃ distributions by reducing underestimation aloft, and to a lesser degree decreasing overestimation near the surface. Since the base model underestimates the wet deposition of nitrate in most regions across the modeling domain except the Pacific Coast, the inclusion of LNO_x leads to reduction in biases and errors and an increase in correlation coefficients at almost all the NADP/NTN sites. Among the three LNO_x schemes described in Kang et al. (2019), the hNLDN scheme, which is implemented using hourly observed lightning flash data from National Lightning Detection Network (NLDN), performs best for the ground-level, vertical profiles, and wet deposition comparisons except that for the accumulated wet deposition of nitrate, the mNLDN scheme (the monthly NLDN-based scheme) performed slightly better. However, when observed lightning flash data are not available, the linear regression-based parameterization scheme, pNLDN, provides an improved estimate for LNO_x compared to the base simulation that does not include LNO_x.

55 **1. Introduction**

56 The potential importance of NO_x produced by lightning (LNO_x) on regional air quality was
57 recognized more than two decades ago (e.g. Novak and Pierce, 1993), but LNO_x emissions have
58 only been added to regional chemistry and transport models during the last decade (e.g. Allen et
59 al., 2012; Kaynak et al., 2008; Koshak et al., 2014; Smith and Mueller, 2010; Koo et al., 2010)
60 owing in part to the limited understanding of this NO_x source (Schumann and Huntrieser, 2007;
61 Murray, 2016; Pickering et al., 2016). As a result of efforts to reduce anthropogenic NO_x
62 emissions in recent decades (Simon et al., 2015; <https://gispub.epa.gov/air/trendsreport/2018>), it
63 is expected that the relative contribution of LNO_x to the tropospheric NO_x burden and its
64 subsequent impacts on atmospheric chemistry will increase in the United States and other
65 developed countries (Kang and Pickering, 2018). The significant impact of LNO_x on surface air
66 quality was earlier reported by Napelenok et al. (2008), in that low-biases in upper tropospheric
67 NO_x in Community Multiscale Air Quality Model (CMAQ) (Byun and Schere, 2006)
68 simulations without LNO_x emissions made it difficult to constrain ground-level NO_x emissions
69 using inverse methods and Scanning Imaging Absorption Spectrometer for Atmospheric
70 Cartography (SCIAMACHY) NO₂ retrievals (Bovensmann et al., 1999; Sioris et al., 2004;
71 Richter et al., 2005). Appel et al. (2011) and Allen et al. (2012) reported that NO₃⁻ wet deposition
72 at National Atmospheric Deposition Program (NADP) sites was underestimated by a factor of
73 two when LNO_x was not included.

74 LNO_x production and distribution were parameterized initially in global models (e.g.
75 Stockwell et al., 1999; Labrador et al., 2005) relying on the work of Price and Rind (1992) and
76 Price et al. (1997) in that lightning flash frequency was parameterized as a function of the
77 maximum cloud-top-height. Other approaches for LNO_x parameterization include a combination
78 of latent heat release and cloud-top-height (Flatoy and Hov, 1997), convective precipitation rate
79 (e.g. Allen and Pickering, 2002), convective available potential energy (Choi et al., 2005), or
80 convectively induced updraft velocity (Allen et al., 2000; Allen and Pickering, 2002). More
81 recently, Finney et al. (2014, 2016) adopted a lightning parameterization using upward cloud ice
82 flux at 440hPa (based upon definitions of deep convective clouds in the International Satellite
83 Cloud Climatology Project (Rossow et al., 1996)) and implemented it in the United Kingdom
84 Chemistry and Aerosol model (UKCA). With the availability of lightning flash data from the

85 National Lightning Detection Network (NLDN) (Orville et al., 2002), recent LNO_x
86 parameterization schemes started to include the observed lightning flash information to constrain
87 LNO_x in regional Chemical Transport Models (CTMs) (Allen et al., 2012). In Kang et al. (2019),
88 we described the existing LNO_x parameterization scheme that is based on the monthly NLDN
89 (mNLDN) lightning flash data, and an updated scheme using hourly NLDN (hNLDN) lightning
90 flash data in the CMAQ lightning module. In addition, we also developed a scheme based on
91 linear and log-linear regression parameters using multiyear NLDN observed lightning flashes
92 and model predicted convective precipitation rate (pNLDN). The preliminary assessment of
93 these schemes based on total column LNO_x suggests that all the schemes provide reasonable
94 LNO_x estimates in time and space, but during summer months, the mNLDN scheme tends to
95 produce the most and the pNLDN scheme the least LNO_x.

96 The first study on the impact of LNO_x on surface air quality using CMAQ was conducted
97 by Allen et al. (2012) and followed by Wang et al. (2013) with different ways for parameterizing
98 LNO_x production and different model configurations. In this study, we present performance
99 evaluations using each of the LNO_x production schemes (mNLDN, hNLDN, pNLDN) described
100 by Kang et al. (2019) to provide estimates of LNO_x in CMAQ. In addition to examination of
101 differences in air quality estimates between these schemes, we compare the model predictions to
102 base model estimates without LNO_x and evaluate the estimates from all of the simulations
103 against surface and airborne observations.

104 Section 2 describes the model configuration, simulation scenarios, analysis methodology,
105 and observational data. Section 3 presents the analysis results and Section 4 presents the
106 conclusions.

107

108 **2. Methodology**

109 **2.1 The CMAQ model and simulation configurations**

110 The three LNO_x production schemes described in Kang et al (2019) were incorporated
111 into CMAQ v5.2 (Appel et al. 2017; doi:10.5281/zenodo.1167892). The chemical mechanism
112 used was CB6 (Yarwood et al., 2010) and the aerosol module was AERO6 (Nolte et al., 2015).

113 The meteorological inputs were provided by the Weather Research and Forecasting (WRF)
114 model version 3.8 and the model-ready meteorological input files were created using version 4.2
115 of the meteorology–chemistry interface processor (MCIP; Otte and Pleim, 2010).

116 The modeling domain covers the entire contiguous United States (CONUS) and
117 surrounding portions of northern Mexico and southern Canada, as well as the eastern Pacific and
118 western Atlantic oceans. The model domain consists of 299 north–south grid cells by 459 east–
119 west grid cells utilizing 12 km x 12 km horizontal grid spacing, 35 vertical layers with varying
120 thickness extending from the surface to 50 hPa and an approximately 10m midpoint for the
121 lowest (surface) model layer. The simulation time period covers the months from April to
122 September 2011 with a 10-day spin-up period in March.

123 Emission input data were based on the 2011 National Emissions Inventory
124 (<https://www.epa.gov/air-emissions-inventories>). The raw emission files were processed using
125 version 3.6.5 of the Sparse Matrix Operator Kernel Emissions (SMOKE;
126 <https://www.cmascenter.org/smoke/>) processor to create gridded speciated hourly model-ready
127 input emission fields for input to CMAQ. Electric generating unit (EGU) emissions were
128 obtained using data from EGUs equipped with a continuous emission monitoring system
129 (CEMS). Plume rise for point and fire sources were calculated in-line for all simulations (Foley
130 et al., 2010). Biogenic emissions were generated in-line in CMAQ using BEIS versions 3.61
131 (Bash et al., 2016). All the simulations employed the bidirectional (bi-di) ammonia flux option
132 for estimating the air–surface exchange of ammonia.

133 There are four CMAQ simulation scenarios for this study: 1) simulation without LNO_x
134 (Base), 2) simulation with LNO_x generated by the scheme based on monthly information from
135 the NLDN (mNLDN), 3) simulation with LNO_x generated by scheme based on hourly
136 information from the NLDN (hNLDN), and 4) simulation with LNO_x generated by the scheme
137 parameterizing lightning emissions based on modeled convective activity (pNLDN) as described
138 in detail in Kang et al. (2019). All other model inputs, parameters and settings were the same
139 across the four simulations. The vertical distribution algorithm is the same for all the LNO_x
140 schemes as also described in Kang et al. (2019).

141
142
143

144 **2.2 Observations and analysis techniques**

145 To assess the impact of LNOx on ground-level air quality, output from the various CMAQ
146 simulations were paired in space and time with observed data from the EPA's Air Quality
147 System (AQS; <https://www.epa.gov/aqs>) for hourly O₃ and NOx. To evaluate the vertical
148 distribution, measurements of trace species from the Deriving Information on Surface Conditions
149 from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ;
150 <http://www.nasa.gov/missions/discover-aq>) campaign conducted in the Baltimore/Washington
151 region (e.g., Crawford and Pickering, 2014; Anderson et al., 2014; Follette-Cook et al., 2015)
152 were used. During this campaign, the NASA P-3B aircraft measured trace gases including O₃,
153 NO, and NO₂. Vertical profiles were obtained over seven locations – Beltsville (Be), Padonia
154 (Pa), Fairhill (Fa), Aldino (Al), Edgewood (Ed), Essex (Es), and Chesapeake Bay (Cb) from
155 approximately 0.3 to 5 km above ground level during P-3B flights over 14 days in July 2011.
156 During this same period, ozonesonde measurements were taken that extended from ground level
157 through the entire model column at two locations (Beltsville, MD and Edgewood, MD shown in
158 Figure 1). Inclusion of LNOx estimates in the CTM simulations also has an important impact on
159 model estimated wet deposition of nitrate. Therefore, assessment was also performed using data
160 from the National Atmospheric Deposition Program's National Trends Network (NADP/NTN,
161 <http://ndp.slh.wisc.edu/ntn>).

162 Since lightning activity as well as LNOx exhibit distinct spatial variations (Kang and
163 Pickering, 2018), analysis was conducted for the model domain over the contiguous United
164 States, and then for each region as shown in Figure 1. Emphasis is placed on two regions,
165 Southeast (SE) and Rocky Mountains (RM), where lightning activity is more prevalent and
166 LNOx has the greatest impact on model predictions as shown in Results - increasing model bias
167 in the SE and decreasing bias in the RM. The commonly used statistical metrics, Root Mean
168 Square Error (RMSE), Normalized Mean Error (NME), Mean Bias (MB), Normalized Mean
169 Bias (NMB), and Correlation Coefficient (R), in the model evaluation field as defined in Kang et
170 al. (2005) and Eder et al. (2006) were calculated to assess the basic performance differences
171 among all the model cases for their ground-level air quality predictions.

172

173

174
175 **3. Results**

176 **3.1 Ground-level evaluation for O₃ and NO_x**

177 **3.1.1 Statistical performance metrics**

178 Tables 1 and 2 display the statistical model performance metrics for daily maximum 8-hr
179 (DM8HR) O₃ and daily mean NO_x mixing ratios over the domain and each analysis region for
180 all four model cases in July 2011 (Base, mNLDN, hNLDN, and pNLDN). The best performance
181 metrics among the model cases are highlighted in bold. As shown in Table 1, for DM8HR O₃,
182 the Base simulation has the lowest MB and NMB values over the Domain, while hNLDN
183 produced the smallest RMSE and NME values. mNLDN generated the largest values for both
184 error (RMSE and NME) and biases (MB and NMB), followed by pNLDN. More importantly, all
185 model cases with LNO_x exhibit slightly higher correlation coefficients than the Base simulation,
186 suggesting the importance of including the contributions of this source for improving the spatial
187 and temporal variability in model predictions. Additionally, the hNLDN simulation exhibited
188 higher correlation and lower bias and error relative to the measurements indicating the value of
189 higher temporal resolution lightning activity for representing the associated NO_x emissions and
190 their impacts on tropospheric chemistry.

191 Examining the regional results for DM8HR O₃ in Table 1, the statistical measures indicate
192 that in the Northeast (NE), hNLDN outperformed all other model cases with the lowest errors
193 and biases and highest correlation coefficient. In Southeast (SE), the Base performed better with
194 the lowest errors and mean biases, but the correlation coefficient (R) value for hNLDN is slightly
195 higher. Among all the LNO_x cases, mNLDN produced the worst statistics in this region.
196 Historically, CTMs tend to significantly overestimate surface O₃ in the Southeast US (Lin et al.,
197 2008; Fiore et al., 2009; Brown-Steiner et al., 2015; Carty et al., 2015), and this is speculated to
198 be driven in part by an overestimation of anthropogenic NO_x emission estimates. Thus, even
199 though lightning is known to impact ambient air quality, including this additional NO_x source
200 can worsen model performance in some locations and time periods due to other errors in the
201 modeling system. As noted in Table 1, for SE, the MB values increased by about 1.6 ppb in
202 mNLDN and less than 1 ppb in hNLDN and pNLDN. Nevertheless, the correlation coefficients
203 for mNLDN and pNLDN are almost the same with the Base, and hNLDN was slightly higher

(0.77 compared to 0.76). These correlations indicate that even though additional NO_x increases the mean bias, when it is added correctly in time and space, as with the case of hNLDN, the spatial and temporal correlation are improved. In Upper Midwest (UM), the lowest errors and biases among the model cases are associated with hNLDN, while the worst performance is with mNLDN. In the Lower Midwest (LM), hNLDN performed comparable with the Base, with hNLDN having the highest correlation and lowest mean errors, while the Base has the lowest mean biases. Rocky Mountain (RM) is the only region that shows an underestimation of DM8HR O₃. In this region all the model cases with LNO_x outperformed the Base case in all the metrics. Among the three model cases with LNO_x, mNLDN produced the lowest MB and NMB values, while hNLDN had the lowest RMSE and NME, and the highest correlation. In the Pacific Coast (PC) region, lightning activity is generally very low compared to other regions (Kang and Pickering, 2018). All model cases with LNO_x outperformed the Base case, especially hNLDN which had the lowest mean error and bias and highest correlation among all the cases.

