
 

Reviewer 1 
 
We thank reviewer 1 for the detailed and thorough comments. Our replies to the comments are 
inserted below in blue colour. 
 
Reviewer 1 
 
Review: Improving the LPJmL4-SPITFIRE vegetation-fire model for South America 
using satellite data 
 
General comments 
Process-based global fire models are widely considered critical components of dynamic global            
vegetation models, with certain biomes—especially tropical and subtropical savannas and          
grasslands—being strongly regulated by fire disturbance. However, many such fire models have            
been developed based on parameterizations from extratropical biomes. In this manuscript, Drüke            
et al. use an automated technique to reparameterize a global fire model to improve its performance                
in the Brazilian Caatinga and Cerrado biomes with regard to both burned area and biomass. The                
authors perform this optimization using actual runs of the vegetation model rather than in some               
kind of offline mode—something that has only rarely been done before for fire models, but which                
could be a valuable component of the global vegetation-fire modeling toolbox. This, combined with              
the fact that the authors describe their methods thoroughly and walk through the results in a logical                 
manner, lead me to recommend that this manuscript be accepted for publication pending minor              
revisions. 
 
We thank the Reviewer for this positive feedback. 
 
Specific comments 
 
•P2 L13: The authors describe the Caatinga as fire-prone, but the referenced map (Fig. 1) does not 
provide much support for that assertion. The authors should clarify in the text what they mean. 
 
We agree that the term fire-prone is not strictly applicable for the Caatinga region. Without human 
influence on vegetation composition and fire, the Caatinga biome is not prone to fire. Fire risk has 
increased with human influence. We wanted to stress the fact, that fire occurrence of the Caatinga 
in the prior SPITFIRE implementation was too large,  because dead and live fuel was 
overestimated in the model. It is one of the achievements of this study to reduce this model error. 
We now make a better distinction between fire-ecological conditions of the biome and what is 
captured in the model. We therefore changed the wording accordingly to only describe the Cerrado 
as fire prone in P2 L12-13: 
 
“This study focuses on the fire behavior in central-northern South America and especially on the 
Brazilian biomes Caatinga and Cerrado, which is the most fire-prone region in South America (Fig. 
1)” 
 
 
•P6 L1: “their effectiveness to ignite a fire is 0.04” is unclear. Better would be 
something like, “4% of cloud-to-ground strikes can start a fire.” 
 
We followed the Reviewer’s suggestion and express these numbers now in percent in P6 L1: 
 
“assuming that 20 % of the flashes reach the ground and 4 % of cloud-to-ground strikes can start a 
fire.” 
 



 

•P6 L9: 
As far as I can tell, this is the first time the parameter named p_d " has been used in regard to 
SPITFIRE. I suggest using some other symbol, as this p_d " could be easily confused with P_d 
(population density) from Thonicke et al. (2010). 
 
Thanks for pointing to this inconsistency in naming our model variables. We have corrected it and 
changed it to p_t, where the t stands now for time and not for the duration (d). 
 
“per day” is misleading; SPITFIRE as described in Thonicke et al. (2010) does 
not allow for multi-day fires, and thus this is simply the maximum fire duration. 
 
Indeed, SPITFIRE does not directly allow multi-day fires. The maximum fire duration is 240 
minutes. Since the model time-step is however one day this time duration limits the fire to 240 
minutes for each time-step. SPITFIRE does not model individual fires, but assumes the burning 
conditions for all fires ignited on the same day to be similar. If burning conditions are comparable 
the next day, new ignitions would be computed resulting in comparable daily area burnt. Hence, to 
our opinion the wording in this case is correct.  
 
 
•P11 L1–2, P21 L21–27: Because LPJmL does not allow fire on managed lands, the 
authors exclude cropland burning from the observed data in their comparisons. This is reasonable, 
but ignores the fact that a fair amount of Cerrado is actually used as 
pasture, primarily in the southern part of the region (Sano et al., 2010; Parente et al.,2017). I don't 
think this makes a huge difference in the context of this manuscript, 
because (a) only a few of the 40 sampled grid cells were from the southern Cerrado, 
and (b) the main takeaway from this paper should be the use of the optimization 
algorithm, rather than the exact parameter values it gives. However, the authors 
should (briefly) address this issue in the text. 
 
We acknowledge the fact that excluding cropland in the optimization process is not optimal. 
Unfortunately we did not have a dataset, which also excludes pastures. This leads to a slightly 
wrong burnt area in the optimization process. We already addressed this issue in P24 L26-29: 
 
“We do, however, not account for the proportion of grassland, which is used as pastures for e.g. 
cattle ranching. Since in SPITFIRE fire is not enabled on managed grassland, our results show a 
slightly smaller fire amplitude throughout South America than could be expected with pastures 
included and hence also compared to the GFED4 evaluation data set.” 
 
We changed in the above paragraph the term “grassland” to “pasture” and included a sentence 
about this issue in P11 L32–34: 
 
“As LPJmL does not simulate fire on managed lands, we excluded burnt area on cropland classes 
from model-data comparisons. Due to lack of data we however did not account for the proportion of 
pastures.” 
 
•Sect. 2.4 and/ or Sect. 3.2: For the benefit of other researchers interested in using this or a similar 
optimization algorithm, it would be helpful to know various pieces of info about the process. How 
many model runs were required? How long did they each 
take? How was the decision made to halt the optimization—was it manual, or did the 
algorithm reach a stop condition? If the latter, what was/were the stop condition(s)? 
Etc. This level of technical detail is more than appropriate for GMD. 
 
We agree that some more technical details are important to the GMD reader and we therefore 



 

added the following paragraph in Sect. 2.4 (P11 L5-17): 
 
“In genetic optimization algorithms, each model parameter is called an individual with a 
corresponding fitness, which represents the cost of the model against the observations. At the 
beginning of the optimization process, the GENOUD algorithm creates a generation of individuals 
based on random sampling of parameter sets within the prescribed parameter ranges. After the 
calculation of the cost of all individuals of the first generation, a next generation is generated by 
cloning the best individuals, by mutating the genes or by crossing different individuals (Mebane 
and Sekhon, 2011). This results after some generations in a set of individuals with highest fitness, 
i.e. parameter sets with minimized cost. To find an optimum parameter set we were also using the 
BFGS  gradient search algorithm (named after the authors Broyden, 1970; Fletcher, 1970; 
Goldfarb, 1970; Shanno, 1970) within the GENOUD algorithm. An optimized parameter set of the 
BFGS algorithm is used as individual in the next generation. We were applying the GENOUD 
algorithm with 20 generations and a population size of 800 individuals per generation, which 
corresponds to 16000 single model runs. We decided on this amount of iterations, because the 
cost kept almost constant in the last iterations and the parameter values did not change to the 6th 
digit, beyond which changes are not really relevant for model applications. During the optimization 
we ran the model parallel in for each gridcell (40 grid cells and CPU’s, 3.2GHz) and had a total 
optimization time of ca. 24 hours.” 
 
 
•Sect. 2.6: The authors do a good job describing how to interpret values of the NMSE, but they 
should do the same for the Willmott coefficient of agreement. What are the possible values? What 
are “milestone” values (e.g., for NMSE, 0 vs. 1 vs. >1)? 
 
Thanks for pointing to this missing information. The information on the meaning of the  the different 
values for the Willmott coefficient was indeed missing. We have now added the following sentence 
in P12 L17-20: 
 
“The Willmott coefficient is a squared index, where a value of 1 stands for perfect agreement 
between simulated and modelled runs and gets smaller for worse agreements with a minimum of 0. 
Unlike the coefficient of determination, the Willmott coefficient is additionally sensitive to biases 
between simulations and observations.” 
 
 
 
•P13 Fig. 5: It would be helpful to use the same Y-axis for all subplots in the right 
column (subplots b, d, f), as was done for the left column. 
 
We also thought about this issue but had decided before to not use the same Y-axis for all subplots 
in the right column, because the values differ by  an order of magnitude. Hence, the lines in Fig. 5 f 
would be hardly visible. We agree with the reviewer that different scales in this case are very 
unusual and we apply now a logarithmic Y-axis for the Caatinga. This enables us to use the same 
Y-axis for all three model versions. A non-logarithmic version remains in the Appendix. We now 
updated Fig. 5 and added the following statement to the description of the Figure: 

 
„Note the logarithmic scale for the Caatinga, which was applied in order to account for the large 
differences between the different model versions (for a non-logarithmic version see Fig. A6).“ 
 



 

 
Fig. 5. Time-series of monthly burnt area from 2005 - 2015 simulated by SPITFIRE (red lines)                
compared to GFED4 evaluation data (blue lines) for: (a) The Cerrado region, using NI_orig. (b) The                
Caatinga region, using the NI_orig. (c) The Cerrado region, using NI_optim. (d) The Caatinga              
region, using NI_optim. (e) The Cerrado region, using VPD_optim. (f) The Caatinga region, using              
VPD_optim. Note the logarithmic scale for the Caatinga, which was applied in order to account for                
the large differences between the different model versions (for a non logarithmic version see Fig.               
A6). 
 
 
 
 
•P13 Fig. 5 and P16 Fig. 6: Nesterov and VPD rows should be swapped, since in the 
rest of the paper the Nesterov Index is usually discussed first. 
 
We swapped the Nesterov and the VPD rows, as suggested by the Reviewer. 
 
 
•P16 Fig. 6: The use of lines here is confusing, since that usually implies some kind of 
change over time. The authors should seriously consider using a bar graph here 
instead. 
 
We thank the reviewer for the suggestion to change Fig. 6. 



 

We completely remade Fig. 6 by excluding the lines and changing the X- and Y-axis. We also now 
show each parameter individually.  To our opinion the use of a bar plot would limit the information 
about the exact uncertainty for each parameter for the different PFTs. We hope that we have 
addressed the reviewer’s concern adequately with this new figure.  
 

 
Fig. 6. Relative uncertainty of model parameters after optimization for (a) NI_optim and (b) 
VPD_optim.  The relative uncertainty is the ratio of the uncertainty after the optimization (range of 
all parameter sets with low cost, below the 0.05 quantile) divided by the uncertainty before the 
optimization (range of the parameters for the optimization). Low and high values of relative 
uncertainty indicate strongly and weakly constrained parameters, respectively. SIT denotes the 
surface intensity threshold 
 
•P17 L3–4: “The model optimization scheme focuses on fire parameter [sic], hence the model 
performance can only improve in fire-prone biomes, i.e. not in, e.g., wet 
tropical forest where fire is absent.” This is not strictly true. Model performance could 
improve in wet tropical forest if the initial parameterization (a) performed badly there 



 

with regard to burned area (i.e., simulated almost any fire at all) and (b) 
underestimated biomass. It just so happens that neither of these conditions are met by the initial 
LPJmL configuration. This may seem like a minor quibble, but it could 
mislead other researchers interested in applying this or a similar optimization 
algorithm to their own models. It is important to be clear that optimizing a fire model 
can improve performance with regard to vegetation parameters not necessarily where fire is 
frequent, but rather where fire is modelled poorly. 
 
We agree that this statement was a bit misleading. We wanted to emphasize that we did not get an 
improvement in AGB and FPC in areas not affected by fire, both in the model and in the evaluation 
data, and hence it does not contribute to the improvement due to the optimization process. We 
now clarify this issue by changing the quoted sentence into (P19 L5-10): 
 
“The model optimization scheme focuses on fire parameters, hence the model performance for 
AGB can only improve in areas, where the fire occurrence has been modelled poorly and the 
vegetation-fire interactions have  improved due to the optimization process. For example in the 
center of the Amazon rainforest almost no fire is found in the evaluation data nor is simulated. 
Hence no improvement of burned area as well as AGB can be achieved. On the other hand, in 
regions where the modelling error of burnt area is now reduced, this can also improve simulated 
AGB, hence vegetation-fire interactions.” 
 
