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Abstract. Uncertain parameters in physical parameterizations of General Circulation Models (GCMs) greatly impact model 

performance. In recent years, automatic parameter optimization has been introduced for tuning model performance of GCMs, 10 

but most of the optimization methods are unconstrained optimization methods under a given performance indicator. Therefore, 

the calibrated model may break through essential constraints that models have to keep, such as the radiation balance at top of 

model. The radiation balance is known for its importance in the conservation of model energy. In this study, an automated and 

efficient parameter optimization with the radiation balance constraint is presented and applied in the Community Atmospheric 

Model (CAM5) in terms of a synthesized performance metric using normalized mean square error of radiation, precipitation, 15 

relative humidity, and temperature. The tuned parameters are from the parameterization schemes of convection and cloud. The 

radiation constraint is defined as the absolute difference of the net longwave flux at top of model (FLNT) and the net solar 

flux at top of model (FSNT) less than 1 W m-2. Results show that the synthesized performance under the optimal parameters 

is 6.3 % better than the control run (CNTL) as well as the radiation imbalance is as low as 0.1 W m-2. The proposed method 

provides the insight for physics-guided optimization and it can be easily applied to optimization problems with other 20 

prerequisite constraints in GCMs.  

1 Introduction 

The subgrid-scale physical processes in General Circulation Models (GCMs) are represented by parameterization schemes, 

which may exist with several uncertain parameters. Inappropriate parameters can seriously affect the overall performance of 

the model. The Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR5) pointed out that studies 25 

on parameter uncertainty are critical to improve climate simulation capabilities (Mastrandrea et al., 2011). Bauer et al. (2015) 
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also indicated that small errors in the physical parameterization schemes could lead to large-scale systematic errors. 

Traditionally, to achieve better performance, the uncertain parameters are tuned based on the experience of model experts and 

statistical analysis. This is a labor-intensive job and the tuning results are difficult to achieve local or global optimality in 

complex climate models. 

To efficiently reduce parameter-introduced uncertainty, quite a few automated parameter calibration methods have been 5 

proposed. These calibration methods can be categorized into two types. One attempts to obtain the probability distributions of 

the parameters by likelihood and Bayesian estimation methods. Cameron et al. (1999) exploited the generalized likelihood 

uncertain estimation to obtain parameters ranges with a specific confidence level. An adaptive Markov Chain Monte Carlo 

(MCMC) was used to calibrate the uncertain parameters in the ECHAM5 climate model (Järvinen et al., 2010). Edwards et al. 

(2011) proposed a simplified procedure of Bayesian calibration to make a quantification of uncertainty in climate forecasting. 10 

This type of method has also been successfully applied to the CAM3.1 model and the third Hadley Centre Climate Model 

(HadCM3) (Jackson et al., 2008; Williamson et al., 2013). 

The other method is to adjust parameters using optimization methods to minimize the errors between model simulations and 

observations, which are formulated with a given performance indicator. Many intelligent evolutionary optimization algorithms 

were applied to model tuning. For examples, both simulated stochastic approximation annealing (SSAA) (Yang et al., 2013) 15 

and multiple very fast simulated annealing (MVFSA) (Zou et al., 2014) were used for uncertainty quantification and parameter 

calibration.  

Both methods can consider the interaction of parameters, achieve automatic optimization, and avoid the subjectivity and 

experientiality of manual calibration. However, they also share high computation cost challenges due to the hundreds and 

thousands required simulations. This is usually unacceptable, especially for high-resolution climate models. To overcome the 20 

computational issues, the surrogate model, which is a way to replace the real climate model with a cheaper statistical model 

for faster optimization, has been recently introduced. Applications of these methods in climate models include the works 

presented by Neelin et al. (2010) and Wang et al. (2014). However, training a precise surrogate model for a complicated climate 

model such as CESM is very challenging. Moreover, capturing the climatic characteristics of extreme events is difficult for 

the cheap statistical model. To make it possible to optimize parameters efficiently and quickly in the complex and highly 25 

nonlinear earth system models, an improved simplex algorithm was presented by Zhang et al. (2015). This method can 

overcome the shortcomings of the traditional simplex downhill method, and the computing efficiency of the algorithm is 

improved compared with evolutionary optimization algorithms. 

