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Abstract. Vegetation fires influence global vegetation distribution, ecosystem functioning, and global carbon cycling. Specif-

ically in South America, changes in fire occurrence together with land use change accelerate ecosystem fragmentation and

increase the vulnerability of tropical forests and savannas to climate change. Dynamic Global Vegetation Models (DGVMs)

are valuable tools to estimate the effects of fire on ecosystem functioning and carbon cycling under future climate changes.

However, most fire-enabled DGVMs have problems in capturing the magnitude, spatial patterns, and temporal dynamics of5

burnt area as observed by satellites. As fire is controlled by the interplay of weather conditions, vegetation properties and hu-

man activities, fire modules in DGVMs can be improved in various aspects. In this study we focus on improving the controls of

climate and hence fuel moisture content on fire danger in the LPJmL4-SPITFIRE DGVM in South America and especially for

the Brazilian fire-prone biomes Caatinga and Cerrado. We therefore test two alternative model formulations (standard Nesterov

index and a newly implemented water vapor pressure deficit) for climate effects on fire danger within a formal model-data inte-10

gration setup where we estimate model parameters against satellite data sets of burnt area (GFED4) and above ground biomass

of trees. Our results show that the optimized model improves the representation of spatial patterns and the seasonal to inter-

annual dynamics of burnt area especially in the Cerrado/Caatinga region. In addition, the model improves the simulation of

above-ground biomass and the spatial distribution of plant functional types (PFTs). We obtained the best results by using the

water vapor pressure deficit (VPD) for the calculation of fire danger. The VPD includes, in comparison to the Nesterov index,15

a representation of the air humidity and the vegetation density. This work shows the successful application of a systematic

model-data integration setup, as well as the integration of a new fire danger formulation, in order to optimize a process-based

fire-enabled DGVM. It further highlights the potential of this approach to achieve a new level of accuracy in comprehensive

global fire modelling and prediction.
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1 Introduction

Fire in the Earth system is an important disturbance leading to many changes in the vegetation and has substantial impact on

biodiversity, human health and ecosystems (Langmann et al., 2009). Fire is responsible for ca. 2 Pg of carbon emissions, which

constitutes 20 % of global carbon emissions (Giglio et al., 2013; Werf et al., 2010). Fire-induced aerosol emissions and land

surface changes modify evapotranspiration and surface albedo and have therefore a crucial impact on global climate (van der5

Werf et al., 2008; Yue and Unger, 2018). Despite a tendency for globally declining burnt area (Andela et al., 2017; Forkel et al.,

2019b), more frequent and intense drought-periods lead to increasing fire-prone weather and surface conditions worldwide and

therefore fire danger (Jolly et al., 2015). Growing fire danger along with land-use change are increasing ecosystem’s vulnera-

bility, which could in turn shift entire regions into a less vegetated state (Silvério et al., 2013). To account for these effects, it

is extremely important to include well performing fire modules in Dynamic Global Vegetation Models (DGVMs).10

Especially in South America, tropical forests, woodlands and other ecosystems are vulnerable to increasing fire danger and

land use change (Cochrane and Laurance, 2008). This study focuses on the fire behavior in central-northern South America

and especially on the Brazilian biomes Caatinga and Cerrado, which are the most fire-prone regions in South America (Fig. 1).

Together with the Amazon rainforest they form an area of very high biodiversity and have a large impact on the global carbon-

cycle and the regional water cycle (Lahsen et al., 2016). Compared to the Amazon, the Cerrado and Caatinga are both less

Figure 1. Overview of the mean annual burnt area in Brazil from 2005-2015 (Werf et al., 2017; Giglio et al., 2013) and the biomes Amazonia,

Cerrado and Caatinga (IBGE, 2019; Harvard, 2019)

15

densely vegetated and drier biomes, but with very different vegetation and precipitation dynamics. The Cerrado is a savanna-

like biome with a mixture of shrubs, high grasses and dry forest parts. With a precipitation of ca. 1500 mm per year the Cerrado
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does experience a rainy season. The Caatinga, on the other hand, has a semi-arid climate with irregular rainfall between 500

and 750 mm per year, mostly within only a few months of the year. The vegetation is heterogeneous and characterized by

deciduous dry forest and shrubs (Alvares et al., 2013; Prado, 2003). The different vegetation types of the Caatinga and the

Cerrado lead to different fire spread, fire intensity, fire resistance and fire mortality properties. While within the Cerrado fire is

a frequent event and the plants are mostly adapted to it (70 % of burnt area in Brazil is within the Cerrado, Moreira de Araújo5

et al., 2012), the Caatinga has a lower fire intensity and fire spread due to a lower biomass, available for fuel. Such variability

in the vegetation and dead fuel composition, within and between biomes, poses a challenge to global fire models to correctly

simulate observed fire patterns for a variety of biomes. Both, the Caatinga and the Cerrado depend on a strict equilibrium of

fire-vegetation-climate feedbacks (Lasslop et al., 2016), which is threatened to be disturbed by human impact through climate

change and land use change (Beuchle et al., 2015). While the Amazon is the focus of various national and international conser-10

vation efforts and at least by law well protected, the Cerrado is currently over-exploited by the agribusiness and its importance

for regional climate, biodiversity and the water cycle is often neglected (Lahsen et al., 2016). In particular the disturbance

of increasing fire regimes by climate change and land-use change might accelerate biome degradation. These effects on the

Cerrado might also impact the Amazon rainforest by shifting the position of the savanna-forest biome boundary towards forest,

putting the functioning of the Amazon rain forest at risk (Chambers and Artaxo, 2017). Parts of the Cerrado are also itself15

vulnerable to increasing fire regimes, and might shift to a less vegetated state, similar to the Caatinga (Hoffmann et al., 2000).

To model these feedback processes and to study the range of biome-stability under certain drought-induced perturbations, a

realistic fire representation in climate and vegetation models is essential. However, modelling fire behavior of the Brazilian

Cerrado and Caatinga presents a huge challenge.

The fire occurrence depends on many interconnected parameters as humidity, precipitation, temperature, ignition sources (light-20

ning and human) and windspeed, but also on fuel load, fuel moisture and the adaption of plant traits to fire (Keeley et al., 2011),

which makes the development of fire models a complex task (Forkel et al., 2019a; Hantson et al., 2016; Lasslop et al., 2015;

Krawchuk and Moritz, 2011; Jolly et al., 2015). Global fire modelling is done either by empirical models (e.g. Thonicke et al.,

2001; Knorr et al., 2016; Forkel et al., 2017) or by process-based models (e.g. Venevsky et al., 2002; Thonicke et al., 2010). Em-

pirical fire models are simplified statistical representations of fire processes and are based on empirical relationships between25

variables (e.g. soil moisture and fire occurrence). Process-based fire models attempt to simulate fire via explicit process-based

relations: Fire ignitions are calculated by taking into account lightning flashes as natural sources and human ignitions. The

chance of an ignition to become a spreading fire is then determined by the fire danger index. Sophisticated fire models calcu-

late the rate of spread by taking into account wind speed and then translate these results into an area burnt, fuel consumption

and fire carbon emissions (e.g. Thonicke et al. (2010); see Hantson et al. (2016) for an overview of global fire models).30

Weather conditions control the moisture content of fuels and the danger of fire to ignite and spread. Hence the simulation of

fire danger plays an important role to simulate the occurrence of fire within global process-based fire models (Pechony and

Shindell, 2009). Temperature, precipitation, humidity and vegetation-related variables are often used to compute fire weather

indices and hence to estimate the risk of ignitions to become a spreading fire (Chuvieco et al., 2010). Various fire weather

indices are used within operational fire danger assessment systems (e.g. Canadian Fire Weather index, FWI (Wagner et al.,35
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1987), the Keetch Byram Drought Index (Keetch and Byram, 1968), the Angström Fire Danger Index (Arpaci et al., 2013),

and the Nesterov index (Venevsky et al., 2002)). However, regional studies show that fire weather indices tend to have differ-

ent predictive performances for fire occurrence (Arpaci et al., 2013). Hence, the performance of different fire weather indices

should be ideally tested in order to accurately represent fire danger in DGVMs. However, not all fire weather indices can be

easily adapted for global fire models because they require input variables that are not available within a DGVM framework.5

Hence a fire danger index for a DGVM should be as complex as necessary but still relatively easy to implement. As a result,

the relatively simple Nesterov index has been widely used within global fire models (Venevsky et al., 2002; Thonicke et al.,

2010).

