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Reviewer #1: Wang Chun Woo 
 
This paper is well written, clearly and comprehensively describing a novel initiative to 
open-source an operational-ready nowcasting software package. It explains the science 
and techniques behind included algorithms, gives some examples, provides verification 
results and concludes with a vision to further the collaboration on nowcasting 
techniques and system. This paper should be accepted for publication, after some 
modifications to address the following issues: 
 
We thank Wang-Chun Woo (Reviewer #1) for the precise comments and suggestions. 
Our point-by-point answers are listed hereafter. 

1. General Comments 
 

1. The determination and adoption of reflectivity – rainfall relationships are one of 
the most critical challenges in QPE and QPF, especially for tropical and 
subtropical regions. Perhaps the authors could include a section to mention what 
functions pysteps provide in this regard. For example, whether it supports 
adoption of user-defined ​a​ ​b​ values in ​Z=aR​b​, whether it makes use of dual-pol 
data for QPE, whether it can derive ​a ​and​ b​ from a set of climatological data, etc. 

 
Because the focus is on QPF rather than QPE, pysteps does not include 
methods to derive Z-R relationships. The nowcasting methods take rain rate 
arrays as inputs, and generating the QPE product is beyond the scope of 
pysteps. Currently only the basic conversion from Z to R is implemented. This is 
because many meteorological institutes store radar mosaics in reflectivity (dBZ) 
for historical reasons. 
 
The user can extend pysteps to include different input formats and custom 
conversions to rain rates. Currently the io.importers module implements reading 
radar mosaics from FMI, MeteoSwiss, BoM, KNMI and OPERA. The user can 
implement custom importers for reading their input data and do the conversion to 
rain rate. The a and b parameters of the Z-R relationship can be included as 
attributes (metadata) in the importer. Alternatively, the conversion can be done 
by using the to_rainrate function in the utils.conversion module. This function 
supports user-defined a and b parameters. 



 
The first paragraph of Section 3.5 has been revised to make a more clear 
statement of the input data, and also to add some of the points mentioned above. 
The corresponding part of Figure 4 was also revised. 

2. Specific Comments 
 

1. Page 1 Line 7: It is mentioned that pysteps library supports “standard 
input/output file formats”. But radar and rain gauge data come in a high variety of 
formats. Perhaps it would be more appropriate to write “various input/output file 
formats”.  
 
We replaced “standard” by “various” as suggested. 
 
I also suggest listing out the supported data formats in a table. 
 
Since the supported in/out data formats are technical details that are rapidly 
evolving, in Section 3.2, we refer the reader to the pysteps official documentation 
for more details. 
 

2. Page 1 Line 15: My understanding is that the definition of nowcasting does not 
confine itself to “by extrapolation”. For longer range nowcast (3 hours and 
beyond), the use of NWP is indeed more common. Recently, there also emerged 
other methods, such as deep learning nowcast as elaborated in the following 
papers: 
https://papers.nips.cc/paper/5955-convolutional-lstm-network-a-machine-learning
-approach-for-precipitation-nowcasting.pdf,https://arxiv.org/abs/1706.034583. 
 
Indeed, the term nowcasting, strictly speaking, refers solely to a forecasting 
range, rather to a particular forecasting method. The first paragraph of the 
introduction has been changed so that in addition to extrapolation, statistical and 
NWP models are also mentioned. In addition, reference to the above paper was 
added to the first paragraph of Section 1.1. 
 

3. Page 1 Line 15: Suggest citing the WMO Guideline on Nowcasting: 
https://library.wmo.int/doc_num.php?explnum_id=37954​.  
 

https://papers.nips.cc/paper/5955-convolutional-lstm-network-a-machine-learning-approach-for-precipitation-nowcasting.pdf,https://arxiv.org/abs/1706.034583.
https://papers.nips.cc/paper/5955-convolutional-lstm-network-a-machine-learning-approach-for-precipitation-nowcasting.pdf,https://arxiv.org/abs/1706.034583.
https://library.wmo.int/doc_num.php?explnum_id=37954


Added a citation to the WMO nowcasting guideline to the first paragraph of 
Section 1, as suggested. 

 
 

4. Page 8 Line 14: Suggests mentioning that some examples of parameters are 
given in Table 5, if indeed so. 
 
We added a reference to Table 5. 
 

5. Page 9 Line 7: Also commonly known as “frequency matching” in operational 
meteorology. 
We would like to point out that precisely speaking the technique described in 
Section 2.8 is not frequency matching. This is because the CDFs are matched, 
not frequencies. In addition, we slightly revised the paragraph. The last sentence 
was removed, and now we cite to Foresti et al. 2016, where a similar technique 
was used. 