The application of various automatic parameter optimization methods in climate models has gradually received more attention, 

however, the above optimization algorithms mentioned are mostly unconstrained, and they lack emphasis on the physical 30 

mechanisms of the model itself. This paper takes radiation balance as an example. According to the Earth's energy conservation 

theory, the absorbed solar radiation is approximately equal to outgoing longwave radiation at the top of model. Forster et al. 
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(2007) proposed that radiative balance is critical to the Earth’s system, and the bias of radiation has a big impact on the change 

of surface temperature. Hourdin et al. (2017) pointed out that a 1 W m-2 change in global energy balance may result in a global 

mean surface temperature change of 0.5 to 1.5 K in coupled simulations. Additionally, Wild (2008) indicated that radiation 

biases in the GCMs may influence climate sensitivity, thus possibly distorting the prediction of future climate conditions. Lin 

et al. (2010) showed the importance of climate energy imbalance and stressed that long-term high-precision measurements of 5 

TOA radiation are necessary.  

Radiation balance is critical for GCMs, but its deviation can still exceed 1 W m-2 in some CMIP5 models (Smith et al., 2014). 

To better understand this problem, many studies have tried to determine the cause of radiation deviation by analyzing the 

influence of uncertain parameters and making corresponding adjustments. Zhao et al. (2013) concluded that cloud 

microphysics and emission related parameters have statistically important impacts on the global mean net radiation flux. Qian 10 

et al. (2015) indicated that net radiation flux is very sensitive to some parameters in cloud microphysics and convection. The 

improvement of the simulation performance of the climatology and variability based on the radiation balance is very 

meaningful. However, the constrained optimization methods used to calibrate parameters with physical constraints in climate 

models remain to be further studied. Cheng et al. (2018) showed that penalty functions and separation of objective and 

constraint methods are popular for solving constrained problems. Penalty methods encourage search toward feasible regions 15 

by increasing the objective function value with a penalty value for the points that violate the constraints. The exterior penalty 

method is relatively easy to implement, and it can be widely used in various algorithms. The separation of objective and 

constraint is commonly used by transforming constraints into objectives, but it limited by the convergence of the multi-

objective algorithms when the optimization problem is high computational cost. 

The purpose of this paper is to propose an effective constrained optimization method and demonstrate its feasibility in the 20 

calibration of uncertain parameters under the premise of ensuring the balance of radiation. And this paper is organized as 

follows. Section 2 describes the details of the model and experimental design. Section 3 introduces the new constrained 

parameter calibration method. Evaluations and analysis of the optimization results are presented in Section 4. The last section 

contains the conclusion and discussion. 

2 Model and Experiment 25 

2.1 Model Description 

The model used in this study is CAM5 (release v5.3)，which is the atmospheric component of the Community Earth System 

Model (CESM 1.2.1). The dynamical core uses the finite-volume method developed by Lin and Rood (1996) and Lin (2004). 

More details on CAM5 can be found in the work of Neale et al. (2010). Deep convection is handled by a parameterization 

scheme developed by Zhang and McFarlane (1995) with the further modifications of Richter and Rasch (2008), as well as 30 
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Neale et al. (2008). The original parameterization of stratiform cloud microphysics is handled by Morrison and Gettelman 

(2008). Modifications of ice nucleation and ice supersaturation can be found in Gettelman et al. (2010). The parameterization 

of fractional stratiform condensation is described by Zhang et al. (2003), as well as Park et al. (2014). Radiation scheme uses 

the Rapid Radiative Transfer method for GCMs (RRTMG) (Mlawer et al., 1997; Iacono et al., 2008). 