Here, we aim to improve the simulated occurrence of fire (i.e. burnt area) in the LPJmL4-SPITFIRE model for South America

and in particular for the fire-prone biomes Cerrado and Caatinga. We aim to evaluate the performance of two alternative fire10

danger indices within SPITFIRE based on the already implemented Nesterov index (Venevsky et al., 2002) and the newly

implemented water vapor pressure deficit (VPD thereafter, Pechony and Shindell, 2009; Ray et al., 2005). Furthermore, we

apply a formal model-data integration framework (LPJmLmdi, Forkel et al., 2014) to estimate model parameters that control

fire danger, fire behavior, fire resistance and mortality against satellite-based data sets of burnt area and above-ground biomass

(Fig. 2). Our approach is likely to improve the representation of spatial-temporal variations in fire behavior in different biomes15

to enable a much better modelling of the impact of climate change on fire-vegetation interactions in the current century.

2 Materials and Methods

2.1 The coupled vegetation-fire model LPJmL4-SPITFIRE

2.1.1 LPJmL 4.0

The LPJmL 4.0 model (Lund-Potsdam-Jena managed Land, Schaphoff et al., 2018a, b), is a well established and validated20

process-based DGVM, which globally simulates the surface energy balance, water fluxes, carbon fluxes and stocks, and natu-

ral and managed vegetation from climate and soil input data. LPJmL simulates global vegetation distribution as the fractional

coverage of plant functional types (PFT), which is called foliage projective cover (FPC), and managed land as fractional cov-

erage of crop functional types (CFT). The establishment and survival of different PFTs is regulated through bioclimatic limits

and effects of heat, productivity and fire on plant mortality. Therefore, it enables LPJmL to investigate feedbacks, for exam-25

ple between vegetation and fire. In standard settings, which are also used here, the model operates on the grid of 0.5◦× 0.5◦

latitude-longitude with a spinup time of 5000 years, repeating the first 30 years of the given climate data set.

Since its original implementation by Sitch et al. (2003), LPJmL has been improved by a representation of the water balance

(Gerten et al., 2004), a representation of the agriculture (Bondeau et al., 2007), and new modules for fire (Thonicke et al.,

2010), permafrost (Schaphoff et al., 2013) and phenology (Forkel et al., 2014).30

4



Figure 2. Schematic overview of the model-data integration approach to estimate parameters of LPJmL4-SPITFIRE against satellite-based

data sets of burnt area and above-ground biomass

2.1.2 SPITFIRE

SPITFIRE (SPread and InTensity of FIRE, Thonicke et al., 2010) is a process-based fire module, used in various vegetation

models (e.g. Lasslop et al., 2014; Yue and Unger, 2018), including LPJmL4. We describe here its main features, which are

published in Thonicke et al. (2010). SPITFIRE calculates fire disturbance by simulating the ignition, the danger, the spread and

the effects of fire separately. As ignition sources SPITFIRE considers human ignition and lightning flashes. Human ignitions5

(nh,ig) are calculated as a function of population density:

nh,ig = PD · k(PD) · a(ND)/100, (1)

where

k(PD) = 30.0 · exp(ph ·
√
PD). (2)

PD is the human population density (individuals km−2) and a(ND) (ignitions individual−1 day−1) describes the inclination10

of humans to cause fire ignitions (Eq. 3 and 4 in Thonicke et al., 2010). ph is a parameter, which is set to -0.5 in Thonicke

et al. (2010). This relationship assumes that human ignitions are lowest on very low populated regions and on high populated

regions through a higher level of urbanization and landscape fragmentation. The ignition is highest for a medium-small popu-

lation density. Lightning-caused ignitions are prescribed by lightning data from the OTD/LIS Gridded Climatological data set
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(Christian et al., 2003), assuming that 20 % of the flashes reach the ground and 4 % of cloud-to-ground strikes can start a fire.

In the study area of South America human ignitions are by far the most dominant ignition source, due to missing lightning in

the dry season.

Fire danger is by default computed by using the Nesterov index which accounts for the maximum and dew point temperatures

as well as scaling factors for different PFTs on a daily time step. In the following section, we describe the calculation of the5

fire danger indices in detail (Sect. 2.2). Fire duration tfire (min) is calculated as a function of the fire danger index, assuming

that fires burn longer under a high fire danger:

tfire =
241

1 + 240 · exp(pt ·FDI)
, (3)

where pt is set to -11.06 in Thonicke et al. (2010). The maximum fire duration per day is 240 minutes.

The calculation of the forward rate of spread ROSf,surface (m min−1) is based on the Rothermel equations (Rothermel, 1972;10

Pyne et al., 1996; Wilson, 1982):

ROSf,surface =
IR · ξ · (1 + Φw)

ρb · ε ·Qig
, (4)

where IR is the reaction intensity, ξ the propagation flux ratio, Φw a multiplier that accounts for the effect of wind, ε the

effective heating number, Qig the heat of pre-ignition and ρb the fuel bulk density (Eq. 9 in Thonicke et al., 2010). ρb (kg

m−3) is a PFT-dependent parameter and describes the density of the fuel, which is available for burning. It is weighted over15

the different fuel classes. Hence, a changing PFT distribution has an impact on ROSf,surface.

The simulated fire ignitions, fire danger and fire spread are then used to calculate the burnt area, fire carbon emissions, and plant

mortality. Plant mortality depends on the scorch height (SH) and the probability of mortality due to crown damage Pm(CK).

SH describes the height of the flame at which canopy scorching occurs. It increases with the 2/3 power of the surface intensity

Isurface:20

SH = F · I0.667surface, (5)

where F is a PFT-dependent parameter. Assuming a cylindrical crown, the proportion CK affected by fire is calculated as:

CK =
SH −H +CL

CL
, (6)

where H is the height of the average woody PFT and CL the crown length. The probability of mortality Pm(CK) due to crown

damage is then calculated by:25

Pm(CK) = rCK ·CKp, (7)

where rCK is a PFT depended resistance factor between 0 and 1, and p in the range of 3 to 4. Disturbance by fire mortality has

a large impact on the vegetation dynamics, which are calculated within LPJmL. SPITFIRE further includes a surface intensity

threshold (106, fraction burnt area per grid cell), which describes the threshold of the possible area burnt below which the

surface intensity is set to zero and hence burnt area, emissions and fuel consumption is set to zero.30
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SPITFIRE considers anthropogenic effects on fire by taking into account human ignitions but does not account for fire sup-

pression. Only wildfires occurring in natural vegetation are simulated. Fire on managed land like agriculture or pasture areas

is not implemented, which has to be taken into account if simulated burnt area is compared with satellite observation.

Furthermore, we introduced a small technical change in the LPJmL4 interaction with SPITFIRE compared to the original

SPITFIRE implementation: In the version 4.0 of LPJmL the fire litter routine calculates the leaf and litter carbon pools in a5

daily time step. Since the LPJmL tree allocation works at a yearly time step, this implementation leads to an incorrect LPJmL4-

SPITFIRE interaction. We now split the fire-litter routine into two parts; the first one allocates burnt matter into the litter at a

daily time step without recalculating the pools and the second one calculates the leaf and root carbon pools at a yearly time step.

2.2 Fire danger indices10

The fire danger index (FDI) is a key parameter within process-based fire models such as SPITFIRE. The FDI determines the

probability and the intensity of a spreading fire, which impacts fire behavior.