 
•P20 L7–8: Presumably the authors are making this assertion based on the fact that the indicated 
region is modelled as ~50% tropical evergreen, but Fig. 8 does not appear to say anything about 
the tropical raingreen PFT—just evergreen. The authors should clarify this. 
 
We agree with the reviewer that readers not familiar with DGVMs or specifically LPJmL should be 
provided with such information for clarity. We new added the maps of the FPC of tropical raingreen 
and herbacious C4 PFTs to the supplement (Figure A1 and A2) and added a short description to 
the result section now for all 3 tropical PFTs in P20 L5-8:  
 
‘Also for the TrBR and TrH PFT distributions the optimization lead to an improved performance               
using the VPD_optim in the Caatinga and Cerrado, whereas the PFT distribution in the Amazon               
remained similar to the prior PFT distribution. In the NI_optim version, parameter optimization only              
slightly reduced TrBR cover showing a worse performance compared to VPD_optim. However,            
herbaceous cover changed only slightly in all optimization experiments  (Fig. A1 and A2).’ 



 

 
Fig. A1. Annual FPC cover by tropical broadleaved raingreen PFT over a mean from 2005-2015 as 
fraction per cell. (a) ESA-CCI evaluation data (b) Simulated FPC by LPJmL4-SPITFIRE using the 
NI_orig version (c) Simulated FPC by LPJmL4-SPITFIRE using the VPD_optim version (d) 
Simulated FPC by LPJmL4-SPITFIRE using the NI_optim version 



 

 
Fig. A2. Annual FPC cover by tropical herbaceous PFT over a mean from 2005-2015 as fraction 
per cell. (a) ESA-CCI evaluation data (b) Simulated FPC by LPJmL4-SPITFIRE using the NI_ orig 
version (c) Simulated FPC by LPJmL4-SPITFIRE using the VPD_optim 
version (d) Simulated FPC by LPJmL4-SPITFIRE using the NI_optim version 
 
 
 
•P21 L23–27: 
How do the authors reach the conclusion that including fire on managed land would increase “fire 
amplitude” (this phrase should be reworked, by the way) and improve interannual variability? Why 
might it not also (or instead) improve annual mean? 
Citations should be added regarding the real-life use of fire on managed lands (e.g., Laris, 2002). 
Citations should be added regarding the simulation of fire on managed lands (e.g., Pfeiffer et al., 
2013; Rabin et al., 2018). 
 
We agree that this statement is relatively vague. We meant to say that we would have a slightly 
larger burnt area in regions, which also include pastures. The larger burnt area would cause a 



 

larger annual total (or mean) burnt area and also likely a larger seasonal amplitude (if there are no 
fires during the wet season). Also the overall model performance would improve and not just the 
interannual variability. However, we expect this effect to be relatively small, since only a few grid 
cells are covered by a substantial fraction of pasture land in the study area. . We thank the 
reviewer for the valuable suggestions, including citations, and rewrote this section as following 
(P24 L27-33): 
 
“Since in SPITFIRE fire is not enabled on pasture, our results show a slightly smaller burnt area 
throughout South America than could be expected with managed land included and hence also 
compared to the GFED4 evaluation data set. This effect is however small, because pasture lands 
cover a substantial fraction only in very few grid cells (e.g. southern Cerrado; Parente et al., 2017). 
Fire on managed land is generally difficult to predict in a DGVM because the reason and timing of 
using fire depends less on climatic factors but mostly on social and political decisions which can 
vary between countries, regions and localities. We expect further improvement of model 
performance especially in regions of large land-use areas with fires on pastures included (e.g. 
Rabin et al., 2018; Pfeiffer et al., 2013).” 
 
 
•P22 L1–2: This is incorrect; Rabin et al. (2018) did indeed optimize FINAL.1 within 
a dynamic global vegetation model (LM3). Also, the authors should (at least briefly) 
discuss the pros and cons of their method relative to the one used by Rabin et al. 
(2018); this would be valuable for other researchers interested in optimization 
methods. 
 
We thank the reviewer for noting this error. Rabin et al. (2018) did indeed optimize FINAL.1 within 
a DGVM. We now refer to this study and explain the major differences to the approach used in our 
study. As suggested we added a paragraph about the pros and cons of our method relative to the 
one us used by Rabin et al. (2018) in the discussion (P23 L27 - P24 L8): 
 
 
“Systematic optimizations within a model-data integration setup of fire models which are embedded 
in a DGVM are still very rare. Previously, Rabin et al. (2018) optimized the fire model FINAL.1 
within the land-surface model LM3. Our study differs from Rabin et al. (2018) in the conceptual 
design of the vegetation-fire models and the optimization process.  While LM3 has been run on a 
2° longitude by 2.5° latitude, running LPJmL at 0.5° by 0.5° grid cell resolution  allows us to 
account for spatial differences in  climate , vegetation and fire interaction. While FINAL.1 is a 
process-based model, many calculations (e.g. the fire spread routine) are done by multiplying the 
important factors and fitting the resulting values to observational data. SPITFIRE tries to model the 
important fire variables by simulating the underlying processes, and by taking the influence of 
climate and the different fire ignitions into account. An advantage of FINAL.1 is the inclusion of 
agricultural fires based on a statistical approach. Whereas Rabin et al. (2018) used a local search 
algorithm (Levenberg-Marquardt algorithm) to optimize their model, we used a global search 
algorithm (genetic optimization). Local search algorithms depend on the chosen initial parameter 
sets and might eventually end up in a local optimum. A genetic optimization algorithm allows to 
explore the full parameter  space and hence gives a higher chance to find the global optimum. 
However, local search algorithms require less iterations than global search algorithms (300 in 
Rabin et al. (2018) vs. 16000 in our study). Forkel et al. (2014) tested the optimization of LPJmL 
with different optimization algorithms and found that it was not feasible to optimize LPJmL with a 
local search algorithm. Rabin et al. (2018) ran the model during the optimization process only for 
the period of 1991-2009, whereas in our optimization setup we  made complete model runs 
including 5000 years of spinup in LPJmL in order to get a model equilibrium for each tested 
parameter combination.” 
 



 

 
 
 
•P22 L14–15: The authors address availability of the model code, which presumably 
refers to LPJmL. But what about the genetic optimization code? 
 
We will publish the code of LPJmLmdi along with the model code on the github page of LPJmL: 
https://github.com/PIK-LPJmL/LPJmLmdi. 
 
Technical corrections 
• P9 L5: “form” should be “from” 
• P10 L22: “dependend” should be “dependent” 
• P11 L19: “simulations” should be “simulation” 
• P11 L25: “Caating” should be “Caatinga” 
• P17 Table 3: “Evergreem” should be “Evergreen” 
• P17 L3: “parameter” should be “parameters” 
• P18 L12: “significante” should be “significance” 
• P18 L13: “particular” should be “particularly” 
• P19 L6: “particular” should be “particularly” 
• P21 L12: “seperate” should be “separate” 
 
We thank the reviewer for the detailed and focused review of our manuscript. We have applied all 
technical corrections as suggested by the reviewer. 
 

https://github.com/PIK-LPJmL/LPJmLmdi


Reviewer 2 
 
 
We thank Reviewer 2 for the detailed and thorough comments. Our replies to the comments                             
are inserted below in blue colour. 
 
Review of 
“Improving the LPJmL4-SPITFIRE vegetation-fire model for South America using satellite          
data” 
Drüke et al. GMD-2019-92 
The paper utilises a genetic optimization algorithm and a revised fire danger index to              
improve the representation of burnt area and biomass in the LPJmL4-SPITFIRE model            
compared to satellite- derived datasets, optimised against those same datasets. The authors            
also benchmarked the fractional cover of one PFT and claimed improvements to PFT             
distribution and temporal dynamics both (inter-annual variability and seasonal patterns).          
They also advocate the use of such methods for improving fire-vegetation models in general.              
Investigating alternatives to the Nesterov Index in SPITFIRE (and other global fire models)             
and using optimisation algorithms to develop DGVMs and fire models are laudable aims and              
this work makes useful contributions in these directions. Simultaneously using both burnt            
area and biomass observations to constrain the model parameters, and the application of             
rigorous benchmarking metrics are also to be commended. Many parameters in SPITFIRE            
are very poorly constrained, so this is a promising approach to improve the model. 
However, I do have substantial reservations regarding the presentation and, to some extent,             
the methodology, which I believe need to be addressed prior to publication. I first list my                
main concerns, and then a series of comments to the text. I feel confident that these                
concerns can be addressed in a revised version of the manuscript, perhaps with some              
additional analysis. 
 
We thank the Reviewer for this feedback and we hope that the revised manuscript                           
through its improved analysis and by clarification of the methods will remove the                         
reviewer’s concern . 
 
Main concerns 
1. Whilst the optimisation procedure produces very reasonable results in the case of the              
VPD FDI, the Nesterov Index results are not so clear cut and cast some doubt on the                 
efficacy of the method. Yes, the summary metrics for spatial BA do get better (at least the                 
NSME does, the Willmott coefficient goes down, which I assume means worsening            
agreement?), the temporal metrics do improve drastically for Caatinga but worsen for the             
Cerrado, and the biomass results are basically unchanged. So that is a mixed bag. But, most                
critically, a visual inspection of the BA produced shows a massive reduction in fire and               
almost complete spatial mis-match compared to the observations, not the preferred           
behaviour of a fire model! There is much to discuss here which is missing from the                
manuscript. Benchmarking/optimising burnt area is hard due to the large amount of zero             
values and then high peaks, and so getting a fire peak wrong by one or two gridcells is                  
heavily penalised. Thus an optimisation will tend towards a conservative ‘no fire strategy’.             
This appears to be what is happening here, but is not discussed. This obviously raises               



questions about whether or not BA can effectively be used in such a context when it                
produces results which objectively (in terms of metrics) are perhaps better, but somewhat             
subjectively may not actually produce a more useful model. 
 
We thank the Reviewer for pointing out that we need to explain and discuss in more detail                 
how the optimization was done and discuss better the implication of spatial mismatch.  
Indeed, the reviewer is right that optimizing a model against burned area is challenging              
because #1 of the skewed statistical distribution of burned area and #2 because temporal or               
spatial mismatches in simulated burning can cause large model-data errors. We added a             
paragraph to the Discussion in P22 L19-33 to clarify and explain this issue: 
 
Generally, optimizing a model against burned area is challenging because 1) of the skewed              
statistical distribution of burned area and 2) because temporal or spatial mismatches in             
simulated burning can cause large model-data errors. These issues can be avoided with the              
choice of an appropriate cost function. For example, squared-error metrics tend to            
underestimate the variance of burned area in comparison to, e.g., the Kling-Gupta efficiency             
as it has been shown in the optimization of an empirical model for burned area (see Table                 
A3 in Forkel et al. 2017). Here, the optimum parameter set for the Nesterov index-based               
model resulted in almost no fires across South America. Thereby the optimization algorithm             
tries to decrease the model error by tending towards a conservative ‘no fire strategy’ for all                
biomes. This result nicely demonstrates the need to evaluate model optimization results            
against spatially and temporally independent data and independent variables (Keenan et al.            
2011).  
The Nesterov index is not able to capture fire variability within the Caatinga as well as the                 
Cerrado at the same time. This shows that the difference in the PFT distribution between               
these two biomes is not adequately modelled by LPJmL or just using PFT dependent scaling               
factors did not sufficiently improve the model performance when using the Nesterov index.             
On the other hand, using the VPD fire danger index reduced the model error for burned area                 
in both biomes, by improving the modelled performance for the Caatinga and maintaining the              
good performance of the Cerrado region. Since improved performance of the fire model             
mainly had minor effect on improving FPC of the tropical PFTs, the presented optimization              
scheme has to go along with process-based improvements in both, in the fire and in the                
vegetation modules of LPJmL. 
 