2.2 Experiment Design 5 

Table 1 shows the parameters to be adjusted, the ranges, and the default values. These parameters were identified as sensitive 

to cloud and convection process in previous studies. Qian et al. (2018) showed that deep convection precipitation efficiency 

zmconv_c0_lnd and zmconv_c0_ocn have significant impact on the variance of shortwave cloud forcing (SWCF) over the 

land and ocean, respectively. Thresholds of relative humidity for high and low stable clouds (cldfrc_rhminh and cldfrc_rhminl) 

are considered as the important parameters to cloud and radiation (Zhang et al., 2018). In addition, the relative humidity 10 

threshold for low clouds is also one of the strongest parameters impacting the global mean precipitation and makes a huge 

contribution to the TOA net radiative fluxes in CAM5 (Qian et al., 2015). The timescale for consumption rate of deep CAPE 

(zmconv_tau) is identified as the most sensitive parameter to the convective precipitation in Zhang-McFarlance by Yang et al. 

(2013). The cloud ice sedimentation velocity (cldsed_ai) has a significant effect on cloud radiative forcing (Mitchell et al., 

2008), and it has been identified as a high-impact parameter in sensitivity experiments related to temperature, radiation, and 15 

precipitation, etc. (Sanderson et al., 2008). The ranges of these parameters are referenced to previous studies (Qian et al., 2015; 

Zhang et al., 2018). 

The output variables used to synthesize a performance indicator are longwave cloud forcing (LWCF), SWCF, precipitation 

(PRECT), humidity at 850 hPa (Q850) and temperature at 850 hPa (T850), shown in Table 2. The observations of LWCF and 

SWCF are from CERES-EBAF (Clouds and the Earth’s Radiant Energy System-Energy Balanced and Filled, Loeb and 20 

Coauthors, 2014). PRECT is from GPCP (Global Precipitation Climatology Project, Adler et al., 2003). And Q850 and T850 

are from ERA-Interim, which was produced by the ECMWF (Dee et al., 2011). 

In this study, we use 1.9
。

latitude ×  2.5
。

 longitude resolution CAM5 with 30 vertical layers. Each simulation is a 5-year AMIP 

from 2000 to 2004 with the observed climatological sea surface temperature (SST) and sea ice (Rayner et al., 2003). The 

simulations in the last 3 years are used to evaluate the synthesized performance metric and constraint. 25 

3 Method 

A constrained automatic optimization method is proposed based on Zhang et al. (2015). The synthesized metric used to 

evaluate the performance of overall simulation skills are shown in Eq. (3):  

(𝜎𝑚
𝐹 )2 = ∑ 𝑤(𝑖)(𝑥𝑚

𝐹 (𝑖) − 𝑥𝑜
𝐹(𝑖))2𝐼

𝑖=1                                                                                                                                  (1) 
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𝐹)2 = ∑ 𝑤(𝑖)(𝑥𝑟

𝐹(𝑖) − 𝑥𝑜
𝐹(𝑖))2𝐼

𝑖=1                                                                                                                                   (2)  

𝜒2 =
1

𝑁𝐹
∑ (

𝜎𝑚
𝐹

𝜎𝑟
𝐹 )2𝑁𝐹

𝐹=1                                                                                                                                                              (3) 

(𝜎𝑚
𝐹 )2 represents a criterion for the simulation skill of the models with modified parameters, (𝜎𝑟

𝐹)2 is an evaluation of the 

default experiment simulation skill. If the indicator 𝜒2 is less than 1, this means that the simulation with tuned parameters is 

better than the CNTL. The smaller the index, the better performance of model. The model outputs are represented by 𝑥𝑚
𝐹 (𝑖), 5 

and 𝑥𝑜
𝐹(𝑖) denotes the corresponding reanalysis or observation data. The expression 𝑥𝑟

𝐹(𝑖) represents model outputs from the 

CNTL. The weight of the different grids on the sphere is represented by 𝜔. 𝐼  denotes the total number of grids in model. The 

number of the output variables in the performance index is represented by 𝑁𝐹. 

The radiation balance is defined as the absolute value of the difference between net solar flux (FSNT) and net longwave flux 

(FLNT) in climatology at the top of the model less than 1 W m-2, which is the maximum deviation of radiation observations 10 

in the decade before 2014 (Trenberth et al., 2014). 