Most of the NO_x produced by lightning is distributed in the middle and upper troposphere with only a small portion being distributed close to the surface. As a result, the impact on ground-level NO_x mixing ratios is small. Table 2 shows all the model cases produced similar statistics for the daily mean NO_x mixing ratios at AQS sites across the domain and within all the subregions. Although the changes in model performance are small, the model cases with LNO_x exhibit similar or slightly better performance than the Base case.

3.1.2 Time series

Figure 2 presents the timeseries of regional-mean observed and modeled DM8HR O₃ for the entire domain and the SE and RM regions during July 2011. Over the domain and in SE, all the model cases overestimate the mean DM8HR O₃ mixing ratios on all days with the Base being the closest to the observations. hNLDN is almost the same as the Base with slightly higher values on some days. Among all the cases, mNLDN produced the highest values on almost all days through the month, on the order of 1-2 ppb higher than the Base. In contrast, in the RM region, the Base significantly underestimates DM8HR O₃ mixing ratios on all the days during the month, while all model cases with LNO_x improved model predictions relative to observations in the region. Among the three model cases with LNO_x, mNLDN produced the lowest bias for all the days, closely followed by hNLDN.

234 Figure 3 displays the average daily mean NO_x mixing ratios at AQS sites over the same
235 regions as in Figure 2. On most of the days in July 2011, over the domain and in SE, the model
236 cases overestimate NO_x values, and on almost half of the days, the overestimation is significant
237 (up to 100%). As noted in Table 2, on average, the overestimation is ~17% over the domain and
238 ~43% in SE. However, in RM, the predicted NO_x mixing ratios closely follow the daily
239 observations and on average the modeled and observed magnitude is almost identical (~3%
240 difference). All the model cases, with or without LNO_x, produced almost the same mean NO_x
241 mixing ratios at the surface. However, the different cases produce different levels of LNO_x in the
242 middle and upper troposphere, resulting in differences in O₃ production and transport which
243 impact ground-level O₃ levels. We further explore these features in Section 3.2 which presents
244 evaluation of modeled vertical pollutant distributions.

245 **3.1.3 Diurnal variations**

246 Diurnal plots are used to further examine differences in model evaluation for O₃ and
247 NO_x. Figure 4 shows the mean diurnal profiles for hourly O₃ and NO_x over the entire domain,
248 SE, and RM. On a domain mean basis, all model cases overestimate O₃ during the daytime
249 hours, while in the SE, the overestimation spans all the hours. In RM, the model cases
250 significantly underestimate O₃ across all the hours except for a few early morning hours, when
251 the model predicted values are very close to the observations. Among all the model cases, as
252 expected, the most prominent differences occurred during the midday hours when the
253 photochemistry is most active. However, the difference between hNLDN (and mNLDN) and the
254 Base is also significant during the night in the RM region, even though the O₃ levels are low.
255 This may be attributed to NO_x-related nighttime chemistry in part caused by freshly released NO
256 by cloud-to-ground lightning flashes. The diurnal variations of NO_x are similar over the domain
257 and in the regions for all model cases. Appel et al. (2017) reported a significant overestimation of
258 NO_x mixing ratios at AQS sites during nighttime hours and underestimation during daytime
259 hours. The bias pattern is identical for all of the LNO_x model cases evaluated here (Figure 4).

260 **3.1.4 Spatial variations**

261 Figure 5 shows the impact of the different LNO_x schemes on model performance for
262 DM8HR O₃ at AQS sites. The spatial maps show the difference in absolute MB between the

263 cases with lightning NO_x emissions and the Base and is calculated as follows. First, the absolute
264 MB was calculated at each site for each case, e.g. |MB_[Base – Obs]|, then the difference in absolute
265 MB was calculated between model cases, e.g. |MB_[hNLDN-Obs]| - |MB_[Base – Obs]|. The histograms of
266 the differences in absolute MB between model cases in Figure 5 are provided to show the
267 distribution of the change in model performance across space, i.e. the frequency of an
268 improvement in model performance versus a degradation in model performance between cases.
269 As shown in Figure 5, the mNLDN shows increased model bias in the east US and along the
270 California coast, but reduced model bias in the RM. At a majority of the AQS sites, it increases
271 the model bias (only decreases at 26.8% (346) of the sites). The hNLDN also significantly
272 reduces model bias in the RM with a moderate increase in the SE. Overall, in the hNLDN, the
273 mean bias decreased at 61.2% (791) of AQS sites. Similar to mNLDN, increases in mean bias
274 are noted at 29.3% (378) of the AQS sites in the pNLDN simulation. As noted in the histograms,
275 the distribution of the model bias in the pNLDN is much narrower than both mNLDN and
276 hNLDN, eliminating the large bias increases in mNLDN and the significant bias decreases in
277 hNLDN.

278 **3.2 Vertical evaluation for O₃ and NO_x**

279 **3.2.1 Ozone-sonde observations**

280 A large source of uncertainty in the specification of LNOx is its vertical allocation, which
281 can impact the model's ability to accurately represent the variability in both chemistry and
282 transport. To further assess the impact of the vertical LNOx specification on model results, we
283 compared vertical profiles of simulated model O₃ with extensive ozonesonde measurements
284 available during the study period. Figure 6 presents the vertical profiles for O₃ sonde
285 measurements and paired model estimates of all model cases at Beltsville, MD and Edgewood,
286 MD. At each location, observations from multiple days are available (one or two soundings per
287 day) during the 2011 DISCOVER-AQ campaign in July 2011. The model evaluation was limited
288 to days where the inclusion of LNOx has an obvious impact (the vertical profile lines can be
289 separated) on the model estimates (July 21, 22, 28 and 29 at Beltsville, and July 21, 22, 28, 29,
290 and 30 at Edgewood). We paired the observed data with model estimates in time and space and
291 averaged the model and observed values at each model layer. Only data below 12 km altitude are
292 plotted in Figure 6 to exclude possible influence of stratospheric air on O₃. As can be seen in

293 Figure 6, at both locations the Base case underestimates O₃ mixing ratios from around 1 km
294 upwards, but overestimates closer to the surface. When LNOx is included in the simulations, the
295 predicted O₃ mixing ratios increase relative to the Base case starting around 2km, with greater
296 divergence from the Base case at higher altitudes. The two model cases, hNLDN and mNLDN,
297 produced similar O₃ levels until about 6 km, but above that altitude the mNLDN ozone mixing
298 ratios were higher. All the model cases with LNOx performed much better aloft than the Base
299 case. Near the surface, all the model cases overestimated O₃, however hNLDN had smaller bias
300 than the other simulations. This may be attributed to the fact that only hNLDN used the observed
301 lightning flash data directly, and as a result, LNOx was estimated more accurately in time and
302 space. This improvement in model bias at the surface is further investigated in the next section
303 using evaluation against P-3B measurements.

304 **3.2.2 P-3B measurement**

305 Extensive measurements of lower tropospheric chemical composition distributions over
306 the Northeastern U.S. are available from instruments onboard the P-3B aircraft on 14 days of the
307 DISCOVER-AQ campaign. We utilize measurements from one of the days (28 July 2011) with
308 noticeable (the mean vertical profiles of LNOx cases are separable from that of the base case)
309 lightning impacts, to evaluate the model simulations. Figure 7 shows measured O₃ mixing ratios
310 overlaid on the modeled vertical time-section for 1030 – 1730 UTC. The color-filled circles
311 represent measured O₃ mixing ratios averaged over 60 seconds and the background is the model
312 estimated vertical profiles from the grid cells containing the P-3B flight path for that hour and
313 location. As indicated in the Base case (Figure 7a), the model tends to overestimate O₃ mixing
314 ratios from the surface to about 2 km, but underestimate at altitudes above 2 km. The hNLDN
315 reduced the overestimation below 2km, e.g. fewer grid cells with mixing ratios above 90ppb
316 (shown in red). The other two cases (mNLDN, pNLDN) did not produce the same improvement
317 near the surface. The hNLDN also decreases the underestimation aloft compared to the Base case
318 with O₃ mixing ratios in the 55-65 ppb range (light blue colors), better matching the measured
319 values. This decrease in underestimation aloft is also seen in the mNLDN case, but to a lesser
320 degree while the pNLDN case shows only slight improvement aloft over the Base simulation.

321 To further differentiate the three LNOx model cases, Figures 8-10 show the difference in
322 the time-sections between each of the model cases with LNOx and the Base for NO, NOx, and

323 O_3 from all the model layers along the P-3B flight path on July 28. As seen in Figure 8, the
324 hNLDN scheme injected most NO above 5 km and small amount near the surface, with the
325 maximum amount injected between 13-14 km. After release into the atmosphere, NO is quickly
326 converted into NO_2 in the presence of O_3 , and these collectively result in the NO_x ($NO+NO_2$)
327 vertical time-section (local production plus transport) shown in the middle panel of Figure 8.
328 NO_x is further mixed down through the time-section and more persistent along the flight path
329 near the surface than is NO. As a result, significant O_3 is produced above 3 km and the maximum
330 O_3 difference appears between 9 and 14 km during the early afternoon hours (from 13:30 to
331 17:30). However, from surface to about 2 km, O_3 is reduced consistently across the entire period,
332 and this is the result of O_3 titration by NO from cloud-to-ground lightning flashes that must have
333 been transported to this layer by storm downdrafts. Since O_3 is significantly underestimated
334 above 3 km and overestimated near the surface by the Base model, the inclusion of LNOx
335 greatly improved the model's performance under both conditions.

336 Comparison of Figure 9 (mNLDN) with Figure 8 (hNLDN) reveals that the time-sections
337 of NO and NO_x above 5 km are similar for these two cases, but they are dramatically different
338 near the surface. The near-surface increase in ambient NO noted in the hNLDN is absent in
339 mNLDN, and in fact there are some small decreases in NO, although the reason for this is
340 unclear. The increase in O_3 aloft in the mNLDN case is similar to that seen in the hNLDN case.
341 However, the near-surface reduction in O_3 is almost absent. In the pNLDN case (Figure 10), NO
342 mixing ratios are much less than those in hNLDN and mNLDN in the upper layers as a result of
343 less column NO being generated by the linear parameterization. The resulting NO_x time-section
344 is also smoothed. The pNLDN time-sections for NO, NO_x and O_3 near the surface are similar to
345 the mNLDN case with no change or small decreases compared to the Base case. O_3 mixing ratios
346 increase by more than 30 ppb during the afternoon hours between 10 – 13 km in the pNLDN
347 case, however the increase is not as intense and widespread as the other cases. In summary, the
348 hNLDN scheme produces estimates that are more consistent with measurements at the surface
349 and aloft, compared to the other simulations, reflecting the advantage of using the spatially and
350 temporally-resolved observed lightning flash data. The model performance improvement for
351 simulated O_3 distributions also suggests robustness in the vertical distribution scheme when
352 LNOx is generated at the right time and location.

353 To corroborate the above time-section distributions of NO, NO_x, and O₃ in the lightning
354 cases, the lightning NO emissions are traced back on July 28 for each case. It is found that in all
355 cases, the lightning NO was injected about 200 km upwind (north-west) of the flight path. The
356 hNLDN case captured two injections: one occurred during the morning hours (5:00 to 7:00 am)
357 and the other happened during the afternoon hours (after 2:30 pm). Both mNLDN and pNLND
358 captured the afternoon lightning event at the later time (after 3:30 pm for mNLDN and after 4:30
359 pm for pNLDN) with varying intensity, but neither captured the morning lightning event, which
360 explains why the increase of NO and NO_x in the hNLDN case (Figure 8) did not occur in the
361 mNLDN and pNLDN cases (Figures 9 and 10). Also note that the significant increase of NO
362 during the time period from 11:00 to 13:00 occurred about 5 hours after the lightning NO was
363 injected at about 200 km upwind in the hNLDN case.

364 To expand on the evaluation in Figures 7-10 which focused on measurements from July
365 28, 2011, we retrieved all the P-3B measurements on days with noticeable lightning impact (July
366 21, 22, 28, and 29). The 3-D paired observation-model data were grouped together by spiral site
367 and the mean biases (model – observation) were plotted in Figure 11 (a and b) for O₃ and NO,
368 respectively. The boxplots for O₃ in Figure 11a suggests that the Base exhibited larger bias with
369 greater spread (i.e. larger interquartile range) than other model cases incorporating LNOx at most
370 of the locations where aircraft spirals were conducted. At all locations except Aldino, the lowest
371 mean biases in simulated NO and O₃ are noted in the hNLDN simulation.