 
6. Page10 Line 4: Suggest citing Cartopy as requested 

(​https://scitools.org.uk/cartopy/docs/latest/citation.html​) 
 
We have provided, when available, references to all packages listed in Table 2. 
 

7. Page 10 Line 10: It would also be beneficial to operational meteorology for 
comparing the performance of various nowcast algorithms, and for running 
multi-model ensemble nowcast. 
 
Thanks for the suggestion. We added the possible uses in operational 
meteorology. 
 

8. Page 13 Line 7: May consider including the contingency table and the formulas 
of the performance measures, due to historical confusion between FAR, POFD 
and “False Alarm Rate” 
 
In that paragraph we already mentioned the possible confusion. Nonetheless, we 
added a reference with more details on the contingency tables and the formulas 
of the categorical scores used (page 13, lines 12-14). 
 

9. Page 19 Line 6: While noting that the 1 level has over-dispersion in the bin range 
13-22, the 23rd bin of 1 level + mask looks better than the 8 level + mask. Would 

https://scitools.org.uk/cartopy/docs/latest/citation.html


the over-dispersion of 8 level + mask at bin 23 be improved by having more 
members?  
 
The experiment with 8 levels and the precipitation mask in fact produces an 
underdispersive ensemble (notice the last bin is larger than the reference, 
meaning that there are too many observations falling above the ensemble 
range). 
By looking at Fig. 14, we can see that increasing the ensemble size decreases 
the underdispersion. Hence, yes, a larger ensemble size improves the dispersion 
of the ensemble​.​ We added a sentence about this to the corresponding 
paragraph in the manuscript. 
 

10.Page 22 Line 16: Other potential enhancements include i) use of satellite 
nowcast parameters based on EUMETSAT NWCSAF algorithms and products 
(e.g. CI,RDT) to predict the growth of storm cells; ii) use of dual-polarization 
radar data to enhance QPE and to detect hail, gusts etc. 
 
These suggestions are excellent examples of exciting research topics in which 
pysteps may prove useful as a computational tool and a development framework. 
However, i) represents an advanced application that arguably will be difficult to 
implement in pysteps in the short or medium term. For ii), we point out that it is 
not actually an enhancement of pysteps, but the input data. Referring to our 
response to General Comment 1., this is beyond the scope of pysteps. 
 

11.  Page 22 Line 21: Suggest also including SWIRLS Ensemble Rainstorm Nowcast 
(SERN) based on ROVER (​https://doi.org/10.3390/atmos8030048​). 
 
We added SERN to the bibliography with the corresponding reference.  
  

12.Page 22 Line 25: An obvious and crucial application of nowcasting system is to 
support the operations of rainstorms, thunderstorms and severe weather 
warnings. Suggest mentioning this also. 
 
Those applications can be considered to be part of the field of nowcasting, while 
that particular paragraph discusses the applications beyond the nowcasting. 
 
Nonetheless, we modified the introduction section to explicitly mention the 
support of severe weather warning operations (Page 2 lines 1-2). 
 

https://doi.org/10.3390/atmos8030048


13.Page 37 Figure 5: For the reliability diagram on the right, suggests also plotting 
out the data points used to define the curve if not too dense. 

 
Thank you for the suggestion. Unfortunately the number of data points (i.e., 
thresholds) is indeed too high to individually plot each one of them. 
 

14.Page 37 Figure 6: For the reliability diagram on the right, suggests also plotting 
out the data points used to define the curve if not too dense. 
 
See answer to comment 13. 

3. Technical Corrections 
 

1. Page 1 Line 14: “world meteorological organization” should read “World 
Meteorological Organization (WMO)”. 
Change made. 
 

2. Page 2 Line 32: “com-SWIRLS” should read “Com-SWIRLS”\ 
Change made  
 

3. Page 3 Line 1: “. . .by the Hong Kong Observatory” should read “. . .by the 
Regional Specialized Meteorological Centre (RSMC) for Nowcasting operated by 
the Hong Kong Observatory (HKO)”. 
Change made. 
 

4. Page 6 Line 3: Missing second term in equation (5)? 
We corrected the formatting problem (removed the break line). 
 

5. Page 13 Line 12: “For a reliable forecast” should read “For a perfectly reliable 
forecast”. 
Change made. 
 

6. Page 59 Table 1 Entry 1: Com-SWIRLS employs C++ for several time-critical 
modules, in addition to Python. 
Change made. 
 

7. Page 59 Table 1 Entry 1: Com-SWIRLS is free and open source for all National 
Meteorological and Hydrological Services (NMHS) under WMO. I understand that 



the authors are trying to divide the software into two groups, i.e. “free license” vs 
“open source”. Perhaps a footnote for Com-SWIRLS would make it clearer. 
As suggested, we now indicate Com-SWIRLS as open source and specify in a 
footnote that this applies to NMHS only. 