Coupled with the radiation balance constraint, the optimization problem of this study can be expressed as Eq. (4) (5): 

min 𝜒2                                                                                                                                                                                 (4) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡. 𝑡𝑜. 𝐴𝐵𝑆(𝐹𝑆𝑁𝑇𝑚 − 𝐹𝐿𝑁𝑇𝑚) < 1                                                                                                                          (5) 

Converting the unconstrained problem into a constrained problem using the penalty function method, it can be transformed 15 

into the augmentation function as Eq. (6): 

𝐹(𝑥) = 𝜒2 + 𝛽 ∗ 𝐴𝐵𝑆(𝐹𝑆𝑁𝑇𝑚 − 𝐹𝐿𝑁𝑇𝑚)                                                                                                                        (6) 

The penalty factor 𝛽 for the constraint in Eq. (6) is chosen to be 10000 if the constraint in Eq. (5) is not satisfied, otherwise it 

is equal to 0. The purpose of this choice is to optimize the search space to avoid the possibility of radiation imbalance. This 

penalty function method is easy and effective when dealing with this tightly constrained optimization.  20 

We use the improved simplex downhill method, proposed by Zhang et al. (2015), to optimize the augment function. Firstly, 

the single parameter perturbation sample method (SPP) is used to obtain several better initial values while ensuring that the 

initial geometry of simplex downhill is well-conditioned. The initial value preprocessing mechanism ensures that algorithm 

starts from a good basis. This is important for the simplex algorithm, which is easy to fall into local optimum. Next, the simplex 

downhill algorithm is applied to search for better performance. 25 

𝐹(𝑥) gradually converges as shown in Fig. 1. There are some cases in which the radiation balance is not satisfied at the 

beginning of optimization. However, as the iteration step increases, the search space of the algorithm is constrained within the 

feasible range. The goal is then to make the synthesized performance metric smaller. In addition, a comparative experiment 

with unconstrained algorithms is done to verify our doubts about unconstrained methods. Fig. 2 shows the performance indices 

and radiation deviations corresponding to the first 15 solutions after the two algorithms converge respectively. The constrained 30 

optimization algorithm can find solutions that are more radiation balanced, however, the final solution metrics are not as good 
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as the unconstrained optimization algorithm. Compared to the CTNL experiment, we can find quite a few solutions with better 

metrics and smaller radiation biases. 

4 Result 

4.1 The optimal model 

The best uncertainty parameters obtained by unconstrained optimization method optimize the overall performance of the 5 

simulation by 10.1 %, but they have a radiation deviation up to 3.8 W m-2. When considering the converged constrained 

optimization algorithm, the optimal parameters can improve the model performance by 6.3 %, and the radiation imbalance is 

as low as 0.1 W m-2. The corresponding results of the optimal solutions with the two methods are shown in Table 3. Both 

unconstrained optimization and constrained optimization can further improve the simulation performance, but unconstrained 

optimization may encounter an optimal solution that does not satisfy the radiation balance, thus leading to meaningless 10 

optimization. The optimization results discussed below are based on the proposed constrained optimization method. 

The optimization of each output variable is shown in Table 4. In addition, a Taylor diagram is used to estimate the model 

performance through the standard deviation and correlation (Fig. 3). By combining the results of Table 4 and Figure 3, it can 

be concluded that SWCF and Q850 receive most optimization, as they achieve a better performance index. Also, compared to 

the default experiment, their standard deviations have improved. Table 5 shows the standard deviations of the variables, which 15 

are important for the model but not used as evaluation criteria. It is noteworthy that they are also close to the default experiment. 

For a more comprehensive analysis of the spatial variation of the output variables, the zonal distribution of the difference 

between EXP/CNTL and observations of all metric variables are shown in Fig. 4. SWCF and Q850 have been obviously 

improved over low and middle latitudes, but the changes of PRECT and T850 are not particularly notable. Further, LWCF 

only showed significant improvement near the equator, and it slightly deteriorated over the middle and high latitudes.  20 

4.2 Interpretation of the results 

The optimized parameters values are provided in the “Constrained tune” column of Table 1. The deep convection precipitation 

efficiency over land and ocean are reduced relative to the default values. The timescale for consumption rate of CAPE for deep 

convection is smaller than the default value, and both relative humidity thresholds for high and low clouds are increased. 

Additionally, the sedimentation velocity of cloud ice is larger. Next, we will explain how the changes in these parameters are 25 

related to the results of the simulations.  