2.2.1 Nesterov index-based fire danger index (FDINI )

The fire danger index within SPITFIRE is based on the daily (d) calculated Nesterov Index NI(d) (Venevsky et al., 2002), which

is widely used in numeric fire simulations. The NI is a cumulative function of daily maximum temperature Tmax(d)(◦C) and15

dew-point temperature Tdew(d)(◦C) and set to zero at a precipitation ≥ 3 mm or a temperature ≤ 4 ◦C:

NI(d) =
∑

Tmax(d) · (Tmax(d)−Tdew(d)), (8)

Tdew = Tmin(d)− 4. (9)

The resulting fire danger index has been calculated as in Schaphoff et al. (2018a) (slightly different compared to Thonicke et al.20

(2010)) by taking into account the NI as measure for weather conditions and a PFT-dependent scaling factor αNIi :

FDINI =max

(
0,1− 1

me
exp

(
−
∑
αNIi

n
·NI

))
, (10)

where n is the number of PFTs and me the moisture of extinction, which is a PFT-dependent parameter and is weighted over

the litter amount. We will use the scaling factors αNIi in the parameter optimization (Sect. 2.4).

25

2.2.2 Vapor pressure deficit-based fire danger index (FDIV PD)

We implemented a new fire danger index, based on the water vapor pressure deficit (VPD). The VPD describes the difference

of the saturation water vapor pressure es and the actual water vapor pressure in the air. For the parameterization of the VPD
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we used an approach based on Pechony and Shindell (2009):

V PD ∝ 10Z(T )(1−RH/100), (11)

where T is the air temperature, RH the relative humidity and Z the Goff-Gratch equation (Goff and Gratch, 1946) to calculate

the saturation vapor pressure. The flammability F at time step t for each grid cell can then be expressed as:

F (t) = 10Z(T (t))

(
1− RH(t)

100

)
V D(t)e−cRR(t), (12)5

where VD is the vegetation density, R the total precipitation in mm/day and cR is a constant factor (cR = 2 day/mm). Here

we used the simulated FPC from LPJmL4 as a proxy for the VD. The soil is a natural buffer for drought periods and heavy

rainfall events. In the Nesterov index this was taken into account by the cumulative nature of this index. Since the VPD-based

fire danger index is not cumulative, this buffering effect is taken into account by taking the monthly mean of the precipitation.

In doing so we avoid unrealistic high flammability fluctuations in time steps with isolated events of very low or very high10

precipitation (R).

Based on this implementation in SPITFIRE, the resulting FDI was much smaller than the original FDINI . Hence, we scaled

the VPD up with a PFT-dependent scaling factor αV PDi , weighted over the corresponding FPC:

FDIV PD =

∑
αV PDi ·FPCi∑

FPCi
·F (t). (13)

αV PDi
for the FDIV PD was not included in (Pechony and Shindell, 2009), but is important in order to allow different fire15

responses for different tree and grass types. We will use the scaling factors αV PDi
in the parameter optimization (Sect. 2.4).

In comparison to the NI, the FDIV PD requires more climate variables as input as it uses relative humidity and vegetation cover

as additional fire-relevant variables. Vegetation cover has a direct link to fire risk by providing the number of available fuel for

burning. According to many studies (e.g. Ray et al., 2005; Sedano and Randerson, 2014; Seager et al., 2015) the FDIV PD is

a very accurate fire danger index with a high correlation with fire occurrence, while still being relatively easy to implement in20

a global fire model.

The general behavior of the two indices as modelled by LPJmL in dependence of relative humidity and temperature is shown

in Fig. 3. The Nesterov index shows a strong but very localized maximum for high temperatures and a small humidity. Hence a

spreading fire is only possible in a very small climate range (here ca. from 25° Celsius and a relative humidity smaller than 0.5).

The VPD on the other hand shows a less pronounced maximum but a medium fire danger also for wetter and colder regions.25

The slope of towards lower VPD values is also smaller compared to the Nesterov index. Especially in regions with temperatures

colder than 20°C and a relative humidity smaller than ca. 0.6 a fire is still possible. This might increase the area in which fires

can occur compared to the Nesterov index, which could be an important improvement, enabling SPITFIRE to simulate more

fire in wetter and colder regions. The calculated VPD and NI values shown in Fig. 3 are based on a LPJmL-SPITFIRE run, and

thus the influence of vegetation distribution on both fire danger indices.30
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Figure 3. Dependence of the simulated fire danger index on monthly mean relative humidity and temperature for (a) the Nesterov-based

index and (b) the VPD-based index. Both indices were calculated with monthly data for the years 2000-2010.

2.3 Model input data

LPJmL4-SPITFIRE requires input data on daily air temperature, precipitation, long-wave and shortwave downward radiation,

wind and specific humidity, which are taken from the NOAH Global Land Assimilation System (GLDAS, Rodell et al., 2004).

The data has a spatial resolution of 0.25◦× 0.25◦ and the time step is 3 hours. We regridded and aggregated the data set to

the LPJmL resolution of 0.5◦× 0.5◦ and to a daily time step. We used the GLDAS 2.0 for the years 1948-1999 and the ver-5

sion GLDAS 2.1 for the years 2000-2017. GLDAS 2.1 uses multiple satellite- and ground-based observational data as well as

advanced land surface modelling and data assimilation techniques. GLDAS 2.0 is forced entirely with the Princeton meteoro-

logical forcing data (Civil and Environmental Engineering/Princeton University, 2006). Because LPJmL4 requires at least 30

years of climate data for its spin-up (Sect. 2.1.1), the time span covered by GLDAS 2.1 is too short. To run the model, we used

both climate data sets, but used the years 2003-2013 from GLDAS 2.1 for the optimization and 2005-2015 for the evaluation10
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period.

Furthermore, LPJmL4-SPITFIRE is forced with gridded constant soil texture (Nachtergaele et al., 2009) and annual informa-

tion on land use from Fader et al. (2010). Atmospheric CO2 concentrations are used from Mauna Loa station (Quéré et al.,

2015) and applied globally. The population density is taken from Goldewijk et al. (2011) and the lightning flashes are taken

from the OTD/LIS satellite product (Christian et al., 2003).5

2.4 Model optimization

To estimate parameters of LPJmL4-SPITFIRE, we aimed to calibrate model results against satellite observations of burnt area

(GFED4: Giglio et al., 2013; Werf et al., 2017). However, as fire occurrence and spread impact and depend on vegetation

productivity, hence fuel load, we wanted to ensure to not over-fit LPJmL4 against burnt area but to additionally achieve a

realistic vegetation distribution. Therefore, we additionally included a satellite-derived data set on above-ground biomass of10

trees (AGB, Avitabile et al., 2016) in the optimization. We combined burnt area and AGB with the corresponding model

outputs within a joint cost function and applied a genetic optimization algorithm to estimate model parameters (Fig. 2). The

implementation of the genetic optimization algorithm (GENetic Optimization Using Derivatives (GENOUD), Mebane and

Sekhon, 2011) for LPJmL is described in Forkel et al. (2014). The used cost function is based on the Kling-Gupta efficiency

(KGE), which is the Euclidean distance in a three-dimensional space of model performance measures that account for the bias,15

ratio of variance and correlation between simulations and the observations. Gupta et al. (2009) showed that the KGE performs

in an optimization setup is better than, e.g., the Nash-Sutcliffe efficiency (and hence MSE). We extended the KGE by defining

it for multiple data sets d (i.e. burnt area and AGB):

Cost=

√√√√ N∑
d=1

(
śd
ód

− 1

)2

+

(
σs,d

σo,d
− 1

)2

+ (r(sd,od)− 1)2 (14)

where ś and ó are mean values (bias component) over space (i.e. different grid-cells) and time (e.g. months) of simulations s20

and the observations o, respectively. σs and σo are variances (variance component) and r is the Pearson correlation coefficient

over space and time. The optimization was performed for 40 grid-cells in South America to represent a variety of fire regimes

(Fig. 2). We selected the grid cells manually to cover active fire regions (either in the model or in the evaluation data), specif-

ically in the Cerrado and Caatinga. We selected a high density of grid cells in the Caatinga region to improve the very poor

model performance in this region. To make sure that the model performance in the Caatinga and Cerrado was not achieved at25

the cost of a poor performance in other areas, we also additionally selected some cells in areas where initial fire modeling gave

good results, as well as in areas where minimal or no fire occurs (central Brazilian Amazon). After inspection of the results,

minor adjustments were made and the selection of the grid cells was modified to account for neglected regions (which showed

worsening of the model performance). These initial analysis actually demonstrate that the choice of grid cells is important

for the model optimization and requires the development of a more thorough selection method in future model optimization30

applications.