Furthermore thanks to the reviewers comment we noted a small error in Figure 5: The R² of                 
5a (original model version for the Cerrado) has been wrongly written as 0.87. The real value,                
as was correctly written in the text of the first manuscript versionaper, is however 0.78.               
Hence we have a slight improvement by the VPD version in all three metrics. We are very                 
sorry for the confusion caused by this spelling  error.  
We think that by fixing this formal error and by providing additional analysis in the revised                
version of the manuscript (see the answers to the other concerns raised by the reviewer               
below) the improvements in the performance of modelled burnt area in South America are              
now demonstrated better. We hope to have addressed the major concerns of the reviewer              
adequately. 
 
 



 
2. The optimisation to both BA and biomass is definitely a good idea, and as far as I can tell 
combining the two KGE metrics is reasonable. However, as part of the paper is to               
demonstrate this approach, I think there must be more discussion and analysis of this 
method. In particular, can the authors disentangle the relative constraints of each dataset in 
the method? I think this is important information for such a method. If all else fails, perhaps 
simply running the optimisation for BA and biomass individually would be an option. 
 
The main focus of this paper was an optimization just focussed on fire parameters. Hence,               
the change in biomass is relatively small and heavily depending on changes in the burnt               
area. We included the biomass in the optimization to make sure that the biomass would not                
be impacted by fire-effect processes to avoid  the model performance getting worse. 
To show the small improvement in the cost of the biomass, compared to the cost of the burnt                  
area, we have now included in the Appendix a comparison of the cost reduction during the                
optimization process which is also shown here. 
 
 

 



 
Fig A4: Cost reduction of the burnt area and the biomass during the optimization process, by                
showing the various components of the cost that are related to model-data bias, variance              
ratio and correlation. The cost for burnt area for NI_optim decreased by ca. 81%, whereas               
the cost of the biomass only decreases by ca. 6% (a and b). For VPD_optim the cost                 
decreased by ca. 48% for burnt area and about 19% for the biomass (c and d). Hence the                  
impact of the optimization process on burnt area is much larger due to the focus on fire                 
parameters. 
 
We added a comment on this and the reference to the appendix in the Results in P18 L3-6: 
 
The decrease in the model error (cost) due to the optimization process has been mainly due                
to improvement in the burnt area. While for the NI_optim the cost of the burnt area dataset                 
improved by 81%, the cost of the biomass dataset improved just by 6%. In case of the                 
VPD_optim the cost of the burnt area dataset improved by 49%, whereas the biomass              
dataset improved by 19% (Fig .A5). 
 
Furthermore we added to the Discussion in P21 L27-30: 
 
Due to the focus on fire related parameter, the cost of the burnt area dataset decreases                
much more than the cost of the biomass dataset (Fig. A5). Hence we only get a substantial                 
improvement in model performance in semi-arid, fire-prone biomes, where vegetation          
dynamics and fire are strongly coupled. 
 
 
 
3. No specific information on how the gridcells used in the optimisation were selected. It 
seems to have been done just by ‘picking some’. By the authors’ own admission this may 
bias the optimisation. Could they justify their choice a little better? Furthermore, could it 
be possible to run with random gridcells every time? Or gridcells close to the meteorological 
stations used in the preparation of the climate data? A more concrete method for select the 
gridcells, or at least a clearer justification, is required. 
 
We thank the reviewer for noting this lack of explanation of how the grid cells were selected.                 
In this study we selected the grid cells manually. We justified our choice better by adding the                 
following paragraph to the methods in P10 L22-31. 
 
The optimization was performed for 40 grid-cells in South America to represent a variety of               
fire regimes (Fig. 2). We selected the grid cells manually to cover active fire regions (either in                 
the model or in the evaluation data), specifically in the Cerrado and Caatinga. We selected a                
high density of grid cells in the Caatinga region to improve the very poor model performance                
in this region. To make sure that the model performance in the Caatinga and Cerrado was                
not achieved at the cost of a poor performance in other areas, we also additionally selected                
some cells in areas where initial fire modeling gave good results, as well as in areas where                 
minimal or no fire occurs (central Brazilian Amazon). After inspection of the results, minor              
adjustments were made and the selection of the grid cells was modified to account for               



neglected regions (which showed worsening of the model performance). These initial           
analyses actually demonstrate that the choice of grid cells is important for the model              
optimization and requires the development of a more thorough selection method in future             
model optimization applications.  
 
A random sampling of grid cells during the optimization might potentially result in more              
robust model parameters as similar methods are successfully used in several machine            
learning approaches to make more robust predictions (e.g. bagging in random forest            
regressions). However, such a bagging of training points (or grid cells) within an             
optimization of a DGVM is currently computationally not feasible because it would require to              
run the optimization algorithm several (hundreds) times. Sampling random grid cells within a             
single optimization run will likely not result in a parameter optimum because the cost would               
change in each iteration which is however not related to model parameters but to the               
sampling of the grid cells.  
We hope to have explained better why and how we manually selected our grid cells.  
 
4. There is no discussion of what the optimised parameters mean in terms of process 
understanding or what the newly introduced ‘alpha’ for the VPD FDI really means. Many of 
the existing parameters move very little (perhaps a little surprising but also perhaps 
reassuringly), but the rCKs are very interesting. For NI optim these converge to very similar 
values and move away strongly from their initial values. Having similar crown kill probability 
for raingreen and evergreen trees flies in the face of the assumptions in SPITFIRE so far.                
But for VPD optim the story is somewhat different, with rCH for TrBE remaining very high,                
but rCK for TrBR also increasing. Please discuss these results, including some ecological             
context. 
And regarding the new ‘alpha’, what does this really mean? The very different value for 
TrBE compared to TrBR and TrH definitely deserves some discussion as it appears to be 
integrating some new factor into the FDI which the NI does not include and is not 
adequately represented in the other SPITFIRE PFT-specific parameters. Some discussion, 
even if it is a little speculative, is necessary here. In generally I can see no problem in tuning 
process-based models with ’black box’ optimisation procedures and somewhat unphysical 
variables, but there must be at least some attempt to interpret and relate the results back to 
the processes. 
 
We thank the reviewer for this important note. While we already explain some of our               
parameter results in section 3.2 in terms of process understanding we now added some              
ecological interpretation of the VPD_optim results  in the Discussion in P22 L12-17. 
 
The mortality risk of TrBE for VPD_optim remains close to the prior value of 1, confirming 
previous assumptions about its high fire sensitivity. Whereas the rCK for TrBR increased to 
0.48, close to the upper boundary of the optimization, meaning that a mortality risk of 50% 
when the full crown is scorched and a 7% mortality risk when 50% of the crown is scorched, 
which makes the TrBR less resistant against crown damage than before. Due to this 
changes the overestimation of biomass in the original model for the Cerrado/Caatinga region 
decreased (see Fig. 7). 
 



Moreover, we agree that the new alpha values deserve some further discussions and we              
now added a paragraph to the Discussion section in P22 L2-12: 
 
‘The fire danger index scaling factors (alpha_NI_i and alpha_VPD_i) convert the quantified            
fire risk (NI or VPD) into the actual fire danger (FDI). Both scaling factors thus set the                 
magnitude of the fire danger for the different PFTs. Hence they impact directly the fire               
spread, burnt area and the number of fires as well as indirectly fire mortality. These very                
important parameters vary significantly for the different PFTs. TrH has the smallest scaling             
factor in case of both FDIs, which leads to a lower fire danger compared to the other PFTs.                  
This indicates a prior overestimation of the fire danger of grass in tropical South America, as                
grasslands are generally parametrized to have a low fire resistance and moisture content             
and can hence burn very easily. This overestimation, compared to tree PFTs has been              
decreased by the optimization. In case of the VPD also the TrBR is scaled by a much                 
smaller factor than the TrBE, which leads to a lower fire danger index. This is due to the fact,                   
that the TrBR is dominant in dry and fire-prone regions, which experience frequent fires.              
Here the burnt area was often overestimated by SPITFIRE (e.g. Caatinga or eastern             
Cerrado) and is now decreased. On the other hand, a larger FDI for the TrBE allows more                 
fire in wetter regions at the edge between the Cerrado and the Amazon rainforests, where               
TrBE is more dominant.’ 
 
 
 
5. Again, relating to the process-understanding, plots of the fire intensity resulting from the 
methods should be shown (possibly in an appendix if necessary). The “fuel moisture -> 
combustion completeness -> fire intensity -> mortality” link is a critical pathway in these 
results, it should be discussed explicitly but is not. 
 
We thank the reviewer for this this comment. Unfortunately, the simulation of fire spread and               
fire behaviour in SPITFIRE does not have the link “fuel moisture -> combustion             
completeness -> fire intensity -> mortality”. Fuel consumption depends on fuel moisture in             
SPITFIRE, hence it is not a fixed parameter like consumption completeness, which is often              
used in other fire models. Surface fire intensity thus depends on the consumed fuel, fire               
spread and wind speed. The surface fire intensity is then used twofold: 1) to check if it is too                   
low to support a spreading fire. If this is the case, number of fires, burnt area and all fire                   
effects are set to zero. 2) Surface fire intensity is used to quantify flame length to quantify if                  
the flame could scorch the canopy. If this is the case, fire mortality from crown scorch is                 
quantified and the biomass of the dead trees is distributed to the dead fuel classes (see eqs.                 
5-7). Please note, that the model does not simulate active crown fires. In our opinion surface                
fire intensity is temporarily highly variable which makes it difficult to plot it into a map and                 
interpret its influence on fire behaviour. We hope that we could clarify the role of surface fire                 
intensity on linking fuel moisture and tree mortality with this explanation. We regard the              
influence of fire spread and fire danger index as the more important variables in SPITFIRE               
compared to the fire intensity, because they impact fuel consumption, fire intensity, and tree              
mortality. With the support of Fig. 3 we discussed, why and how a changing fire danger                
index has an impact on burnt area. To make this point clearer we added the following text to                  
the manuscript describing  Fig. 3 in P8 L 22-30: 



 
‚The general behavior of the two indices as modelled by LPJmL in dependence of relative               
humidity and temperature is shown in Fig. 3. The Nesterov index shows a strong but very                
localized maximum for high temperatures and a small humidity. Hence a spreading fire is              
only possible in a very small climate range (here ca. from 25° Celsius and a relative humidity                 
smaller than 0.5). The VPD on the other hand shows a less pronounced maximum but a                
medium fire danger also for wetter and colder regions. The slope of towards lower VPD               
values is also smaller compared to the Nesterov index. Especially in regions with             
temperatures colder than 20°C and relative humidity smaller than ca. 0.6 a fire is still               
possible. This might increase the area in which fires can occur compared to the Nesterov               
index, which could be an important improvement, enabling SPITFIRE to simulate more fire in              
wetter and colder regions. The calculated VPD and NI values shown in Fig. 3 are based on a                  
LPJmL-SPITFIRE run, and thus the influence of vegetation distribution on both fire danger             
indices.‘ 
 
 
 
6. There is no benchmarking of the PFTs that we expect to be effected by fire! The inclusion                  
of TrBE PFT FPC is great, but what about TrBR and TrH? These should be at least plotted,                  
and ideally benchmarked. If the ESA CCI dataset does not have useful classifications in this 
regard, at least MODIS VCF MOD44B Tree-Nontree-Bare would provide some reference           
data for the Caatinga and Cerrado. 
 
