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Abstract. Pysteps is an open-source and community-driven Python library for probabilistic precipitation nowcasting, that is,

very-short range forecasting (0-6 h). The aim of pysteps is to serve two different needs. The first is to provide a modular and

well-documented framework for researchers interested in developing new methods for nowcasting and stochastic space-time

simulation of precipitation. The second aim is to offer a highly configurable and easily accessible platform for practitioners

ranging from weather forecasters to hydrologists. In this sense, pysteps has the potential to become an important component5

for integrated early warning systems for severe weather.

The pysteps library supports various input/output file formats and implements several optical flow methods as well as ad-

vanced stochastic generators to produce ensemble nowcasts. In addition, it includes tools for visualizing and post-processing

the nowcasts and methods for deterministic, probabilistic, and neighbourhood forecast verification. The pysteps library is de-

scribed and its potential is demonstrated using radar composite images from Finland, Switzerland, United States, and Australia.10

Finally, scientific experiments are carried out to help the reader to understand the pysteps framework and sensitivity to model

parameters.

1 Introduction

As defined by the World Meteorological Organization (WMO), nowcasting encompasses a description of the current state of

the atmosphere along with forecasts up to 6 hours ahead (Wang et al., 2017). These short-term forecasts, typically obtained by15

extrapolation of observations, statistical models, or numerical weather prediction (NWP), represent an essential tool to predict

severe weather, such as heavy precipitation and intense thunderstorms.

Excessive rainfall can act as a trigger for water-related hazards (Alfieri et al., 2012), and this is particularly true in an

increasingly urbanized territory or in presence of steep topography. When vulnerable objects become exposed to such hazards,

risk can manifest in terms of property damage and loss of lives.20
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Reliable precipitation nowcasts are therefore needed to support decision making during severe weather, as for example to

decide whether to interrupt a train line exposed to debris flows or to evacuate buildings in flood-prone areas, as well as in the

context of the optimization of airport operations and regulation of sewage systems during storm events. All such scenarios

can benefit from the availability of real-time nowcasting systems that take into account the predictability of precipitation and

related hazards at a high spatial and temporal resolution so that risk is mitigated.5

1.1 From deterministic to probabilistic nowcasting

Weather radars are ideally suited for providing the input data for precipitation nowcasting at high resolution, namely spatial

scales under 2 km and time ranges between 5 minutes and 3 hours (Berne et al., 2004). Despite recent advances in numerical

weather prediction (e.g. Sun et al., 2014), extrapolation-based nowcasting remains the primary approach at such space and time

scales, typically outperforming NWP forecasts in the first 2-5 hours, depending on the weather situation, domain and NWP10

characteristics (e.g. Berenguer et al., 2012; Mandapaka et al., 2012; Simonin et al., 2017; Jacques et al., 2018). Other recent

developments include machine learning methods, for which promising results have been obtained (e.g. Xingjian et al., 2015;

Foresti et al.), but these have not so far been deployed in operational nowcasting systems.

Precipitation exhibits variability over a wide range of space-time scales (e.g. Lovejoy and Schertzer, 2013) which, in combi-

nation with the chaotic nature of the atmosphere (e.g. Lorenz, 1996), limits our ability to predict its evolution in a deterministic15

manner. The NWP community recognized this challenge in the early 1990s and tackled the problem by producing an ensemble

of NWP forecasts by perturbing the set of initial conditions (e.g. Toth and Kalnay, 1997). Those perturbations grow exponen-

tially and lead to an ensemble of solutions that reflect forecast uncertainties. The information contained in the ensemble can

then be used to derive probabilistic forecasts.

Just as any other forecasting technique, the skill of radar-based nowcasting was found to depend on multiple factors such as20

the meteorological conditions, geographical location, spatial and temporal scales (e.g., Germann and Zawadzki, 2002; Foresti

and Seed, 2014; Atencia et al., 2017; Mejsnar et al., 2018). It is therefore not surprising that also the nowcasting community

rapidly acknowledged the importance of estimating predictive uncertainty (e.g. Seed, 2003; Germann and Zawadzki, 2004;

Bowler et al., 2006). A common approach is based on stochastic simulation, in which correlated noise fields are used to perturb

a deterministic nowcast (e.g. Bowler et al., 2006; Berenguer et al., 2011; Liguori and Rico-Ramirez, 2014; Foresti et al., 2016).25

Substantial research efforts have been made to make the perturbation fields as realistic as possible, and consistent with the

nowcast uncertainty (e.g. Seed et al., 2013; Nerini et al., 2017). For a review of the history of nowcasting since the 1950s, and

its evolution to the probabilistic framework, we refer the reader to Pierce et al. (2012).

1.2 The pysteps open-source initiative

Similarly to other research fields, the nowcasting community has invested a significant amount of time to re-implement from30

scratch routines and algorithms that have been around for decades, for example, optical flow and advection schemes. Part of

this problem is due to the unavailability of software, which is often proprietary or too poorly documented to be understood,

trusted, and used.
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Recognizing that nowcasting methods and related applications can be further developed and distributed by promoting univer-

sal access to existing knowledge, a Python-based software package, called pysteps, is being developed as a community-driven

effort. Such effort fits well into the weather radar community with emergence of open data and an increasing number of open-

source software projects (Heistermann et al., 2015), for instance, in radar data processing (Heistermann et al., 2013; Helmus

and Collis, 2016). More recently, community-based initiatives dedicated to nowcasting have emerged, as for example Com-5

SWIRLS by the Regional Specialized Meteorological Centre (RSMC) for Nowcasting operated by the Hong Kong Observatory

(HKO), IMPROVER by the UK MetOffice or rainymotion at the University of Potsdam (see Table 1).

In this article, we present pysteps, an open-source and community-driven Python library for probabilistic precipitation

nowcasting. The objective of pysteps is twofold. First, it aims at providing a well-documented and modular framework for

development of new nowcasting methods. In this sense, pysteps promotes the adoption of open-science practices, as the lack10

of common standards, transparency, code availability and well-documented workflows in computational disciplines can lead

to non-reproducible results, hence questioning their scientific value (Hutton et al., 2016). Second, pysteps aims at providing an

easily accessible software package for practitioners ranging from weather forecasters to hydrologists.

1.3 Outline of the paper

The paper is structured as follows. The theoretical framework for precipitation nowcasting and using stochastic perturbations to15

characterize the uncertainty is formulated in Section 2. The general architecture of the pysteps library is presented in Section 3.

A comprehensive verification of pysteps nowcasts is given in Section 4. Various experiments to understand the sensitivity of

pysteps to the model parameters and define the default configuration are done in Section 5. The limits of pysteps are tested in

Section 6 using a tropical cyclone and severe convection case in Australia. Section 7 concludes the paper and lists potential

future applications of pysteps. Finally, code listings demonstrating the use of pysteps are given in Appendix A.20

2 Formulation of precipitation nowcasting

This section introduces the basic concepts and components of probabilistic nowcasting models based on the Lagrangian per-

sistence of radar precipitation fields and describes how these are currently implemented in pysteps.

2.1 Lagrangian persistence and optical flow

In its simplest form, extrapolation-based precipitation nowcasting assumes that over the time frame of a few hours the evolution25

of precipitation can be captured by moving the radar echoes along a stationary motion field without changes in intensity. In the

literature, this is known as Lagrangian persistence (Zawadzki et al., 1994).

Denoting a precipitation parcel by R and its displacement vector by α(τ), the conservation equation for an incompressible

flow is written as

R(x0; t+ τ) =R(x0−α(τ); t), (1)30
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or equivalently in differential form as

dR

dt
=
∂R
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, v =

dy

dt
, (2)

where dR/dt= 0, and u and v are the x- and y-components of the motion field. In the so-called optical flow methods, u and

v are estimated for a given location by solving equation (2) numerically based on a sequence of precipitation intensity fields.

Typically, a constraint on the spatial continuity of nearby u and v is imposed to guarantee a unique solution. Once the motion5

field is known, the radar echoes are extrapolated by means of an advection scheme.

Three methods are currently implemented in pysteps for motion field estimation: a local Lucas-Kanade method (Lucas

and Kanade, 1981; Bouguet, 2001), a global variational echo tracking approach (Laroche and Zawadzki, 1994; Germann and

Zawadzki, 2002), and a spectral approach (DARTS, Ruzanski et al., 2011). The currently implemented advection method is

the backward-in-time semi-Lagrangian scheme described in Germann and Zawadzki (2002), which is robust against numerical10

diffusion.

2.2 Sources of uncertainty

The predictability of the atmosphere is intrinsically limited by the fact that its state cannot be observed with absolute precision

nor expressed without approximations in its governing laws (Lorenz, 1996). In the case of radar-based precipitation nowcasting,

predictive uncertainty originates from errors in the estimation of the current state of the rainfall and motion fields (initial state15

errors), and limitations of Lagrangian persistence as a model to predict the evolution of the rainfall and motion fields (model

errors).

The main contribution to model errors in the Lagrangian approach stems from the evolution of precipitation in terms of

initiation, growth, decay and termination processes that violate the steady-state assumption. Other sources of model uncertainty

include the assumption of stationarity of the motion field, inaccuracies due to the practical implementation of the method, as20

the discretization in time, space and reflectivity, and numerical diffusion of the advection scheme (Germann et al., 2006b).

Currently, pysteps focuses on the representation of the model errors, whereas incorporation of the initial state errors in the

nowcasting is left for future work.

2.3 Data transformation

The statistics of intermittent precipitation rates are non-Gaussian and display a typical asymmetric distribution that is bounded25

at zero. Such properties restrict the usage of well-established stochastic models that assume Gaussianity. A common workaround

is to introduce a suitable data transformation to approximate a normal distribution (e.g. Erdin et al., 2012).

Currently, pysteps assumes a log-normal distribution of rain rates by applying the logarithmic transformation

R→

10log10R, if R≥ 0.1 mm h−1

−15, otherwise
(3)
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that corresponds to logarithmic radar rain rates (units of dBR). The value of -15 dBR is equivalent to assigning a rain rate of

approximately 0.03 mm h−1to the zeros. Hereafter, R refers to the transformed rain rates, unless otherwise stated.

Using the logarithmic transformation is motivated by the fact that rain rates are approximately log-normally distributed

(Crane, 1990). This has two main advantages. First, it simplifies the estimation of distribution parameters, particularly with

limited sample size and in presence of measurement noise (Harris et al., 1997). Second, the decomposition of log-transformed5

rainfall fields defines a multiplicative cascade, where multiplications are replaced with summations in the transformed space

(Seed, 2003).

2.4 A cascade of spatial scales

It has been shown that the lifetime of precipitation relates to its spatial scale (e.g., Venugopal et al., 1999; Seed, 2003; Germann

et al., 2006b), often denominated as dynamic scaling. Recognizing this fundamental property, Seed (2003) introduced the S-10

PROG model, which laid the foundation for the development of STEPS (Bowler et al., 2006; Seed et al., 2013). The key idea

is to decompose the precipitation field into a multiplicative cascade, where the cascade levels represent different spatial scales,

and treat them separately in the nowcasting model.