Several parameters of LPJmL4-SPITFIRE were included in the optimization that cover different fire processes (see Tab. 2):

ignition (human ignition parameter ph, Eq. 2), fire danger (scaling factors FDI (αNIi and αV PDi ), Eq. 10 and 13), fire spread

(fire duration pt, Eq. 3), fuel bulk density (ρb, Eq. 4), surface intensity threshold and fire effects (scorch height parameter F,
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Eq. 5; crown mortality parameter rCK, Eq. 7). While pt, ph and the surface intensity threshold are global parameters (for all

PFTs), the others were optimized for each PFT separately. Since we focus here on tropical South America, we used tropical

broadleaved evergreen (TrBE), tropical broadleaved raingreen (TrBR) and tropical herbaceous (TrH) PFTs for the optimiza-

tion.

In genetic optimization algorithms, each model parameter is called an individual with a corresponding fitness, which represents5

the cost of the model against the observations. At the beginning of the optimization process, the GENOUD algorithm creates

a generation of individuals based on random sampling of parameter sets within the prescribed parameter ranges. After the

calculation of the cost of all individuals of the first generation, a next generation is generated by cloning the best individuals,

by mutating the genes or by crossing different individuals (Mebane and Sekhon, 2011). This results, after some generations, in

a set of individuals with highest fitness, i.e. parameter sets with minimized cost. To find an optimum parameter set also used10

the BFGS gradient search algorithm (named after the authors Broyden, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970)

within the GENOUD algorithm. An optimized parameter set of the BFGS algorithm is used as individual in the next generation.

We were applying the GENOUD algorithm with 20 generations and a population size of 800 individuals per generation, which

corresponds to 16000 single model runs. We decided on this amount of iterations, because the cost kept almost constant in the

last iterations and the parameter values did not change to the 6th digit, beyond which changes are not really relevant for model15

applications. During the optimization we ran the model parallel for each grid cell (40 grid cells and CPU’s, 3.2GHz) and had a

total optimization time of ca. 24 hours.

The comparison of the two presented fire danger indices is the main objective of this study. Hence the optimization of the

PFT-dependent FDI scaling factors αNIi and αV PDi
is crucial and obligatory for the VPD because of no prior values. Accord-

ingly, we conducted two different optimization experiments using LPJmLmdi: First, using a FDI based on the VPD (VPDoptim20

hearafter) and secondly using the a FDI based on the NI (NIoptim hereafter). Both resulting parameter sets were then used

for LPJmL4 runs and were compared to the unoptimized original model version using the NI (NIorig hereafter) and various

evaluation data sets.

2.5 Evaluation data25

We used burnt area from the global fire emission database (GFED4; Giglio et al., 2013; Werf et al., 2017), in the model

optimization and to evaluate model results. The global data set is available at a resolution of 0.25◦× 0.25◦ in a monthly time

step from 1997 until 2016. The GFED burnt area product is based on the 500 m Collection 5.1 MODIS direct broadcast (DB)

burnt area product (MCD64A1, after 2001). We used data for the years 2003-2013 in the optimization in order to not include

potential inconsistencies between the GLDAS 2.0 and 2.1 climate data sets or between burnt area observations within GFED30

that originate from different satellite sensors. The GFED product comes with a stratification of burnt area by land cover from

the MODIS land cover map in the resolution of 500 m (Giglio et al., 2013). As LPJmL does not simulate fire on managed lands,

we excluded burnt area on cropland classes from model-data comparisons. Due to lack of data we however did not account for

the proportion of pastures. To constrain the simulated vegetation distribution, we used the AGB data set from Avitabile et al.
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(2016). This data set is approximately representative for the late 2000s and therefore we compared it against simulated AGB

for the years 2009-2011. We regridded all data set to a 0.5◦× 0.5◦ resolution. In addition, we used maps of PFTs as derived

from the ESA CCI land cover map V2.0.7 (Li et al., 2018; Forkel et al., 2014).

2.6 Evaluation metrics

To quantify the performance of the model output, we applied the Pearson Correlation between two time series, the normalized5

mean square error (NMSE; Kelley et al., 2013) and the Willmott coefficient of agreement (W; Willmott, 1982) to describe

differences between the model simulation and the reference data sets. The NMSE is calculated by:

NMSE =

∑N
i=1(yi−xi)2∑N
i=1(xi− x̄)2

(15)

where yi is the simulated and xi the observed value in the grid cell i. x̄ is the mean observed value. The NMSE is zero

for perfect agreement between simulated and modelled results, 1.0 if the model is as good as using the observed mean as a10

predictor and larger than 1.0 if the model performs worse than that. We chose the NMSE to represent and compare the model

errors, as it has a squared error term, which puts a stronger emphasis on large deviations between simulations and observations

as compared to a linear term, and due to its normalization it is comparable across different parameters. Especially for fire

simulations we have a relatively large deviation between simulations and observations.

The Willmott coefficient of agreement is given by:15

W = 1−
∑N

i=1(yi−xi)2 ·Ai∑N
i=1(|yi− x̄|+ |xi− x̄|)2 ·Ai

(16)

which additionally accounts for the area weight Ai of the grid cell i. The Willmott coefficient is a squared index, where a value

of 1 stands for perfect agreement between simulated and modelled runs and gets smaller for worse agreements with a minimum

of 0. Unlike the coefficient of determination, the Willmott coefficient is additionally sensitive to biases between simulations

and observations.20

3 Results

3.1 Performance of optimized fire danger index formulations

Overall, the yearly burnt area simulated by the standard SPITFIRE model (using the original Nesterov index, NIorig) showed

poor simulation results over South America as compared to the GFED4 evaluation data set (Fig. 4 a and b: NMSE=1.80,

W=0.27). The average yearly burnt area (without croplands) for South America was with ca. 14 million ha about 25 % smaller25

than the observed burnt area with 19 million ha in the shown period from 2005-2015. The spatial pattern of the modelled burnt

area agreed well with the GFED4 data in the region of the Cerrado that is close to the Caatinga border, while the fires in other

semi-arid regions of the continent were underestimated. For example, simulated fire is underestimated in the savanna-areas

in the northern part of South America (on the Columbian-Venezuelian border) even though there is a strong signal visible in
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Figure 4. Yearly burnt area over a mean from 2005-2015 as fraction per cell. (a) GFED4 evaluation data of burnt area excluding crops and

simulated burnt area by SPTIFIRE using the (b) NIorig version, (c) VPDoptim version, (d) NIoptim version

the satellite observations. The biomes Caatinga and Cerrado, which are of special interest in this study, showed very different

results: while fire in Caatinga was overestimated, it was underestimated in the Cerrado.

The optimized version using NIoptim (Fig. 4 d), led to an overall decrease of fire, with a slight improvement of NMSE (1.09) as

compared to NIorig and a worse Willmott coefficient of 0.08. While the overestimation of fire in Caatinga was reduced, all the

fires across South America also have decreased significantly, which led to a general underestimation of fire by 90 % (2 million5

ha). The optimized version, using VPDoptim (Fig. 4 c), clearly improved the model performance, mainly by shifting much

of the simulated burnt area from the sparsely vegetated Caatinga towards the Cerrado region (NMSE=0.82 and W=0.56). In

addition, by using VPDoptim, the model results also showed fire occurrence in northern South America, where fire was not at

all or only minimally simulated when using NIoptim or NIorig. The total burnt area was in this model version ca 20 % smaller

than the evaluation data set (16 million ha).10

The burnt area time series from 2005 to 2015 provides a more detailed view on the model performance for the fire-prone

Cerrado and Caatinga region (Fig. 5). While model performance was relatively good for the Cerrado region with NIorig

(NMSE=0.3, W=0.89, R2=0.78), the simulated burnt area was strongly overestimated in the Caatinga region throughout the

whole period (NMSE=327.82, W=0.14, R2=0.59). After the optimization of the NI, the model performance indeed improved

for the Caatinga (NMSE=1.07, W=0.73, R2=0.31), but at the same time the performance for the Cerrado declined (NMSE=1.07,15

W=0.36, R2=0.4). On the other hand VPDoptim showed an improved fire representation compared to the standard settings in

the Cerrado (NMSE=0.27, W=0.9, R2=0.8) as well as in the Caatinga (NMSE=15.2, W=0.46, R2=0.56). Even though fire in

the Caatinga was still overestimated, the NMSE decreased by a factor of six.
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Figure 5. Time-series of monthly burnt area from 2005 - 2015 simulated by SPITFIRE (red lines) compared to GFED4 evaluation data

(blue lines) for: (a) The Cerrado region, using NIorig . (b) The Caatinga region, using the NIorig . (c) The Cerrado region, using NIoptim.