We thank the reviewer for pointing out that this information is also important for the reader to                 
get a complete picture of the spatial distribution of all tropical PFTs in the study region. As                 
suggested by the Reviewer we added the benchmarking of TrBR and TrH to the Appendix               
and changed the text accordingly in the Results (20 L5-6) (see answer to question 27 and                
A1 and A2). The maps of the PFT distributions were derived from the ESA CCI land cover                 
map V2.0.7 (Li et al., 2018; Forkel et al., 2014). 
 
 
Specific comments to the text 
Abstract 
 
7. ‘partly poor’ 
-rephrase 
 
We changed the sentence into: 
 
‘However, most fire-enabled DGVMs have problems in capturing the magnitude, spatial           
patterns, and temporal dynamics of burnt area as observed by satellites.’ 
 
8. ‘as a starting point’ 
– rephrase, this is not the first work to improve fire in DGVMs 
 
This might have been a misunderstanding. The term ‚as a starting point‘ refers to the               



improvements related to improving the SPITFIRE model. To clarify we excluded ‚as a             
starting point‘. 
 
 
9. ‘improves simulation of ... plan functional type’ 
– is that really demonstrated? 
 
It is demonstrated that the distribution of the PFTs improve for the fire-prone regions              
Caatinga and Cerrado. As suggested by the Reviewer we provide more details and             
clarifications also about the other PFTs (see answers to questions 27 and 30). To clarify we                
add here “distribution”: 
 
‘improves simulation of ... the spatial distribution of plant functional types’ 
 
Introduction 
10. P2 ‘recent decline in global burnt area’ 
– now contested (indeed by one of the authors) 
 
We thank the Reviewer for noting this and changed the sentence into: 
 
‘Despite a tendency for globally declining burnt area (Andela et al., 2017; Forkel et al. 2019),                
more frequent and [...]‘ 
 
11. P2 ‘Especially in South America, tropical forests, woodlands and other ecosystems are             
vulnerable to increasing fire danger and land use change’ 
– reference? 
 
As suggested by the Reviewer we added a reference: 
Cochrane, M., & Laurance, W. (2008) 
[https://bioone.org/journals/AMBIO-A-Journal-of-the-Human-Environment/volume-37/issue-7/
0044-7447-37.7.522/Synergisms-among-Fire-Land-Use-and-Climate-Change-in-the/10.1579
/0044-7447-37.7.522.full] 
 
Material and Methods 
12. P6 ‘SPITFIRE further includes a surface intensity threshold’ 
– please state this threshold here. I realise that this is in the Table 2 but the units are not                    
given. 
 
We added the threshold as suggested by the Reviewer. The parameter is the fraction of               
burnt area per gridcell, hence has no unit. We added the threshold in P6 L28-29: 
 
‚SPITFIRE further includes a surface intensity threshold (10^⁻6, fraction burnt area per grid             
cell), which describes the threshold of the possible area burnt[...]‘ 
 
13. P7 ‘The fire danger index is scaled by a PFT-dependent constant, α i , over the number                  
of PFTs n(Thonicke et al., 2010)’ 



- in the original Thonicke et al. 2010 implementation, the α varied over fuel classes (ie. 1hr,                 
10hr, 100hr, 1000hr and live grass fuels) not PFTs. Please explain and justify this change.               
Also, there no mention of live grass fuels. Are they parameterised as in original SPITFIRE? 
 
We thank the Reviewer for noting this. We indeed forgot to state in the paper that the fire                  
danger index calculation of SPITFIRE had changed with the publication of LPJmL4            
(Schaphoff et al. 2018) compared to the original version in Thonicke et al. (2010). The               
scaling over the relative moisture content of the 1-h, 10-h and 100-h fuel classes did no no                 
longer allow a stable modelling performance in LPJmL4.0 and had therefore been replaced             
as an average, PFT dependent parameter (see Eq. (63) in Schaphoff et al. 2018). The               
calculation of the moisture content for the live fuel consumption remained the same in              
LPJmL4.0 as well as in this study as described in Thonicke et al., (2010), the original                
SPITFIRE implementation. We added the following paragraph to the methods in P7 L20-24: 
 
‚The resulting fire danger index has been calculated as in Schaphoff et al. 2018a (slightly               
different compared to Thonicke et al. 2010) by taking into account the NI as measure for                
weather conditions and a PFT dependent scaling factor alpha_NI_i: 

, 
where n is the number of PFTs and m_e the moisture of extinction, which is a                
PFT-dependent parameter and is weighted over the litter amount.’ 
 
14. P8 ‘and a monthly mean for R to avoid unrealistic high flammability fluctuations in time                
steps with isolated events of very low R’ 
– can the authors justify this further? I know it is stated in the Pechnoy and Shindell paper,                  
but it is not immediately clear why flammability fluctuations due to rainfall events should be               
‘unrealistic’. Perhaps with their experience with this method, the authors can provide a more              
convincing argument. 
 
We justified this further by adding the following paragraph in P8 L7-11: 
 
‚The soil is a natural buffer for drought periods and heavy rainfall events. In the Nesterov                
index this was taken into account by the cumulative nature of this index. Since the               
VPD-based fire danger index is not cumulative, this buffering effect is taken into account by               
taking the monthly mean of the precipitation. In doing so we avoid unrealistic high              
flammability fluctuations in time steps with isolated events of very low or very high              
precipitation (R).‘ 
 
 
 
15. P8 ‘Hence, we scaled the VPD up with a PFT-dependent scaling factor α i ’ 
– since this has a very different physical meaning than the α i above, I strongly suggest                 
using a different symbol. 
 
We followed the reviewers suggestion and changed both alphas: The scaling factor for the              



Nesterov index is now called αNIi and the scaling factor for the VPD αVPDi. (See also                
Question 13) 
 
16. P8 ‘The general behaviour of the two indices as modelled by LPJmL in dependence of                
relative humidity and temperature is shown in Fig. 3’ 
– Fig 3 is a nice plot, but please explain in a little more detail how the panels are                   
comparable, as in how was the effect of vegetation taken in to account in the lower panel for                  
VPD FDI? 
 
We thank the reviewer for the useful comment and added more details on the Figure in P8                 
L22-30, see suggested text on our answer to main concern 5.  
 
 
 
 
17. P8 ‘We regridded and aggregated the data set to the LPJmL resolution of 0.5 ◦ × 0.5 ◦                   
and to a daily time step’ 
– normally climate data is the limiting factor when it comes to spatial resolution in DGVMs. Is                 
there any reason that the authors chose to aggregate this rather that use 0.25 degree?               
Especially when the evaluation data sets are available at 0.25 degree or finer. It seems like                
throwing away information. 
 
The reviewer raised an interesting point. We decided to keep the LPJmL spatial resolution at               
0.5 ◦ × 0.5 ◦ because it is also the standard resolution of other DGVMs in ISIMIP and Trendy                   
which makes our results comparable to these models. Furthermore a gridcell size of 0.25° x               
0.25° would slow down the computation time of global model runs by a factor of 4. For the                  
optimization we also would have to use four times the amount of tested grid cells to keep the                  
ratio of tested grid cells to untested grid cells. In our opinion, the loss of information by taking                  
a 0.5 ◦ × 0.5 ◦ instead of a 0.25° x 0.25° gridcell size is rather small for our large scale                     
modelling approach. We hope that the reviewer can agree to our argumentation.  
 
 
18. P10 ‘The optimization was performed for 40 grid-cells in South America to represent a               
variety of fire regimes (Fig. 2). Most of them were selected in active fire regions, especially in                 
the Cerrado and Caatinga. In addition a few pixels with no or almost no fire occurrence (e.g.                 
central Brazilian Amazon) were chosen.’ 
– this is a rather vague description of what may be a very important choice in the                 
optimisation procedure! See my main concern above. Please give more details in the logic              
here. 
 
We thank the reviewer for noting this lack of explanation on how the grid cells were selected                 
. We addressed this problem in the answer to main concern 3 and added a paragraph to the                  
methods in P10 L22-31 (see answer to main concern 3). 
 
 
19. P10 –Despite being important the FDI NI and the Rothermal equations, and being poorly               



constrained, moisture of extinction was not mentioned as a possible parameter for            
optimisation. Could the authors discuss this? 
 
We agree that the moisture of extinction could be also a possible parameter for the               
optimization. We decided not to use this parameter in order to make the optimization for both                
fire danger indices more comparable. Without the moisture of extinction, both fire danger             
indices are optimized with one PFT-dependent scaling factor. Another optimized parameter           
in the fire danger routine would give the Nesterov index more weight in the optimization               
compared to the VPD. 
 
 
20. P11 ‘NMSE’ 
– can the authors justify their choice of NMSE over NME? 
 
Generally the NMSE and the NME should show very similar results with the NMSE being               
the squared error term. We added a paragraph to justify better our choice of the NMSE in                 
P12 L11-14: 
 
‘We chose the NMSE to represent and compare the model errors, as it has a squared error                 
term, which puts a stronger emphasis on large deviations between simulations and 
observations as compared to a linear term, and due to its normalization it is comparable               
across different parameters. Especially for fire simulations we have a relatively large            
deviation between simulations and observations.’  
 
21. P11 ‘Willmott coefficient’ 
– please explain its range and meaning, as is done for NMSE. 
 
It is true that we forgot to give an overview about the different values for the Willmott 
coefficient. We added the following sentence inP12 L17-20: 
 
‘The Willmott coefficient is a squared index, where a value of 1 stands for perfect agreement                
between simulated and modelled runs and gets smaller for worse agreements with a             
minimum of 0. Unlike the coefficient of determination, the Willmott coefficient is additionally             
sensitive to biases between simulations and observations.’ 
 
 
Results 
22. P12 ‘mainly by shifting much of the simulated burnt area from the sparsely vegetated               
Caatinga towards the Cerrado region’ 
– this is true to some extent, but it also much is moved into Amazonia in regions where very                   
little fire is observed in reality. In order to back up this statement, a table with the burnt area                   
in each region for each simulation should be provided. The overestimation of fire in              
Amazonia should be discussed in the Discussion section. 
 
It is true, that much of the fire is also moved into Amazonia regions. With the Nesterov index                  
fire was strongly underestimated in the Amazonia region, while the optimized VPD fixes this              



underestimation. Fires are present at the edges of the Amazon (both in model and              
observation, see Fig. 4), where tree density is lower and deforestation takes place. In the               
closed continuous forest area towards the center of the Amazon almost no fire is observed               
and also not simulated. We initially did not add the Amazonia region to Fig. 5 and Table 1,                  
because the focus of this paper lies on the Cerrado and Caatinga region. But we agree that                 
a comparison between all three regions is useful and added the Amazonia region to Table 1                
and added a Figure of the timeseries of the Amazon to the Appendix. Furthermore we added                
a paragraph to the Results in P14 L4-11: 
 
‘Also the Amazonia region mostly improved by using the VPD_optim version (Tab. 1 and Fig.               
A3). The R² and the Willmott coefficient improved, while the NMSE increased slightly. With              
the Nesterov index fire was strongly underestimated in the Amazon region, while the             
optimized VPD fixes this underestimation. The fire is only modelled (and also observed, see              
Fig. 4) at the edges to the Amazon, where wood density is lower and deforestation takes                
place. In the closed continuous forest area towards the center of the Amazon almost no fire                
is observed and neither modelled. The total burnt area increased from 0.7 million ha to 4.8                
million ha (for VPD_optim) , which is now a bit overestimated to the observed burnt area of                 
3.4 million ha. Using the NI_optim all error metrics as well as the total burnt area decreased.’ 
 
 
and to the Discussion section in P23 L8-10: 
 
‘The poorly modelled PFT distribution also is responsible for the overestimation of the burnt              
area in the Amazon region. Because of the too large fraction of TrBE in the               
Cerrado/Caatinga region the scaling factor for this PFT is relatively high. This leads in turn to                
an overestimation in the Amazon region, where the fraction of the TrBE is larger.’ 
 