 
 
  



Reviewer #2:  
 
The manuscript deals with precipitation nowcasting and describes a package of 
programs designed for practical predictions as well as further investigations of 
forecasting techniques. The article consists of two main parts. In the first part, a brief 
description of the used methods is given, while in the second part, procedures that are 
ready for use are described. Basic verification and sensitivity analysis of some 
parameters of the applied methods are performed and results are shown. The article is 
very comprehensive and worth of publishing, however, I have several comments 
concerning the content that are listed below.  
 
We would like to thank reviewer #2 for the comments and suggestions.​ ​We have 
decided to split review #2 into a set of individual points and provided our responses 
accordingly. 

Comments: 
1. The article and especially its introduction is written in a too optimistic way that 

nowcasting can solve the prediction of severe weather and in this context, it is 
mentioned that current NWP models are not able to predict phenomena on 
convective scale. 
 
We updated the introduction to describe the advantages of extrapolation-based 
nowcasting vs NWP, replacing the discussion about the NWP accuracy.  
 
“Weather radars are ideally suited for providing the input data for 
extrapolation-based precipitation nowcasting at high resolution, namely spatial 
scales under 2 km and time ranges between 5 minutes and 3 hours (Berne et al., 
2004). Despite recent advances in numerical weather prediction (NWP, e.g. Sun 
et al., 2014), extrapolation-based nowcasting remains the primary approach at 
such space and time scales, typically outperforming NWP forecasts in the first 
2-5 hours, depending on the weather situation, domain and NWP model 
characteristics (e.g. Berenguer et al., 2012; Mandapaka et al., 2012; Simonin et 
al., 2017; Jacques et al., 2018).” ​Page 2, lines 6-11. 

 
 



 
2. In the introduction, a lead time of 6h for nowcasting is mentioned. However, in 

my opinion and based on my experience, the reality is different and reliability of 
precipitation forecast depends on the type of predicted precipitation mainly. 
Cases presented in the paper, if I can judge, are characterized by large rainfall 
areas, which, as a rule, can be sufficiently accurately predicted by 
extrapolation-based methods for several hours in advance. For this type of 
situations, however, NWP model predictions give also good results. Conversely, 
cases with isolated convective storms that according to me are not treated in the 
paper are very difficult to forecast by extrapolation methods reasonably, 
however, they may cause very dangerous local flash floods.  
 
Nowcasting is commonly defined as short-term forecast, generally for the next 
few hours. As such, the definition is independent of the meteorological situation 
or the forecasting method. For example, the world meteorological organization 
defines nowcasting as  “forecasting with local detail, by any method, over a 
period from the present to 6 hours ahead, including a detailed description of the 
present weather” (​https://library.wmo.int/doc_num.php?explnum_id=3795​, last 
access 2019/08/05).  
 
Nevertheless, we are aware that the type of precipitation and its predictability will 
have an influence on the quality of the forecast. The scope of the manuscript is 
limited to the description of an open-source library that provides access to 
state-of-the-art nowcasting methods and additional tools to facilitate the analysis 
and presentation of the results. A detailed analysis of the limitations of different 
nowcasting methods under different meteorological situations, or a side-by-side 
comparison between extrapolation and NWP forecasts, is indeed interesting but 
outside the scope of the paper. 
 
Finally, we would like to make the reviewer aware that our datasets also contain 
a quite important fraction of summer convective events, including isolated 
convection (see e.g. Table 8 for Switzerland). 
 

 
3. Moreover, I find it a pity that the authors did not try to verify the proposed 

methods for a continuous series of data, e.g. covering 3 months. I wonder if the 
proposed methods would produce as good results in such a case as they are 
presented in the paper. Some publications have indicated (e.g. Mejsnar et al., 
2018. Limits of precipitation nowcasting by extrapolation of radar reflectivity for 

https://library.wmo.int/doc_num.php?explnum_id=3795


warm season in Central Europe. Atmos. Res., 213, 288-301) that extrapolation of 
convective precipitation and also NWP model forecast is very difficult in inland 
areas. Although I do not require per forming additional tests or verifications, I still 
consider it fair to mention the known prediction problems in both the introduction 
and conclusions sections.  
 
As mentioned above, we aim at  describing an open-source and 
community-driven Python library, pysteps, that provides access to state-of-the-art 
nowcasting methods and additional tools to facilitate the analysis and 
presentation of the results. 
 
For clarity, we updated the last part of the introduction to make the scope more 
clear: 
 
“In this article, we present pysteps, an open-source and community-driven 
Python library for probabilistic precipitation nowcasting.” Page 3, Lines 8-9. 
 
The number of events included in the study might seem somewhat limited at first, 
but 10 precipitation events of 12 hours each represent for a given region a 
significant amount of precipitation compared to what could be expected over a 
randomly selected 3-month period.  
 