(d) The Caatinga region, using NIoptim. (e) The Cerrado region, using VPDoptim. (f) The Caatinga region, using VPDoptim. Note the

logarithmic scale for the Caatinga, which was applied in order to account for the large differences between the different model versions (for

a non-logarithmic version see Fig. A6).

Overall, the total amount of burnt area in the Cerrado was for all three model versions smaller than in the evaluation data

set. Fire occurrence in the Caatinga was, on the other hand, largely overestimated by the NIorig and the VPDoptim version.

Just in the NIoptim version the burnt area of the Caatinga is in the same order of magnitude as the evaluation data set, which

also led, however, to a large underestimation in the Cerrado (Tab. 1 and Fig. 4). Also the Amazonia region mostly improved

by using the VPDoptim version (Tab. 1, Fig. A3). The R2 and the Willmott coefficient improved, while the NMSE increased5

slightly. With the Nesterov index fire was strongly underestimated in the Amazon region, while the optimized VPD fixes this

underestimation. The fire is only modelled (and also observed, see Fig. 4) at the edges to the Amazon, where wood density is

lower and deforestation takes place. In the closed continuous forest area towards the center of the Amazon almost no fire is

observed and neither modelled. The total burnt area increased from 0.7 million ha to 4.8 million ha (for VPDoptim) , which is

now a bit overestimated to the observed burnt area of 3.4 million ha. Using the NIoptim all error metrics as well as the total10

burnt area decreased.
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Table 1. Comparison of the burnt area results in terms of NMSE, the Willmott coefficient of agreement and the sum (in ha per year) between

NIorig , VPDoptim, NIoptim and the GFED evaluation data

Region NMSE Willmott Sum

Spatial - South America

GFED 1.9 · 107

NIorig 1.80 0.27 1.4 · 107

VPDoptim 0.82 0.56 1.6 · 107

NIoptim 1.09 0.08 0.2 · 107

Temporal - Cerrado

GFED 9.2 · 106

NIorig 0.30 0.89 5.2 · 106

VPDoptim 0.27 0.90 6.4 · 106

NIoptim 1.07 0.36 0.6 · 106

Temporal - Caatinga

GFED 0.4 · 106

NIorig 327.82 0.14 6.0 · 106

VPDoptim 15.2 0.46 1.6 · 106

NIoptim 1.07 0.73 0.3 · 106

Temporal - Amazonia

GFED 3.4 · 106

NIorig 0.83 0.56 0.7 · 106

VPDoptim 0.93 0.83 4.8 · 106

NIoptim 1.22 0.32 0.02 ·106

3.2 Optimized model parameters

Seven fire-related parameters were optimized, in order to improve the fire representation in the LPJml4-SPITIFRE model. Here

we compare the optimized parameters for the different model versions in order to evaluate and discuss parameter variability and

changes. Table 2 shows all parameters, used for the optimization, their lower and upper boundary and the resulting optimized

value. Since the FDI directly controls the amount of modelled fire, the FDI scaling factors for the different PFTs are central5

for this analysis. For both optimization experiments the boundaries were, hence, set rather generously within one magnitude of

the original value. In the NIoptim experiment, all scaling factors generally decreased compared to the standard values used for

NIorig. Here, TrH displayed the smallest scaling factor (9.39 · 10−6), followed by TrBE (2.48 · 10−5) and TrBR (4.76 · 10−5).

Since the VPD is a newly implemented fire danger index, we have no standard values to compare the optimized scaling factors

with. Here, the TrBE showed the largest value (22.41), ca. 20 times as large as the TrBR (1.21) and TrH (1.13) (Tab. 2).10
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Table 2. All optimized parameters with their standard values, the upper and lower boundary of the parameter ranges and the resulting

optimized value including parameter for specific PFTs and global parameter, which have the same value for all PFTs. All parameters exept

ρb have no unit.

Parameter PFT Standard value (as in

Thonicke et al., 2010)

Lower

bound.

Upper

bound.

After optimiza-

tion

NIoptim
scaling factor FDI αNIi TrBE 3.34 · 10−5 7 · 10−6 1.33 · 10−4 2.4885 · 10−5

scaling factor FDI αNIi TrBR 3.34 · 10−5 7 · 10−6 1.33 · 10−4 4.7649 · 10−5

scaling factor FDI αNIi TrH 6.67 · 10−5 7 · 10−6 1.33 · 10−4 9.3949 · 10−6

fire duration parameter pt all PFTs -11.06 -13 -9 -9.0011

scorch height parameter F TrBE 0.1487 0.01 0.6 0.1282

scorch height parameter F TrBR 0.061 0.01 0.6 0.0752

crown mortality parameter rCK TrBE 1.0 0.5 1 0.5030

crown mortality parameter rCK TrBR 0.05 0 0.5 0.4038

fuel bulk density ρb (kg m−3) TrBE 25.0 22.5 27.5 26.6473

fuel bulk density ρb (kg m−3) TrBR 13.0 11.7 14.3 13.1896

fuel bulk density ρb (kg m−3) TrH 2.0 1.8 2.2 2.0019

human ignition parameter ph all PFTs -0.5 -0.6 -0.4 -0.5426

surface intensity threshold all PFTs 10−6 10−7 10−5 1.0317 · 10−6

VPDoptim

scaling factor FDI αV PDi TrBE - 1 50 22.4181

scaling factor FDI αV PDi TrBR - 1 50 1.2135

scaling factor FDI αV PDi TrH - 1 50 1.1299

fire duration parameter pt all PFTs -11.06 -13 -9 -11.3753

scorch height parameter F TrBE 0.1487 0.01 0.6 0.1930

scorch height parameter F TrBR 0.061 0.01 0.6 0.0799

crown mortality parameter rCK TrBE 1.0 0.5 1 0.9983

crown mortality parameter rCK TrBR 0.05 0 0.5 0.4801

fuel bulk density ρb (kg m−3) TrBE 25.0 22.5 27.5 22.5923

fuel bulk density ρb (kg m−3) TrBR 13.0 11.7 14.3 13.3750

fuel bulk density ρb (kg m−3) TrH 2.0 1.8 2.2 1.8944

human ignition parameter ph all PFTs -0.5 -0.6 -0.4 -0.5332

surface intensity threshold all PFTs 10−6 10−7 10−5 3.6317 · 10−6
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Figure 6. Relative uncertainty of model parameters after optimization for (a) NIoptim and (b) VPDoptim. The relative uncertainty is the ratio

of the uncertainty after the optimization (range of all parameter sets with low cost, below the 0.05 quantile) divided by the uncertainty before

the optimization (range of the parameters for the optimization). Low and high values of relative uncertainty indicate strongly and weakly

constrained parameters, respectively. SIT denotes the surface intensity threshold. PFT-dependent parameters are grouped with the same color.