In STEPS, the scale decomposition is done by applying a Fast Fourier Transform (FFT) to the input precipitation field. This

is motivated by the fact that for a grid of size L×L pixels, the radial Fourier wavenumbers |k|=
√
k2x + k2y are related to15

spatial scales via

radial

wavenumber

(pixels)︷︸︸︷
|k| →

wavelength

(pixels)︷︸︸︷
L

|k| →

wavelength

(km)︷ ︸︸ ︷
L∆x

|k| →

scale

(km)︷ ︸︸ ︷
L∆x

2|k| , (4)

where ∆x denotes the grid resolution (km). Thus, the spatial scale is half the wavelength. Alternative approaches to perform

a scale decomposition include the Discrete-Cosine-Transform (Germann and Zawadzki, 2002; Surcel et al., 2014) or wavelets

(Turner et al., 2004; Scovell, 2018).20

In the current implementation of pysteps, we adopt the approach of Pulkkinen et al. (2018), where Gaussian weight functions

are used for separating the Fourier spectrum into a set of radial bands. An example of the weight functions for the domain

covered by the Finnish Meteorological Institute (FMI) radars is shown in Fig. 1. After the FFT and Gaussian filtering, each

frequency band is transformed back to the spatial domain, which results in a cascade with n levels each representing a different

scale (see an example in Fig. 2).25

2.5 Temporal evolution

In nowcasting, the typical approach to model the temporal evolution of precipitation fields employs an auto-regressive (AR)

process that combines the deterministic component from Lagrangian persistence with a stochastic innovation term, also referred

to as noise or perturbation term. For instance, S-PROG and STEPS use a second-order AR(2) process with two parameters.
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Separate AR(2) processes are applied to each cascade level to account for the dynamic scaling of precipitation. The combination

of the auto-regressive model in time and the cascade model in space allows one to control the temporal evolution and correlation

structure of precipitation.

Currently, a more general AR(p) model has been implemented in pysteps. For each cascade level j, the recursion formula is

given by5

Rj(x,y, t) =

p∑
k=1

φj,kRj(x,y, t− k∆t) +φj,0εj(x,y, t). (5)

The first term corresponds to the deterministic predictable component at cascade level j (i.e. Lagrangian persistence). The

second term is a stochastic term that represents the unpredictable component at the same cascade level j, that is, mainly

initiation, growth and decay of precipitation. The symbol ∆t denotes the time difference between consecutive precipitation

fields Rj that are normalized to zero mean and unit variance.10

The parameters φj,k in the above model are estimated from time-lagged auto-correlation coefficients ρj,k for k = 1,2, . . . ,p

using the Yule-Walker equations (Hamilton, 1994). For p= 2, the correlation coefficients can be adjusted to ensure that the

resulting AR(p) process is stationary and non-periodic (Box et al., 2013). Finally, the parameters φj,0 are chosen as

φj,0 =

√√√√1−
p∑

k=1

ρj,kφj,k. (6)

Given that the variance of the noise fields εj is one, this choice guarantees that the AR(p) process is normalized to unit variance15

(Hamilton, 1994).

The theoretical auto-correlation function (ACF) of the AR(2) process can be computed recursively from the model parame-

ters and auto-correlation coefficients (Chatfield, 2003) according to

ρj(t) = φj,1ρj(t−∆t) +φj,2ρj(t− 2∆t). (7)

The empirical ACF can be derived by computing the correlation coefficients between the extrapolation nowcasts and the20

observations.

For an exponentially decaying ACF, the precipitation lifetime is defined as the time when the ACF, theoretical or empirical,

falls below the value 1/e≈ 0.37, where e is the Euler number. Alternatively, one can estimate the lifetime by integrating the

ACF according to

T =

∞∫
0

ρ(τ)dτ. (8)25

It is not common to employ an AR(p) process with p > 2 for several reasons. First, it is not trivial to guarantee the stationarity

and non-periodicity of the process. Second, when estimated in Lagrangian frame, the higher-order auto-correlation coefficients

are affected by the uncertainty of the motion field. This occurs especially at small spatial scales as it is difficult to properly track

convective cells over several time steps. Third, a low-order AR process is generally sufficient to model the loss of predictability

in the nowcasting range; departures are usually observed only after ≈2 hours (Atencia and Zawadzki, 2014).30
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2.6 Stochastic perturbations of precipitation intensities

The perturbation field ε in equation (5) is typically generated as a correlated Gaussian random field using FFT filtering (e.g.

Pegram and Clothier, 2001; Bowler et al., 2006). The process consists of three steps:

1. generate a Gaussian white noise field,

2. apply the FFT and a Fourier filter to the above to generate a random field having the desired correlation structure,5

3. apply the inverse FFT to transform the noise field back to the spatial domain.

This technique is also known as power-law filtering of white noise or fractional integration (Schertzer and Lovejoy, 1987).

At present, three methods for filtering white noise fields have been implemented in pysteps. In the absence of a model that

predicts the evolution of the spatial correlation structure, one assumes that the correlation structure remains constant through

the nowcast. An example is provided in Fig. 3.10

In the parametric method introduced by Pegram and Clothier (2001), the filtered noise field ε is obtained from the white

noise field εw as

ε(x,y) = F−1{f(|k|)F{εw}(kx,ky)}, (9)

where F denotes the Fourier transform and the function f defines the slope of the radially averaged power spectrum (RAPS).

Our implementation follows the approach by Seed (2003), which uses a piece-wise linear function with two spectral slopes15

(β1,β2) and one breaking point. The main limitation of such model relates to the assumption of an isotropic power law scaling

relationship, meaning that anisotropic structures such as rainfall bands cannot be represented.

In the non-parametric method (Seed et al., 2013), the Fourier filter is obtained directly from the power spectrum of the

observed precipitation field R such that

ε(x,y) = F−1{|F{R}(kx,ky)|F{εw}(kx,ky)}. (10)20

Differently to the parametric method, the non-parametric approach allows generating perturbation fields with anisotropic

structures. On the other hand, the approach requires a larger sample size and is sensitive to the quality of the input data, e.g.

the presence of residual clutter in the radar image. In addition, both techniques assume spatial stationarity of the covariance

structure of the field.

The third method is an extension of the non-parametric approach, where the noise field is generated locally to account for25

spatial inhomogeneities in the covariance structure of the rainfall field. The technique is based on the short-space Fourier

transform (SSFT) and it is described in Nerini et al. (2017). Essentially, the non-parametric approach in (10) is localized in

(x,y) by

ε(x,y) = F−1{|F{Rwh(n1,n2)}(kx,ky)|F{εw}(kx,ky)}, (11)

where wh(n1,n2) = wh(n1)wh(n2) is the outer product of two Hanning windows of size n1 and n2 centred in (x,y).30
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2.7 Stochastic perturbations of the motion field

A second source of uncertainty in Lagrangian persistence nowcasting stems from temporal evolution of the motion field (Ger-

mann et al., 2006b). This can be accounted for by adding stochastic perturbations. In the current implementation of pysteps,

this is done by applying the method of Bowler et al. (2006).

For simplicity, the perturbation field is assumed to be spatially constant for each ensemble member, but the magnitude of the5

perturbations increases with respect to lead time. For a given initial advection fieldw0 and lead time t, the perturbed velocities

are given by

wp(x,y) =w0(x,y) +αpar(t)εpar(x,y)ŵpar+

αperp(t)εperp(x,y)ŵperp,
(12)

where ŵpar and ŵperp denote the components parallel and perpendicular to the initial advection field w0, respectively. The

random variables εpar and εperp are sampled from the Laplace distribution with zero mean and unit variance. Scaling of the10

perturbations is done according to

αpar(t) = apart
bpar + cpar (13)

αperp(t) = aperpt
bperp + cperp, (14)

where the parameters are climatologically fitted by using a large sample of advection fields. Example values of these parameters

can be found in Table 5.15

2.8 Post-processing of nowcasts

To ensure that the forecast fields have the same statistical properties with the observed ones, post-processing is typically done at

the very end of the chain. This is necessary because intermediate steps may introduce discrepancies. One major source of such

discrepancies is related to the difficulty to model the intermittency of precipitation. Typically, the basic statistical properties

such as wet-area ratio, mean, variance and the marginal distribution of precipitation intensities are assumed to remain invariant20

through the nowcast.

In the present implementation of pysteps the post-processing involves two different types of methods: 1) masking and 2)

matching the statistics of the forecast fields with the most recently observed ones. Methods of type 1) are used to avoid

generation of stochastic cells into areas that are too distant from existing precipitation. Methods of type 2) can be applied

unconditionally or only to pixels within the mask.25

Three different masking methods have been implemented. In the first method, the mask is obtained from pixels exceeding

an intensity threshold in the observed precipitation field, and the mask is kept constant in Lagrangian coordinates for the whole

forecast. In the second method adapted from Seed (2003), the mask is obtained by using the S-PROG (i.e. the unperturbed

STEPS) nowcast. In the third method, a lead-time-dependent precipitation mask is applied. The mask is defined by the pixels

exceeding a given intensity threshold in the observed precipitation field and then progressively relaxed to allow the stochastic30

evolution of the wet area.
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Two methods have been implemented for matching the statistics of forecast fields with the observed ones. In the first method,

that is used together with the S-PROG mask, the conditional mean of the masked forecast field is adjusted to match the

conditional mean of the observed field (excluding intensities below the threshold). Alternatively, the cumulative distribution

function (CDF) of the forecast field can be mapped to the observed one (Foresti et al., 2016). This is defined as

R′(x,y) = F−1obs(F (R(x,y))), (15)5

where Fobs and F denote the CDFs of the observed and the input forecast field R, respectively.

3 The pysteps library

3.1 Key features and development model

The implementation language of pysteps is Python (http://python.org). As a high-level language with an extensive built-in

standard library and a large number of external libraries available, it is ideally suited for open-source software development.10

Python distributions, such as Anaconda, providing the necessary software to run pysteps are available for all major platforms.

Python also provides interfaces for compiled languages such as C/C++ and Fortran, allowing to improve performance in time-

critical modules. In addition, Python-based tools, like the IPython shell (Pérez and Granger, 2007) or the Jupyter notebooks

(https://jupyter.org), allow an interactive use of pysteps for research and demonstration purposes.

The pysteps library is extensively documented. The documentation describes in detail the different modules and the ap-15

plication programming interfaces (API). The modules are documented by using the docstring concept of Python. This is im-

plemented using Read the docs (https://readthedocs.org/) and Sphinx (http://www.sphinx-doc.org/en/master) to automatically

compile and update an online version of the documentation, available at https://pysteps.readthedocs.io. In addition, tutorials

for performing various tasks with pysteps are included as example scripts.