372

373 **3.3 Deposition evaluation for nitrate**

374 In addition to contributing to tropospheric O₃ formation, NO_x oxidation also leads to gaseous
375 nitric acid and particulate-nitrate which are eventually removed from the atmosphere by dry and
376 wet deposition of nitrate (NO₃⁻). As a result, inclusion of NO_x from lightning also plays an
377 important role in nitrogen deposition modeling. To assess the impacts of incorporating LNOx
378 emissions on simulated oxidized nitrogen deposition, we compared model estimated amounts of
379 precipitation from NTN network (<http://nadp.slh.wisc.edu/ntn/>) and wet deposition of NO₃⁻ with
380 measurements from the NADP network (<http://nadp.slh.wisc.edu/>). During summer months in
381 2011 (June -August) the WRF model generally reproduces the observed precipitation with a
382 slight underestimate in the east, but the Base model simulation tends to underestimate wet

383 deposition of NO_3^- across the domain, with the greatest underestimation in the SE and UM (See
384 Table 3 and Figure 12). All three LNOx simulations increase wet deposition amounts of NO_3^-
385 and decrease model bias in all regions. The bottom panel of Figure 12 shows that the mNLDN
386 simulation resulted in the largest increase over the base model estimates. The NMB is reduced
387 from -35% in the Base to -15% in mNLDN across the domain and from -32% to -2% in the SE.
388 The hNLDN shows very similar model performance to the mNLDN case. In contrast, the wet
389 deposition NO_3^- estimates from the pNLDN case are only slightly higher than the Base case, and
390 as a result the evaluation statistics for pNLDN are very similar to the Base statistics. As
391 discussed earlier, the mNLDN tends to produce the most LNOx among the three LNOx schemes,
392 thus it results in the smallest errors in terms of wet deposition of NO_3^- when compared to the
393 Base simulation that significantly underestimated NO_3^- wet deposition. It should be noted that in
394 addition to the LNOx contributions, errors in modeled precipitation amounts and patterns also
395 likely influence the underestimation of NO_3^- wet deposition.

396

397 **4. Conclusions**

398 A detailed evaluation of lightning NOx emission estimation parameterizations available
399 in the CMAQ modeling system was performed through comparisons of model simulation
400 results with surface and aloft air quality measurements.

401 Our analysis indicates that incorporation of LNOx emissions enhanced O_3 production in
402 the middle and upper troposphere, where O_3 mixing ratios were often significantly
403 underestimated without the representation of LNOx. Though the impact on surface O_3 varies
404 from region to region and is also dependent on the accuracy of the NOx emissions from other
405 sources, the inclusion of LNOx, when it is injected at the appropriate time and location, can
406 improve the model estimates. In regions where the base model estimates of O_3 were biased
407 high, the inclusion of LNOx further increased the model bias; and a systematic increase is
408 noted in the correlation with measurements, suggesting that emissions from other sources
409 likely drive the overestimation. Identifying how errors in emissions inputs from different
410 sources interact with errors in meteorological modeling of mixing and transport, remains a
411 challenging but critical task. Likewise, all the LNOx schemes also enhanced the accumulated

412 wet deposition of NO_3^- , that was significantly underestimated by the base model without
413 LNOx throughout the modeling domain except the Pacific Coast.

414 Uncertainty remains in modeling the magnitude and spatial, temporal and vertical
415 distribution of lightning produced NOx. LNOx schemes are built on numerous assumptions
416 and all current schemes also depend on the skill of the upstream meteorological models in
417 describing convective activity. Nevertheless, these schemes reflect our best understanding
418 and knowledge at the time when the schemes were implemented. The use of hourly
419 information on lightning activity yielded LNOx emissions that generally improved model
420 performance for ambient O_3 and NO_x as well as oxidized nitrogen wet deposition amounts.
421 As more high-quality data from both ground and satellite measurements become available,
422 the performance of the LNOx schemes will continue to improve.

423

424 **Code and data availability**

425 CMAQ model documentation and released versions of the source code, including all model
426 code used in his study, are available at <https://www.epa.gov/cmaq>. The data processing and
427 analysis scripts are available upon request. The WRF model is available for download through
428 the WRF website (<http://www.wrf-model.org/index.php>).

429 The raw lightning flash observation data used are not available to the public but can be
430 purchased through Vaisala Inc. (<https://www.vaisala.com/en/products/systems/lightning-detection>). The immediate data behind the tables and figures are available from
431 <https://zenodo.org/record/2621096> (Kang and Foley, 2019). Additional input/output data for
432 CMAQ model utilized for this analysis are available upon request as well.

433

434

435

436 **Disclaimer:** The views expressed in this paper are those of the authors and do not necessarily
437 represent the views or policies of the U.S. EPA.

438

439 **Author Contribution**

440 **Daiwen Kang:** data collection, algorithm design, model simulation, analysis, and manuscript
441 writing.

442 **Kristen Foley:** data analysis and manuscript writing.

443 **Rohit Mathur:** manuscript editing.

444 **Shawn Roselle:** manuscript editing.

445 **Kenneth Pickering:** manuscript editing.

446 **Dale Allen:** manuscript editing.

447

448 **Acknowledgement:**

449 The authors thank Brian Eder, Golam Sarwar, and Janet Burke (U.S. /EPA) for their
450 constructive comments and suggestions during the internal review process.

451

452 **References**

453 Allen, D., Pickering, K., Stenchikov, G., Thompson, A., and Kondo, Y.: A three-dimensional
454 total odd nitrogen (NOy) simulation during SONEX using a stretched-grid chemical
455 transport model, *J. Geophys. Res.*, 105, 3851–3876, doi:10.1029/1999JD901029, 2000.

456 Allen, D. J. and Pickering, K. E.: Evaluation of lightning flash rate parameterizations for use in a
457 global chemical transport model, *J. Geophys. Res.*, 107, 4711,
458 doi:10.1029/2002JD002066, 2002.

459 Allen, D. J., Pickering, K. E., Pinder, R. W., Henderson, B. H., Appel, K. W., and Prados, A.:
460 Impact of lightning-NO on eastern United States photochemistry during the summer of
461 2006 as determined using the CMAQ model, *Atmos. Chem. Phys.*, 12, 1737–1758,
462 doi:10.5194/acp-12-1737-2012, 2012.

463 Anderson, D. C., Loughner, C. P., Diskin, G., Weinheimer, A., Carty, T. P., Salawitch, R. J.,
464 Worden, H. M., Fried, A., Mikoviny, T., Wisthaler, A., and Dickerson, R. R.: Measured
465 and modeled CO and NOy in DISCOVER-AQ: An evaluation of emissions and
466 chemistry over the eastern US, *Atmos. Environ.*, 96, 78-87,
467 doi:10.1016/j.atmosenv.2014.07.004, 2014.

468 Appel, K. W., Napelenok, S. L., Foley, K. M., Pye, H. O., Hogrefe, C., Luecken, D. J., Bash, J.
469 O., Roselle, S. J., Pleim, J. E., Foroutan, H., Hutzell1, W. D., Pouliot, G. O., Sarwar, G.,
470 Fahey, K. M., Gantt, G., Gilliam, R. C., Heath, N. K., Kang, D., Mathur, R., Schwede, D.
471 B., Spero, T. L., Wong, D. C., and Young, J. O.: Description and evaluation of the
472 Community Multiscale Air Quality (CMAQ) modeling system version 5.1, *Geosci.
473 Model Dev.*, 10, 1703–1732, doi:10.5194/gmd-10-1703-2017, 2017.

474 Appel, K. W., Foley, K. M., Bash, J. O., Pinder, R. W., Dennis, R. L., Allen, D. J., and
475 Pickering, K.: A multi-resolution assessment of the Community Multiscale Air Quality
476 (CMAQ) model v4.7 wet deposition estimates for 2002-2006, *Geosci. Model Dev.*, 4,
477 357–371, doi:10.5194/gmd-4-357-2011, 2011.

- 478 Bash, J. O., Baker, K. R., and Beaver, M. R.: Evaluation of improved land use and canopy
479 representation in BEIS v3.61 with biogenic VOC measurements in California, *Geosci.*
480 *Model Dev.*, 9, 2191–2207, doi:10.5194/gmd-9-2191-2016, 2016.
- 481 Bovensmann, H., Burrows, J. P., Buchwitz, M., Frerick, J., Noël, S., Rozanov, V. V., Chance,
482 K. V., and Goede, A. P. H.: SCIAMACHY: Mission Objectives and Measurement
483 Modes, *J. Atmos. Sci.*, 56, 127–150, 1999.c
- 484 Brown-Steiner, B., Hess, P. G., and Lin, M. Y.: On the capabilities and limitations of GCM
485 simulations of summertime regional air quality: A diagnostic analysis of ozone and
486 temperature simulations in the US using CESM CAM-Chem, *Atmos. Environ.*, 101, 134–
487 148, doi:10.1016/j.atmosenv.2014.11.001, 2015
- 488 Byun, D. W. and Schere, K. L.: Review of the governing equations, computational algorithms,
489 and other components of the Models-3 Community Multiscale Air Quality (CMAQ)
490 modeling system, *Appl. Mech. Rev.*, 59, 51–77, 2006.
- 491 Carty, T. P., Hembeck, L., Vinciguerra, T. P., Anderson, D. C., Goldberg, D. L., Carpenter, S.
492 F., Allen, D. J., Loughner, C. P., Salawitch, R. J., and Dickerson, R. R.: Ozone and NO_x
493 chemistry in the eastern US: evaluation of CMAQ/CB05 with satellite (OMI) data,
494 *Atmos. Chem. Phys.*, 15, 10965–10982, doi:10.5194/acp-15-10965-2015, 2015.
- 495 Choi, Y., Wang, Y., Zeng, T., Martin, R. V., Kurosu, T. P., and Chance, K.: Evidence of
496 lightning NO_x and convective transport of pollutants in satellite observations over North
497 America, *Geophys. Res. Lett.*, 32, L02805, doi:10.1029/2004GL021436, 2005.
- 498 Crawford, J. H. and Pickering, K. E.: DISCOVER-AQ: Advancing strategies for air quality
499 observations for the next decade, *EM, A&WMA*, September, 2014.
- 500 Eder, B. K., Kang, D., Mathur, R., Yu, S., and Schere, K.: An operational evaluation of the Eta-
501 CMAQ air quality forecast model, *Atmos. Environ.*, 40, 4894–4905, 2006.
- 502 Finney, D. L., Doherty, R. M., Wild, O., Huntrieser, H., Pumphrey, H. C., and Blyth, A. M.:
503 Using cloud ice flux to parametrize large-scale lightning, *Atmos. Chem. Phys.*, 14,
504 12665–12682, doi:10.5194/acp-14-12665-2014, 2014.
- 505 Finney, D. L., Doherty, R. M., Wild, O., and Abraham, N. L.: The impact of lightning on
506 tropospheric ozone chemistry using a new global lightning parameterization, *Atmos.*
507 *Chem. Phys.*, 16, 7507–7522, doi:10.5194/acp-16-7507-2016, 2016.
- 508 Flatøy, F. and Hov, O.: NO_x from lightning and the calculated chemical composition of the free
509 troposphere, *J. Geophys. Res.*, 102, 21 373–21 381, 1997.
- 510 Fiore, A. M., Dentener, F. J., Wild, O., Cuvelier, C., Schultz, M. G., Hess, P., Textor, C., Schulz,
511 M., Doherty, R. M., Horowitz, L. W., MacKenzie, I. A., Sanderson, M. G., Shindell, D.
512 T., Stevenson, D. S., Szopa, S., Van Dingenen, R., Zeng, G., Atherton, C., Bergmann, D.,
513 Bey, I., Carmichael, G., Collins, W. J., Duncan, B. N., Faluvegi, G., Folberth, G., Gauss,
514 M., Gong, S., Hauglustaine, D., Holloway, T., Isaksen, I. S. A., Jacob, D. J., Jonson, J. E.,