In case of the other optimized parameters the boundaries were set smaller in order to decrease the possibility that a large

error in the estimation of several parameters would lead to a better overall cost in the optimization procedure. The human

ignition parameter became smaller for both optimizations, which led to a smaller amount of human ignitions (from -0.5 to

-0.54 in NIoptim and -0.53 in VPDoptim). The fuel bulk density increased for all three tropical PFTs in the NIoptim version,

while for VPDoptim the fuel bulk density of the TrBE and TrH PFTs decreased and for the TrBR increased. For the NIoptim5

version, the fire duration parameter (pt) increased, leading to a shorter fire duration (from -11.06 to -9), while the value for the

VPDoptim version stayed relatively similar (-11.37) to the prior value. The surface intensity threshold became slightly larger

for the NIoptim version than the original value (from 10−6 to 1.03 ·10−6). For VPDoptim the parameter increased by a factor of

three (3.63 ·10−6). The mortality related parameters F and rCK led in the NIoptim version both to a decrease in the fire-related

mortality for TrBE and an increase for TrBR PFTs. The optimized parameters for VPDoptim led to a decrease in the fire-related10

mortality for both PFTs except for the TrBR rCK, which led to an increased mortality.

The relative uncertainties were for most optimized parameters very small (between 0 and 10%), hence these parameters were

strongly constrained (Fig. 6). Just the fire-mortality related parameters (F and rCK) had large uncertainties for the TrBR, hence
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Table 3. Comparison of the results for AGB and the TrBE PFT cover in terms of NMSE and the Willmott coefficient of agreement between

NIorig , VPDoptim and NIoptim in South America (SA), in the Cerrado and in the Caatinga.

Region NMSE Willmott

AGB

SA (NIorig) 0.97 0.83

SA (VPDoptim) 0.91 0.84

SA (NIoptim) 0.99 0.83

Cerrado (NIorig) 15.06 0.25

Cerrado (VPDoptim) 12.36 0.28

Cerrado (NIoptim) 16.06 0.24

Caatinga (NIorig) 11.93 0.32

Caatinga (VPDoptim) 8.57 0.36

Caatinga (NIoptim) 10.44 0.33

FPC - Evergreen (TrBE)

SA (NIorig) 0.42 0.82

SA (VPDoptim) 0.41 0.82

SA (NIoptim) 0.43 0.81

Cerrado (NIorig) 1.04 0.60

Cerrado (VPDoptim) 0.70 0.64

Cerrado (NIoptim) 1.40 0.55

Caatinga (NIorig) 1.73 0.40

Caatinga (VPDoptim) 1.54 0.29

Caatinga (NIoptim) 2.05 0.44

were weakly constrained. For VPDoptim the uncertainty of rCK (TrBR) was 0.8 and for NIoptim the uncertainty of Fwas 0.9

and for rCK 1 (TrBR).

The decrease in the model error (cost) due to the optimization process has been mainly due to improvement in the burnt area.

While for the NIoptim the cost of the burnt area dataset improved by 81%, the cost of the biomass dataset improved just by 6%.

In case of the VPDoptim the cost of the burnt area dataset improved by 49%, whereas the biomass dataset improved by 19%5

(Fig. A5).

3.3 Model evaluation for South America

The modelled above-ground biomass (AGB) of trees in South America was throughout all model versions larger than the

evaluation data set indicates (Fig. 7). Especially the biomass in the Amazon region is with an average of ca. 20 kgC/m2

about one third overestimated. The drier savanna regions on the continent yielded a biomass of ca. 5-10 kgC/m2, which also10
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Figure 7. Annual above ground biomass (AGB) of trees over a mean from 2005-2015 in kgC/m2. (a) Avitabile evaluation data. (b) Simulated

AGB by LPJmL4-SPITFIRE in the NIorig version. (c) Difference between VPDoptim and NIorig . (d) Difference between NIoptim and

NIorig . Red (blue) color indicates a larger (smaller) biomass after the optimization.

constitutes an overestimation in wide parts of the Cerrado and the Caatinga biome (evaluation data shows between 1-5 kgC/m2,

also see Roitman et al., 2018).

The differences among the different model versions are marginal: The VPDoptim version had the best performance compared

to the evaluation data set (NMSE= 0.91, W=0.84), the NIorig version had the second best performance (NMSE=0.97, W=0.84)

and the NIoptim the worst performance (NMSE=0.99, W=0.83). The model optimization scheme focuses on fire parameters,5

hence the model performance for AGB can only improve in areas, where the fire occurrence has been modelled poorly and the

vegetation-fire interactions have improved due to the optimization process. For example in the center of the Amazon rainforest

almost no fire is found in the evaluation data nor is simulated. Hence no improvement of burnt area as well as AGB can be

achieved. On the other hand, in regions where the modelling error of burnt area is now reduced, this can also improve simulated

AGB, hence vegetation-fire interactions. In the fire-prone Caatinga and Cerrado the VPDoptim version mostly decreased the10

biomass by up to 3 kgC/m2, showing a better performance compared to the evaluation data set (e.g. in the Cerrado the NMSE

decreased from from 15.06 to 12.36 in the VPDoptim version compared to NIorig, see Tab. 3).

The modelled foliage projective cover (FPC) showed for all three model versions a strong underestimation compared to the

evaluation data set of the TrBE throughout the whole Amazonian region (ca. 50% compared to ca. 100% in the evaluation

dateset). In the fire-prone biomes Cerrado and Caatinga, however, the TrBE PFT was sometimes overestimated (TrBE cover15

between 0 and 40 %, Fig. 8). In the regions with less TrBE the dominant PFT was mostly TrBR (Cerrado) or TrH (Caatinga)

(see Fig. A1 and A2).

19



Figure 8. Annual FPC cover by tropical broadleaved evergreen PFT over a mean from 2005-2015 as fraction per cell. (a) ESA-CCI evaluation

data (b) Simulated FPC by LPJmL4-SPITFIRE using the NIorig version (c) Simulated FPC by LPJmL4-SPITFIRE using the VPDoptim

version (d) Simulated FPC by LPJmL4-SPITFIRE using the NIoptim version

NIoptim led to an overall decrease in the model performance also in terms of the TrBE distribution, as both, the NMSE and the

Willmott coefficient declined compared to NIorig (NIorig: NMSE=0.42, W=0.82; NIoptim: NMSE=0.43, W=0.81).

The VPDoptim version, on the other hand, showed an slightly improved TrBE distribution (NMSE=0.41, W=0.82) but also

in this case we obtained an even larger improvement, when only the fire-prone regions Cerrado or Caatinga are considered

(Tab. 3). Also for the TrBR and TrH PFT distributions the optimization lead to an improved performance using the VPDoptim5

in the Caatinga and Cerrado, whereas the PFT distribution in the Amazon remained similar to the prior PFT distribution. In

the NIoptim version, parameter optimization only slightly reduced TrBR cover showing a worse performance compared to

VPDoptim. However, herbaceous cover changed only slightly in all optimization experiments (Fig. A1 and A2).

4 Discussion

In summary, our results show that the implementation of a new fire danger index based on the water vapor pressure deficit10

FDIV PD and its optimization against satellite data sets improved the simulations of fire in LPJmL4-SPITFIRE, both in terms

of spatial patterns as well as temporal dynamics of burnt area. In the following, we discuss the model improvements, limitations

and recommendations for future improvements of process-based global fire models within the DGVM framework.
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4.1 Improvements in model performance

The VPD results showed a better model performance for fire in the spatial dimension, as well as in the temporal dimension

(Tab. 1 and 3). Compared to the Nesterov index, FDIV PD uses additional climate input as relative humidity and precipita-

tion. In the calculation of the Nesterov index precipitation is just used as a threshold. This leads to a better accounting of the

very different climatic conditions among various biomes. Furthermore, the FDIV PD includes a direct representation of the5

vegetation density. The significance of this has been recently shown by findings of Forkel et al. (2019a) who have emphasized

the importance of past plant productivity and fuel production for burnt area. This is particularly important for differentiating

between fires in biomes with similar PFT distribution. For example, the vegetation density is much larger in the Cerrado, even

though the Caatinga and Cerrado have a similar modelled PFT composition, which provides more fuel and therefore leads to a

higher fire danger.10

While the seasonal and interannual variability in the Caatinga has improved largely using the FDIV PD (NMSE decreased by

a factor of ca. 20), the improvement in the Cerrado was relatively small (NMSE decreased by ca. 10%). This is due to the fact,

that the optimization tries to obtain a compromise between the different optimized cells. As the model performance was orig-

inally much better for the Cerrado, the largest improvement could be achieved for the Caatinga. We have also chosen a large

amount of cells in the Caatinga, because the model performance was here particularly bad. This leads to a large improvement15

in the time series of the Caatinga region, while the improvement for the Cerrado was less significant. With the Nesterov index

fire was strongly underestimated in the Amazonia region, while the optimized VPD increases the modelled burnt area. The

fire is only present at the edges of the Amazon (both in model and observation, see Fig. 4), where tree density is lower and

deforestation takes place. In the closed continuous forest area towards the center of the Amazon almost no fire is observed and

also not simulated.20

Another result of the optimizing procedure, using FDIV PD, was the improvement of the PFT distribution and the above-

ground biomass of trees especially in the fire-prone biomes Caatinga and Cerrado (Fig. 8). For example, the central Amazon,

where fire is a scarce event, shows almost no changes compared to the non-optimized model version. Here, it is the improve-

ment of the vegetation model itself, and not the fire module, which can help to improve the model performance of LPJmL4-