 
Tab. 1: Comparison of the results in terms of NMSE, the Willmott coefficient of agreement               
and the sum (in ha per year) between NI_orig, VPD_optim, NI_optim and the GFED              
evaluation data 
 
 
 



 
Fig. A6. Time-series of monthly burnt area from 2005 - 2015 simulated by SPITFIRE (red               
lines) compared to GFED4 evaluation data (blue lines) for: (a) The Amazonia region, using              
NI_orig. (b) Total South America, using the NI_orig. (c) The Amazonia region, using             
NI_optim. (d) Total South America, using NI_optim. (e) The Amazonia region, using            
VPD_optim. (f) Total South America, using VPD_optim. 
 
 
 
 
23. P13 Figure 5 
- There is some fire in the Amazonia region, both in the data and in the simulations.                 
Therefore, this region should be included in Figure 5 and Table 1, and discussed. 
 
We now added the Amazonia region to Table 1 and the timeseries of the region to the                 
Appendix. Please see more discussion to this point in question 22. 
 
 
 
24. P13 ‘Here, the TrBE showed the largest value (22.41), ca. 20 times as large as the TrBR                  
(1.21) and TrH (1.13) (Tab. 2)’ 



– there is no discussion of what this actually means in the Discussions section, please               
include an interpretation. 
 
We agree that the new alpha values deserve some further discussions and added a              
paragraph to the Discussion section in P22 L2-12 (see main concern 4). 
 
25. P17 ‘... but also here we got an even larger improvement, when only the fire-prone                
regions Cerrado or Caatinga are considered (Tab. 3)’ 
- Caatinga results are not shown in Tab. 3, although I think they should be. Possibly also                 
results for Amazonia (see above) 
 
We focused in this Table on showing the larger improvements of fire in the fire prone                
Cerrado (where the fire optimization has a large impact), in comparison to the only small               
improvements in total South America. We did not show other regions and PFTs, because              
this would enlarge the Table/Figures and the Result/Discussion part and go beyond the             
scope of this paper. We see the usefulness of further regions and PFTs and now added the                 
Caatinga to Table 3. We decided to not add the Amazon region in this context, because the                 
main message of this table is, that in the fire-prone regions (Cerrado and Caatinga) the               
improvements in model performance are much larger compared tototal SA (which has            
several areas without fire).  
We however now included Amazonia in Tab 1 and Fig. A3 (see answers to questions 22 and                 
23). We hope that this additional information now describes our results better. 
 



 
Tab. 3. Comparison of the results for AGB and the TrBE PFT cover in terms of NMSE and                  
the Willmott coefficient of agreement between NI_orig, VPD_optim and NI_optim in South            
America (SA), in the Cerrado and in the Caatinga. 
 
 
26. P 18 Figure 7 
– difference plots are great and I can see the logic behind including the difference relative to                 
the original model version to show improvements (as you have done) but please show the               
absolute values too (as in Figure 4). 
 
We decided to not show the absolute values, because it is not possible to see any difference                 
between the original model versions by eye. Hence, a difference plot is the best way to show                 
the changes between the different model versions. We added the figure for the absolute              
values to the Appendix (Fig. A5). 
 



 
Fig. A5. Annual above ground biomass (AGB) of trees over a mean from 2005-2015 in               
kgC/m^2. (a) Avitabile evaluation data. (b) Simulated AGB by LPJmL4-SPITFIRE in the            
NI_orig version. (c) Simulated AGB by LPJmL4-SPITFIRE in the VPD_optim version.           
NI$_orig. (d) Simulated AGB by LPJmL4-SPITFIRE in the NI_optim version. 
 
 
 
 
 
 
 
Discussion 
27. P19 ‘Another result of the optimizing procedure, using FDI_VPD , was the improvement              
of the PFT distribution..’ 
– I am not sure that statement is justified given the very small improvement in TrBE and no 
demonstrated improvement in the other PFTs. 
 
 



We agree that the improvement of the PFT distribution in total South America is relatively               
small. But since we only optimize fire parameters, we can only improve areas, where fire               
was misrepresented in SPITFIRE. Here an optimized burnt area can have a feedback on the               
PFT distribution. As demonstrated in the fire-prone Cerrado the improvement of PFT            
distribution is relatively large (the NMSE is halved compared to the original model version).              
Since we have in most parts of northern South America only two tree PFTs (TrBE and TrBR)                 
and a very small amount of grass, we did just show the TrBE, assuming that the TrBR                 
improves accordingly. Now we show (and discuss) the distribution of the other PFTs in the               
supplement. 
It is the aim of our paper to show the improvement of burnt area due to the new fire danger                    
index and the optimization. Hence, it was important that the improved fire representation             
does not decrease the performance of the PFT distribution. For the fire-prone regions, with              
large fire-vegetation feedbacks, we even find an improved PFT distribution.  
 

 
Fig A1. Annual FPC cover by tropical broadleaved raingreen PFT over a mean from              



2005-2015 as fraction per cell. (a) ESA-CCI evaluation data (b) Simulated FPC by             
LPJmL4-SPITFIRE using the NI orig version (c) Simulated FPC by LPJmL4-SPITFIRE using            
the VPD optim version (d) Simulated FPC by LPJmL4-SPITFIRE using the NI optim version 
 
 

 
Fig. A2. Annual FPC cover by tropical herbaceous PFT over a mean from 2005-2015 as               
fraction per cell. (a) ESA-CCI evaluation data (b) Simulated FPC by LPJmL4-SPITFIRE            
using the NI orig version (c) Simulated FPC by LPJmL4-SPITFIRE using the VPD optim 
version (d) Simulated FPC by LPJmL4-SPITFIRE using the NI optim version  
 
We added a short description to the result section in P20 L5-6:  
 
Also for the the TrBR and TrH PFT distributions we got an improved performance using the                
VPD_optim and mostly a worse performance using the NI_optim version (Fig. A1 and A2). 
 



 
28. P19 ‘it emphasizes that three parameter sets determining PFT distribution’ 
– what three parameter sets? You mean three PFTs? Or something else? Please clarify. 
 
We agree with the Reviewer that this sentence is not clear. We rewrote it as following in P21                  
L25-27: 
 
‘Hence, it emphasizes that we need to include further parameters in the optimization, which              
impact directly the PFT distribution, biomass and fire to obtain a significant improvement in              
the spatial and temporal distribution of both, vegetation and fire. However, this study focused              
solely on the parameters within the SPITFIRE module.’ 
 
29. P20 ‘Limitations during the optimization process’ 
– this heading is somewhat confusing and maybe should better be ‘Limitations of the              
optimization process’ 
 
We thank the Reviewer for this suggestion and changed the title of the subsection              
accordingly. 
 
30. P20 ‘As shown in Fig. 8, the modelled PFT coverage showed an equal distribution of                
tropical raingreen and evergreen PFTs throughout wide parts of central-northern South           
America’ 
– Fig. 8 shows no such thing, it only shows the FPC of the evergreen PFT. Of course, it may                    
simply be that the caption is incorrect somehow, but otherwise the distribution of the              
raingreen PFT must be shown to demonstrate this. 
 
We now show the fraction of the raingreen and herbaceous PFT in the Appendix (see               
answer to question 27). We added this information to the text in P23 L2-3: 
 
‘As shown in Fig. 8, A1 and A2, the modelled PFT coverage showed an equal distribution of                 
tropical raingreen and evergreen PFTs throughout wide parts of central-northern South           
America’ 
 
 
31. P20 ‘By choosing a large amount of optimization cells in the, by NI orig , strongly                 
overestimated Caatinga region, the burned area decreased there significantly after the           
optimization’ 
– this (slightly confusing statement) would appear to indicate that the authors acknowledge             
that their results depend heavily on the choice of grid cells for the optimisation (see above) 
 
We thank the Reviewer for noting that we could discuss this point better. We addressed the                
cell selection method in the answer to main concern 3. Some further issues with the               
optimization procedure for the different fire danger indices and regions were discussed in the              
answer to main concern 1. As stated in the answer to main concern 3 we changed a part of                   
the Discussion in P10 L22-31. 
 



 
32. P20 ‘In the Cerrado and especially the Caatinga, however, trees suffer from water stress               
in the dry season and should shed their leaves to avoid mortality related to drought or growth                 
efficiency. The resulting dominance of the TrBR PFT has a very different effect on fire               
spread and is more fire-tolerant (different fuel characteristics and resulting fire intensity), thus             
has a lower fire-related mortality.’ 
– whilst this a reasonable enough statement (in fact pretty much inherent in the construction               
of DGVMs and SPITFIRE) it is hard to see what it has to do with the limitations of the                   
optimisations process. 
 
The aim of this statement was to emphasize the importance of a correct PFT distribution. If                
we have ca. 50% raingreen PFTs in the Amazon (which should rather establish in the drier                
Cerrado and Caatinga region) their specific traits pose a problem to the optimization             
procedure. But we agree that this sentence could be omitted. Hence, we deleted this              
sentence and changed the paragraph (P23 L5-8) into: 
 
‘In the tropical rainforest the TrBR proportion is overestimated, which leads to problems in              
the optimization procedure, since TrBR has very different effects on fire spread and is more               
fire-tolerant (different fuel characteristics and resulting fire intensity). This leads to a lower             
fire-related mortality, which fits better to the drier and fire prone savanna-like regions (e.g.              
Cerrado).’ 
 
 
 
 
33. P21 – ‘Nonetheless, we were able to improve the interannual variability and hence, the               
model performance during extreme years for the Cerrado and Caatinga regions (e.g. for             
2007/2008, Fig. 5). The optimized SPITFIRE is now able to model accurately the climate              
dependent seasonal and interannual variability as well as the spatial extent of fire on natural               
land throughout the fire-prone woodlands of South America.’ 
– yes and no. In the Cerrado the results from Fig 5. are not significantly different between                 
VPD and Original, and whilst the results are better in the Caatinga for VPD, most of this                 
comes down to the overall normalisation, it is hard to see if VPD really catches between IAV                 
and seasonal dynamics. In fact, the R^2 (which is insensitive to the normalisation) actually              
gets worse going from Original to VPD. So these statements need much more nuance. And               
a plot of the normalised time series (equivalent to Fig 5., at least for the Caatinga) might be a                   
more effective way showing improvements in IAV and seasonal dynamics. 
 
We thank the Reviewer for noting that we could discuss more about the raised concern. We                
addressed this issue in the answer to main concern 1. Furthermore, thanks to the reviewer’s               
comment we noted a small error in Figure 5: The R² of 5a (original model version for the                  
Cerrado) has been wrongly written as 0.87. The real value, which was correctly written in the                
original text of the previous manuscript version, is however 0.78. Hence we have a slight               
improvement by the VPD version in all three metrics. We are very sorry for the confusion this                 
spelling error has caused.  
 