Pysteps development is done by using git, a distributed version control system. The source code of pysteps is hosted20

in GitHub (https://pysteps.github.io). In addition to code hosting, the features of GitHub include development in multiple

branches, issue tracking and wiki pages. Developers outside the core team may fork the main repository and integrate the

proposed changes via pull requests, which allows community-driven development. Continuous integration and testing is done

by using the Travis CI framework (https://travis-ci.com/pySTEPS/pysteps).

Pysteps is published under the 3-Clause BSD License. It allows copying, redistribution and modification of the software as25

long as the modification are tracked and the source code is made available under the the same license. The permissive license

model makes the software easily accessible to potential users, even allowing use for commercial purposes.

3.2 External dependencies

Pysteps relies on several external libraries that are listed in Table 2. It is built on top of numpy, scipy and matplotlib, that

together provide a MATLAB-like computing environment in Python. These libraries provide data structures and wrappers for30
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low-level BLAS and LAPACK libraries for high-performance matrix and array operations, image processing methods and also

high-level functionality for data visualization. The numpy array is the basic data structure used in pysteps.

Support for netCDF (the default file format), HDF5, and various image file formats is implemented via the netCDF4, h5py,

and PIL libraries. A complete list of supported input/output file formats is given in the official pysteps documentation. Plotting

precipitation data with basemaps has been implemented via mpl_toolkits.basemap and cartopy packages. The Lucas-Kanade5

optical flow algorithm used in pysteps is implemented in the OpenCV library and accessed via a Python interface. Parallelized

computation of nowcast ensembles is done by using dask that provides a platform-independent backend for low-level methods.

3.3 Key design principles

The aim of pysteps is to be a modular software library, where all the main components are interchangeable. This makes

the pysteps an ideal research platform for developing and testing new methods as well as a valuable tool for operational10

meteorology, easily allowing the comparison of different nowcast algorithms or running multi-model ensemble nowcasts.

Pysteps is currently divided into 11 modules that perform different tasks. The modules and their descriptions are listed in Table

3.

The modularity is implemented via interface-based design. To this end, each module implements one sub-task and an in-

terface method for retrieving the desired method for this task. All mutually interchangeable methods implement the same15

interface. Another key principle is that whenever possible, the data is stored into n-dimensional arrays, which allows an effi-

cient and compact representation.

The above design principles are demonstrated in the following example. A precipitation nowcast by using STEPS can be

generated by

>>> nowcast_method = nowcasts.get_method("steps")

>>> nowcast = nowcast_method(R, V, num_timesteps)

where the required inputs are20

R array of shape (t,m,n) containing a time series of t observed precipitation intensity fields with shape (m,n)

V a previously computed array of shape (2,m,n) containing the x- and y-components of the advection field

num_timesteps number of time steps to forecast

Additional parameters can be specified by using keyword arguments. The output of stochastic nowcasting methods is a

four-dimensional array of shape (num_ensemble_members, num_timesteps, height, width). For deterministic nowcasts, the

first dimension is dropped.25

3.4 Data structures

In addition to being modular, pysteps implements object-oriented features. However, instead of using customized classes, we

use dictionaries and functions that operate on the dictionaries similarly to class member functions. This design decision is

motivated by the principle of using the core Python datatypes rather than implementing customized classes. The flat design of

10



pysteps should facilitate user interaction and embedding of individual modules and functions in other software. In this way,

pysteps is similar to wradlib (Heistermann et al., 2013).

To demonstrate the above design, the following example shows how to construct a Gaussian bandpass filter for 8 cascade

levels using the filter_gaussian function implemented in the cascade.bandpass_filters module:

>>> filter = filter_gaussian(R.shape, 8)

The output is a dictionary with three elements: 1) one-dimensional weights corresponding to the radial wavenumbers, 2) a5

two-dimensional weight field for the FFT of the input image, and 3) a list of central frequencies for each weight function (see

Fig. 1). The resulting filter object can then be passed to decomposition_fft as follows:

>>> decomp = decomposition_fft(R, filter)

The decomposition is applied to a two-dimensional precipitation field R, and the output is a again a dictionary with three-

elements: 1) a three-dimensional array containing the 8 cascade levels having the same dimension as R, 2) mean precipitation

values of each cascade level and 3) standard deviations for each level. More detailed examples of pysteps usage are provided10

in Appendix A.

3.5 Workflow

Figure 4 illustrates the workflow for generating precipitation nowcasts using pysteps. The first step is reading the input data

using the io module. Methods for reading radar composites from Australian Bureau of Meteorology (BoM), FMI, KNMI

and MeteoSwiss have been implemented. In addition, the importers module supports reading the European-wide OPERA15

radar composites in the ODIM HDF5 format. Conversion from reflectivity (dBZ) to precipitation intensity (mm/h) and other

preprocessing can be done by using the utils module. Due to the modular design of pysteps, reading custom data formats

and conversions (e.g. by using different Z-R relationships and polarimetric parameters) can also be implemented.

Reading the input data is followed by determination of the motion field using the methods implemented in the motionmod-

ule. The precipitation intensity and motion fields are supplied as inputs to a user-chosen nowcasting method implemented in the20

nowcasts module. For the Lagrangian persistence method implemented in nowcasts.extrapolation, the remaining

step of generating the nowcast is extrapolation.

When the cascade decomposition and the autoregressive model are used for scale filtering (the S-PROG model), the ad-

ditional steps include those marked with green color in Fig. 4. When generating ensembles (the STEPS model), stochastic

perturbations are added to the AR(p) models and to the advection field using the methods implemented in the noise module.25

These steps are marked with blue color in Fig. 4.

The ensemble generation is parallelized by using the dask library. For each time step, this is done by splitting the computation

to the available processor cores so that each core is responsible for computation of one ensemble member.

Given the input radar composites and the motion field, all operations involved in generating a nowcast are called from the

nowcast module, except optional post-processing. This can be done either by supplying the requested method to the now-30

cast generator or separately by using the functionality implemented in the postprocessing module. The post-processing
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includes methods to ensure that the nowcasts have the same statistical properties of the observations (see Sec. 2.8), as well

as methods for generating different products, such as ensemble mean or exceedance probabilities of given intensity thresh-

olds. Computation of accumulations from instantaneous rain rates can be done by using the methods implemented in the

utils.dimensionmodule. Finally, the nowcasts or nowcast ensembles can be verified and plotted by using the verification

and visualization modules, respectively.5

4 Evaluation of nowcast quality

Verification is an essential step of forecasting, not only to monitor forecast performance over time, but also to provide feedback

on how to improve the model itself (diagnostic verification). For an ensemble forecast, it is necessary to check whether it is

unbiased, has the correct dispersion, and that the forecast probabilities are reliable and sharp (e.g. Jolliffe and Stephenson,

2003). In this section, we evaluate these attributes of pysteps ensemble nowcasts using radar composites from Switzerland and10

Finland, while data from the United States and Australia will also be used in Sec. 5 and Sec. 6.

4.1 Description of the data

As of 2019, the radar network operated by the FMI consists of 10 polarimetric C-band Doppler radars. After clutter filtering,

the measured radar reflectivities are interpolated into a grid with spatial and temporal resolutions of 1 km and 5 minutes, re-

spectively. The correction for the vertical profile of reflectivity (VPR) is applied in order to reduce range-dependent biases15

(Koistinen and Pohjola, 2014). Finally, reflectivities are converted to rainfall intensities using the Z-R relation Z = 223R1.53

adapted to the Finnish climate conditions (Leinonen et al., 2012). Ten precipitation events from Finland containing both strati-

form and convective precipitation were chosen for this study (Table 7).

The latest 4th generation MeteoSwiss network consists of 5 polarimetric C-band Doppler radars (Germann et al., 2015). The

quantitative precipitation estimation (QPE) product used in this study includes automatic hardware calibration, clutter filtering,20

correction for beam shielding, correction for VPR effects, Z-R relation Z = 316R1.5, and bias adjustment (Germann et al.,

2006a). The radar composite is calculated on a 1 km grid every 5 minutes. Ten events consisting of predominantly convective

precipitation were chosen from the Swiss data (Table 8).

The US data set comprises the radar mosaics provided by Warning Decision Support System–Integrated Information (WDSS-

II Lakshmanan et al., 2006, 2007), covering the continental United States at a spatial resolution of approximately 1 km. For the25

WDSS data, the resolution of the precipitation fields is upscaled from 1 km to 4 km by averaging 4x4 grid points to reduce the

computational requirements. The chosen precipitation events are described in Table 9.

The radar network operated by the Australian Bureau of Meteorology (BoM) consists of 66 radars, mostly C-band Doppler

radars, with S-band polarimetric Doppler radars operating at four major cities. Raw reflectivity observations are quality con-

trolled in real-time to remove non-meteorological echoes and estimate the reflectivity at the earth surface. This equivalent30

reflectivity at surface is converted into an instantaneous rainfall rate by use of power-law functions tuned on a per radar basis.

Finally, rainfall depths are estimated by adjusting the bias of instantaneous rainfall rates based on observations at real-time
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gauge locations. The QPE grids are calculated with a spatial resolution of 0.5 km every 5 minutes. The BoM radar dataset com-

prises two precipitation events: a tropical cyclone in northern Australia and a severe convective event in Sydney (Table 10).

Table 4 summarizes the different data sources and resolutions.

4.2 Verification metrics

Pysteps includes a number of verification metrics to help users to analyze the general characteristics of the nowcasts in terms5

of consistency and quality (or goodness). Probabilistic forecasts have been verified using the ROC curve, reliability diagrams,

and rank histograms, as implemented in the verification module of pysteps.

The Relative Operating Characteristic (ROC) curve (Jolliffe and Stephenson, 2003) measures the ability of a probabilistic

forecast to discriminate between precipitation and no precipitation exceeding a given intensity threshold. For a set of probability

thresholds, the ROC curve is constructed by plotting the probability of detection (POD) against the false alarm rate (POFD),10

not to be confused with the false alarm ratio (FAR). For a perfect forecast, the curve passes through the upper left corner (i.e.

100% hit rate and 0% false alarm rate). The area under the ROC curve can be used as a measure of potential skill. For more

details on the contingency tables and the formulas of the categorical scores, the reader is referred to Jolliffe and Stephenson

(2003).

The reliability diagram (Bröcker and Smith, 2007) measures the bias (reliability) and resolution of a probabilistic forecast.15

For a given intensity threshold, the diagram shows the forecast probability against the observed frequencies, where the proba-

bility range [0,1] is divided into n bins. For a perfectly reliable forecast, the curve lies on the diagonal. The reliability diagram

is often accompanied with a histogram showing the sample size in each bin (sharpness diagram). A sharp forecast has few

samples in the middle of the histogram and many on the sides (probability of either 1 or 0).

The rank histogram (Hamill, 2001) measures how well the ensemble spread corresponds to the observed uncertainty. For each20

nowcast grid pixel, the ensemble members are ranked in increasing order. A pooled histogram is computed by assigning each

verifying observation a bin which it falls into among the ensemble members. The first and last bin are assigned for observations

below or above all members, respectively. For a forecast ensemble whose distribution is consistent with the observations, the

histogram is flat and no observations fall into the first or last bin. To handle ties (e.g. when both the observed precipitation and

several ensemble members are equal to 0), we implemented the method of Hamill and Colucci (1997). The method randomly25

chooses a bin between (M + 1) and (M +Mtied) + 1, where M is the number of members smaller than the observation and

Mtied is the number of ties (ensemble members equal to the observation).