- 515 Kaminski, J. W., Keating, T. J., Lupu, A., Marmer, E., Montanaro, V., Park, R. J., Pitari,
516 G., Pringle, K. J., Pyle, J. A., Schroeder, S., Vivanco, M. G., Wind, P., Wojcik, G., Wu,
517 S., and Zuber, A.: Multimodel estimates of intercontinental sourcereservoir relationships
518 for ozone pollution, *J. Geophys. Res.*, 114, D04301, doi:10.1029/2008jd010816, 2009.
- 519 Foley, K. M., Roselle, S. J., Appel, K. W., Bhave, P. V., Pleim, J. E., Otte, T. L., Mathur, R.,
520 Sarwar, G., Young, J. O., Gilliam, R. C., Nolte, C. G., Kelly, J. T., Gilliland, A. B., and
521 Bash, J. O.: Incremental testing of the Community Multiscale Air Quality (CMAQ)
522 modeling system version 4.7, *Geosci. Model Dev.*, 3, 205–226, doi:10.5194/gmd-3-205-
523 2010, 2010.
- 524 Follette-Cook, M. B., Pickering, K. E., Crawford, J. H., Duncan, B. N., Loughner, C. P., Diskin,
525 G. S., Fried, A., and Weinheimer, A. J.: Spatial and temporal variability of trace gas
526 columns derived from WRF/Chem regional model output: Planning for geostationary
527 observations of atmospheric composition, *Atmos. Environ.*, 118, 28-44,
528 doi:10.1016/j.atmosenv.2015.07.024, 2015.
- 529 Huntrieser, H., Schlager, H., Lichtenstern, M., Stock, P., Hamburger, T., Holler, H., Schmidt, K.,
530 Betz, H. D., Ulanovsky, A., and Ravagnani, F.: Mesoscale convective systems observed
531 during AMMA and their impact on the NO_x and O₃ budget over West Africa. *Atmos*
532 *Chem Phys.*, 11(6):2503–2536. doi:10.5194/acp-11-2503-2011, 2011.
- 533 Kang, D., Eder, B. K., Stein, A. F., Grell, G. A., Peckham, S. E., and McHenry, J.: The New
534 England air quality forecasting pilot program: development of an evaluation protocol and
535 performance benchmark, *J. Air & Waste Manage. Assoc.*, 55, 1782-1796, 2005.
- 536 Kang, D., and Foley, K.: Simulating Lightning NO_x Production in CMAQv5.2: Performance
537 Evaluations, data set, <https://doi.org/10.5281/zenodo.2621096>, 2019.
- 538 Kang, D., Heath, N., Foley, K., Bash, J., Roselle, S., and Mathur, R.: On the relationship
539 between observed NLDN lightning strikes and modeled convective precipitation rates:
540 parameterization of lightning NO_x production in CMAQ, *Air Pollution Modeling and its*
541 *Application XXV*, Chapter 65, ISBN 978-3-319-57644-2, doi: 10.1007/978-3-319-
542 57645-9, 2018.
- 543 Kang, D., Heath, N., Wong, D., Pleim, J., Roselle, S. J., Foley, K. M., and Mathur, R.: Lightning
544 NO_x Production in CMAQ: Part I – Using hourly NLDN Lightning Strike Data,
545 Presented at 15th Annual CMAS Models-3 Users’ Conference, 24– 26 October 2016,
546 UNC-Chapel Hill, available at:
547 https://www.cmascenter.org/conference/2016/slides/kang_lightning_nox_2016.pptx,
548 2016.
- 549 Kang, D., Pickering, K. E., Allen, D. J., Foley, K. M., Wong, D., Mathur, R., and Roselle, S. J.:
550 Simulating Lightning NO_x Production in CMAQ: Evolution of Scientific Updates,
551 *Geosci. Model Dev. Disc.*, doi:10.5194/gmd-2019-33, 2019.

- 552 Kang, D. and Pickering, K. E.: Lightning NO_x emissions and the Implications for Surface Air
553 Quality over the Contiguous United States, EM, A&WMA, November, 2018.
- 554 Kaynak, B., Hu, Y., Martin, R. V., Russell, A. G., Choi, Y., and Wang, Y.: The effect of
555 lightning NO_x production on surface ozone in the continental United States. *Atmos Chem*
556 *Phys.* 8(17):5151–5159. doi:[10.5194/acp-8-5151-2008](https://doi.org/10.5194/acp-8-5151-2008), 2008.
- 557 Koo, B., Chien, C. J., Tonnesen, G., Morris, R., Johnson, J., Sakulyanontvittaya T.,
558 Piyachaturawat, P., and Yarwood, G.: Natural emissions for regional modeling of
559 background ozone and particulate matter and impacts on emissions control strategies.
560 *Atmos Environ.*, 44(19):2372–2382. doi:[10.1016/j.atmosenv.2010.02.041](https://doi.org/10.1016/j.atmosenv.2010.02.041), 2010.
- 561 Koshak, W., Peterson, H., Bazar, A., Khan, M., and Wang, L.: The NASA Lightning Nitrogen
562 Oxides Model (LNOM): Application to air quality modeling, *Atmos. Res.*,
563 doi:[10.1016/j.atmosres.2012.12.015](https://doi.org/10.1016/j.atmosres.2012.12.015), 2014.
- 564 Labrador, L. J., von Kuhlmann, R., and Lawrence, M. G.: The effects of lightning-produced NO_x
565 and its vertical distribution on atmospheric chemistry: sensitivity simulations with
566 MATCHMPIC, *Atmos. Chem. Phys.*, 5, 1815–1834, 2005,
- 567 Lin, J., Youn, D., Liang, X., and Wuebbles, D.: Global model simulation of summertime U.S.
568 ozone diurnal cycle and its sensitivity to PBL mixing, spatial resolution, and emissions,
569 *Atmos. Environ.*, 42, 8470–8483, doi:[10.1016/j.atmosenv.2008.08.012](https://doi.org/10.1016/j.atmosenv.2008.08.012), 2008.
- 570 Murray, L. T.: Lightning NO_x and Impacts on Air Quality, *Curr Pollution Rep.*, doi:
571 10.1007/s40726-016-0031-7, 2016.
- 572 Nolte, C. G., Appel, K. W., Kelly, J. T., Bhave, P. V., Fahey, K. M., Collett Jr., J. L., Zhang, L.,
573 and Young, J. O.: Evaluation of the Community Multiscale Air Quality (CMAQ) model
574 v5.0 against size-resolved measurements of inorganic particle composition across sites in
575 North America, *Geosci. Model Dev.*, 8, 2877–2892, doi:[10.5194/gmd-8-2877-2015](https://doi.org/10.5194/gmd-8-2877-2015),
576 2015.
- 577 Napelenok, S. L., Pinder, R. W., Gilliland, A. B., and Martin, R. V.: A method for evaluating
578 spatially-resolved NO_x emissions using Kalman filter inversion, direct sensitivities, and
579 spacebased NO₂ observations, *Atmos. Chem. Phys.*, 8, 5603–5614, doi:[10.5194/acp-8-5603-2008](https://doi.org/10.5194/acp-8-5603-2008), 2008.
- 581 Novak, J. H. and Pierce, T. E.: Natural emissions of oxidant precursors, *Water Air Soil Poll.*, 67,
582 57–77, 1993.
- 583 Orville, R. E., Huffines, G. R., Burrows, W. R., Holle, R. L., and Cummins, K. L.: The North
584 American Lightning Detection Network (NALDN) – first results: 1998–2000, *Mon. Wea.*
585 *Rev.*, 130, 2098–2109, 2002.
- 586 Otte, T. L. and Pleim, J. E.: The Meteorology-Chemistry Interface Processor (MCIP) for the
587 CMAQ modeling system: updates through MCIPv3.4.1, *Geosci. Model Dev.*, 3, 243–256,
588 doi:[10.5194/gmd-3-243-2010](https://doi.org/10.5194/gmd-3-243-2010), 2010.

- 589 Pickering, K. E., Bucsela, E., Allen, D., Ring, A., Holzworth, R., and Krotkov, N.: Estimates of
590 lightning NO_x production based on OMI NO₂ observations over the Gulf of Mexico, *J.
591 Geophys. Res. Atmos.*, 121, 8668–8691, doi:10.1002/2015JD024179, 2016.
- 592 Price, C., Penner, J., and Prather, M.: NO_x from lightning. 2. Constraints from the global
593 atmospheric electric circuit, *J. Geophys. Res.*, 102, 5943–5951, doi:10.1029/96JD02551, 1997.
- 594 Price, C. and Rind, D.: A simple lightning parameterization for calculating global lightning
595 distributions, *J. Geophys. Res.*, 97, 9919–9933, doi:10.1029/92JD00719, 1992.
- 596 Richter, A., Burrows, J. P., Nüß, H., Granier, C., and Niemeier, U.: Increase in tropospheric
597 nitrogen dioxide over China observed from space, *Nature*, 437, 129–132,
598 doi:10.1038/nature04092, 2005.
- 599 Rossow, W. B., Walker, A. W., Beuschel, D. E., and Roiter, M. D.: International Satellite Cloud
600 Climatology Project (ISCCP) documentation of new cloud data sets, *Tech. Rep. January*,
601 World Meteorological Organisation, WMO/TD 737, Geneva, 1996.
- 602 Schumann, U. and Huntrieser, H.: The global lightning-induced nitrogen oxides source, *Atmos.
603 Chem. Phys.*, 7, 3823-3907, doi:10.5194/acp-7-3823-2007, 2007.
- 604 Sioris, C. E., Kurosu, T. P., Martin, R. V., and Chance, K.: Stratospheric and tropospheric NO₂
605 observed by SCIAMACHY: first results, *Adv. Space Res.*, 34, 780–785, 2004.
- 606 Stockwell, D. Z., Giannakopoulos, C., Plantefin, P. H., Carver, G. D., Chipperfield, M. P., Law,
607 K. S., Pyle, J. A., Shallcross, D. E., and Wang, K. Y.: Modelling NO_x from lightning and
608 its impact on global chemical fields, *Atmos. Environ.*, 33, 4477–4493, 1999.
- 609 Smith, S. N., and Mueller, S. F.: Modeling natural emissions in the Community Multiscale Air
610 Quality (CMAQ) Model-I: building an emissions data base. *Atmos Chem Phys.*,
611 10(10):4931–4952. doi:10.5194/acp-10-4931-2010, 2010.
- 612 Simon, H., Reff, A., Wells, B., Xing, J., and Frank, N.: Ozone trends across the United States
613 over a period of decreasing NO_x and VOC emissions. *Environ. Sci. Technol.*, 49, 186–
614 195, 2015.
- 658 Wang, L., Newchurch, M. J., Pour-Bazar, A., Kuang, S., Khan, M., Liu, X., Koshak, W., and
659 Chance, K.: Estimating the influence of lightning on upper tropospheric ozone using
660 NLDN lightning data and CMAQ model, *Atmos. Environ.*, 67, 219–228, 2013.
- 661 Yarwood, G., Whitten, G. Z., Jung, J., Heo, G., and Allen, D. T.: Final Report: Development,
662 Evaluation and Testing of Version 6 of the Carbon Bond Chemical Mechanism (CB6),
663 available at:
664 <https://www.tceq.texas.gov/assets/public/implementation/air/am/contracts/reports/pm/5820784005FY1026-20100922-environ-cb6.pdf>, 2010.
- 666

Simulating Lightning NO Production in CMAQv5.2: Performance Evaluations

Daiwen Kang^{1*}, Kristen M. Foley¹, Rohit Mathur¹, Shawn J. Roselle¹, Kenneth E. Pickering²,
and Dale J. Allen²

¹Center for Environmental Measurement & Modeling, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA

²Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD, USA

*Corresponding author: Daiwen Kang, US EPA, 109 T.W. Alexander Drive, Research Triangle Park, NC 27711, USA. Tel.: 919-541-4587; fax: 919-541-1379; e-mail: kang.daiwen@epa.gov

25

Abstract

This study assesses the impact of the lightning NO (LNO) production schemes in the Community Multiscale Air Quality (CMAQ) model on ground-level air quality as well as aloft atmospheric chemistry through detailed evaluation of model predictions of nitrogen oxides (NO_x) and ozone (O_3) with corresponding observations for the U.S. For ground-level evaluations, hourly O_3 and NO_x from the US EPA's AQS monitoring network are used to assess the impact of different LNO schemes on model prediction of these species in time and space. Vertical evaluations are performed using ozonesonde and P-3B aircraft measurements during the DISCOVER-AQ campaign conducted in the Baltimore/Washington region during July 2011. The impact on wet deposition of nitrate is assessed using measurements from the National Atmospheric Deposition Program's National Trends Network (NADP/NTN). Compared with the base model (without LNO), the impact of LNO on surface O_3 varies from region to region depending on the base model conditions. Overall statistics suggest that for regions where surface O_3 mixing ratios are already overestimated, the incorporation of additional NO from lightning generally increased model overestimation of mean daily maximum 8-hr (DM8HR) O_3 by 1-2 ppb. In regions where surface O_3 is underestimated by the base model, LNO can significantly reduce the underestimation and bring model predictions close to observations. Analysis of vertical profiles reveals that LNO can significantly improve the vertical structure of modeled O_3 distributions by reducing underestimation aloft, and to a lesser degree decreasing overestimation near the surface. Since the base model underestimates the wet deposition of nitrate in most regions across the modeling domain except the Pacific Coast, the inclusion of LNO leads to reduction in biases and errors and an increase in correlation coefficients at almost all the NADP/NTN sites. Among the three LNO schemes described in Kang et al. (2019), the hNLDN scheme, which is implemented using hourly observed lightning flash data from National Lightning Detection Network (NLDN), performs best for the ground-level, vertical profiles, and wet deposition comparisons except that for the accumulated wet deposition of nitrate, the mNLDN scheme (the monthly NLDN-based scheme) performed slightly better. However, when observed lightning flash data are not available, the linear regression-based parameterization scheme, pNLDN, provides an improved estimate for nitrate wet deposition compared to the base simulation that does not include LNO.