SPITFIRE. Hence, it emphasizes that we need to include further parameters in the optimization, which impact directly the PFT25

distribution, biomass and fire to obtain a significant improvement in the spatial and temporal distribution of both, vegetation

and fire. However, this study focused solely on the parameters within the SPITFIRE module. Due to the focus on fire related

parameter, the cost of the burnt area dataset decreases much more than the cost of the biomass dataset (Fig. A5). Hence we

only get a substantial improvement in model performance in semi-arid, fire-prone biomes, where vegetation dynamics and fire

are strongly coupled.30

During the optimization-process most of the optimized parameters were well constrained, except for the mortality-related

parameters for the TrBR PFT (Fig. 6). The TrBR PFT is dominant in the fire-prone regions, where the mortality-related

parameters have a large impact on vegetation dynamics. Hence, they impact multiple LPJmL routines, which are responsible

for the PFT distribution and carbon cycling. This leads in turn to a less certain parameter estimation. In order to better constrain
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these parameters also the optimization of vegetation model parameters would be necessary to decrease the uncertainties.

The fire danger index scaling factors (αNIi and αV PDi
) convert the quantified fire risk (NI or VPD) into the actual fire danger

(FDI). Both scaling factors thus set the magnitude of the fire danger for the different PFTs. Hence they impact directly the fire

spread, burnt area and the number of fires as well as indirectly fire mortality. These very important parameters vary significantly

for the different PFTs. TrH has the smallest scaling factor in case of both FDIs, which leads to a lower fire danger compared5

to the other PFTs. This indicates a prior overestimation of the fire danger of grass in tropical South America, as grasslands are

generally parametrized to have a low fire resistance and moisture content and can hence burn very easily. This overestimation,

compared to tree PFTs has been decreased by the optimization. In case of the VPD also the TrBR is scaled by a much smaller

factor than the TrBE, which leads to a lower fire danger index. This is due to the fact, that the TrBR is dominant in dry and

fire-prone regions, which experience frequent fires. Here the burnt area was often overestimated by SPITFIRE (e.g. Caatinga10

or eastern Cerrado) and is now decreased. On the other hand, a larger FDI for the TrBE allows more fire in wetter regions

at the edge between the Cerrado and the Amazon rainforests, where TrBE is more dominant. The mortality risk of TrBE for

VPDoptim remains close to the prior value of 1, confirming previous assumptions about its fire sensitivity. Whereas the rCK

for TrBR increased to 0.48, close to the upper boundary, meaning that a mortality risk of 50% when the full crown is scorched

and a 7% mortality risk when 50% of the crown is scorched, which makes the TrBR less resistant against crown damage than15

before. Due to this changes the overestimation of biomass in the original model for the Cerrado/Caatinga region decreased (see

Fig. 7).

4.2 Limitations of the optimization process

Generally, optimizing a model against burned area is challenging because 1) of the skewed statistical distribution of burned

area and 2) because temporal or spatial mismatches in simulated burning can cause large model-data errors. These issues can20

be avoided with the choice of an appropriate cost function. For example, squared-error metrics tend to underestimate the vari-

ance of burned area in comparison to, e.g., the Kling-Gupta efficiency as it has been shown in the optimization of an empirical

model for burned area (see Tab. A3 in Forkel et al. (2017)). Here, the optimum parameter set for the Nesterov index-based

model resulted in almost no fires across South America. Thereby the optimization algorithm tries to decrease the model error

by tending towards a conservative ’no fire strategy’ for all biomes. This result nicely demonstrates the need to evaluate model25

optimization results against spatially and temporally independent data and independent variables (Keenan et al., 2011).

The Nesterov index is not able to capture fire variability within the Caatinga as well as the Cerrado at the same time. This shows

that the difference in the PFT distribution between these two biomes is not adequately modelled by LPJmL or just using PFT

dependent scaling factors did not sufficiently improve the model performance when using the Nesterov index. On the other

hand, using the VPD fire danger index reduced the model error for burned area in both biomes, by improving the modelled30

performance for the Caatinga and maintaining the good performance of the Cerrado region. Since improved performance of

the fire model mainly had minor effect on improving FPC of the tropical PFTs, the presented optimization scheme has to go

along with process-based improvements in both, in the fire and in the vegetation modules of LPJmL.

Fire largely depends on the vegetation type and their associated flammability, fire tolerance and mortality. Hence an accurately
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modelled vegetation distribution is crucial for a good model performance in terms of burnt area and fire effects (Forkel et al.,

2019a; Rogers et al., 2015). As shown in Fig. 8, A1 and A2, the modelled PFT coverage showed an equal distribution of tropi-

cal raingreen and evergreen PFTs throughout wide parts of central-northern South America. Evaluation data shows, however,

an TrBE dominance in the wet rainforest regions and a TrBR dominance in the Cerrado and Caatinga. This emphasizes the

potential to improve the fire modelling further, based on an improved PFT distribution. In the tropical rainforest the TrBR5

proportion is overestimated, which leads to problems in the optimization procedure, since TrBR has very different effects on

fire spread and is more fire-tolerant (different fuel characteristics and resulting fire intensity). This leads to a lower fire-related

mortality, which fits better to the drier and fire prone savanna-like regions (e.g. Cerrado). The poorly modelled PFT distribution

also is responsible for the overestimation of the burnt area in the Amazon region. Because of the too large fraction of TrBE

in the Cerrado/Caatinga region the scaling factor for this PFT is relatively high. This leads in turn to an overestimation in the10

Amazon region, where the fraction of the TrBE is larger.

Since the offset is very small, the years 2000-2003 (first three years of GLDAS 2.1, before the optimization period) are enough

for the model to recover from the offset and the carbon pools to return to equilibrium. To exclude the possibility that long-term

trends within GLDAS 2.0 changed the modelled vegetation state significantly, we tested our optimization also just based on

GLDAS 2.0 data (until 2010) and on GLDAS 2.1 data (2000-2017) only, using the same years for model spinup, optimization15

and evaluation. Both versions yielded similar results compared to the optimization presented in this study (results not shown).

Due to the fact that evaluation data are only available for the last 10-20 years, we are constrained to optimize the model in this

relatively short time period. In South America these years were subject to an unusual high amount of severe droughts and other

extreme events (Panisset et al., 2017). As a result, an optimization in this period could lead to a worse model performance in

a period with less pronounced droughts. This is due to the non-linear relationship between the drought signal in the input data20

set and the resulting modelled biosphere behavior. Nonetheless, we were able to improve the interannual variability and hence,

the model performance to a great extent for the Caatinga and slightly for the Cerrado and Amazon regions (Fig. 5 and A3). The

Cerrado already had a very good modelling performance before the optimization process, which now only slightly improved.

The performance of the interannual and seasonal variability of burnt area for total South America improved substantially (Fig.

A3). The optimized SPITFIRE is now better able to simulate accurately the climate dependent seasonal and interannual vari-25

ability as well as the spatial extent of fire on natural land throughout the fire-prone woodlands of South America.