An additional metric that can be derived from rank histograms is the outlier percentage (OP). The OP measures the proportion

of observations falling outside the ensemble, defined by

OP =
h1 +hn+1∑n+1

i=1 hi
, (16)30

where hi denotes the i-th bin of the rank histogram.

Pysteps also includes standard neighbourhood verification methods, such as the fractions skill score (FSS). FSS provides an

intuitive assessment of the dependency of skill on spatial scale from high-resolution precipitation forecasts (Mittermaier and
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Roberts, 2010). The FSS is computed by comparing the forecast and observed fractional coverage of precipitation exceeding

certain thresholds in spatial windows (neighborhoods) of increasing size. Using FSS it is possible to determine how the forecast

skill varies with neighborhood size, and then determine the smallest scale that provides a sufficiently skillful forecast.

4.3 Verification results

The quality of ensemble nowcasts produced by pysteps was verified by using the MeteoSwiss data and the default configuration5

listed in Table 5. Using the reliability diagram, ROC curve and rank histogram as verification metrics, the results of the

experiments are shown in Figs. 5-7. The results obtained by using the FMI data were very similar, and thus not shown here.

Figure 5 shows that for the 0.1 mm h−1intensity threshold, reliable and sharp nowcasts can be obtained up to two hours. The

ROC area remains over 0.85, and the deviation of the reliability diagrams from the diagonal remains below 0.25. However,

there is a noticeable loss of sharpness after three hours. In addition, the curved shape of the reliability diagrams indicates that10

the pysteps nowcasts are slightly overconfident (Tippett et al., 2014).

When a higher 5 mm h−1intensity threshold is used, Fig. 6a shows a significant deviation of the reliability diagram from

the diagonal only after 45 minutes, which is accompanied with loss of sharpness. However, the ROC area remains above 0.8,

indicating potentially useful skill. This suggests that more reliable nowcasts could be obtained by implementing additional

calibration procedures in a future version of pysteps. Another observation that suggests lack of calibration is that the optimal15

nowcasts for precipitation/no precipitation are obtained by choosing a very low probability threshold (for a well-calibrated

nowcast this would be 0.5).

The rank histograms (Fig. 7) also show some ensemble under-dispersion with larger values on the first and last bins. In

general, we found that there are more misses than false alarms (i.e. cases when all members are lower than the observations).

This occurs, for instance, in cases of convective initiation. Despite the ability of pysteps to generate some new light random20

rain, it is not designed to represent the uncertainty related to an explosive initiation of a thunderstorm.

4.4 Numerical diffusion analysis

Conventional semi-Lagrangian schemes are implemented in a recursive way so that the precipitation intensities are interpolated

at each time step, which usually leads to substantial numerical diffusion (i.e. loss of power at high spatial frequencies). In the

pysteps method (the extrapolation.semilagrangian module), this is done by iteratively tracing the locations of25

precipitation parcels and interpolating the intensities only as the final step of the advection (Germann and Zawadzki, 2002).

To verify the advantage of this implementation, we computed radially averaged Fourier spectra of deterministic nowcasts at

various lead times for FMI event no. 3 (Fig. 8). The analysis is performed using the three optical flow methods to understand

whether the semi-Lagrangian scheme is sensitive to quality of the motion field. Figure 8 shows an almost perfect overlap of the

forecast and observed spectra, an indication that the numerical diffusion of the semi-Lagrangian scheme is very low. Several30

cases have been analyzed and provided similar results (not shown).
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4.5 Spatial structure analysis

The aim of probabilistic nowcasting is to generate a reliable ensemble of equiprobable realizations of precipitation fields char-

acterized by power spectra similar to those in Fig. 8. Fig. 9a shows the average spectra of a stochastic 48-member nowcast for

the FMI precipitation event no. 3. Despite a small loss of power for scales (< 100 km), all spectra are close to the observations.

In other words, the spatial structure of ensemble members remains realistic at all forecast lead times.5

Figure 9b shows the results of the same analysis, but for the ensemble mean forecast (the average of ensemble members).

The process of ensemble averaging should produce precipitation fields that become smoother with lead time, which is the

aftermath of the loss of predictability at small scales (Surcel et al., 2014). As expected, Fig. 9b shows a gradual loss of power

at small scales. The departure of the forecast spectra from the observed ones occurs at increasing wavelengths, i.e. ≈16 km at

5 min and≈128 km at 60 min. However, after 30 min there is a certain increase of power at wavelengths smaller than 16-32 km.10

This behavior is attributed to the limited ensemble size, which is not large enough to filter out precipitation features at small

scales. Thus, one may argue that if the ensemble is too small to model the loss of predictability at such scales, it may also be

too small to reliably model the forecast uncertainty.

An alternative way to deterministically represent the forecast uncertainty is to filter out the unpredictable features using the

S-PROG model (Fig. 9c). Also in this case, the departures of forecast spectra from the observed one occur gradually as in the15

ensemble mean. The first two lead times are remarkably similar, while for lead times beyond 30 min the S-PROG filtering is

stronger (at small spatial wavelengths). Again, this level of filtering could be reached with an ensemble of infinite size.

The previous result suggests that we could exploit the discrepancies between the S-PROG and ensemble mean spectra to

obtain an estimate of the required ensemble size (as a function of spatial scale and lead time). If the two spectra are similar, it

is an indication that the ensemble is large enough.20

4.6 Temporal structure analysis

To demonstrate the effectiveness of the hierarchy of AR(2) models in modeling the temporal evolution of precipitation, we

derived the theoretical ACF from the the estimated AR parameters (see Eq. 7). The obtained ACF is compared to the empirical

ACF between the nowcasts and the corresponding observations. The correlation coefficients are computed separately for each

cascade level obtained using the bandpass filters shown in Fig. 1.25

Figure 10 shows the average theoretical and empirical ACFs for all the FMI cases. It clearly indicates that the AR(2)

process gives accurate estimates of the temporal auto-correlations up to three hours. For smaller scales (0-35 km) having short

lifetimes, the estimates coincide nearly exactly with the observed ones, but for larger scales the auto-correlations are slightly

overestimated. This is due to the relatively short memory of the AR(2) process compared to the precipitation lifetimes at these

scales (over two hours).30
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5 Sensitivity analysis

The objective of this section is to analyze the sensitivity of pysteps to its configuration options and parameters such as the optical

flow method, the ensemble size, the parameter localization and the cascade decomposition. The default pysteps configuration

used in Sec. 4 is based on the results presented here.

5.1 Optical flow and scale filtering5

Determination of the advection field by optical flow is a key component of any extrapolation-based nowcasting system. Pysteps

allows to easily analyze the impact of the optical flow method and also scale filtering on the forecast skill. Moreover, the three

methods currently available in the motion module constitute an ideal testbed as they cover three very distinct approaches,

see the references in Sec. 2.1 for details. The experiments were done by using the MeteoSwiss and US precipitation events

described in Tables 8 and 9.10

Each optical flow method was used with two deterministic nowcasting methods: a simple extrapolation-based method and

S-PROG, which incorporates a scale filtering procedure as described in Seed (2003). Both methods are available in the

nowcasts.extrapolation and nowcasts.sprog modules, respectively. The VET and Lucas-Kanade methods use

2 input images, while DARTS uses 9 input images. The forecast quality was evaluated using the critical success index (CSI)

and the mean absolute error (MAE) as described in Jolliffe and Stephenson (2003).15

The results of the experiments are shown in Fig. 11. First of all, large differences between the simple extrapolation and

S-PROG nowcasts are observed, which is mainly due to the scale filtering implemented in S-PROG (see Sec. 4.5). For the

MeteoSwiss events, applying the filtering improves both CSI and MAE, especially at longer lead times (Figs. 11a and 11c).

After two hours, the S-PROG nowcasts show a ∼20% increase in the CSI and and ∼40% reduction in the MAE. A similar

behavior is observed for the US events (Figs. 11b and 11b) but with a ∼20% the reduction in MAE after two hours.20

On the other hand, no significant differences can be observed between different optical flow methods (less than 2%), with

DARTS performing slightly worse than the other methods. This is possibly explained by the fact that, with the default config-

uration, DARTS produces only a large-scale approximation of the advection field.

Figure 12 shows advection fields obtained using different optical flow methods for a selected case (US, 2013/04/11 0800

UTC). Lucas-Kanade and VET produce smooth fields that are remarkably similar, particularly close to the precipitation areas25

(Figs. 12a and 12b). Within precipitation areas, DARTS produces similar motion fields than the other two methods, but outside

precipitation the fields are considerably different.

We also measured the computation times of different optical flow methods in the MeteoSwiss and FMI domains, and the

results are shown in Table 6. The experiments were done using an Intel Xeon E5645 CPU with 12 cores running at 2.4 GHz with

parallelization enabled in the optical flow methods. The results reflect the fact that the Fourier space and local methods (DARTS30

and Lucas-Kanade) have significantly lower computational requirements than variational methods (VET), which are however

still within the needs of a real-time operational system. Thus, our conclusion from the results shown in Fig. 11 and Table 6 is
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that the choice of the optical flow method plays a less significant role while nowcast errors are more clearly determined by the

dynamic scaling properties of precipitation as highlighted by the large impact of scale filtering on the forecast skill.

5.2 Ensemble size

The ensemble size is one of the main factors contributing to the quality and computation time of pysteps nowcasts, and one

has to make trade-off between these two. To determine the optimal number, the skill of the nowcasts with different intensity5

thresholds and ensemble sizes was evaluated by using two metrics. These are the area under the ROC curve and the outlier

percentage (OP). The results are shown in Figs. 13 and 14.

Figure 13 shows that the choice of the ensemble size plays a significant role, which is particularly true when nowcasts of

higher precipitation intensities are desired. Figure 13a shows that for n= 6, the ROC area falls below 0.85 after two hours,

while it is close to 0.9 when n is increased to 48. However, there is only marginal improvement when n is increased from 24 to10

48, which suggests that 24 members is sufficient when nowcasts of precipitation/no precipitation are desired with low intensity

thresholds (e.g. 0.1 mm h−1). On the other hand, Fig. 13b shows that when the threshold is increased to 5 mm h−1, a significant

improvement can be expected when increasing n from 48 to 96 or even over 100.

The OP is highly dependent on the ensemble size, which can be observed from Fig. 14. With 96 ensemble members, OP is

below 15% after 20 minutes, which indicates that the ensembles are well able to capture the uncertainties in the spatiotemporal15

evolution of precipitation. The OP could be further reduced by increasing the ensemble size over 100. Another observation

from Fig. 14 is the significant dependence of OP on the lead time. Highest OP can be observed at 20 minutes, and after three

hours it is up to 50% smaller.