The relative humidity threshold for low clouds is larger in optimization experiments than the default value, which will 

obviously lead to the decrease of low cloud fraction. The decreased low cloud fraction is consistent with the increase of SWCF. 
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The CNTL experiment has excelled in simulating the spatial distribution of SWCF (Fig. 5c), but it has a negative bias over the 

ocean in the low latitudes, where the improvement is significant in the optimal experiment.  

The zonal mean specific humidity at 850 hPa is significantly improved, and its spatial distribution is presented in Fig. 6. In the 

optimal experiment, the atmosphere is drier in tropics and middle latitudes, which is closer to the observation than the CNTL 

experiment. Meanwhile, the middle to low troposphere is also slightly drier in these areas (Fig. 7), which may be related to the 5 

increased convective precipitation. A quasi-equilibrium closure is used in the deep convection scheme in CAM5, which is 

based on CAPE. The adjustment timescale represents the denominator of the cloud bottom convective mass flux. When the 

time scale is shorter with less changed CAPE, the increased cloud-base mass flux would help to enhance the convective 

precipitation. Additionally, compared to the CNTL experiment, the lower troposphere gets warmer and the middle troposphere 

is colder, which exacerbates the instability of the temperature structure (Fig. 8) and leads to more convective precipitation. 10 

The spatial distribution of convective precipitation over the tropics where convection occurs most frequently can be seen in 

Fig. 9. The increase in convective precipitation may be related to the decrease in specific humidity at 850 hPa. However, the 

increase of total precipitation is not particularly significant, which is dominated by the changes in convective precipitation. 

The main reason is likely associated with the decreased precipitation efficiency parameters, which could reduce the convective 

precipitation as a compensation. Therefore, the decreases of precipitation efficiency partially offset the precipitation change 15 

caused by tau and temperature structure.  

It is difficult for all variables to be optimized, due to the strong interaction among parameters and the complex relationship 

among output variables. The simulations of T850 between optimal and CNTL experiments are very similar. It is likely the 

results of the combined effects of all relevant parameterizations. In the optimal experiment, LWCF is closer to the observation 

in the tropics, but it becomes slightly smaller at middle to high latitudes compared to the CNTL experiment, which implies the 20 

larger bias. The relative humidity threshold for high clouds and the sedimentation velocity of ice crystals are correspondingly 

increased, and both of them would lead to the reduction in high clouds. High cloud fraction changes compared to the CNTL 

experiment can be seen in Fig. 10c. The reduced high cloud is consistent with the reduction in LWCF. Cloud changes also 

inevitably affect SWCF. It can be seen the middle cloud has increased relative to the default experiment (Fig. 10c), and the 

increase of the middle cloud may be related to the decrease of precipitation efficiency over ocean. 25 

Note that three of six parameters hit their lowest allowable limit with the TOA balance constraint. We found that the incoming 

shortwave radiation flux is more sensitive to tuning parameters than the outgoing longwave radiation flux. Thus, to reduce the 

TOA imbalance (SW-LW) and keep the reasonable model performance, the shortwave radiation flux should be reduced largely 

via increasing low cloud fraction and liquid water content. These three variables can help achieve this by setting to the lowest 

bounds. This suggests that getting both the TOA balance and reasonable model performance is a relatively complex and 30 

difficult problem due to model structure problems, as pointed out by Qian et al. (2018) and Yang et al. (2019). Meanwhile, 
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how to get picked parameters with similar sensitivity to both longwave and shortwave radiation flux might be a potential 

approach to overcome the bound limit and it warrants further studies. 

In conclusion, the increase in SWCF is consistent with the decrease of cloud fraction for the sake of larger relative humidity 

threshold of low clouds. Changes in the Q850 are related to increased convective precipitation. Precipitation only slightly 

increases in the tropics and the global total precipitation has changed very little, which is related to comprehensive effect of 5 

the changes of the convection adjustment timescale, the precipitation efficiency parameter, and the vertical temperature 

structure. T850 simulated by the optimization experiment is similar to the default experiment. The reduced LWCF is related 

to the decreased high clouds caused by the increased relative humidity threshold for high clouds and the increased 

sedimentation velocity of ice crystals. 