In the revised manuscript we now also show a Figure of the Amazonia region and for total                 
South America in the Appendix (see Fig. R3). In total South America all the metrics improve                
significantly which indicates an improved IAV. While we have a large improvement in the              
Caatinga and in total South America, the performance and IAV for Amazonia and the              
Cerrado region improved slightly. The spatial extent gets better for the whole area as shown               
in Fig 4.  
We also included now the p-value, which is mostly smaller using the VPD, indicating a more                
significant correlation. To make our statement clearer we rewrote the paragraph into (P23             
L21-25): 
 
‘Nonetheless, we were able to improve the interannual variability and hence, the model             
performance to a great extent for the Caatinga and slightly for the Cerrado and Amazon               
regions (Fg. 5 and A3). The Cerrado already had a very good modelling performance before               
the optimization process, which now only slightly improved. The performance of the            
interannual and seasonal variability of burnt area for total South America improved            
substantially (Fig. A3). The optimized SPITFIRE is now better able to simulate accurately the              
climate dependent seasonal and interannual variability as well as the spatial extent of fire on               
natural land throughout the fire-prone woodlands of South America.’ 
 
We also agree with the raised concern about a more effective way to show improvements in                
IAV and seasonal dynamics for the Caatinga. We tried different normalization approaches,            
which did not lead to a better visualization. In the end we decided to show a logarithmic                 
scale for the Caatinga in order to take into account the large differences between              
observation and the different model versions. A version of the plots with a non logarithmic               
scale remains in the Appendix.  
 



 
Fig. 5. Timeseries of monthly burnt area from 2005 - 2015 simulated by SPITFIRE (red lines)                
compared to GFED4 evaluation data (blue lines) for: (a) The Cerrado region, using NI_orig.              
(b) The Caatinga region, using the NI_orig. (c) The Cerrado region, using NI_optim. (d) The               
Caatinga region, using NI_optim. (e) The Cerrado region, using VPD_optim. (f) The            
Caatinga region, using VPD_optim. Note the logarithmic scale for the Caatinga, which was             
applied in order to account for the large differences between the different model versions (for               
a non logarithmic version see Fig. A6). 
 
 
 
34. P21 entire section titled ‘Outlook 
- the way ahead in improving fire modules in DGVMs’ – this text does not really fit the title.                   
Much of it refers specifically SPITFIRE or LPJml, specifically their current limitations. Please 
reconsider/revise/re-title this section. 
 
We thank the Reviewer and followed the suggestion and retitled this section. The name is               
now: Limitations of fire modeLling in LPJmL4-SPITFIRE. 
 
 
35. P21 The statements ‘it would be possible to use an even more comprehensive fire               



danger index (e.g. Canadian Fire Weather Index; Wagner et al., 1987) or different fire              
danger indices for different biomes’ and ‘In a global modelling approach, however, we need              
to find one fire danger index’ seem to contradict each other, please resolve! 
 
It is true that both statements contradict each other. We wanted to express, that it would be                 
ideal to have different fire danger indices for different biomes, because of the different fire               
dynamics. However, in our global modelling approach it is necessary to have just one fire               
danger index. The reason for this is, e.g., the computational effort or the exact definitions of                
biomes, which are also changing within one model run and hence do not fit to the LPJmL                 
model logic. We have now removed the first sentence to avoid the confusion and changed               
the next sentence slightly in P24 L17-19: 
 
‘Fire models embedded in DGVMs should build on a FDI which is complex enough to               
account for various fire dynamics, while it's parameterization should be simple enough to be              
accurately applied on a global scale. While the VPD is more complex and takes into account                
more climatic input as the Nesterov index, it is still relatively easy to implement in a global                 
fire model.’ 
 
 
 
Conclusions 
36. P21 ‘We have demonstrated a major improvement of the fire representation within             
LPJmL4-SPITFIRE by implementing a new fire danger index and applying a model-data            
integration setup to optimize fire-related parameters.’ 
- whilst there are tangible improvements, they are only tested and in the Caatinga and               
Cerrado, the region for which the optimisation was done (which you do mention in the next                
sentence). I would suggest toning this down slightly. 
 
We are confident that the revised manuscript now shows better the improvements in             
performance of modelled burnt area in South America. As suggested by the reviewer we              
added the study region to this sentence. 
 
‘We have significantly improved the fire representation within LPJmL4-SPITFIRE, applied for           
South America, by implementing a new fire danger index and applying a model-data             
integration setup to optimize fire-related parameters.’ 
 
37. P21 ‘We improved the seasonal and interannual variability’ 
– I have yet to be convinced of this, especially as the R^2 for the time series are not                   
improved with VPD. And I am not sure how to interpret the Willmott coefficient as this is not                  
described. 
 
We addressed this issue in the answer to main concern 1 and question 33 and describe now                 
the Willmott coefficient (see answer to question 21). 
We hope to have convinced the reviewer that the revised manuscript now shows better the               
improvements in performance of modelled burnt area in South America. 
In the revised manuscript we now also show a Figure of the time-series of total South                



America and the Amazon region in the Appendix, which show the improvements in model              
performance and IAV of the burnt area when using the optimized VPD. Hence a large               
improvement in the Caatinga and total South America and a slightly better performance in              
the Amazon and Cerrado region leads to a total improvement of IAV. Regarding the              
modelled R² please see our response to question 33.  
 
38. P21 ‘A realistic representation of fire is also crucial for fire-vegetation-climate feedbacks             
and is hence necessary for DGVMs coupled within and comprehensive Earth system model.’ 
– I think you can drop that sentence, as it attempts to summarise and justify fire modelling in 
general rather than this work. The penultimate sentence is fine to end with. 
 
We thank the Reviewer for this suggestion and dropped the last sentence. 
 
We thank the reviewer for the detailed and focused review of our manuscript. 
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Abstract. Vegetation fires influence global vegetation distribution, ecosystem functioning, and global carbon cycling. Specif-

ically in South America, changes in fire occurrence together with land use change accelerate ecosystem fragmentation and

increase the vulnerability of tropical forests and savannas to climate change. Dynamic Global Vegetation Models (DGVMs)

are valuable tools to estimate the effects of fire on ecosystem functioning and carbon cycling under future climate changes.

However,
::::
most

:
fire-enabled DGVMs have partly poor performances

:::::::
problems

:
in capturing the magnitude, spatial patterns,5

and temporal dynamics of burnt area as observed by satellites. As fire is controlled by the interplay of weather conditions,

vegetation properties and human activities, fire modules in DGVMs can be improved in various aspects. As a starting point,

we here
::
In

:::
this

:::::
study

:::
we

:
focus on improving the controls of climate and hence fuel moisture content on fire danger in the

LPJmL4-SPITFIRE DGVM in South America and especially for the Brazilian fire-prone biomes Caatinga and Cerrado. We

therefore test two alternative model formulations (standard Nesterov index and a newly implemented water vapor pressure10

deficit) for climate effects on fire danger within a formal model-data integration setup where we estimate model parameters

against satellite data sets of burnt area (GFED4) and above ground biomass of trees. Our results show that the optimized model

improves the representation of spatial patterns and the seasonal to inter-annual dynamics of burnt area especially in the Cer-

rado/Caatinga region. In addition, the model improves the simulation of above-ground biomass and
::
the

::::::
spatial

::::::::::
distribution

::
of

plant functional types (PFTs). We obtained the best results by using the water vapor pressure deficit (VPD) for the calculation15

of fire danger. The VPD includes, in comparison to the Nesterov index, a representation of the air humidity and the vegetation

density. This work shows the successful application of a systematic model-data integration setup, as well as the integration of

a new fire danger formulation, in order to optimize a process-based fire-enabled DGVM. It further highlights the potential of

this approach to achieve a new level of accuracy in comprehensive global fire modelling and prediction.
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1 Introduction

Fire in the Earth system is an important disturbance leading to many changes in the vegetation and has substantial impact on

biodiversity, human health and ecosystems (Langmann et al., 2009). Fire is responsible for ca. 2 Pg of carbon emissions, which

constitutes 20 % of global carbon emissions (Giglio et al., 2013; Werf et al., 2010). Fire-induced aerosol emissions and land

surface changes modify evapotranspiration and surface albedo and have therefore a crucial impact on global climate (van der5

Werf et al., 2008; Yue and Unger, 2018). Despite of a recent decline in global burnt area (Andela et al., 2017)
:
a
::::::::
tendency

::
for

::::::::
globally

::::::::
declining

:::::
burnt

::::
area

::::::::::::::::::::::::::::::::::
(Andela et al., 2017; Forkel et al., 2019b), more frequent and intense drought-periods lead

worldwide to increasing fire-prone weather and surface conditions
::::::::
worldwide

::::
and

:
therefore fire danger (Jolly et al., 2015).

Growing fire danger along with land-use change are increasing ecosystem’s vulnerability, which can
:::::
could in turn shift entire

regions into a less vegetated state (Silvério et al., 2013). To account for these effects, it is extremely important to include well10

performing fire modules in Dynamic Global Vegetation Models (DGVMs).

Especially in South America, tropical forests, woodlands and other ecosystems are vulnerable to increasing fire danger and land

use change . This paper
::::::::::::::::::::::::::
(Cochrane and Laurance, 2008).

::::
This

:::::
study

:
focuses on the fire behaviour

:::::::
behavior

:
in central-northern

South America and especially on the Brazilian fire-prone biomes Caatinga and Cerrado,
::::::
which

:::
are

:::
the

::::
most

::::::::
fire-prone

:::::::
regions

::
in

:::::
South

:::::::
America

:
(Fig. 1). Together with the Amazon rainforest they form an area of very high biodiversity and have a large15

impact on the global carbon-cycle and the regional water cycle (Lahsen et al., 2016). Compared to the Amazon, the Cerrado

Figure 1. Overview of the mean annual burnt area in Brazil from 2005-2015 (Werf et al., 2017; Giglio et al., 2013) and the biomes Amazonia,

Cerrado and Caatinga (IBGE, 2019; Harvard, 2019)

and Caatinga are
::::
both less densely vegetated and drier biomes, but with very different vegetation and precipitation dynamics.
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The Cerrado is a savanna-like biome with a mixture of shrubs, high grasses and dry forest parts. With a precipitation of ca.

1500 mm per year the Cerrado does experience a rainy season. The Caatinga, on the other hand, has a semi-arid climate with

irregular rainfall between 500 and 750 mm per year, mostly within only a few months of the year. The vegetation is hetero-

geneous and characterized by deciduous dry forest and shrubs (Alvares et al., 2013; Prado, 2003). The different vegetation

types
:
of
::::

the
:::::::
Caatinga

::::
and

:::
the

:::::::
Cerrado lead to different fire spread, fire intensity, fire resistance and fire mortality properties.5

While within the Cerrado fire is a frequent event and the plants are mostly adapted to it (70 % of burnt area in Brazil is within

the Cerrado, Moreira de Araújo et al., 2012), the Caatinga has a lower fire intensity and fire spread due to a lower biomass,

which is available for fuel. Such variability in the vegetation and dead fuel composition, within and between biomes, poses

a challenge to global fire models to correctly simulate observed fire patterns for a variety of biomes. Both, the Caatinga and

the Cerrado depend on a strict equilibrium of fire-vegetation-climate feedbacks (Lasslop et al., 2016), which is threatened to10

be disturbed by human impact through climate change and land use change (Beuchle et al., 2015). While the Amazon is the

focus of various national and international conservation efforts and at least by law well protected, the Cerrado is currently

over-exploited by the agribusiness and its importance for regional climate, biodiversity and the water cycle is often neglected

(Lahsen et al., 2016). In particular the disturbance of increasing fire regimes by climate change and land-use change might

accelerate biome degradation. These effects on the Cerrado might also impact the Amazon rainforest by shifting the position15

of the savanna-forest biome boundary towards forest, putting the functioning of the Amazon rain forest at risk (Chambers and

Artaxo, 2017). Parts of the Cerrado are also itself vulnerable to increasing fire regimes, and might shift to a less vegetated

state, similar to the Caatinga (Hoffmann et al., 2000). To model these feedback-processes
:::::::
feedback

::::::::
processes

:
and to study the

range of biome-stability under certain drought-induced perturbations, a realistic fire representation in climate and vegetation

models is essential. Howeverthe modelling of the fire behaviour ,
:::::::::
modelling

:::
fire

:::::::
behavior

:
of the Brazilian Cerrado and Caatinga20

presents a huge challenge.