We also analyzed the computation times needed to generate nowcast ensembles. In a real-time setting it is essential to

know how many ensemble members can be produced before the arrival of the next input radar rainfall image (usually every 520

minutes). To this end, one-hour nowcasts were computed with different ensemble sizes and number of parallel threads using

the FMI and MeteoSwiss data listed in Tables 7 and 8, respectively.

The results of the above experiments are shown in Fig. 15. Fig. 15a shows that for the input grid of 710x640 pixels used in

the MeteoSwiss domain, it is possible to generate one-hour nowcast ensembles of up to 48 members in less than two minutes

using a server with 12 processor cores.25

The results for the larger FMI domain with grid size of 760x1226 pixels are shown in Fig. 15b. Compared to the MeteoSwiss

domain, the height of the grid is doubled, which also doubles the computation time (the computational complexity increases

quadratically with respect to grid size). Nevertheless, using 12 processor cores, the computation time of a 48-member ensemble

still remains below two minutes.

In addition, Figs. 15a and 15b show the effectiveness of the parallelization scheme implemented in pysteps. That is, when30

plotted in logarithmic scale, the computation time decreases approximately linearly with respect to the number of threads (i.e.

the computation time is halved when the number of threads is multiplied by two).
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5.3 Localization

This experiment investigates the impact of localization on the nowcast quality. In this context, localization means restricting

the nowcasting model into small subdomains instead of applying it the whole domain assuming spatial homogeneity of the

precipitation field, as in the earlier STEPS implementations (e.g. Bowler et al., 2006). To this end, the short-space approach

presented in Nerini et al. (2017) for stochastic noise generation is generalized to the whole nowcasting system (see module5

nowcasts.sseps). Adapting the approach described in Sideris et al. (2018), the parameter estimation and the nowcasting

model are implemented in a moving window of predetermined size. The localization is applied to the cascade decomposition,

the autoregressive process (5), the nonparametric Fourier filter (10) and the probability matching (15).

The impact of localization is assessed in terms of rank histograms and reliability diagrams (threshold of 1.0 mm h−1) for a

30-minute lead time (Fig. 16). The localization shows positive effects in the ensemble spread, which improves both in terms of10

reliability and conditional bias, although we also observe a slight decrease of sharpness. This is reflected in the rank histograms,

which tend to get flatter as the localization window gets smaller. This seems to be mainly driven by a reduction in the proportion

of observations lying above the ensemble, which reduces from approximately 13% to 8%.

5.4 Cascade decomposition

The cascade decomposition was designed to account for dynamic scaling (i.e. the dependence of predictability on spatial scale,15

see Sec. 2.4). Without the decomposition, precipitation fields are expected to evolve similarly at all spatial scales following a

single AR process. In such case, the lifetime of small- (large-) scale precipitation features would be overestimated (underesti-

mated). Thus, our main hypothesis is that dynamic scaling properties are necessary to produce a realistic temporal evolution

(lifetime) of precipitation across spatial scales. Consequently, this would give correct ensemble dispersion because the standard

deviation of the perturbations is inversely related to predictability via equation (6).20

To test our hypothesis, we compared the stochastic nowcasts (nowcasts.steps module) with and without cascade de-

composition, that is, using 8 or 1 cascade levels, respectively. The objective is to analyze the realism of the temporal evolution,

not whether the AR is an appropriate model of the forecast error as in Sec. 4.6. In practice, this implies comparing the theoreti-

cal ACFs of forecast and observed fields as follows: 1) generate nowcasts with either an 8-level or 1-level cascade, 2) transform

the forecast fields into the Lagrangian frame (by using the same motion field estimated at start time), 3) decompose the fore-25

cast fields into a 6-level cascade, 4) estimate the AR(2) parameters at each scale, 5) derive the full temporal auto-correlation

function (ACF, see also Fig. 10), and 6) integrate the ACF to estimate the precipitation lifetime. The procedure is repeated for

each forecast lead time up to 2 hours and also for the corresponding observations.

Figure 17 shows the average lifetime for all the MeteoSwiss events plotted against spatial wavelength (in loglog scale). As

expected, the model with 8 cascade levels reproduces well the dynamic scaling properties, especially at small wavelengths.30

However, there is some degree of overestimation of the lifetime at large wavelengths compared to the observations. One

possibility would be to adjust the AR parameters to obtain faster decorrelation, thus shorter lifetime, at such scales.
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The model without cascade decomposition compensates for the overestimation of persistence at large wavelengths, but

strongly overestimates the one of small wavelengths. Hence, the evolution of convective cells in the stochastic nowcast is too

slow compared with reality. This could be checked visually by looking at the animations of stochastic realizations with and

without decomposition (*_stoch_*.gif in https://github.com/pySTEPS/pysteps-publication/tree/master/animations).

Another approach to understand the impact of the cascade decomposition is to analyze the filtering properties of the ensemble5

mean forecast (e.g. Surcel et al., 2014). Figure 18 illustrates the evolution of the ensemble mean forecast spectra with 8 and 1

cascade levels, respectively. When using the cascade decomposition the process of ensemble averaging leads to a loss of power

at small spatial wavelengths, in agreement with the expected loss of predictability (see Sec. 4.5). Instead, the model with one

cascade level is not able to filter out the unpredictable features. As a consequence, it may not be able to adequately characterize

the loss of predictability (and uncertainty) at different spatial scales.10

Figure 19 illustrates the ensemble and probabilistic verification for all the MeteoSwiss events with and without cascade

decomposition. The sensitivity of forecast uncertainty estimations on using the incremental precipitation mask is also included.

The rank histograms behave differently depending on the chosen forecast settings (Fig. 19a). The two models without

decomposition denote a clear overdispersion with a characteristic dome-shape in the bin range 13-22, especially for the setting

with 1 level and no mask. Instead, the models with 8 levels display a flat histogram, except for the very last bin, which contains15

the frequency of observations exceeding all the ensemble members (misses). As shown in Figure 14, this underdispersion can

be reduced by increasing the ensemble size. The last bin is also quite sensitive to using the mask, which prevents the ensemble

to capture the uncertainty associated to precipitation initiation far from the main precipitation body.

Figure 19b shows the spread-error relationship analysis (i.e. the standard deviation among all ensemble members) against

the average RMSE of all members against the observations. The experiments with 8 levels have both a lower RMSE and spread20

than the ones using 1 level. It can also be noticed that the 1-level models do not show the same overdispersion that was observed

on the rank histograms.

Finally, the reliability diagrams of Fig. 19c-d demonstrate a very good reliability for all forecast settings, although the

forecast probabilities of the models with 1 level are slightly lower than the observed frequencies. In addition, the 8-level model

has better sharpness, i.e. a larger proportion of high forecast probabilities (> 0.9).25

6 Nowcasting the extremes: two severe-weather case studies from Australia

An example of applying the pysteps library in order to forecast rainfall fields for Tropical Cyclone Penny and Severe Convection

in Sydney (Australia) is shown in Figs. 20 and 21 respectively. The ability of pysteps to estimate diverse advection patterns

from observed data is quite clear in these examples, with the Tropical Cyclone case showing a clear clockwise rotational pattern

while the Severe Convection shows an almost even easterly flow pattern across the whole domain. Tropical Cyclone nowcasts30

preserve the original cyclonic pattern up to 60 minutes ahead but some distortions are induced for longer lead times due to

convergence and divergence. The Severe Convection case has a simpler advection pattern that helps to preserve the general

structure of the observed rainfall fields beyond 60 minutes. Additional data sources such as satellite or NWP forecasts may help
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to estimate future advection velocities and reduce potential anomalies for longer lead times. It is important to note however

that post-processing of nowcasts (see Section 2.8) ensures that the forecast rainfall fields have the same statistical properties

with the observed ones in both case studies.

6.1 Neighbourhood verification

Figures 22 and 23 show examples of FSS results calculated by pysteps for different forecast times for both Australian case5

studies.

The FSS decays in both case studies when spatial scale is reduced or when the intensity threshold is increased, although

differences exist between the two case studies. For example, the Tropical Cyclone case seems to have a less acute reduction

in the skill with changes in spatial scale. This can be related to the presence of a more uniform rainfall distribution across the

domain (large bands of rainfall moving in an organized way) limiting displacement errors at small scales. Instead, the skill10

reduces heavily as rainfall intensity increases. This drop in skill could have been accentuated by the relatively low number of

high intensity samples in these events.

On the other hand, the Severe Convection case displays a stronger decay of skill when spatial scale is reduced, probably due

to the presence of sharp spatial gradients and isolated convective cells. This said, it is interesting to note how for the higher

intensities and large spatial scales the FSS values do not decay as heavily as seen in the other case study. This difference could15

be a consequence of having more high intensity values in the Severe Convection event.

6.2 Lifetime of rainfall fields per spatial scale

To compare the behaviour of the AR(2) model for these two case studies, temporal auto-correlation functions for each spatial

scale were calculated using Eq. 7, and then integrated to estimate the precipitation lifetimes for each scale and run time. Figure

24 summarizes the precipitation lifetime results for each case study. Overall, a more diverse set of spatial and temporal patterns20

observed during the Severe Convection event makes interquartile ranges of precipitation lifetimes larger for this case study for

all scales. In comparison, similar organized patterns were present during most of the duration of the Tropical Cyclone event

and therefore precipitation lifetime values have a narrower range. Smaller scales seem to have similar average lifetime values

for both cases with no strong temporal variations within the events. For the larger scales, however, precipitation lifetime values

for Tropical Cyclone event are greater than Severe Convection ones, again as a consequence of large-scale organized patterns25

observed in this event.

From an operational perspective, these results illustrate the importance of using an AR(2) model with parameters con-

tinuously adjusted to the latest observed patterns to adequately simulate rainfall nowcasts instead of using fixed, historical

parameters. However, it is important to note as well that a number of outliers were obtained in both cases (mainly for the

larger spatial scales). These anomalous values may indicate the need of introducing a temporal smoothing scheme during the30

estimation of the AR(2) parameters. Having a more stable, slowly evolving parameters would help to (i) reduce the possibil-

ity of generating unrealistic nowcasts from one particular set of observations and also (ii) create smooth transitions between

consecutive rainfall nowcasts.
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7 Conclusions

Pysteps is an open-source library for radar-based probabilistic precipitation nowcasting written in Python. It represents a

community-based initiative that aims at connecting nowcasting scientists by sharing code, methods, ideas and results and also

to provide an easy-to-use tool for operational applications.

Pysteps implements the main components of an ensemble precipitation nowcasting system. These are input/output, optical5

flow and extrapolation routines, time series methods for modeling the temporal evolution of precipitation fields, stochastic

noise generation in space and time, visualization and forecast verification.