Systematic optimizations within a model-data integration setup of fire models which are embedded in a DGVM are still very

rare. Previously, Rabin et al. (2018) optimized the fire model FINAL.1 within the land-surface model LM3. Our study differs

from Rabin et al. (2018) in the conceptual design of the vegetation-fire models and the optimization process. While LM3 has

been run on a 2° longitude by 2.5° latitude, which is much coarser than LPJmL with 0.5° by 0.5°. This difference allows us30

to account for a locally better climate input, vegetation and fire interaction.While FINAL.1 is a process-based model, many

calculations (e.g. the fire spread routine) are done by multiplying the important factors and fitting the resulting values to obser-

vational data. SPITFIRE tries to model the important fire variables by simulating the underlying processes, and by taking the

influence of climate and the different fire ignitions into account. An advantage of FINAL.1 is the inclusion of agricultural fires

based on a statistical approach. Whereas Rabin et al. (2018) used a local search algorithm (Levenberg-Marquardt algorithm) to35
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optimize their model, we used a global search algorithm (genetic optimization). Local search algorithms depend on the chosen

initial parameter sets and might eventually end up in a local optimum. A genetic optimization algorithm allows to explore the

full parameter space and hence gives a higher chance to find the global optimum. However, local search algorithms require

less iterations than global search algorithms (300 in Rabin et al. (2018) vs. 16000 in our study). Forkel et al. (2014) tested the

optimization of LPJmL with different optimization algorithms and found that it was not feasible to optimize LPJmL with a5

local search algorithm. Rabin et al. (2018) ran the model during the optimization process only for the period of 1991-2009,

whereas we made complete model runs including 5000 years of spinup in order to get a model equilibrium for each tested

parameter combination.

4.3 Limitations of fire modelling in LPJmL4-SPITFIRE

In fire-prone regions the interactions between fire and vegetation dynamics are strong, hence are posing a challenge for global10

fire models embedded in DGVMs. By just focussing on fire-related parameters, an optimization approach can only to a certain

extent improve PFT distribution and simulated biomass. For a good fire representation e.g. in the Cerrado and Caatinga, a shrub

PFT could further improve the model performance. Most fires in this region occur, where shrub PFTs are abundant. LPJmL

tries to account for this by establishing rather small raingreen PFTs as a shrub replacement. A much better option would be a

separate shrub PFT with parameters leading to a high flammability, but also a low fire mortality. An optimization of LPJmL4-15

SPITFIRE, including shrub PFTs could yield better results than shown in this study.

Fire models embedded in DGVMs should build on a FDI which is complex enough to account for various fire dynamics, while

it’s parameterization should be simple enough to be accurately applied on a global scale. While the VPD is more complex and

takes into account more climatic input as the Nesterov index, it is still relatively easy to implement in a global fire model.

There are various other fire danger indices used for modelling purposes, as well as real fire danger assessment and fire forecast20

purposes. For example, fire-prone countries have developed their own fire danger indices (e.g. Canada, Australia), which are

suited to the unique local fire regimes and vegetation dynamics. In a global modelling approach, however, we need to find

one fire danger index, which suits best for all regions of the world and has a relatively easy implementation to decrease

computational cost and the number of input data sets (which might be unavailable or uncertain).

Currently, SPITFIRE does not account for fire in managed land like cropland or managed grassland. We accounted for this by25

excluding cropland fires from the evaluation burnt area data set. We do, however, not account for the proportion of grassland,

which is used for e.g. cattle ranching. Since in SPITFIRE fire is not enabled on pasture, our results show a slightly smaller burnt

area throughout South America than could be expected with managed land included and hence also compared to the GFED4

evaluation data set. This effect is however small, because pasture lands cover a substantial fraction only in very few grid cells

(e.g. southern Cerrado; Parente et al., 2017). Fire on managed land is generally difficult to predict in a DGVM because the30

reason and timing of using fire depends less on climatic factors but mostly on social and political decisions which can vary

between countries, regions and localities. We expect further improvement of model performance especially in regions of large

land-use areas with fires on pastures included (e.g. Rabin et al., 2018; Pfeiffer et al., 2013).
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5 Conclusions

We significantly improved the fire representation within LPJmL4-SPITFIRE, applied for South America, by implementing

a new fire danger index and applying a model-data integration setup to optimize fire-related parameters. We improved the

seasonal and interannual variability, as well as the spatial pattern of burnt area in South America. In addition, modelling of

related vegetation variables, e.g., the biomass and the PFT distribution in the fire-prone Cerrado and Caatinga biomes have also5

been improved.

Optimizing fire parameters has its limits due to error propagation of the PFT distribution and hence their fire traits influencing

simulated fire spread and behavior. Furthermore, it remains a challenge to find a fire danger index that is physically interpretable

and can be applied globally. In this study, the parameter-optimization by using FDINI led to a large underestimation of fire and

a generally worse model performance, when focusing on the Cerrado and Caatinga biome. However, implementing the more10

complex FDIV PD and optimizing it thereafter, led to an improved model performance compared to the original SPITFIRE

implementation for South America. Our results demonstrate that the improvement of model processes, as well as a systematic

model-data optimization are required in order to obtain a more accurate fire representation within complex DGVMs, where

observations or experimental evidence to constraint fire parameter are scarce. This work highlights the potential for future

model-data integration approaches to obtain a better fire model performance in a global setting, based on improved vegetation15

dynamics within LPJmL4.

Code availability. Upon request. With publication of this article the model code will be published at https://github.com/PIK-LPJmL, anal-

ogously to Schaphoff et al. (2018a). We will publish the code of LPJmLmdi along with the model code on the github page of LPJmL:

https://github.com/PIK-LPJmL/LPJmLmdi
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Appendix A

Figure A1. Annual FPC cover by tropical broadleaved raingreen PFT over a mean from 2005-2015 as fraction per cell. (a) ESA-CCI

evaluation data (b) Simulated FPC by LPJmL4-SPITFIRE using the NIorig version (c) Simulated FPC by LPJmL4-SPITFIRE using the

VPDoptim version (d) Simulated FPC by LPJmL4-SPITFIRE using the NIoptim version
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Figure A2. Annual FPC cover by tropical herbaceous PFT over a mean from 2005-2015 as fraction per cell. (a) ESA-CCI evaluation data

(b) Simulated FPC by LPJmL4-SPITFIRE using the NIorig version (c) Simulated FPC by LPJmL4-SPITFIRE using the VPDoptim version

(d) Simulated FPC by LPJmL4-SPITFIRE using the NIoptim version
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Figure A3. Time-series of monthly burnt area from 2005 - 2015 simulated by SPITFIRE (red lines) compared to GFED4 evaluation data

(blue lines) for: (a) The Amazonia region, using NIorig . (b) Total South America, using the NIorig . (c) The Amazonia region, using NIoptim.

(d) Total South America, using NIoptim. (e) The Amazonia region, using VPDoptim. (f) Total South America, using VPDoptim.
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Figure A4. Cost reduction of the burnt area and the biomass during the optimization process, by showing the various components of the cost

that are related to model-data bias, variance ratio and correlation. The cost for burnt area for NIoptim decreased by ca. 81%, whereas the cost

of the biomass only decreases by ca. 6% (a and b). For VPDoptim the cost decreased by ca. 48% for burnt area and ca. 19% for the biomass

(c and d). Hence the impact of the optimization process on burnt area is much larger due to the focus on fire parameters.
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Figure A5. Annual above ground biomass (AGB) of trees over a mean from 2005-2015 in kgC/m2. (a) Avitabile evaluation data. (b)

Simulated AGB by LPJmL4-SPITFIRE in the NIorig version. (c) Simulated AGB by LPJmL4-SPITFIRE in the VPDoptim version. (d)

Simulated AGB by LPJmL4-SPITFIRE in the NIoptim version.
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Figure A6. Time-series of monthly burnt area from 2005 - 2015 simulated by SPITFIRE (red lines) compared to GFED4 evaluation data

(blue lines) for: (a) The Cerrado region, using NIorig . (b) The Caatinga region, using the NIorig . (c) The Cerrado region, using NIoptim. (d)

The Caatinga region, using NIoptim. (e) The Cerrado region, using VPDoptim. (f) The Caatinga region, using VPDoptim.
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