One should also consider that we provided results for four contrasting regions 
(Finland, Switzerland, continental United States and Australia), which arguably 
represent a wide range of climates and domain characteristics and therefore offer 
a robust assessment of the pysteps library. 
 

4. Besides, the applied technique based on application of FFT needs further 
additional comments. Is this technique reasonable in case of isolated convection, 
when a large majority of the area evinces no precipitation?  
 
The FFT approach is used in a number of well-known ensemble precipitation 
nowcasting techniques that are both found in the literature (e.g., Bowler et al., 
2006; Metta et al., 2009; Berenguer et al., 2011; Atencia and Zawadzki, 2014) 
and used operationally (e.g., Foresti et al., 2016). 
Our work, therefore, does not introduce any novelty or more scientific insight in 
this sense, but merely provides access to state-of-the-art nowcasting methods, 
thus enabling the investigation of scientific questions. In this sense, the limits of 
the FFT approach in case of isolated convection would certainly represent an 



interesting topic for future research in which pysteps could serve as a 
computational tool. 
 

5. Section 5.3 Line 29 Could you briefly describe what you mean by “localization”?  
 

We revised the first paragraph of Section 5.3 to improve the presentation and to 
make the main point more clear. That is, the nowcasting model is applied in small 
subdomains instead of the whole domain (which assumes spatial homogeneity of 
the precipitation field). 

 
6. Section 5.4 Line 10 You write: “Thus, our main hypothesis is that dynamic scaling 

properties are necessary to produce ensembles with realistic temporal evolution 
and dispersion of precipitation across spatial scales.” I am not sure whether I 
understand what you mean.  

 
“​Dynamic scaling” refers to a well-known relationship between spatial and 
temporal structures of rainfall (e.g., Venugopal et al., 1999). It represents the 
scale-dependence of the predictability of precipitation, that is, the observation 
that large scale structures are more predictable than small scale structures (e.g., 
convective cells). Dynamic scaling properties can be observed as a power-law 
relating the rate of temporal evolution (i.e., lifetime) to the spatial scale, as 
explained in Venugopal et al. (1999). In addition, the amount of perturbations 
added to the forecast field is inversely related to predictability via equation (6). 
We agree that this link between dynamic scaling and the ensemble dispersion 
was not well-explained in Section 5.4, line 10. Therefore, we rephrased the 
sentence as follows: 
 
“Thus, our main hypothesis is that dynamic scaling properties are necessary to 
produce a realistic temporal evolution (lifetime) of precipitation across spatial 
scales. Consequently, this would give correct ensemble dispersion because the 
standard deviation of the perturbations is inversely related to predictability via 
equation (6)”. 
 

7. Could you kindly add some comments on “realistic temporal evolution” and its 
consequences? Looking at animations (line 27), I agree that the cascade 
decomposition smooths and decreases precipitation. It seems to me that the 
model expects and forecasts dissipating of storms. However, this is realistic only 
under several specific conditions. Under other conditions, increase of 
precipitation can occur. In any case, the presented smoothed fields in the 



animation do not look very realistic to me and the fact that they provide better 
RMSE verification values is a simple result of the known general feature of 
RMSE.  
 
In the pysteps GitHub repo, we provided example animations (*.gif files) of 
different types of forecasts configurations 
(https://github.com/pySTEPS/pysteps-publication/tree/master/animations). 
Indeed, smoother forecasts, for example the ensemble mean (*_mean_*.gif), 
generally lead to lower RMSE. With “realistic temporal evolution” we referred to 
the one of the stochastic ensemble members (*_stoch_*.gif). The ensemble 
mean, which can also be produced using S-PROG, is not a realization of the 
future atmospheric state. It is merely a statistical summary, as could be the 
median or a quantile (e.g. 90%). 
 
To help the reader, we have specified that the realistic evolution refers to the 
ensemble members and not to the ensemble mean, which is of course smoother. 
 
Finally, without external information (e.g. satellite or NWP) or a detailed analysis 
of the impact of orography on the growth and decay of precipitation cells, the 
stochastic model cannot predict systematic growth and decay trends. It only 
produces precipitation fields with a realistic variability in space and time that 
adequately represent the forecast uncertainty. 
 
In case of the animation of one stochastic member 
(201609281600_stoch_8levels.gif), one should consider that this represents a 
single random realization and cannot provide general conclusions on growth and 
dissipation of individual storms, but merely provide one possible scenario.  

 
8. To sum up, I find the article and the software very useful but readers and 

especially users should be aware that any forecasting technique has also its 
weak points, at least at present. 
 
As suggested, we tried to better specify the limitations of extrapolation-based 
nowcasting. See our responses to the above comments. 
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