The development of pysteps is done by using a distributed version control system, and the project is hosted on GitHub

(https://pysteps.github.io). The library has a modular design so that developers can easily interchange components and embed

them into other software packages.10

In this paper, we briefly explained the framework of probabilistic precipitation nowcasting and how such nowcasts can

be produced using pysteps. The potential of pysteps was demonstrated using radar composite images from Finland (FMI),

Switzerland (MeteoSwiss), United States and Australia (BoM). Finally, we performed experiments, where the the quality of

pysteps nowcasts and computational performance were evaluated with different configurations. This brought us to the following

conclusions:15

1. Probabilistic precipitation nowcasts computed with pysteps have good reliability that, however, decreases for increasing

rainfall intensity thresholds and lead time. Using the MeteoSwiss data, it was shown that for the 0.1 mm h−1threshold,

reliable nowcasts with potentially useful skill can be obtained up to 3 hours. When the threshold was increased to 5 mm

h−1, useful nowcasts could still be obtained up to 45 minutes (Figs. 5 and 6).

2. Rank histograms show that the ensemble spread has a good correspondence with the nowcast uncertainty. However, we20

also observed some underdispersion with 10-15% of observations falling outside of the 24-member ensemble verified

on MeteoSwiss data (Figs. 7 and 14). This was mostly related to the inability of persistence-based nowcasting to predict

the initiation of new convection (misses).

3. The stochastic ensemble members have realistic spatial and temporal structure, as confirmed by Fourier analysis (Figs. 8,

9, 10 and 17).25

4. The three optical flow methods that we tested, i.e. Lucas-Kanade, DARTS and VET, provided similar forecast accuracy

(differences less than 2%, see Fig. 11). We conclude that the choice of optical flow method is not a first order problem

in terms of nowcast quality, although there may be some specific situations requiring more advanced schemes, e.g. in

presence of orographic rain and/or multiscale motion. Choosing a fast optical flow routine provides more time to generate

a larger ensemble. When tested with the FMI and MeteoSwiss data, DARTS and Lucas-Kanade computed the motion30

field in less than 5 seconds.
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5. With parallelization implemented via the dask library, pysteps can generate relatively large ensembles within typical

time constraints of real-time nowcasting systems. For example, using 4 CPU cores on the MeteoSwiss grid (710x640),

it is possible to produce a 48-member ensemble up to +1 h (12 frames) in about 2 min (Fig. 15).

6. Localizing the nowcasting procedure, that is, having spatially variable model parameters, is beneficial in terms of prob-

abilistic forecast skill (Fig. 16). The need for localization is intuitively important for large domains, where different5

weather systems can coexist, but also for smaller domains that are characterized by complex orography, as it was demon-

strated in this study. These results highlight the importance of defining an appropriate model domain for pysteps. That is

to say, one that compromises between the need for homogeneous statistical properties (i.e. a small domain) and the need

for a robust estimation of model parameters (i.e. large domain).

7. Considering the scale dependence of precipitation predictability is clearly important. The Fourier-based cascade de-10

composition provides an adequate framework, which can be easily extended to account for spatial localization (i.e. the

short-space FFT). Other decomposition frameworks can be explored, but it is not yet clear whether there is a benefit in

terms of forecast quality.

8. In presence of extreme precipitation, pysteps can still deliver skillful nowcasts up to one hour for specific intensity and

spatial scales (Figs. 22 and 23). A wide range of predictability is observed between and within the events (Fig. 24), thus15

highlighting the importance of having an adaptive approach that continuously updates the model parameters in real time.

Our analyses not only helped understanding the importance of certain nowcasting concepts, but were the basis to define

a minimum viable product (MVP), which constitutes the default configuration of pysteps (see Tab. 5). Additional levels of

complexity (e.g. localization) can be included at the cost of computational time and robustness. Users are responsible for

evaluating whether it is worth the effort in terms of forecast quality and computational resources.20

7.1 Potential extensions and applications of pysteps

Pysteps represents a long-term effort that does not end with the publication of this paper. The current pysteps 1.0 version

provides a quite comprehensive library, but still misses two important modules: 1) a module to generate QPE ensembles

characterizing the radar measurement uncertainty (e.g. Jordan et al., 2003; Germann et al., 2009), and 2) a module for seamless

blending of precipitation fields from different data sources, such as radar nowcasts and NWP forecasts (Bowler et al., 2006;25

Nerini et al., 2019), radar, satellite and NWP data (Renzullo et al., 2017).

It would be interesting to include other state-of-the-art ensemble precipitation nowcasting systems in pysteps, for exam-

ple PHAST (Metta et al., 2009), SBMcast (Berenguer et al., 2011), SAMPO-TBM (Leblois and Creutin, 2013), SWIRLS

Ensemble Rainstorm Nowcast (SERN, Woo and Wong, 2017), and NowPrecip (Sideris et al., 2018). A large-scale forecast ver-

ification intercomparison project could be foreseen to better understand the advantages and disadvantages of different ensemble30

nowcasting techniques.
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Pysteps opens a number of possibilities that go beyond the field of nowcasting. The most natural application of pysteps is

to use the precipitation ensembles as inputs into hydrological models for uncertainty quantification, in both urban and rural

environments (e.g. Zappa et al., 2011; Thorndahl et al., 2017).

An obvious and crucial application of nowcasting systems is to support the operational warnings for rainstorms, thunder-

storms and severe weather.5

Individual pysteps modules can also serve different purposes. For example, the optical flow modules can be used to study

precipitation growth and decay in moving coordinates (e.g. Foresti et al., 2018; Zeder et al., 2018; Foresti et al.), to correct radar

field accumulations accounting for advection (e.g. Wang et al., 2015; Lukach et al., 2017), to synchronize the individual radar

elevation scans (e.g. Tabary, 2007), or to separate the location error of NWP precipitation forecasts (Marzban and Sandgathe,

2010).10

The tools available in the noise and the time series modules can be used for stochastic simulation of design storms (e.g. Seed

et al., 1999; Paschalis et al., 2013), weather generators (Peleg et al., 2017), and also to understand and quantify the sub-pixel

variability of radar rainfall (e.g. Gires et al., 2014; Benoit, 2018; Peleg et al., 2016). Other applications can include stochastic

downscaling or emulation of climate model output (e.g. Raut et al., 2018; Beusch et al., 2019).

We encourage the nowcasting community and potential users to implement new nowcasting methods, propose new modules,15

try pysteps on different applications, provide feedback, and contribute to the library for the benefit of everyone.

Code and data availability. The pysteps library is available at https://github.com/pySTEPS/pysteps. The scripts to run the experiments and

produce the figures of this paper are available at https://github.com/pySTEPS/pysteps-publication. The radar data are available upon request.

Appendix A: Pysteps use cases

Listing 1 demonstrates how to browse and read archived radar composites using the io module and decompose a radar image20

into a cascade using the cascade module. The desired time stamp, root path of the data archive, the file name pattern and ex-

tension for finding the input file are specified at lines 9-12. Finding the input files is done by using io.archive.find_by_date

at lines 14 and 15. Nine previous input files preceding the desired time stamp are also retrieved with the given time step of

five minutes. The retrieved file names are then supplied to io.read_timeseries that returns a three-dimensional array of

shape (num_timesteps,height,width) containing the radar precipitation fields and a metadata dictionary (line 19). The cascade25

decomposition is done by initializing the Fourier filter with filter_gaussian and calling decomposition_fft (lines

24-25).

Listing 2 demonstrates computation of a deterministic S-PROG nowcast and a STEPS nowcast ensemble. This is done in

two stages: computation of the advection field using the Lucas-Kanade method implemented in the motion module (lines

8-9) and then computing the nowcasts with the motion field supplied as input (lines 12-18). The callable functions for these are30

retrieved using the get_method interface. The inputs for the nowcasting methods are a time series of three radar composites
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Listing 1 Read 10 archived radar reflectivity composites in PGM format, apply thresholding and decompose the last one into

a 7-level cascade and plot the cascade levels.

1 from datetime import datetime

2 from matplotlib import cm, pyplot

3 import numpy as np

4 from pysteps.cascade.bandpass_filters import filter_gaussian

5 from pysteps import io

6 from pysteps.io.importers import import_fmi_pgm

7 from pysteps.cascade.decomposition import decomposition_fft

8 from pysteps.utils import conversion, transformation

9

10 date = datetime.strptime("201609281600", "%Y%m%d%H%M")

11 root_path = "pysteps-data/radar/fmi"

12 fn_pattern = "%Y%m%d%H%M_fmi.radar.composite.lowest_FIN_SUOMI1"

13 fn_ext = "pgm.gz"

14

15 # find the input files from the archive

16 fns = io.archive.find_by_date(date, root_path, "%Y%m%d", fn_pattern, fn_ext, 5,

17 num_prev_files=9)

18

19 # read the radar composites and apply thresholding

20 Z, _, metadata = io.read_timeseries(fns, import_fmi_pgm, gzipped=True)

21 R = conversion.to_rainrate(Z, metadata, 223.0, 1.53)[0]

22 R = transformation.dB_transform(R, threshold=0.1, zerovalue=-15.0)[0]

23 R[~np.isfinite(R)] = -15.0

24

25 # construct bandpass filter and apply the cascade decomposition

26 filter = filter_gaussian(R.shape[1:], 7)

27 decomp = decomposition_fft(R[-1, :, :], filter)

28

29 # plot the normalized cascade levels

30 for i in range(7):

31 mu = decomp["means"][i]

32 sigma = decomp["stds"][i]

33 decomp["cascade_levels"][i] = (decomp["cascade_levels"][i] - mu) / sigma

34

35 fig, ax = pyplot.subplots(nrows=2, ncols=4)

36

37 ax[0, 0].imshow(R[-1, :, :], cmap=cm.RdBu_r, vmin=-3, vmax=3)

38 ax[0, 1].imshow(decomp["cascade_levels"][0], cmap=cm.RdBu_r, vmin=-3, vmax=3)

39 ax[0, 2].imshow(decomp["cascade_levels"][1], cmap=cm.RdBu_r, vmin=-3, vmax=3)

40 ax[0, 3].imshow(decomp["cascade_levels"][2], cmap=cm.RdBu_r, vmin=-3, vmax=3)

41 ax[1, 0].imshow(decomp["cascade_levels"][3], cmap=cm.RdBu_r, vmin=-3, vmax=3)

42 ax[1, 1].imshow(decomp["cascade_levels"][4], cmap=cm.RdBu_r, vmin=-3, vmax=3)

43 ax[1, 2].imshow(decomp["cascade_levels"][5], cmap=cm.RdBu_r, vmin=-3, vmax=3)

44 ax[1, 3].imshow(decomp["cascade_levels"][6], cmap=cm.RdBu_r, vmin=-3, vmax=3)

45

46 ax[0, 0].set_title("Observed")

47 ax[0, 1].set_title("Level 1")

48 ax[0, 2].set_title("Level 2")

49 ax[0, 3].set_title("Level 3")

50 ax[1, 0].set_title("Level 4")

51 ax[1, 1].set_title("Level 5")

52 ax[1, 2].set_title("Level 6")

53 ax[1, 3].set_title("Level 7")

54

55 for i in range(2):

56 for j in range(4):

57 ax[i, j].set_xticks([])

58 ax[i, j].set_yticks([])

59

60 pyplot.savefig("cascade_decomp.png", dpi=300, bbox_inches="tight")
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(Z), the motion field (V), the number of time steps (12), the number of cascade levels (8) and the threshold for rain/no rain (-10

dBR). In addition, for STEPS the ensemble size and the spatial and temporal resolution of the data are set to 24, one kilometer

and five minutes, respectively. The resulting nowcasts are shown in Figs. 25 and 26.