55 **1. Introduction**

56 The potential importance of nitrogen oxides (NO_x ; $\text{NO}_x = \text{NO} + \text{NO}_2$) produced by lightning
57 (LNOx; due to the equilibrium coexistence of NO and NO_2 in the atmosphere, in the literature it
58 is often collectively referred to as LNOx. However, the immediate release of lightning flashes is
59 just NO, and the schemes in Kang et al., 2019 also generate NO emissions only, so in this paper
60 it is primarily referred to as LNO) on regional air quality was recognized more than two decades
61 ago (e.g. Novak and Pierce, 1993), but LNO emissions have only been added to regional
62 chemistry and transport models during the last decade (e.g. Allen et al., 2012; Kaynak et al.,
63 2008; Koshak et al., 2014; Smith and Mueller, 2010; Koo et al., 2010) owing in part to the
64 limited understanding of this NO_x source (Schumann and Huntrieser, 2007; Murray, 2016;
65 Pickering et al., 2016). As a result of efforts to reduce anthropogenic NOx emissions in recent
66 decades (Simon et al., 2015; <https://gispub.epa.gov/air/trendsreport/2018>), it is expected that the
67 relative contribution of LNO to the tropospheric NO_x burden and its subsequent impacts on
68 atmospheric chemistry as one of the key precursors for ozone (O_3), hydroxyl radical (OH),
69 nitrate, and other species will increase in the United States and other developed countries (Kang
70 and Pickering, 2018). The significant impact of LNO on process-based understanding of surface
71 air quality was earlier reported by Napelenok et al. (2008), which found low-biases in upper
72 tropospheric NO_x in Community Multiscale Air Quality Model (CMAQ) (Byun and Schere,
73 2006) simulations without LNO emissions made it difficult to constrain ground-level NO_x
74 emissions using inverse methods and Scanning Imaging Absorption Spectrometer for
75 Atmospheric Cartography (SCIAMACHY) NO_2 retrievals (Bovensmann et al., 1999; Sioris et
76 al., 2004; Richter et al., 2005). Appel et al. (2011) and Allen et al. (2012) reported that NO_3^- wet
77 deposition at National Atmospheric Deposition Program (NADP) sites was underestimated by a
78 factor of two when LNO was not included.

79 LNO production and distribution were parameterized initially in global models (e.g.
80 Stockwell et al., 1999; Labrador et al., 2005) relying on the work of Price and Rind (1992) and
81 Price et al. (1997) in that lightning flash frequency was parameterized as a function of the
82 maximum cloud-top-height. Other approaches for LNO parameterization include a combination
83 of latent heat release and cloud-top-height (Flatoy and Hov, 1997), convective precipitation rate
84 (e.g. Allen and Pickering, 2002), convective available potential energy (Choi et al., 2005), or

85 convectively induced updraft velocity (Allen et al., 2000; Allen and Pickering, 2002). More
86 recently, Finney et al. (2014, 2016) adopted a lightning parameterization using upward cloud ice
87 flux at 440hPa (based upon definitions of deep convective clouds in the International Satellite
88 Cloud Climatology Project (Rossow et al., 1996)) and implemented it in the United Kingdom
89 Chemistry and Aerosol model (UKCA). With the availability of lightning flash data from the
90 National Lightning Detection Network (NLDN) (Orville et al., 2002), recent LNO
91 parameterization schemes started to include the observed lightning flash information to constrain
92 LNO in regional Chemical Transport Models (CTMs) (Allen et al., 2012). In Kang et al. (2019),
93 we described the existing LNO parameterization scheme that is based on the monthly NLDN
94 (mNLDN) lightning flash data, and an updated scheme using hourly NLDN (hNLDN) lightning
95 flash data in the CMAQ lightning module. In addition, we also developed a scheme based on
96 linear and log-linear regression parameters using multiyear NLDN observed lightning flashes
97 and model predicted convective precipitation rate (pNLDN). The preliminary assessment of
98 these schemes based on total column LNO suggests that all the schemes provide reasonable LNO
99 estimates in time and space, but during summer months, the mNLDN scheme tends to produce
100 the most and the pNLDN scheme the least LNO.

101 The first study on the impact of LNO on surface air quality using CMAQ was conducted
102 by Allen et al. (2012) and followed by Wang et al. (2013) with different ways for parameterizing
103 LNO production and different model configurations. In this study, we present performance
104 evaluations using each of the LNO production schemes (mNLDN, hNLDN, pNLDN) described
105 by Kang et al. (2019) to provide estimates of LNO in CMAQ. In addition to examination of
106 differences in air quality estimates between these schemes, we compare the model predictions to
107 base model estimates without LNO and evaluate the estimates from all of the simulations against
108 surface and airborne observations.

109 Section 2 describes the model configuration, simulation scenarios, analysis methodology,
110 and observational data. Section 3 presents the analysis results and Section 4 presents the
111 conclusions.

112

113

114 **2. Methodology**

115 **2.1 The LNO schemes**

116 In air quality models, three steps are involved in generating LNO emissions: (1) identify
117 lightning flashes, (2) produce the total column NO at model grid cells, and (3) distribute the
118 column NO into model layers vertically. Three schemes to produce total column LNO
119 emissions are examined in this study: mNLDN – based on monthly mean NLDN lightning
120 flashes and convective precipitation predicted by the upstream meteorological model,
121 hNLDN – directly use the observed NLDN lightning flashes that are aggregated into hourly
122 values and gridded onto model grid cells, and pNLDN – a linear and log-linear regression
123 parameterization scheme derived using multiyear observed lightning flash rate and model
124 predicted convective precipitation. After total column LNO is produced at model grid cells, it
125 is distributed onto vertical model layers using the double-peak vertical distribution algorithm
126 described in Kang et al. (2019), which also provides detailed description and formulation of
127 all the LNO schemes.

128 **2.2 The CMAQ model and simulation configurations**

129 The CMAQ model (Appel et al. 2017) version 5.2 were configured with the CB6
130 chemical mechanism (Yarwood et al., 2010) and the AERO6 aerosol module (Nolte et al., 2015).
131 The meteorological inputs were provided by the Weather Research and Forecasting (WRF)
132 model version 3.8 and the model-ready meteorological input files were created using version 4.2
133 of the meteorology–chemistry interface processor (MCIP; Otte and Pleim, 2010).

134 The modeling domain covers the entire contiguous United States (CONUS) and
135 surrounding portions of northern Mexico and southern Canada, as well as the eastern Pacific and
136 western Atlantic oceans. The model domain consists of 299 north–south grid cells by 459 east–
137 west grid cells utilizing 12 km x 12 km horizontal grid spacing, 35 vertical layers with varying
138 thickness extending from the surface to 50 hPa and an approximately 10 m midpoint for the
139 lowest (surface) model layer. The simulation time period covers the months from April to
140 September 2011 with a 10-day spin-up period in March.

141 Emission input data were based on the 2011 National Emissions Inventory
142 (<https://www.epa.gov/air-emissions-inventories>). The raw emission files were processed using

143 version 3.6.5 of the Sparse Matrix Operator Kernel Emissions (SMOKE);
144 <https://www.cmascenter.org/smoke/>) processor to create gridded speciated hourly model-ready
145 input emission fields for input to CMAQ. Electric generating unit (EGU) emissions were
146 obtained using data from EGUs equipped with a continuous emission monitoring system
147 (CEMS). Plume rise for point and fire sources were calculated in-line for all simulations (Foley
148 et al., 2010). Biogenic emissions were generated in-line in CMAQ using BEIS versions 3.61
149 (Bash et al., 2016). All the simulations employed the bidirectional (bi-di) ammonia flux option
150 for estimating the air-surface exchange of ammonia.

151 There are four CMAQ simulation scenarios for this study: 1) simulation without LNO
152 (Base), 2) simulation with LNO generated by the scheme based on monthly information from the
153 NLDN (mNLDN), 3) simulation with LNO generated by scheme based on hourly information
154 from the NLDN (hNLDN), and 4) simulation with LNO generated by the scheme parameterizing
155 lightning emissions based on modeled convective activity (pNLDN) as described in detail in
156 Kang et al. (2019). All other model inputs, parameters and settings were the same across the four
157 simulations. The vertical distribution algorithm is the same for all the LNO schemes as also
158 described in Kang et al. (2019).

159
160 **2.3 Observations and analysis techniques**

161 To assess the impact of LNO on ground-level air quality, output from the various CMAQ
162 simulations were paired in space and time with observed data from the EPA's Air Quality
163 System (AQS; <https://www.epa.gov/aqs>) for hourly O₃ and NO_x. To evaluate the vertical
164 distribution, measurements of trace species from the Deriving Information on Surface Conditions
165 from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ;
166 <http://www.nasa.gov/missions/discover-aq>) campaign conducted in the Baltimore/Washington
167 region (e.g., Crawford and Pickering, 2014; Anderson et al., 2014; Follette-Cook et al., 2015)
168 were used. During this campaign, the NASA P-3B aircraft measured trace gases including O₃,
169 NO, and NO₂. Vertical profiles were obtained over seven locations – Beltsville (Be), Padonia
170 (Pa), Fairhill (Fa), Aldino (Al), Edgewood (Ed), Essex (Es), and Chesapeake Bay (Cb) from
171 approximately 0.3 to 5 km above ground level during P-3B flights over 14 days in July 2011.
172 During this same period, ozonesonde measurements were taken that extended from ground level
173 through the entire model column at two locations (Beltsville, MD and Edgewood, MD shown in

174 Figure 1). Inclusion of LNO estimates in the CTM simulations also has an important impact on
175 model estimated wet deposition of nitrate. Therefore, assessment was also performed using data
176 from the National Atmospheric Deposition Program's National Trends Network (NADP/NTN,
177 <http://ndp.slh.wisc.edu/ntn>).

178 Since lightning activity as well as LNO exhibit distinct spatial variations (Kang and
179 Pickering, 2018), analysis was conducted for the model domain over the contiguous United
180 States, and then for each region as shown in Figure 1. Emphasis is placed on two regions,
181 Southeast (SE) and Rocky Mountains (RM), where lightning activity is more prevalent and LNO
182 has the greatest impact on model predictions as shown in Results - increasing model bias in the
183 SE and decreasing bias in the RM. The commonly used statistical metrics, Root Mean Square
184 Error (RMSE), Normalized Mean Error (NME), Mean Bias (MB), Normalized Mean Bias
185 (NMB), and Correlation Coefficient (R), in the model evaluation field as defined in Kang et al.
186 (2005) and Eder et al. (2006) were calculated to assess the basic performance differences among
187 all the model cases for their ground-level air quality predictions.

188

189 3. Results

190 3.1 Ground-level evaluation for O₃ and NO_x

191 3.1.1 Statistical performance metrics

192 Tables 1 and 2 display the statistical model performance metrics for daily maximum 8-hr
193 (DM8HR) O₃ and daily mean NO_x mixing ratios over the domain and each analysis region for all
194 four model cases in July 2011 (Base, mNLDN, hNLDN, and pNLDN). The best performance
195 metrics among the model cases are highlighted in bold. As shown in Table 1, for DM8HR O₃,
196 the Base simulation has the lowest MB and NMB values over the Domain, while hNLDN
197 produced the smallest RMSE and NME values. mNLDN generated the largest values for both
198 error (RMSE and NME) and biases (MB and NMB), followed by pNLDN.²⁷ and More
199 importantly, all model cases with LNO exhibit slightly higher correlation coefficients than the
200 Base simulation, suggesting the importance of including the contributions of this source for
201 improving the spatial and temporal variability in model predictions. Additionally, the hNLDN
202 simulation exhibited higher correlation and lower bias and error relative to the measurements

203 indicating the value of higher temporal resolution lightning activity for representing the
204 associated NO_x emissions and their impacts on tropospheric chemistry.

205 Examining the regional results for DM8HR O₃ in Table 1, the statistical measures indicate
206 that in the Northeast (NE), hNLDN outperformed all other model cases with the lowest errors
207 and biases and highest correlation coefficient. In Southeast (SE), the Base performed better with
208 the lowest errors and mean biases, but the correlation coefficient (R) value for hNLDN is slightly
209 higher. Among all the LNO cases, mNLDN produced the worst statistics in this region.
210 Historically, CTMs tend to significantly overestimate surface O₃ in the Southeast US (Lin et al.,
211 2008; Fiore et al., 2009; Brown-Steiner et al., 2015; Carty et al., 2015), and this is partially
212 driven by a likely overestimation of anthropogenic NO_x emissions (Anderson et al., 2014). Thus,
213 even though lightning is known to impact ambient air quality, including this additional NO_x
214 source can worsen biases in model O₃ in some locations and time periods due to other errors in
215 the modeling system. As noted in Table 1, for the SE, the MB values increased by about 1.6 ppb
216 in mNLDN and less than 1 ppb in hNLDN and pNLDN. Nevertheless, the correlation
217 coefficients for mNLDN and pNLDN are almost the same with the Base, and hNLDN was
218 slightly higher (0.77 compared to 0.76). These correlations indicate that even though additional
219 NO_x increases the mean bias, when it is added correctly in time and space, as with the case of
220 hNLDN, the spatial and temporal correlation are slightly improved. In the Upper Midwest (UM),
221 the lowest errors and biases among the model cases are associated with hNLDN, while the worst
222 performance is with mNLDN. In the Lower Midwest (LM), hNLDN performed comparable with
223 the Base, with hNLDN having the highest correlation and lowest mean errors, while the Base has
224 the lowest mean biases. Rocky Mountain (RM) is the only region that shows an underestimation
225 of DM8HR O₃. In this region all the model cases with LNO outperformed the Base case in all the
226 metrics. Among the three model cases with LNO, mNLDN produced the lowest MB and NMB
227 values, while hNLDN had the lowest RMSE and NME, and the highest correlation. In the Pacific
228 Coast (PC) region, lightning activity is generally very low compared to other regions (Kang and
229 Pickering, 2018). All model cases with LNO outperformed the Base case, especially hNLDN
230 which had the lowest mean error and bias and highest correlation among all the cases.