The fire occurrence depends on many interconnected parameters as humidity, precipitation, temperature, ignition sources (light-

ning and human) and windspeed, but also on fuel load, fuel moisture and the adaption of plant traits to fire (Keeley et al., 2011),

which makes the development of fire models a complex task (Forkel et al., 2019a; Hantson et al., 2016; Lasslop et al., 2015;

Krawchuk and Moritz, 2011; Jolly et al., 2015). Global fire modelling is done either by empirical models (e.g. Thonicke25

et al., 2001; Knorr et al., 2016; Forkel et al., 2017) or by process-based models (e.g. Venevsky et al., 2002; Thonicke et al.,

2010). Empirical fire models are simplified statistical representations of fire processes and are based on empirical relation-

ships between variables (e.g. soil moisture and fire occurrence). Process-based fire models attempt to simulate fire via explicit

process-based relations: Fire ignitions are calculated by taking into account lightning flashes as natural sources and human

ignitions. The chance of an ignition to become a spreading fire is then determined by the fire danger index. Sophisticated fire30

models have further a function for calculating
:::::::
calculate

:
the rate of spread by taking into account wind speed and then translate

these results into an area burnt, fuel consumption and fire carbon emissions (Thonicke et al., 2010; Hantson et al., 2016)
::::
(e.g.

::::::::::::::::::
Thonicke et al. (2010);

:::
see

::::::::::::::::::
Hantson et al. (2016)

:::
for

::
an

::::::::
overview

::
of

:::::
global

::::
fire

:::::::
models).

Weather conditions control the moisture content of fuels and the danger of fire ignitions
:
to

:::::
ignite

:
and spread. Hence the

simulation of fire danger plays an important role to simulate the occurrence of fire within global process-based fire models35
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(Pechony and Shindell, 2009). Temperature, precipitation, humidity and vegetation-related variables are often used to compute

fire weather indices and hence to estimate the risk of fire ignitions or spread
:::::::
ignitions

::
to

:::::::
become

:
a
:::::::::
spreading

:::
fire (Chuvieco

et al., 2010). Various fire weather indices have been previously developed and are used within operational fire danger assess-

ment systems (e.g. Canadian Fire Weather index(FWI )
:
,
::::
FWI

:
(Wagner et al., 1987), the Keetch Byram Drought Index (Keetch

and Byram, 1968), the Angström Fire Danger Index (Arpaci et al., 2013), and the Nesterov index (Venevsky et al., 2002)).5

However, regional studies show that fire weather indices
::::
tend

::
to have different predictive performances for fire occurrence

(Arpaci et al., 2013). Hence, the performance of different fire weather indices should be ideally assessed
::::
tested

:
in order to

accurately represent fire danger in DGVMs. However, not all fire weather indices can be easily adapted for global fire models

because they require input variables that are not available within a DGVM framework. Hence a fire danger index for a DGVM

should be as complex as necessary but still relatively easy to implement. As a result, the relatively simple Nesterov index has10

been widely used within global fire models (Venevsky et al., 2002; Thonicke et al., 2010).

Here, we aim to improve the simulated occurrence of fire (i.e. burnt area) in the LPJmL4-SPITFIRE model for South Amer-

ica and in particular for the fire-prone biomes Cerrado and Caatinga. We aim to test
:::::::
evaluate the performance of two al-

ternative fire danger indices within SPITFIRE (based on the already implemented Nesterov index (Venevsky et al., 2002)

and the newly implemented water vapour pressure deficit (Pechony and Shindell, 2009; Ray et al., 2005)
::::
vapor

:::::::
pressure

::::::
deficit15

::::::::::::::::::::::::::::::::::::::::::::::::::
(VPD thereafter, Pechony and Shindell, 2009; Ray et al., 2005). Furthermore, we apply a formal model-data integration frame-

work (LPJmLmdi, Forkel et al., 2014) to estimate model parameters that control fire danger, fire behaviour
::::::::
behavior, fire re-

sistance and mortality against satellite-based data sets of burnt area and above-ground biomass (Fig. 2). Our approach is likely

to improve the representation of spatial-temporal variations in fire behaviour in different climates and
:::::::
behavior

::
in

::::::::
different

biomes to enable a much better modelling of the impact of climate change on fire-vegetation interactions in the current century.20

2 Materials and Methods

2.1 The coupled vegetation-fire model LPJmL4-SPITFIRE

2.1.1 LPJmL 4.0

The LPJmL 4.0 model (Lund-Potsdam-Jena managed Land, Schaphoff et al., 2018a, b), is a well established and validated

process-based DGVM, which globally simulates the surface energy balance, water fluxes, carbon fluxes and stocks, and natu-25

ral and managed vegetation from climate and soil input data. LPJmL simulates global vegetation distribution as the fractional

coverage of plant functional types (PFT), which is called foliage projective cover (FPC), and managed land as fractional cov-

erage of crop functional types (CFT). The establishment and survival of different PFTs is regulated through bioclimatic limits

and effects of heat, productivity and fire on plant mortality. Therefore, it enables LPJmL to investigate feedbacks, for example

between vegetation and fire. In standard settings, which are also used here, the model operates on the grid of 0.5◦×0.5◦ lat-lon30

::::::::::::::
latitude-longitude

:
with a spinup time of 5000 years, repeating the first 30 years of the given climate data set.

Since its original implementation by Sitch et al. (2003), LPJmL has been improved by a representation of the water balance
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Figure 2. Schematic overview about
:
of
:
the model-data integration approach to estimate parameters of LPJmL4-SPITFIRE against satellite-

based data sets of burnt area and above-gorund
::::::::::
above-ground

:
biomass

(Gerten et al., 2004), a representation of the agriculture (Bondeau et al., 2007), and new modules for fire (Thonicke et al.,

2010), permafrost (Schaphoff et al., 2013) and phenology (Forkel et al., 2014).

2.1.2 SPITFIRE

SPITFIRE (SPread and InTensity of FIRE, Thonicke et al., 2010) is a process-based fire module, used in various vegetation5

models (e.g. Lasslop et al., 2014; Yue and Unger, 2018), including LPJmL4. We describe here its main features, which are

published in Thonicke et al. (2010). SPITFIRE calculates fire disturbance by simulating the ignition, the danger, the spread and

the effects of fire separately. As ignition sources SPITFIRE considers human ignition and lightning flashes. Human ignitions

(nh,ig) are
::::::::
calculated

::
as

:
a function of population density:

nh,ig = PD · k(PD) · a(ND)/100, (1)10

where

k(PD) = 30.0 · exp(ph ·
√
PD). (2)

PD is the human population density (individuals km−2) and a(ND) (ignitions individual−1 day−1) describes the inclination

of humans to cause fire ignitions (Eq. 3 and 4 in Thonicke et al., 2010). ph is a parameter, which is set to -0.5 in Thonicke

5



et al. (2010). This relationship assumes that human ignitions are lowest on very low populated regions and on high populated

regions through a higher level of urbanization and landscape fragmentation. The ignition is highest for a medium-small popu-

lation density. Lightning-caused ignitions are prescribed by lightning data from the OTD/LIS Gridded Climatological data set

(Christian et al., 2003), assuming that 20 % of the flashes reach the ground and their effectiveness to ignite a fireis 0.04
:
4
:::

%

::
of

:::::::::::::
cloud-to-ground

::::::
strikes

:::
can

::::
start

::
a
:::
fire. In the study area of South America human ignitions are by far the most dominant5

ignition source, due to missing lightning in the dry season.

Fire danger is by default computed by using the Nesterov index which accounts for the maximum and dew point temperatures

as well as scaling factors for different PFTs on a daily time step. In the following section, we describe the calculation of the

fire danger indices in detail (Sect. 2.2). Fire duration tfire (min) is calculated as a function of the fire danger index, assuming

that fires burn longer under a high fire danger:10

tfire =
241

1 + 240 · exp(pdt ·FDI)
, (3)

where pd ::
pt is set to -11.06 in Thonicke et al. (2010). The maximum fire duration per day is 240 minutes.

The calculation of the forward rate of spread ROSf,surface (m min−1) is based on the Rothermel equations (Rothermel, 1972;

Pyne et al., 1996; Wilson, 1982):

ROSf,surface =
IR · ξ · (1 + Φw)

ρb · ε ·Qig
, (4)15

where IR is the reaction intensity, ξ the propagation flux ratio, Φw a multiplier that accounts for the effect of wind, ε the

effective heating number, Qig the heat of pre-ignition and ρb the fuel bulk density (Eq. 9 in Thonicke et al., 2010). ρb is a PFT

dependent
::
(kg

:::::
m−3)

::
is
::
a
:::::::::::::
PFT-dependent parameter and describes the density of the fuel, which is available for burning. It is

weighted over the different fuel classes. Hence, a changing PFT distribution has an impact on the ROS
::::::::::::
ROSf,surface.

The simulated fire ignitions, fire danger and fire spread are then used to calculate the burnt area, fire carbon emissions, and plant20

mortality. Plant mortality depends on the scorch height (
:::
SH)

:
and the probability of mortality due to crown damage Pm(CK).

The scorch height SH
::
SH describes the height of the flame at which canopy scorching occurs. It increases with the 2/3 power

of the surface intensity Isurface:

SH = F · I0.667surface, (5)

where F
:
F is a PFT-dependent parameter. Assuming a cylindrical crown, the proportion CK

::
CK affected by fire is

::::::::
calculated25

::
as:

CK =
SH −H +CL

CL
, (6)

where H
::
H is the height of the average woody PFT and CL

:::
CL the crown length. The probability of mortality Pm(CK) due to

crown damage is then calculated by:

Pm(CK) = rCK ·CKp, (7)30
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where rCK
::::
rCK is a PFT depended resistance factor between 0 and 1, and p

:
p in the range of 3 to 4. Disturbance by fire mor-

tality has a large impact on the vegetation dynamics, which are calculated within LPJmL. SPITFIRE further includes a surface

intensity threshold
::::
(106,

:::::::
fraction

:::::
burnt

:::
area

:::
per

::::
grid

::::
cell), which describes the threshold of the possible area burnt below which

the surface intensity is set to zero and hence burnt area, emissions and fuel consumption is set to zero.

SPITFIRE considers anthropogenic effects on fire by taking into account human ignitions but does not account for fire sup-5

pression. Only wildfires occurring in natural vegetation are simulated. Fire on managed land like agriculture or pasture areas

is not implemented, which has to be taken into account if simulated burnt area is compared with satellite observation.

Furthermore, we introduced a small technical change in the LPJmL4 interaction with SPITFIRE compared to the original

SPITFIRE implementation: In the version 4.0 of LPJmL the fire litter routine calculates the leaf and litter carbon pools in a

daily time step. Since the LPJmL tree allocation works at a yearly time step, this implementation leads to an incorrect LPJmL4-10

SPITFIRE interaction. We now split the fire-litter routine into two parts; the first one allocates burnt matter into the litter at a

daily time step without recalculating the pools and the second one calculates the leaf and root carbon pools at a yearly time step.