Listing 2 Compute the advection field and S-PROG and STEPS nowcasts from the reflectivity composites obtained in Listing

1 and plot the nowcasts. The nowcasts are computed by using 12 time steps (i.e. one-hour nowcast with the 5-minute time

step), 8 cascade levels and -10 dBR intensity threshold. The STEPS nowcast is computed by using 24 ensemble members.

1 from matplotlib import pyplot

2 from pysteps import motion, nowcasts

3 from pysteps.postprocessing.ensemblestats import excprob

4 from pysteps.utils import transformation

5 from pysteps.visualization import plot_precip_field, quiver

6

7 # compute the advection field

8 oflow_method = motion.get_method("lucaskanade")

9 V = oflow_method(R)

10

11 # compute the S-PROG nowcast

12 nowcast_method = nowcasts.get_method("sprog")

13 R_f_sprog = nowcast_method(R[-3:, :, :], V, 12, R_thr=-10.0)[-1, :, :]

14

15 # compute the STEPS nowcast

16 nowcast_method = nowcasts.get_method("steps")

17 R_f = nowcast_method(R[-3:, :, :], V, 12, n_ens_members=24, n_cascade_levels=8,

18 R_thr=-10.0, kmperpixel=1.0, timestep=5)

19

20 # plot the S-PROG nowcast, one ensemble member of the STEPS nowcast and the exceedance

21 # probability of 0.1 mm/h computed from the ensemble

22 R_f_sprog = transformation.dB_transform(R_f_sprog, threshold=-10.0, inverse=True)[0]

23 pyplot.figure()

24 plot_precip_field(R_f_sprog, map="basemap", geodata=metadata, drawlonlatlines=True,

25 basemap_resolution='h')

26 pyplot.savefig("SPROG_nowcast.png", bbox_inches="tight", dpi=300)

27

28 R_f = transformation.dB_transform(R_f, threshold=-10.0, inverse=True)[0]

29

30 R_f_mean = np.mean(R_f[:, -1, :, :], axis=0)

31

32 pyplot.figure()

33 plot_precip_field(R_f_mean, map="basemap", geodata=metadata, drawlonlatlines=True,

34 basemap_resolution='h')

35 pyplot.savefig("STEPS_ensemble_mean.png", bbox_inches="tight", dpi=300)

36

37 pyplot.figure()

38 plot_precip_field(R_f[0, -1, :, :], map="basemap", geodata=metadata, drawlonlatlines=True,

39 basemap_resolution='h')

40 pyplot.savefig("STEPS_ensemble_member.png", bbox_inches="tight", dpi=300)

41

42 pyplot.figure()

43 P = excprob(R_f[:, -1, :, :], 0.5)

44 plot_precip_field(P, map="basemap", geodata=metadata, drawlonlatlines=True,

45 basemap_resolution='h', type="prob", units="mm/h", probthr=0.5)

46 pyplot.savefig("STEPS_excprob_0.5.png", bbox_inches="tight", dpi=300)

Verification of a nowcast ensemble is shown in Listing 3 using three metrics: ROC, reliability diagram and rank histogram

(see Sec. 4.2). The verifying observations are imported at lines 4-10 by using the io module. This is followed by a loop5

over the time steps of the nowcast. For each time step, the verification metric is initialized with the *_init function, and
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the verification data is accumulated to the resulting object by calling *_accum, which allows accumulating data from mul-

tiple events. In addition, exceedance probabilities (P_f) for the 0.1 mm h−1threshold used above are computed by using

ensemblestats.excprob.

Listing 3 Compute and plot ROC curves, reliability diagrams and rank histograms for the STEPS nowcast generated in Listing

2 with different lead times.

1 from pysteps.postprocessing import ensemblestats

2 from pysteps.utils import conversion

3 from pysteps import verification

4

5 # find the files containing the verifying observations

6 fns = io.archive.find_by_date(date, root_path, "%Y%m%d", fn_pattern, fn_ext,

7 5, 0, num_next_files=12)

8

9 # read the observations

10 Z_obs, _, metadata = io.read_timeseries(fns, import_fmi_pgm, gzipped=True,

11 num_next_files=12)

12 R_obs = conversion.to_rainrate(Z_obs, metadata, 223.0, 1.53)[0]

13

14 # iterate over the nowcast lead times

15 for lt in range(R_f.shape[1]):

16 # compute the exceedance probability of 0.1 mm/h from the ensemble

17 P_f = ensemblestats.excprob(R_f[:, lt, :, :], 0.1, ignore_nan=True)

18

19 # compute and plot the ROC curve

20 roc = verification.ROC_curve_init(0.1, n_prob_thrs=10)

21 verification.ROC_curve_accum(roc, P_f, R_obs[lt+1, :, :])

22 fig = figure()

23 verification.plot_ROC(roc, ax=fig.gca(), opt_prob_thr=True)

24 pyplot.savefig("ROC_%02d.eps" % (lt+1), bbox_inches="tight")

25 pyplot.close()

26

27 # compute and plot the reliability diagram

28 reldiag = verification.reldiag_init(0.1)

29 verification.reldiag_accum(reldiag, P_f, R_obs[lt+1, :, :])

30 fig = figure()

31 verification.plot_reldiag(reldiag, ax=fig.gca())

32 pyplot.savefig("reldiag_%02d.eps" % (lt+1), bbox_inches="tight")

33 pyplot.close()

34

35 # compute and plot the rank histogram

36 rankhist = verification.rankhist_init(R_f.shape[0], 0.1)

37 verification.rankhist_accum(rankhist, R_f[:, lt, :, :], R_obs[lt+1, :, :])

38 fig = figure()

39 verification.plot_rankhist(rankhist, ax=fig.gca())

40 pyplot.savefig("rankhist_%02d.eps" % (lt+1), bbox_inches="tight")

41 pyplot.close()

Appendix B: Precipitation events

The precipitation events to test pysteps come from Finland, Switzerland, USA and Australia. They are described in Tables 7,5

8, 9, and 10, respectively.
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Figure 1. Normalized weight functions with corresponding Fourier wavenumbers and spatial scales for the FMI domain. The domain is a
760x1226 grid at 1 km resolution.
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Figure 2. The radar observations and 7 first levels of the cascade decomposition of an FMI rain rate composite at time 1600 UTC 28 Sep
2016. Values below -10 dBR were set to -15 dBR before applying the decomposition in order to reduce the discontinuity at the boundaries
of precipitation areas. The observed field and the cascade levels have been normalized to zero mean and unit variance. See Listing 1 in
Appendix A for obtaining the decomposition.

35



Figure 3. Comparison of three +30 minutes stochastic nowcasts produced with the FFT noise generators available in pysteps as described
in Sec. 2.6. (a) The radar-based rainfall analysis from the Australian radar network valid at time 0605 UTC 01 January 2019 on a 512x512
pixel grid (event no. 2 in Table 10). (b-d) One member of a +30 minute nowcast produced using (b) the parametric noise generator, (c) the
nonparametric generator or (d) the SSFT generator with a 128x128 pixel sliding window. All realizations share the same random seed.
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Figure 4. Workflow for computing precipitation nowcasts using pysteps. For each chart element, the top row describes the task and the
bottom row is the name of the module used for this purpose. White colors represent the operations that are done with all nowcasting methods.
Green colors represent the additional operations included when the cascade decomposition and the autoregressive AR(p) model are applied
(i.e. the S-PROG model). Finally, blue colors represent the operations that are done when stochastic perturbations are added and the ensemble
computation is parallelized (i.e. the full STEPS model).
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Figure 5. Reliability diagrams (a) and ROC curves (b) computed from STEPS nowcasts during the MeteoSwiss events listed in Table 8 with
different lead times and threshold 0.1 mm h−1. The default settings listed in Table 5 were used for computing the nowcasts. The optimal
probability thresholds that maximize POD-POFD are marked in the ROC curves with black crosses.
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Figure 6. Same as Fig. 5, but for an intensity threshold of 5 mm h−1.
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Figure 7. Rank histograms computed from STEPS nowcasts during the MeteoSwiss events listed in Table 8 with different lead times. The
default settings listed in Table 5 were used for computing the nowcasts.
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Figure 8. Numerical diffusion analysis of the semi-Lagrangian advection scheme using radially averaged Fourier spectra for different optical
flow methods and different forecast lead times. The nowcasts are for FMI event no. 3 (1600 UTC 28 Sep 2016).
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Figure 9. Spatial structure analysis of a) stochastic ensemble members, b) ensemble mean, and c) S-PROG filtering. To be comparable, the
incremental mask and probability matching were used for both the ensemble mean and S-PROG nowcasts. All nowcasts used the Lucas-
Kanade optical flow on the same event of Fig. 8. The ensemble is composed of 48 members. All models used a cascade of 8 levels without
motion perturbations.
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Figure 11. Comparison of forecast skill using different optical flow and extrapolation methods. The left panel shows the averaged CSI and
MAE for the MeteoSwiss events listed in Table 8, while the right panel shows the same results but for the US events listed in Table 9. The
CSI is computed using a 0.1mm h−1threshold.
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Figure 12. Comparison of advection fields obtained by different optical flow methods for a selected precipitation event: US, 2013/04/11
0800 UTC.
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Figure 13. ROC areas for (a) 0.1 mm h−1and (b) 5 mm h−1thresholds with different ensemble sizes as a function of lead time during the
MeteoSwiss events listed in Table 8.
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Figure 14. Outlier percentages (OP) with different ensemble sizes as a function of lead time during the MeteoSwiss events listed in Table 8.