231 Most of the NO_x produced by lightning is distributed in the middle and upper troposphere
232 with only a small portion being distributed close to the surface. As a result, the impact on

233 ground-level NO_x mixing ratios is small. Table 2 shows all the model cases produced similar
234 statistics for the daily mean NO_x mixing ratios at AQS sites across the domain and within all the
235 subregions. Although the changes in model performance are small, the model cases with LNO
236 exhibit similar or slightly better performance than the Base case.

237 **3.1.2 Time series**

238 Figure 2 presents timeseries of regional-mean observed and modeled DM8HR O_3 for the
239 entire domain and the SE and RM regions during July 2011. Over the domain and in SE, all the
240 model cases overestimate the mean DM8HR O_3 mixing ratios on all days with the Base being the
241 closest to the observations. hNLDN is almost the same as the Base with slightly higher values on
242 some days. Among all the cases, mNLDN produced the highest values on almost all days
243 through the month, on the order of 1-2 ppb higher than the Base. In contrast, in the RM region,
244 the Base significantly underestimates DM8HR O_3 mixing ratios on all the days during the
245 month, while all model cases with LNO improved model predictions relative to observations in
246 the region. Among the three model cases with LNO, mNLDN produced the lowest bias for all
247 the days, closely followed by hNLDN.

248 Figure 3 displays the average daily mean NO_x mixing ratios at AQS sites over the same
249 regions as in Figure 2. On most of the days in July 2011, over the domain and in the SE, the
250 model overestimate NO_x values, and on almost half of the days, the overestimation is significant
251 (up to 100 %). As noted in Table 2, on average, the overestimation is $\sim 17\%$ over the domain and
252 $\sim 43\%$ in SE. However, in RM, the predicted NO_x mixing ratios closely follow the daily
253 observations and on average the modeled and observed magnitude is almost identical ($\sim 3\%$
254 difference). All the model cases, with or without LNO, produced almost the same mean NO_x
255 mixing ratios at the surface. However, the different cases produce different levels of LNO in the
256 middle and upper troposphere, resulting in differences in O_3 production and transport which
257 impact radiative forcing and also downwind ground-level O_3 levels. We further explore these
258 features in Section 3.2 which presents evaluation of modeled vertical pollutant distributions.

259 **3.1.3 Diurnal variations**

260 Diurnal plots are used to further examine differences in model evaluation for O_3 and
261 NO_x . Figure 4 shows the mean diurnal profiles for hourly O_3 and NO_x over the entire domain,

262 SE, and RM. On a domain mean basis, all model cases overestimate O₃ during the daytime
263 hours, while in the SE, the overestimation spans all the hours. In RM, the model cases
264 significantly underestimate O₃ across all the hours except for a few early morning hours, when
265 the model predicted values are very close to the observations. Among all the model cases, as
266 expected, the most prominent differences occurred during the midday hours when the
267 photochemistry is most active. However, the difference between hNLDN (and mNLDN) and the
268 Base is also significant during the night in the RM region, even though the O₃ levels are low.
269 This may be attributed to NO_x-related nighttime chemistry in part caused by freshly released NO
270 by cloud-to-ground lightning flashes. The diurnal variations of NO_x are similar over the domain
271 and in the regions for all model cases. Appel et al. (2017) reported a significant overestimation of
272 NO_x mixing ratios at AQS sites during nighttime hours and underestimation during daytime
273 hours. The bias pattern is identical for all of the LNO model cases evaluated here (Figure 4).

274 **3.1.4 Spatial variations**

275 Figure 5 shows the impact of the different LNO schemes on model performance for
276 DM8HR O₃ at AQS sites. The spatial maps show the difference in absolute MB between the
277 cases with lightning NO_x emissions and the Base and is calculated as follows. First, the absolute
278 MB was calculated at each site for each case, e.g. |MB_[Base – Obs]|, then the difference in absolute
279 MB was calculated between model cases, e.g. |MB_[hNLDN-Obs]| - |MB_[Base – Obs]|. The histograms of
280 the differences in absolute MB between model cases in Figure 5 are provided to show the
281 distribution of the change in model performance across space, i.e. the frequency of an
282 improvement in model performance versus a degradation in model performance between cases.
283 As shown in Figure 5, the mNLDN shows increased model bias in the east US and along the
284 California coast, but reduced model bias in the RM. At a majority of the AQS sites, it increases
285 the model bias (only decreases at 26.8 % (346) of the sites). The hNLDN also significantly
286 reduces model bias in the RM with a moderate increase in the SE. Overall, in the hNLDN, the
287 mean bias decreased at 61.2 % (791) of AQS sites. Similar to mNLDN, increases in mean bias
288 are noted at 29.3 % (378) of the AQS sites in the pNLDN simulation. As noted in the histograms,
289 the distribution of the model bias in the pNLDN is much narrower than both mNLDN and
290 hNLDN, eliminating the large bias increases in mNLDN and the significant bias decreases in
291 hNLDN.

292 **3.2 Vertical evaluation for O₃ and NO_x**

293 **3.2.1 Ozone-sonde observations**

294 A large source of uncertainty in the specification of LNO is its vertical allocation, which can
295 impact the model's ability to accurately represent the variability in both chemistry and transport.
296 To further assess the impact of the vertical LNO specification on model results, we compared
297 vertical profiles of simulated model O₃ with extensive ozonesonde measurements available
298 during the study period. Figure 6 presents the vertical profiles for O₃ sonde measurements and
299 paired model estimates of all model cases at Beltsville, MD and Edgewood, MD. At each
300 location, observations from multiple days are available (one or two soundings per day) during
301 the 2011 DISCOVER-AQ campaign in July 2011. The model evaluation was limited to days
302 where the inclusion of LNO has an obvious impact (the mean vertical profiles of LNO cases are
303 separable from that of the base case) on the model estimates (July 21, 22, 28 and 29 at Beltsville,
304 and July 21, 22, 28, 29, and 30 at Edgewood). We paired the observed data with model estimates
305 in time and space and averaged the model and observed values at each model layer. Only data
306 below 12 km altitude are plotted in Figure 6 to exclude possible influence of stratospheric air on
307 O₃. As can be seen in Figure 6, at both locations the Base case underestimates O₃ mixing ratios
308 above about 1 km, but overestimates values closer to the surface. When LNO is included in the
309 simulations, the predicted O₃ mixing ratios increase relative to the Base case starting around
310 2km, with greater divergence from the Base case at higher altitudes. The two model cases,
311 hNLDN and mNLDN, produced similar O₃ levels from the surface to about 6 km, but above that
312 altitude the mNLDN ozone mixing ratios were higher. All the model cases with LNO performed
313 much better aloft than the Base case. Near the surface, all the model cases overestimated O₃,
314 however hNLDN had smaller bias than the other simulations. This may be attributed to the fact
315 that only hNLDN used the observed lightning flash data directly, and as a result, LNO was
316 estimated more accurately in time and space. This improvement in model bias at the surface is
317 further investigated in the next section using evaluation against P-3B measurements.

318 **3.2.2 P-3B measurement**

319 Extensive measurements of lower tropospheric chemical composition distributions over
320 the Northeastern U.S. are available from instruments onboard the P-3B aircraft on 14 days of the
321 DISCOVER-AQ campaign. We utilize measurements from one of the days (28 July 2011) with

322 noticeable (the mean vertical profiles of LNO cases are separable from that of the base case)
323 lightning impacts, to evaluate the model simulations. Figure 7 shows measured O₃ mixing ratios
324 overlaid on the modeled vertical time-section for 1030 – 1730 UTC. The color-filled circles
325 represent measured O₃ mixing ratios averaged over 60 seconds and the background is the model
326 estimated vertical profiles from the grid cells containing the P-3B flight path for that hour and
327 location. As indicated in the Base case (Figure 7a), the model tends to overestimate O₃ mixing
328 ratios from the surface to about 2 km, but underestimate at altitudes above 2 km. The hNLDN
329 reduced the overestimation below 2km, e.g. fewer grid cells with mixing ratios above 90ppb
330 (shown in red). The other two cases (mNLDN, pNLDN) did not produce the same improvement
331 near the surface. The hNLDN also decreases the underestimation aloft compared to the Base case
332 with O₃ mixing ratios in the 55-65 ppb range (light blue colors), better matching the measured
333 values. This decrease in underestimation aloft is also seen in the mNLDN case, but to a lesser
334 degree while the pNLDN case shows only slight improvement aloft over the Base simulation.

335 To further differentiate the three LNO model cases, Figures 8-10 show the difference in
336 the time-sections between each of the model cases with LNO and the Base for NO, NO_x, and O₃
337 from all the model layers along the P-3B flight path on July 28. As seen in Figure 8, the hNLDN
338 scheme injected most NO above 5 km with a peak between 13-14 km and only a small amount
339 near the surface. After release into the atmosphere, NO is quickly converted into NO₂ in the
340 presence of O₃, and these collectively result in the NO_x vertical time-section (local production
341 plus transport) shown in the middle panel of Figure 8. NO_x is further mixed down through the
342 time-section and more persistent along the flight path near the surface than is NO. As a result,
343 significant O₃ is produced above 3 km and the maximum O₃ difference appears between 9 and 14
344 km during the early afternoon hours (from 13:30 to 17:30). However, from surface to about 2
345 km, O₃ is reduced consistently across the entire period, and this is the result of O₃ titration by NO
346 from cloud-to-ground lightning flashes that must have been transported to this layer by storm
347 downdrafts. Since O₃ is significantly underestimated above 3 km and overestimated near the
348 surface by the Base model, the inclusion of LNO greatly improved the model's performance
349 under both conditions.

350 Comparison of Figure 9 (mNLDN) with Figure 8 (hNLDN) reveals that the time-sections
351 of NO and NO_x are similar above 5 km but dramatically different near the surface. The near-

352 surface increase in ambient NO noted in the hNLDN is absent in mNLDN, and in fact there are
353 some small decreases in NO, although the reason for this is unclear. The increase in O_3 aloft in
354 the mNLDN case is similar to that seen in the hNLDN case. However, the near-surface reduction
355 in O_3 is almost absent. In the pNLDN case (Figure 10), NO mixing ratios are much less than
356 those in hNLDN and mNLDN in the upper layers as a result of less column NO being generated
357 by the linear parameterization. The resulting NO_x time-section is also smoothed. The pNLDN
358 time-sections for NO, NO_x and O_3 near the surface are similar to the mNLDN case with no
359 change or small decreases compared to the Base case. O_3 mixing ratios increase by more than 30
360 ppb during the afternoon hours between 10 – 13 km in the pNLDN case, however the increase is
361 not as intense and widespread as the other cases. In summary, the hNLDN scheme produces
362 estimates that are more consistent with measurements at the surface and aloft, compared to the
363 other simulations, reflecting the advantage of using the spatially and temporally-resolved
364 observed lightning flash data. The model performance improvement for simulated O_3
365 distributions also suggests robustness in the vertical distribution scheme when LNO is generated
366 at the right time and location.

367 To corroborate the above time-section distributions of NO, NO_x , and O_3 in the lightning
368 cases, the lightning NO emissions are traced back on July 28 for each case. It is found that in all
369 cases, the lightning NO was injected approximately 200 km upwind (north-west) of the flight
370 path. The hNLDN case captured two injections: one occurred during the morning hours (5:00 to
371 7:00 am) and the other happened during the afternoon hours (after 2:30 pm). Both mNLDN and
372 pNLDN captured the afternoon lightning event at the later time (after 3:30 pm for mNLDN and
373 after 4:30 pm for pNLDN) with varying intensity, but neither captured the morning lightning
374 event, which explains why the increase of NO and NO_x in the hNLDN case (Figure 8) did not
375 occur in the mNLDN and pNLDN cases (Figures 9 and 10). Also note that the significant
376 increase of NO during the time period from 11:00 to 13:00 occurred about 5 hours after the
377 lightning NO was injected at about 200 km upwind in the hNLDN case.