5 Conclusion and Discussion 10 

Radiation balance is a crucial factor for the long-term energy balance of GCMs, but it has not received enough attention in 

automatic parameter optimization. First of all, this paper points out that the previous parameter optimization algorithms do not 

consider radiation balance as a necessary condition, and the obtained optimization parameters are likely to break this important 

physical constraint, which may lead to unacceptable calibrated parameters. Thus we propose an efficient constrained automatic 

optimization algorithm to calibrate the uncertainty parameters in CAM5 with the constraint of the absolute value of the 15 

difference of net solar flux and net longwave flux at the top of the model (less than 1 W m-2). In the parameter calibration, we 

use the comprehensive performance with five fields of LWCF, SWCF, PRECT, Q850 and T850 as the performance indicator. 

We choose the uncertain parameters in cloud and convection parameterizations, including the deep convection precipitation 

efficiency over land and ocean, thresholds of relative humidity for stable high and low clouds, the timescale for consumption 

rate deep CAPE, and the ice falling speed. Each simulation in our optimization experiments is a 5-year AMIP experiment 20 

forced with prescribed seasonal climatology of SST and sea ice. 

The optimal parameters found by our method can increase the overall performance of the model by 6.3 %, and the radiation 

imbalance is as low as 0.1 W m-2. The most optimized variables are SWCF and Q850. The increase in SWCF is consistent 

with the decrease of cloud water due to larger relative humidity threshold value for low clouds. The reduction of the Q850 in 

the troposphere may be related to the increase of convective precipitation. The change in global total precipitation is not 25 

particularly obvious, which is likely the comprehensive effect of the changes of convection adjustment timescale, the 

precipitation efficiency parameter, and the structure of temperature over troposphere. The change of T850 is very small, and 

the result is slightly better than that of the default experiment. Meanwhile, under the constraint of energy balance, LWCF has 

deteriorated in the middle and high latitudes. This also reflects some issues that may exist in the structure of model. 
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The unconstrained optimization methods calibrate the uncertain parameters in climate models without consideration of 

principles that model have to hold, this creates challenges in maintaining the physics constraints and improving the structure 

of models. Perhaps a more physics-guided optimization is a better way to understand the principles of climate systems and 

best use these principles in tuning processes. In the future, we will apply this method to coupled models, where the radiation 

imbalance has a more significant impact on long-term simulation stability. In addition, we will also try to introduce more 5 

constraints, such as the surface energy balance, into automatic parameter calibration.  
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Author contributions. LW, TZ proposed the tuning method, LW, YQ, WX designed the metrics and the constraint. YQ and 

LW evaluate the optimal results. LW, TZ, WX and YQ wrote the paper. 

 

Competing interests. The authors declare that they have no conflict of interest. 15 

 

Acknowledgements. This work is partially supported by National Key R&D Program of China (Grant No. 2017YFA0604500 

and 2016YFA0602100), and Center for High Performance Computing and System Simulation of Pilot National Laboratory 

for Marine Science and Technology (Qingdao). 

 20 

https://doi.org/10.5281/zenodo.3405619
http://www.cesm.ucar.edu/models/cesm1.2/
mailto:wulitianyi@gmail.com


 

10 

 

Figure 1. The change of augmentation function F(x) across the optimization iterations. The x axis is the number of iterations. The 

y-axis is the value of F(x) in Eq. (6). The black line shows the value of F(x) in a given iteration step, while the red line shows the best 

F(x) value up to the current iteration step. 

 

Figure 2. Comparison of results between the constrained optimization algorithm and the unconstrained optimization algorithm. The 5 

15 red squares and 15 black triangles are optimized solutions found by the unconstrained optimization algorithm and constrained 

algorithms respectively. The blue diamond is the result of the CNTL experiment. The x axis is the synthesized metric index in Eq. 