47



1 2 3 4 6 8 12
0.1

0.2

0.5

1

2

4

8
a)

n=12
n=24
n=48

1 2 3 4 6 8 12
Number of threads

0.2

0.5

1

2

4

8

16
b)

n=12
n=24
n=48

Co
m

pu
ta

tio
n 

tim
e 

(m
in

ut
es

)

Figure 15. Averaged computation times of pysteps nowcast ensembles with different ensemble sizes and number of parallel threads for the
(a) MeteoSwiss and (b) FMI domain. The grid sizes for the domains are 710x640 and 760x1226 pixels, respectively. One-hour nowcasts with
12 time steps of 5 minutes were computed for both domains. The computation times include only the ensemble computation, excluding the
optical flow, the initialization of the model and writing the results to disk.
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(a) Rank histograms
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(b) Reliability diagrams
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Figure 16. Effect of localization in terms of (a) rank histograms and (b) reliability diagrams computed for the 30-minute lead time and
1.0 mm h−1during the MeteoSwiss events (Table 8). The localization window was reduced from the full domain (710 km) to three different
local scales (360, 180 and 90 km).
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Figure 17. Verification of dynamic scaling properties of stochastic nowcasts generated with 1 and 8 cascade levels. All MeteoSwiss events
were analyzed, but nowcasts were run only every 4 hours.
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Figure 18. Spatial structure analysis of the ensemble mean forecast using a) 8 cascade levels and b) 1 cascade level. Both experiments have
an ensemble size of 24 members. MeteoSwiss event #3 was used.
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(c) Reliability for R > 0.1 mm/h
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(d) Reliability for R > 1.0 mm/h
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Figure 19. Ensemble and probabilistic verification of the cascade experiments for all the MeteoSwiss cases with and without cascade
decomposition, and with and without masking. a) Rank histograms at 60 min, b) spread-error relationship, c,d) reliability diagrams at 60 min
for probability of rain exceeding 0.1 and 1 mm h−1respectively.
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Figure 20. Comparison of a member of 5-min rainfall ensemble for (b) +30 minutes, (c) +60 minutes and (d) +120 minutes nowcasts
initialized with (a) radar-based rainfall analysis from the Australian radar network valid at time 0605 UTC 01 January 2019 on a 512x512
pixel grid (256x256 km) (event no. 2 in Table 10).
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Figure 21. Comparison of a member of 5-min rainfall ensemble for (b) +30 minutes, (c) +60 minutes and (d) +120 minutes nowcasts
initialized with (a) radar-based rainfall analysis from the Australian radar network valid at time 0715 UTC 08 February 2019 on a 512x512
pixel grid (256x256 km)(event no. 1 in Table 10).
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Figure 22. Comparison of Fractions Skill Score (FSS) values for (a) +10 minutes, (b) +30 minutes and (c) +60 minutes nowcasts rainfall
ensembles for Tropical Cyclone Penny (event no. 1 in Table 10). FSS values were calculated comparing the ensemble mean for each lead
time with observations.
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Figure 23. Same as Fig. 22 but for the Severe Convection case study (event no. 2 in Table 10).
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Figure 24. Distribution of precipitation lifetime values for each spatial scale during Tropical Cyclone (event no. 1 in Table 10) and Severe
Convection (event no. 2 in Table 10) case studies.
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Figure 25. The deterministic S-PROG nowcast (a), ensemble mean (b) and two ensemble members (c) and (d) of a one-hour STEPS nowcast
started at 1600 UTC 28 Sep 2016.
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Figure 26. Probability of exceeding 0.5 mm/h computed from the STEPS nowcast ensemble shown in Fig. 25 with 24 members.
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Table 1. Non-exhaustive list (in alphabetical order) of precipitation nowcasting packages that are in principle available to the public. Open-
source libraries have their source code available to the general public. Free-licence libraries can be obtained upon request.

Library Language Website Availability Reference

Com-SWIRLS Python, C++ https://com-swirls.org open source1 Wong et al. (2016)
IMPROVER Python, Shell https://improver.readthedocs.io open source Flowerdew (2018)
INCA C, Fortran, Shell https://www.zamg.ac.at free license Haiden et al. (2011)
pysteps Python https://pysteps.github.io open source this study
rainymotion Python https://github.com/hydrogo/rainymotion open source Ayzel et al. (2018)
STEPS C, C++ https://www.bom.gov.au free license Bowler et al. (2006); Seed et al. (2013)

1 Only for national meteorological and hydrological services within WMO.
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Table 2. External libraries used by pysteps.

Library Website Reference Description

h5py http://www.h5py.org
input/outputnetCDF4 http://unidata.github.io/netcdf4-python

PIL https://github.com/python-pillow/Pillow
OpenCV http://opencv.org Bradski (2000) image processing
numpy http://www.numpy.org Van Der Walt et al. (2011)

mathematical routines
scipy http://www.scipy.org Jones et al. (2001–)

FFTW/pyFFTW
http://www.fftw.org Frigo and Johnson (2005)

fast Fourier transform
https://github.com/pyFFTW

dask http://dask.org Dask Development Team (2016) parallelization
cartopy https://github.com/SciTools/cartopy Met Office (2010 - 2015)

visualizationmatplotlib http://matplotlib.org Hunter (2007)
mpl_toolkits.basemap http://matplotlib.org/basemap
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Table 3. Overview of pysteps modules.

Module Description

io reading radar composites and writing nowcast files
motion optical flow methods for motion field computation
extrapolation advection-based extrapolation
timeseries time series methods (e.g. AR models)
noise generation of stochastic noise to perturb precipitation and motion fields
cascade scale-based decomposition of precipitation fields
nowcasts implementation of nowcasting methods
postprocessing statistical post-processing of nowcasts
verification statistical verification of nowcasts and plotting the results
visualization plotting of precipitation and advection fields
utils miscellaneous utility functions (e.g. converting and transforming data and computing the FFT)
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Table 4. Overview of the radar QPE composites that have been used to evaluate pysteps. The grid size is given as the number of pixels in the
x and y dimensions.

Dataset Country Resolution Grid size

FMI Finland 1 km, 5 min 760x1226
MeteoSwiss Switzerland 1 km, 5 min 710x640
WDSS1 United States 4 km, 5 min 1361x1056
BoM Australia 0.5 km, 5 min 512x512

1 Upscaled from original data at 1 km resolution (5445x4226)
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Table 5. The default configuration used in the experiments.

Parameter Value

optical flow Lucas-Kanade
extrapolation semi-Lagrangian
cascade levels 8
order of the AR(p) model 2
precip. intensity perturbations non-parametric
transformation R to dBR
minimum precipitation 0.1 mm h−1

value for dry pixels -15 dBR
mask method incremental
ensemble size 24
probability matching yes
seed number 24
velocity perturbation parameters apar = 2.32, bpar = 0.34,
(fitted to pooled FMI cpar =−2.65
and MeteoSwiss data) aperp = 1.91, bperp = 0.34,

cperp =−2.07
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Table 6. Average computation times of different optical flow methods in the MeteoSwiss and FMI domains (seconds). Domain sizes are
given in parentheses.

12 cores

Method MeteoSwiss (710x640) FMI (760x1226)

DARTS 4.02 4.07
Lucas-Kanade 2.02 4.29
VET 13.73 28.98

1 core

Method MeteoSwiss (710x640) FMI (760x1226)

DARTS 4.27 4.78
Lucas-Kanade 2.07 4.46
VET 41.65 85.14
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Table 7. Precipitation events in Finland (FMI). The duration of each event is 12 hours.

No. Date Start time Description
(UTC)

1 8 Jun 2016 13:00 A low pressure system over Northern Finland causes frontal rain associated with a warm front and
frontal rain and convective cells associated with a cold front. The system moves eastward with
precipitation areas rotating around its centre.

2 15 Jul 2016 12:00 Frontal precipitation approaches measurement area from South.
3 28 Sep 2016 09:00 Frontal precipitation intermixed with convection, some scattered convective cells.
4 22 Feb 2017 22:00 Wide-spread heavy frontal precipitation associated with a low pressure system traversing over

Southern Finland.
5 8 Jun 2017 04:00 Narrow and slowly-moving precipitation band.
6 14 Jul 2017 01:00 Precipitation starts out as a narrow precipitation band with some scattered convective cells, and later

evolves into predominantly convective precipitation.
7 4 Aug 2017 11:00 Frontal rain associated with a warm front and some convective activity.
8 12 Sep 2017 03:00 Frontal precipitation moves northward and slightly rotates.
9 12 Aug 2018 05:00 Frontal precipitation intermixed with convection. Some convective activity, which rotates. Convec-

tive activity increases noticeably in a few hours.
10 29 Sep 2018 16:00 Frontal precipitation moves eastward and is followed by convective activity. New convective cells

are continuously generated at the northern coast of Estonia after the frontal precipitation has passed.
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Table 8. Precipitation events in Switzerland (MeteoSwiss). The duration of each event is 12 hours.

No. Date Start time Description
(UTC)

1 16 Apr 2016 18:00 Prefrontal precipitation induced by a low pressure system over the North Sea. Lines of convection
develop over western Switzerland.

2 11 Jul 2016 13:00 An approaching cold front causes widespread convective activity in a south-westerly flow.
3 31 Jan 2017 10:00 A strong north-westerly flow causes orographic blocking on the northern slopes of the Alps resulting

in widespread precipitation.
4 14 Jun 2017 13:00 Fairly uniform pressure distribution across Central Europe, scattered convection develops during

the afternoon.
5 24 Jun 2017 22:00 Prefrontal activity with intense thunderstorms south of the Alps. Measured peak intensity reached

33.5 mm in 10 min and presence of large size hail stones (3-5 cm) was observed.
6 27 Jun 2017 20:00 A frontal passage during the night induces organized convection over the domain and important

prefrontal convective activity on the southern side of the Alps.
7 19 Jul 2017 13:00 In a south-westerly flow, development of large convective cells over central Switzerland.
8 21 Jul 2017 13:00 Flat pressure distribution across central Europe, South-westerly flow associated to a low over the

British Islands. Clusters of intense thunderstorms develop over western Switzerland.
9 29 Jul 2017 13:00 South-westerly flow connected to large depression over British Islands. Large clusters of convection

develop south of the Alps.
10 31 Aug 2017 14:00 Strong south-westerly flow over the Alps associated to a cold front. Important lines of stationary

convection affect the southern Alps, while more stratiform precipitation occurs in the West and
North of Switzerland.
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Table 9. Precipitation events from USA. The duration of each event is 12 hours.

No. Date Start time Description
(UTC)

1 16 Apr 2011 08:00 Large extratropical cyclone. The low pressure center was located over the Great Lakes with a strong
cold front extending south.

2 15 Nov 2011 23:00 Frontal precipitation associated with a stationary front in southeastern US.
3 04 Apr 2013 18:00 Two widespread precipitation systems produced by two cyclonic systems over the US, located in

the north-west and south-east of the US.
4 11 Apr 2013 00:00 Mid-latitude cyclone over the eastern US with the eastern line of precipitation caused by a cold front

extending in the south-north direction from eastern Texas to central Missouri, and in the west-east
direction from Missouri to the south of the New York state.

5 18 May 2013 06:00 Mesoscale Convective Systems (MCSs) located in northern and south-eastern US.
6 27 May 2017 00:00 MCSs developed over central and north-western US, along with a cyclonic precipitation system

located in the south-eastern Canada.
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Table 10. Precipitation events from Australia (BoM). The duration of each event is 12 hours.

No. Date Start time Description
(UTC)

1 01 Jan 2019 00:00 Tropical Cyclone Penny moving from the Gulf of Carpenteria and making landfall on the western
Cape York Peninsula coastline just south of Weipa C-band Doppler radar.

2 08 Feb 2019 05:00 Severe convection activity observed by the S-band polarimetric radar of Terry Hills near Sydney.
Convective cells are continuously generated inland New South Wales and intensifying as they move
east. This event produced thunderstorms, heavy rainfall and flash flooding in the City of Parramatta
and Western Sydney suburbs.
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