378 To expand on the evaluation in Figures 7-10 which focused on measurements from July
379 28, 2011, we retrieved all the P-3B measurements on days with noticeable lightning impact (July
380 21, 22, 28, and 29). The 3-D paired observation-model data were grouped together by spiral site
381 and the mean biases (model – observation) were plotted in Figure 11 (a and b) for O_3 and NO,

382 respectively. The boxplots for O₃ in Figure 11a suggests that the Base exhibited larger bias with
383 greater spread (i.e. larger interquartile range) than other model cases incorporating LNO at most
384 of the locations where aircraft spirals were conducted. At all locations except Aldino, the lowest
385 mean biases in simulated NO and O₃ are noted in the hNLDN simulation.

386 **3.3 Deposition evaluation for nitrate**

387 In addition to contributing to tropospheric O₃ formation, NO_x oxidation also leads to gaseous
388 nitric acid and particulate-nitrate which are eventually removed from the atmosphere by dry and
389 wet deposition of nitrate (NO₃⁻). As a result, inclusion of NO_x from lightning also plays an
390 important role in nitrogen deposition modeling. To assess the impacts of incorporating LNO
391 emissions on simulated oxidized nitrogen deposition, we compared model estimated amounts of
392 precipitation from NTN network (<http://nadp.slh.wisc.edu/ntn/>) and wet deposition of NO₃⁻ with
393 measurements from the NADP network (<http://nadp.slh.wisc.edu/>). During summer months in
394 2011 (June -August) the WRF model generally reproduces the observed precipitation with a
395 slight underestimate in the east, but the Base model simulation tends to underestimate wet
396 deposition of NO₃⁻ across the domain, with the greatest underestimation in the SE and UM (See
397 Table 3 and Figure 12). All three LNO simulations increase wet deposition amounts of NO₃⁻ and
398 decrease model bias in all regions. The bottom panel of Figure 12 shows that the mNLDN
399 simulation resulted in the largest increase over the base model estimates. The NMB is reduced
400 from -35 % in the Base to -15 % in mNLDN across the domain and from -32 % to -2 % in the
401 SE. The hNLDN shows very similar model performance to the mNLDN case. In contrast, the
402 wet deposition NO₃⁻ estimates from the pNLDN case are only slightly higher than the Base case,
403 and as a result the evaluation statistics for pNLDN are very similar to the Base statistics. As
404 discussed earlier, the mNLDN tends to produce the most LNO among the three LNO schemes,
405 thus it results in the smallest errors in terms of wet deposition of NO₃⁻ when compared to the
406 Base simulation that significantly underestimated NO₃⁻ wet deposition. It should be noted that in
407 addition to the LNO contributions, errors in modeled precipitation amounts and patterns also
408 likely influence the underestimation of NO₃⁻ wet deposition.

409

410

411

412 **4. Conclusions**

413 A detailed evaluation of lightning NO_x emission estimation parameterizations available in
414 the CMAQ modeling system was performed through comparisons of model simulation
415 results with surface and aloft air quality measurements.

416 Our analysis indicates that incorporation of LNO emissions enhanced O₃ production in
417 the middle and upper troposphere, where O₃ mixing ratios were often significantly
418 underestimated without the representation of LNO. Though the impact on surface O₃ varies
419 from region to region and is also dependent on the accuracy of the NO_x emissions from other
420 sources, the inclusion of LNO, when it is injected at the appropriate time and location, can
421 improve the model estimates. In regions where the base model estimates of O₃ were biased
422 high, the inclusion of LNO further increased the model bias; and a systematic increase is
423 noted in the correlation with measurements, suggesting that emissions from other sources
424 likely drive the overestimation. Identifying how errors in emissions inputs from different
425 sources interact with errors in meteorological modeling of mixing and transport, remains a
426 challenging but critical task. Likewise, all the LNO schemes also enhanced the accumulated
427 wet deposition of NO₃⁻, that was significantly underestimated by the base model without
428 LNO throughout the modeling domain except the Pacific Coast.

429 Uncertainty remains in modeling the magnitude and spatial, temporal and vertical
430 distribution of lightning produced NO_x. LNO schemes are built on numerous assumptions
431 and all current schemes also depend on the skill of the upstream meteorological models in
432 describing convective activity. Nevertheless, these schemes reflect our best understanding
433 and knowledge at the time when the schemes were implemented. The use of hourly
434 information on lightning activity yielded LNO emissions that generally improved model
435 performance for ambient O₃ and NO_x as well as oxidized nitrogen wet deposition amounts.
436 As more high-quality data from both ground and satellite measurements become available,
437 the performance of the LNO schemes will continue to improve.

438 Since the pNLDN scheme was developed using historical data corelating lightning
439 activity with convective precipitation, the scheme could be employed for applications

440 involving air quality forecasting and future projections when observed lightning information
441 is not available.

442

443 **Code and data availability**

444 CMAQ model documentation and released versions of the source code, including all model code
445 used in his study, are available at <https://github.com/USEPA/CMAQ/tree/5.2>

446 . The data processing and analysis scripts are available upon request. The WRF model is
447 available for download through the WRF website
[\(http://www2.mmm.ucar.edu/wrf/users/wrfv3.8/updates-3.8.html\).](http://www2.mmm.ucar.edu/wrf/users/wrfv3.8/updates-3.8.html)

448 The raw lightning flash observation data used are not available to the public but can be
449 purchased through Vaisala Inc. (<https://www.vaisala.com/en/products/systems/lightning-detection>). The lightning data obtained from Vaisala Inc. is the cloud-to-ground lightning flashes over
450 the contiguous United States. The immediate data behind the tables and figures are available from
451 <https://zenodo.org/record/3360744> (Kang and Foley, 2019). Additional input/output data for
452 CMAQ model utilized for this analysis are available upon request as well.
453

454

455

456 **Disclaimer:** The views expressed in this paper are those of the authors and do not necessarily
457 represent the views or policies of the U.S. EPA.

458

459 **Author Contribution**

460 **Daiwen Kang:** data collection, algorithm design, model simulation, analysis, and manuscript
461 writing.

462 **Kristen Foley:** data analysis and manuscript writing.

463 **Rohit Mathur:** manuscript editing.

464 **Shawn Roselle:** manuscript editing.

465 **Kenneth Pickering:** manuscript editing.

466 **Dale Allen:** manuscript editing.

467

468 **Acknowledgement:**

469 The authors thank Brian Eder, Golam Sarwar, and Janet Burke (U.S. /EPA) for their
470 constructive comments and suggestions during the internal review process.

471

473 **References**

- 474 Allen, D., Pickering, K., Stenchikov, G., Thompson, A., and Kondo, Y.: A three-dimensional
475 total odd nitrogen (NOy) simulation during SONEX using a stretched-grid chemical
476 transport model, *J. Geophys. Res.*, 105, 3851–3876, doi:10.1029/1999JD901029, 2000.
- 477 Allen, D. J. and Pickering, K. E.: Evaluation of lightning flash rate parameterizations for use in a
478 global chemical transport model, *J. Geophys. Res.*, 107, 4711,
479 doi:10.1029/2002JD002066, 2002.
- 480 Allen, D. J., Pickering, K. E., Pinder, R. W., Henderson, B. H., Appel, K. W., and Prados, A.:
481 Impact of lightning-NO on eastern United States photochemistry during the summer of
482 2006 as determined using the CMAQ model, *Atmos. Chem. Phys.*, 12, 1737–1758,
483 doi:10.5194/acp-12-1737-2012, 2012.
- 484 Anderson, D. C., Loughner, C. P., Diskin, G., Weinheimer, A., Canty, T. P., Salawitch, R. J.,
485 Worden, H. M., Fried, A., Mikoviny, T., Wisthaler, A., and Dickerson, R. R.: Measured
486 and modeled CO and NOy in DISCOVER-AQ: An evaluation of emissions and
487 chemistry over the eastern US, *Atmos. Environ.*, 96, 78–87,
488 doi:10.1016/j.atmosenv.2014.07.004, 2014.
- 489 Appel, K. W., Napelenok, S. L., Foley, K. M., Pye, H. O., Hogrefe, C., Luecken, D. J., Bash, J. O.,
490 Roselle, S. J., Pleim, J. E., Foroutan, H., Hutzell, W. D., Pouliot, G. O., Sarwar, G.,
491 Fahey, K. M., Gantt, G., Gilliam, R. C., Heath, N. K., Kang, D., Mathur, R., Schwede, D. B.,
492 Spero, T. L., Wong, D. C., and Young, J. O.: Description and evaluation of the
493 Community Multiscale Air Quality (CMAQ) modeling system version 5.1, *Geosci. Model Dev.*, 10, 1703–1732, doi:10.5194/gmd-10-1703-2017, 2017.
- 495 Appel, K. W., Foley, K. M., Bash, J. O., Pinder, R. W., Dennis, R. L., Allen, D. J., and
496 Pickering, K.: A multi-resolution assessment of the Community Multiscale Air Quality
497 (CMAQ) model v4.7 wet deposition estimates for 2002–2006, *Geosci. Model Dev.*, 4,
498 357–371, doi:10.5194/gmd-4-357-2011, 2011.
- 499 Bash, J. O., Baker, K. R., and Beaver, M. R.: Evaluation of improved land use and canopy
500 representation in BEIS v3.61 with biogenic VOC measurements in California, *Geosci. Model Dev.*, 9, 2191–2207, doi:10.5194/gmd-9-2191-2016, 2016.
- 502 Bovensmann, H., Burrows, J. P., Buchwitz, M., Frerick, J., Noël, S., Rozanov, V. V., Chance, K. V., and Goede, A. P. H.: SCIAMACHY: Mission Objectives and Measurement
503 Modes, *J. Atmos. Sci.*, 56, 127–150, 1999.c
- 505 Brown-Steiner, B., Hess, P. G., and Lin, M. Y.: On the capabilities and limitations of GCM
506 simulations of summertime regional air quality: A diagnostic analysis of ozone and
507 temperature simulations in the US using CESM CAM-Chem, *Atmos. Environ.*, 101, 134–
508 148, doi:10.1016/j.atmosenv.2014.11.001, 2015

- 509 Byun, D. W. and Schere, K. L.: Review of the governing equations, computational algorithms,
510 and other components of the Models-3 Community Multiscale Air Quality (CMAQ)
511 modeling system, *Appl. Mech. Rev.*, 59, 51-77, 2006.
- 512 Carty, T. P., Hembeck, L., Vinciguerra, T. P., Anderson, D. C., Goldberg, D. L., Carpenter, S.
513 F., Allen, D. J., Loughner, C. P., Salawitch, R. J., and Dickerson, R. R.: Ozone and NO_x
514 chemistry in the eastern US: evaluation of CMAQ/CB05 with satellite (OMI) data,
515 *Atmos. Chem. Phys.*, 15, 10965–10982, doi:10.5194/acp-15-10965-2015, 2015.
- 516 Choi, Y., Wang, Y., Zeng, T., Martin, R. V., Kurosu, T. P., and Chance, K.: Evidence of
517 lightning NO_x and convective transport of pollutants in satellite observations over North
518 America, *Geophys. Res. Lett.*, 32, L02805, doi:10.1029/2004GL021436, 2005.
- 519 Crawford, J. H. and Pickering, K. E.: DISCOVER-AQ: Advancing strategies for air quality
520 observations for the next decade, *EM, A&WMA*, September, 2014.
- 521 Eder, B. K., Kang, D., Mathur, R., Yu, S., and Schere, K.: An operational evaluation of the Eta-
522 CMAQ air quality forecast model, *Atmos. Environ.*, 40, 4894-4905, 2006.
- 523 Finney, D. L., Doherty, R. M., Wild, O., Huntrieser, H., Pumphrey, H. C., and Blyth, A. M.:
524 Using cloud ice flux to parametrize large-scale lightning, *Atmos. Chem. Phys.*, 14,
525 12665–12682, doi:10.5194/acp-14-12665-2014, 2014.
- 526 Finney, D. L., Doherty, R. M., Wild, O., and Abraham, N. L.: The impact of lightning on
527 tropospheric ozone chemistry using a new global lightning parameterization, *Atmos.*
528 *Chem. Phys.*, 16, 7507–7522, doi:10.5194/acp-16-7507-2016, 2016.
- 529 Fiore, A. M., Dentener, F. J., Wild, O., Cuvelier, C., Schultz, M. G., Hess, P., Textor, C., Schulz,
530 M., Doherty, R. M., Horowitz, L. W., MacKenzie, I. A., Sanderson, M. G., Shindell, D.
531 T., Stevenson, D. S., Szopa, S., Van Dingenen, R., Zeng, G., Atherton, C., Bergmann, D.,
532 Bey, I., Carmichael, G., Collins, W. J., Duncan, B. N., Faluvegi, G., Folberth, G., Gauss,
533 M., Gong, S., Hauglustaine, D., Holloway, T., Isaksen, I. S. A., Jacob, D. J., Jonson, J. E.,
534 Kaminski, J. W., Keating, T. J., Lupu, A., Marmer, E., Montanaro, V., Park, R. J., Pitari,
535 G., Pringle, K. J., Pyle, J. A., Schroeder, S., Vivanco, M. G., Wind, P., Wojcik, G., Wu,
536 S., and Zuber, A.: Multimodel estimates of intercontinental sourcereceptor relationships
537 for ozone pollution, *J. Geophys. Res.*, 114, D04301, doi:10.1029/2008jd010816, 2009.
- 538 Foley, K. M., Roselle, S. J., Appel, K. W., Bhave, P. V., Pleim, J. E., Otte, T. L., Mathur, R.,
539 Sarwar, G., Young, J. O., Gilliam, R. C., Nolte, C. G., Kelly, J. T., Gilliland, A. B., and
540 Bash, J. O.: Incremental testing of the Community Multiscale Air Quality (CMAQ)
541 modeling system version 4.7, *Geosci. Model Dev.*, 3, 205–226, doi:10.5194/gmd-3-205-
542 2010, 2010.
- 543 Follette-Cook, M. B., Pickering, K. E., Crawford, J. H., Duncan, B. N., Loughner, C. P., Diskin,
544 G. S., Fried, A., and Weinheimer, A. J.: Spatial and temporal variability of trace gas
545 columns derived from WRF/Chem regional model output: Planning for geostationary

- 546 observations of atmospheric composition, *Atmos. Environ.*, 118, 28-44,
547 doi:10.1016/j.atmosenv.2015.07.024, 2015.