(3). The y axis is the radiation bias at top of model. 
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Figure 3. Taylor diagram of the climate mean state of each output variable from 2002 to 2004 between the model run with optimal 

parameters and the CNTL run. 1 in the diagram stands for EXP, and 2 stands for CNTL. 
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Figure 4. Meridional distribution of the difference between EXP/CNTL and observed data of (a) LWCF, (b) SWCF, (c) PRECT, (d) 

Q850, and (e) T850. The position of the dark blue line is 0, the red and black solid lines represent the difference between EXP/ CNTL 

and the observations.  
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Figure 5. The spatial distribution of TOA SW cloud forcing of (a) observation, (b) CNTL- observation, (c) EXP, (d) EXP - 

observation, (e) CNTL and (f) EXP - CNTL. 
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Figure 6. The spatial distribution of specific humidity at 850hPa of (a) observation, (b) CNTL - observation, (c) EXP, (d) EXP -

observation, (e) CNTL and (f) EXP - CNTL. 
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Figure 7. Pressure-latitude distributions of specific humidity of (a) EXP - OBS, (b) CNTL - OBS and (c) EXP - CNTL. 

 

Figure 8. Pressure-latitude distributions of temperature of (a) EXP - OBS, (b) CNTL - OBS and (c) EXP - CNTL. 
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Figure 9. The spatial distribution of convective precipitation over tropics of EXP (a), CNTL (b), and EXP – CNTL (c). 
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Figure 10. Pressure-latitude distributions of cloud fraction of EXP (a), CNTL (b), and EXP – CNTL (c). 

Table 1. Parameters description of CAM5.The default, final optimal values by constrained and unconstrained calibrations, as well 

as the ranges of parameters. CAPE means the convective available potential energy. 

Parameter Description Range Default Unconstrained 

tune 

Constrained 

tune 

zmconv_c0_lnd Deep convection precipitation 

efficiency over land 

2.95e-3 ~ 8.85e-3 0.0059 0.00319 0.00295 

zmconv_c0_ocn Deep convection precipitation 

efficiency over ocean 

2.25e-2 ~ 6.75e-2 0.045 0.025 0.0225 

zmconv_tau Timescale for consumption rate 

deep CAPE 

1800 ~ 5400 3600 1838.814 1800 

cldfrc_rhminh Threshold relative humidity for 

high stable clouds 

0.6 ~ 0.9 0.80 0.897 0.900 

 

cldfrc_rhminl Threshold relative humidity for 

low stable clouds 

0.8 ~ 0.95 0.8875 0.930 0.900 

cldsed_ai Fall speed parameter for cloud ice 300 ~ 1100 700 853.207 970.613 

 

Table 2. The output variables used to evaluate performance metric index and the source of the corresponding observations 5 

 

Variable Full name OBS 

LWCF Longwave cloud forcing CERES-EBAF 

SWCF Shortwave cloud forcing CERES-EBAF 

PRECT Total precipitation rate GPCP 

Q850 Specific humidity at 850hPa ERA-Interim 

T850 Temperature at 850hPa ERA-Interim 

 
Table 3 Synthesized performance metric index and radiation bias in the CNTL run, and the optimal model run with unconstrained 

and constrained methods. 

 10 

 CNTL Unconstrained tune Constrained tune 

Metric index 1 0.890 0.937 

Radiation bias 0.601 3.796 0.100 
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Table 4 Performance metric index of each variable in the optimal model run with unconstrained and constrained methods. 

 

Variable Constrained tune 

LWCF 1.072 

SWCF 0.841 

PRECT 1.080 

Q850 0.754 

T850 0.936 

 

 

Table 5 The percentage of standard deviation of the 8 fields between the CNTL run and the optimal model run with constrained 5 

optimization according to the corresponding observations. 

 

  Standard deviation ||%||        Default  Constrained optimization 

Sea level pressure (ERA-Interim)                     1.124     1.053 

Land rainfall (30o N–30o S, GPCP)                   0.954 0.896 

Ocean rainfall (30o N–30o S, GPCP)                1.283  1.236 

Land 2m temperature (Willmott)                      1.071 1.055 

Pacific surface stress (5o N-5o S, ERS)             1.391                               1.397 

Zonal wind (300 mb, ERA-Interim)                 1.042                   1.037 

Relative humidity (ERA-Interim)                     1.217 1.219 

Temperature (ERA-Interim)                             1.158 1.141 
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