548 Kang, D., Eder, B. K., Stein, A. F., Grell, G. A., Peckham, S. E., and Mchenry, J.: The New
549 England air quality forecasting pilot program: development of an evaluation protocol and
550 performance benchmark, *J. Air & Waste Manage. Assoc.*, 55, 1782-1796, 2005.

551 Kang, D., and Foley, K.: Simulating Lightning NO Production in CMAQv5.2: Performance
552 Evaluations, data set, <https://doi.org/10.5281/zenodo.3360744>, 2019.

553 Kang, D., Pickering, K. E., Allen, D. J., Foley, K. M., Wong, D., Mathur, R., and Roselle, S. J.:
554 Simulating Lightning NO Production in CMAQv5.2: Evolution of Scientific Updates,
555 *Geosci. Model Dev.*, 12, 3071–3083, doi:10.5194/gmd-12-3071-2019, 2019.

556 Kang, D. and Pickering, K. E.: Lightning NO_x emissions and the Implications for Surface Air
557 Quality over the Contiguous United States, *EM, A&WMA*, November, 2018.

558 Kaynak, B., Hu, Y., Martin, R. V., Russell, A. G., Choi, Y., and Wang, Y.: The effect of
559 lightning NO_x production on surface ozone in the continental United States. *Atmos Chem*
560 *Phys.* 8(17):5151–5159. doi:10.5194/acp-8-5151-2008, 2008.

561 Koo, B., Chien, C. J., Tonnesen, G., Morris, R., Johnson, J., Sakulyanontvittaya T.,
562 Piyachaturawat, P., and Yarwood, G.: Natural emissions for regional modeling of
563 background ozone and particulate matter and impacts on emissions control strategies.
564 *Atmos Environ.*, 44(19):2372–2382. doi:10.1016/j.atmosenv.2010.02.041, 2010.

565 Koshak, W., Peterson, H., Bazar, A., Khan, M., and Wang, L.: The NASA Lightning Nitrogen
566 Oxides Model (LNOM): Application to air quality modeling, *Atmos. Res.*,
567 doi:10.1016/j.atmosres.2012.12.015, 2014.

568 Labrador, L. J., von Kuhlmann, R., and Lawrence, M. G.: The effects of lightning-produced NO_x
569 and its vertical distribution on atmospheric chemistry: sensitivity simulations with
570 MATCHMPIC, *Atmos. Chem. Phys.*, 5, 1815–1834, 2005,

571 Lin, J., Youn, D., Liang, X., and Wuebbles, D.: Global model simulation of summertime U.S.
572 ozone diurnal cycle and its sensitivity to PBL mixing, spatial resolution, and emissions,
573 *Atmos. Environ.*, 42, 8470–8483, doi:10.1016/j.atmosenv.2008.08.012, 2008.

574 Murray, L. T.: Lightning NO_x and Impacts on Air Quality, *Curr Pollution Rep.*, doi:
575 10.1007/s40726-016-0031-7, 2016.

576 Nolte, C. G., Appel, K. W., Kelly, J. T., Bhave, P. V., Fahey, K. M., Collett Jr., J. L., Zhang, L.,
577 and Young, J. O.: Evaluation of the Community Multiscale Air Quality (CMAQ) model
578 v5.0 against size-resolved measurements of inorganic particle composition across sites in
579 North America, *Geosci. Model Dev.*, 8, 2877–2892, doi:10.5194/gmd-8-2877-2015,
580 2015.

- 581 Napelenok, S. L., Pinder, R. W., Gilliland, A. B., and Martin, R. V.: A method for evaluating
582 spatially-resolved NO_x emissions using Kalman filter inversion, direct sensitivities, and
583 spacebased NO₂ observations, *Atmos. Chem. Phys.*, 8, 5603–5614, doi:10.5194/acp-8-
584 5603-2008, 2008.
- 585 Novak, J. H. and Pierce, T. E.: Natural emissions of oxidant precursors, *Water Air Soil Poll.*, 67,
586 57-77, 1993.
- 587 Orville, R. E., Huffines, G. R., Burrows, W. R., Holle, R. L., and Cummins, K. L.: The North
588 American Lightning Detection Network (NALDN) – first results: 1998-2000, *Mon. Wea.
589 Rev.*, 130, 2098–2109, 2002.
- 590 Otte, T. L. and Pleim, J. E.: The Meteorology-Chemistry Interface Processor (MCIP) for the
591 CMAQ modeling system: updates through MCIPv3.4.1, *Geosci. Model Dev.*, 3, 243–256,
592 doi:10.5194/gmd-3-243-2010, 2010.
- 593 Pickering, K. E., Bucsela, E., Allen, D., Ring, A., Holzworth, R., and Krotkov, N.: Estimates of
594 lightning NO_x production based on OMI NO₂ observations over the Gulf of Mexico, *J.
595 Geophys. Res. Atmos.*, 121, 8668–8691, doi:10.1002/2015JD024179, 2016.
- 596 Price, C., Penner, J., and Prather, M.: NO_x from lightning. 2. Constraints from the global
597 atmospheric electric circuit, *J. Geophys. Res.*, 102, 5943–5951, doi:10.1029/96JD02551, 1997.
- 598 Price, C. and Rind, D.: A simple lightning parameterization for calculating global lightning
599 distributions, *J. Geophys. Res.*, 97, 9919–9933, doi:10.1029/92JD00719, 1992.
- 600 Richter, A., Burrows, J. P., N'uß, H., Granier, C., and Niemeier, U.: Increase in tropospheric
601 nitrogen dioxide over China observed from space, *Nature*, 437, 129–132,
602 doi:10.1038/nature04092, 2005.
- 603 Rossow, W. B., Walker, A. W., Beuschel, D. E., and Roiter, M. D.: International Satellite Cloud
604 Climatology Project (ISCCP) documentation of new cloud data sets, *Tech. Rep.* January,
605 World Meteorological Organisation, WMO/TD 737, Geneva, 1996.
- 606 Schumann, U. and Huntrieser, H.: The global lightning-induced nitrogen oxides source, *Atmos.
607 Chem. Phys.*, 7, 3823-3907, doi:10.5194/acp-7-3823-2007, 2007.
- 608 Sioris, C. E., Kurosu, T. P., Martin, R. V., and Chance, K.: Stratospheric and tropospheric NO₂
609 observed by SCIAMACHY: first results, *Adv. Space Res.*, 34, 780–785, 2004.
- 610 Stockwell, D. Z., Giannakopoulos, C., Plantefin, P. H., Carver, G. D., Chipperfield, M. P., Law,
611 K. S., Pyle, J. A., Shallcross, D. E., and Wang, K. Y.: Modelling NO_x from lightning and
612 its impact on global chemical fields, *Atmos. Environ.*, 33, 4477–4493, 1999.
- 613 Smith, S. N., and Mueller, S. F.: Modeling natural emissions in the Community Multiscale Air
614 Quality (CMAQ) Model-I: building an emissions data base. *Atmos. Chem. Phys.*,
615 10(10):4931–4952. doi:[10.5194/acp-10-4931-2010](https://doi.org/10.5194/acp-10-4931-2010), 2010.

- 616 Simon, H., Reff, A., Wells, B., Xing, J., and Frank, N.: Ozone trends across the United States
617 over a period of decreasing NO_x and VOC emissions. Environ. Sci. Technol., 49, 186-
618 195, 2015.
- 662 Wang, L., Newchurch, M. J., Pour-Biazar, A., Kuang, S., Khan, M., Liu, X., Koshak, W., and
663 Chance, K.: Estimating the influence of lightning on upper tropospheric ozone using
664 NLDN lightning data and CMAQ model, Atmos. Environ., 67, 219–228, 2013.
- 665 Yarwood, G., Whitten, G. Z., Jung, J., Heo, G., and Allen, D. T.: Final Report: Development,
666 Evaluation and Testing of Version 6 of the Carbon Bond Chemical Mechanism (CB6),
667 available at:
668 <https://www.tceq.texas.gov/assets/public/implementation/air/am/contracts/reports/pm/5820784005FY1026-20100922-environ-cb6.pdf>, 2010.
- 670
- 671
- 672
- 673
- 674
- 675
- 676
- 677
- 678
- 679
- 680
- 681
- 682
- 683
- 684
- 685

686 **Figure Captions:**

687

688 Figure 1. Analysis regions and ozonesonde locations during the 2011 DISCOVER-AQ field
689 study.

690 Figure 2. Timeseries of regional-mean daily maximum 8-hr O₃ comparing observations (AQS)
691 and CMAQ model predictions using the LNO_x schemes to Base simulation for the
692 domain (a), SE (b), and RM (c) in July 2011. The numbers in the parentheses following
693 the region names are the number of AQS sites.

694

695 Figure 3. Timeseries of daily mean NO_x over the domain (a), SE (b), and RM (c) in July 2011.
696 The numbers in the parentheses following the region names are the number of AQS sites.

697

698 Figure 4. Diurnal profiles for hourly O₃ and NO_x over the domain (a,d), SE (b,e), and RM (c,f) in
699 July 2011.

700 Figure 5. Spatial maps of the mean bias of DM8HR O₃ (model – observation) differences
701 between model case with LNO_x and the Base as well as the corresponding histograms
702 indicating the number of sites with decreased mean bias for each pair of model cases in
703 July 2011.

704 Figure 6. Vertical profiles of O₃ mixing ratios from ozonesonde measurements and model
705 simulations at Beltsville, MD (a) and Edgewood, MD (b) on the days when lightning NO
706 produced significant impact on O₃ during the Discover-AQ field study in July 2011.

707 Figure 7. Overlay of P3B observed O₃ (1-minute mean values) over the corresponding vertical
708 cross sections of simulated values extracted at the flying locations on July 28, 2018, (a)
709 Base, (b) hNLDN (c) mNLDN, and (d) pNLDN. The letters marked at the bottom of the
710 plots are P3B spiral sites, Be: Beltsville, Pa: Padonia, Fa: Fairhill, Al: Aldino, Ed:
711 Edgewood, Es: Essex.

712 Figure 8. The vertical-time difference between hNLDN and Base during the P3B flight period on
713 July 28, 2011 for (a) NO, (b) NO_x, and (c) O₃.

714 Figure 9. The vertical-time difference between mNLDN and Base during the P3B flight period
715 on July 28, 2011 for (a) NO, (b) NO_x, and (c) O₃.

716 Figure 10. The vertical-time difference between pNLDN and Base during the P3B flight period
717 on July 28, 2011 for (a) NO, (b) NO_x, and (c) O₃.

718 Figure 11. Bias (model – observation) distributions of O₃ (a) and NO (b) at each P3B spiral site
719 on July 21, 22, 28, and 29, 2011. Be: Beltsville, Pa: Padonia, Fa: Fairhill, Al: Aldino, Ed:
720 Edgewood, Es: Essex, Cb: Chesapeake Bay

721 Figure 12. The top row shows precipitation estimates from WRF (left), the bias in the WRF
722 predicted precipitation at NTN locations (middle), and the corresponding scatter plots
723 (right). The middle row shows wet deposition (Dep) of nitrate estimates from the Base
724 simulation (left), the bias in the Base model estimates of wet deposition of NO₃⁻ at
725 NADP/NTN locations (middle), and the corresponding scatter plots (right). The bottom
726 row shows the difference in the LNO_x sensitivity simulations and the Base case estimates
727 of wet deposition of NO₃⁻: mNLDN – Base (left); hNLDN – Base (middle), and pNLDN
728 – Base (right). All maps are based on accumulated values (precipitation or wet
729 deposition) during June – August 2011. Precipitation totals are in cm and wet deposition
730 totals are in kg/ha.