2.2 Fire danger indices

The fire danger index (FDI) is a key parameter within process-based fire models such as SPITFIRE. The FDI determines the15

probability and the intensity of a spreading fire, which impacts fire behaviour
:::::::
behavior.

2.2.1 Nesterov index-based fire danger index (FDINI )

The fire danger index within SPITFIRE is based on the daily (dd) calculated Nesterov Index NI(d)
::::
NI(d) (Venevsky et al.,

2002), which is widely used in numeric fire simulations. The NI is a cumulative function of daily maximum temperature

Tmax(d)
::::
(◦C) and dew-point temperature Tdew(d)(◦C) and set to zero at a precipitation ≥ 3 mm or a temperature ≤ 4 ◦C:20

NI(d) =
∑

Tmax(d) · (Tmax(d)−Tdew(d)), (8)

Tdew = Tmin(d)− 4. (9)

The final FDI is then calculated
:::
The

::::::::
resulting

:::
fire

::::::
danger

:::::
index

::::
has

::::
been

:::::::::
calculated

::
as

:::
in

::::::::::::::::::::
Schaphoff et al. (2018a)

:::::::
(slightly

:::::::
different

::::::::
compared

:::
to

::::::::::::::::::
Thonicke et al. (2010)

:
) by taking into account the Nesterov index

:::
NI as measure for the fire weather25

conditions , the total dead fuel load for the different fuel classes i (ω0i ) and
::::::
weather

:::::::::
conditions

:::
and

::
a
::::::::::::
PFT-dependent

:::::::
scaling

:::::
factor

:::::
αNIi :

FDINI =max

(
0,1− 1

:

me
::
exp
:::

(
−
∑

αNIi
::::::: n:

·NI
:::

))
,

::::::::::::::::::::::::::::::::::::::::::::::

(10)
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:::::
where

:
n
::
is
:::
the

:::::::
number

::
of

:::::
PFTs

:::
and

:::
me:

the moisture of extinctionme, the latter is a PFT depended ,
::::::
which

::
is

:
a
:::::::::::::
PFT-dependent

parameter and is weighted over the litter amount. The fire danger index is scaled by a PFT-dependent constant, αi, over the

number of PFTs n (Thonicke et al., 2010):

FDINI =max

0,

1− 1
meexp

− n∑
i=1

αi ·
ω0i

ω0

 ·NI

 .

We will use the scaling factors αi:::::
αNIi in the parameter optimization (Sect. 2.4).5

2.2.2 Vapor pressure deficit-based fire danger index (FDIV PD)

We implemented a new fire danger index, based on the water vapor pressure deficit (VPD). The VPD describes the difference

of the saturation water vapor pressure es and the actual water vapor pressure in the air. For the parameterization of the VPD

we used an approach based on Pechony and Shindell (2009):10

V PD ∝ 10Z(T )(1−RH/100), (11)

where T
:
T is the air temperature, RH

::
RH the relative humidity and Z

:
Z the Goff-Gratch equation (Goff and Gratch, 1946) to

calculate the saturation vapor pressure. The flammability F
:
F at time step t for each grid cell can then be expressed as:

F (t) = 10Z(T (t))

(
1− RH(t)

100

)
V D(t)e−cRR(t), (12)

where VD
:::
VD is the vegetation density, R

:
R the total precipitation in mm/day and cR is a constant factor (cR = 2 day/mm).15

Here we used the simulated FPC
::::
FPC from LPJmL4 as a proxy for the VD and a monthly mean for R to

:::
VD.

::::
The

:::
soil

::
is
::
a

::::::
natural

:::::
buffer

:::
for

::::::
drought

::::::
periods

::::
and

:::::
heavy

::::::
rainfall

::::::
events.

::
In

:::
the

::::::::
Nesterov

::::
index

::::
this

:::
was

:::::
taken

::::
into

::::::
account

:::
by

::
the

::::::::::
cumulative

:::::
nature

::
of

::::
this

:::::
index.

:::::
Since

::::
the

:::::::::
VPD-based

::::
fire

::::::
danger

:::::
index

::
is

:::
not

::::::::::
cumulative,

:::
this

::::::::
buffering

::::::
effect

::
is

::::
taken

::::
into

:::::::
account

:::
by

:::::
taking

:::
the

:::::::
monthly

:::::
mean

::
of

:::
the

:::::::::::
precipitation.

::
In

:::::
doing

::
so

:::
we

:
avoid unrealistic high flammability fluctuations in time steps with

isolated events of very low R.
:
or

::::
very

::::
high

:::::::::::
precipitation

:
(
:
R
::
).20

Based on this implementation in SPITFIRE, the resulting FDI was much smaller than the original FDINI . Hence, we scaled

the VPD up with a PFT-dependent scaling factor αi::::::::
αV PDi

,
::::::::
weighted

::::
over

::
the

::::::::::::
corresponding

:::::
FPC:

:

FDIV PD =

∑
αiV PDi

::::
·FPCi∑

FPCi
·F (t). (13)

αi::::::
αV PDi:

for the FDIV PD was not included in (Pechony and Shindell, 2009), but is important in order to allow different fire

responses for different tree and grass types. We will use the scaling factors αi ::::::
αV PDi in the parameter optimization (Sect. 2.4).25

In comparison to the NI, the VPD
::::::::
FDIV PD:

requires more climate variables as input as it uses relative humidity and vegetation

cover as additional fire-relevant variables. Vegetation cover has a direct link to fire risk by providing the number of available
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fuel for burning. According to many studies (e.g. Ray et al., 2005; Sedano and Randerson, 2014; Seager et al., 2015) the

FDIV PD is a very accurate fire danger index with a high correlation with fire occurrence, while still being relatively easy to

implement in a global fire model.

The general behaviour
:::::::
behavior

:
of the two indices as modelled by LPJmL in dependence of relative humidity and temperature

is shown in Fig. 3. The Nesterov index shows a strong but very localized maximum for high temperatures and a small humidity.5

:::::
Hence

:
a
:::::::::
spreading

:::
fire

::
is

::::
only

:::::::
possible

::
in

:
a
::::
very

:::::
small

::::::
climate

:::::
range

:::::
(here

:::
ca.

::::
from

:::
25°

:::::::
Celsius

:::
and

:
a
:::::::
relative

:::::::
humidity

:::::::
smaller

:::
than

:::::
0.5). The VPD on the other hand shows a less pronounced maximum but a medium fire danger also for wetter and colder

regions.
:::
The

:::::
slope

::
of

:::::::
towards

:::::
lower

:::::
VPD

::::::
values

:
is
::::

also
:::::::
smaller

::::::::
compared

:::
to

:::
the

:::::::
Nesterov

::::::
index.

:::::::::
Especially

::
in

:::::::
regions

::::
with

::::::::::
temperatures

::::::
colder

::::
than

:::::
20°C

:::
and

:
a
:::::::
relative

::::::::
humidity

::::::
smaller

::::
than

:::
ca.

:::
0.6

:
a
:::
fire

::
is
::::
still

:::::::
possible.

:
This might increase the area

in which fires
::
can

:
occur compared to the Nesterov index, which could be an important improvement, enabling SPITFIRE to10

simulate also more fire in wetter regions.
:::
and

::::::
colder

:::::::
regions.

:::
The

:::::::::
calculated

::::
VPD

::::
and

:::
NI

:::::
values

::::::
shown

::
in

::::
Fig.

:
3
:::
are

:::::
based

:::
on

:
a
:::::::::::::::
LPJmL-SPITFIRE

::::
run,

:::
and

::::
thus

:::
the

::::::::
influence

::
of

:::::::::
vegetation

::::::::::
distribution

::
on

::::
both

:::
fire

::::::
danger

:::::::
indices.

:

2.3 Model input data

LPJmL4-SPITFIRE requires input data on daily air temperature, precipitation, long-wave and shortwave downward radiation,

wind and specific humidity, which we took
:::
are

:::::
taken from the NOAH Global Land Assimilation System (GLDAS, Rodell15

et al., 2004). The data has a spatial resolution of 0.25◦× 0.25◦ and the time step is 3 hours. We regridded and aggregated the

data set to the LPJmL resolution of 0.5◦× 0.5◦ and to a daily time step. We used the GLDAS 2.0 for the years 1948-1999 and

the version GLDAS 2.1 for the years 2000-2017. GLDAS 2.1 uses multiple satellite- and ground based
::::::::::
ground-based

:
observa-

tional data as well as advanced land surface modelling and data assimilation techniques. GLDAS 2.0 is forced entirely with the

Princeton meteorological forcing data (Civil and Environmental Engineering/Princeton University, 2006). Because LPJmL420

requires at least 30 years of climate data for its spin-up (Sect. 2.1.1), the time span covered by GLDAS 2.1 is too short. To run

the model, we used both climate data sets, but used the years 2003-2013 from GLDAS 2.1 for the optimization and 2005-2015

for the evaluation period.

Furthermore, LPJmL4-SPITFIRE is forced with gridded constant soil texture (Nachtergaele et al., 2009) and annual informa-

tion on land use from Fader et al. (2010). Atmospheric CO2 concentrations are used from Mauna Loa station (Quéré et al.,25

2015) and applied globally. The population density is taken form
::::
from Goldewijk et al. (2011) and the lightning flashes are

taken from the OTD/LIS satellite product (Christian et al., 2003).

2.4 Model optimization

To estimate parameters of LPJmL4-SPITFIRE, we aimed to calibrate model results against satellite observations of burnt

area (GFED4: Giglio et al., 2013; Werf et al., 2017). However, as fire occurrence and spread impact and depend on vegeta-30

tion productivity, hence fuel load, we wanted to ensure to not over-fit LPJmL4 against burnt area but to additionally achieve

a realistic vegetation distribution. Therefore, we additionally included a satellite-derived data set on above-ground biomass

(AGB, Avitabile et al., 2016) of trees
::
of

::::
trees

:::::::::::::::::::::::::
(AGB, Avitabile et al., 2016) in the optimization. We combined burnt area and

9



Figure 3. Dependence of the simulated fire danger index on monthly mean relative humidity and temperature for (a) the Nesterov-based

index and (b) the VPD-based index. Both indices were calculated with monthly data for the years 2000-2010.

AGB with the corresponding model outputs within a joint cost function and applied a genetic optimization algorithm to es-

timate model parameters (Fig. 2). The implementation of the genetic optimization algorithm (Mebane and Sekhon, 2011)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(GENetic Optimization Using Derivatives (GENOUD), Mebane and Sekhon, 2011) for LPJmL is described in (Forkel et al., 2014)

:::::::::::::::
Forkel et al. (2014). The used cost function is based on the Kling-Gupta efficiency (KGE), which is the Euclidean distance in

a three-dimensional space of model performance measures that account for the bias, ratio of variance and correlation between5

simulations and the observations. Gupta et al. (2009) showed that the KGE performs in an optimization setup better than
::
is

:::::
better

::::
than,

:
e.g.

:
,
:
the Nash-Sutcliffe efficiency (and hence MSE). We extended the KGE by defining it for multiple data sets d

(i.e. burnt area and AGB):

Cost=

√√√√ N∑
d=1

(
śd
ód

− 1

)2

+

(
σs,d

σo,d
− 1

)2

+ (r(sd,od)− 1)2 (14)
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where ś and ó are mean values (bias component) over space (i.e. different grid-cells) and time (e.g. months) of simulations s

and the observations o, respectively. σs and σo are variances (variance component) and r is the Pearson correlation coefficient

over space and time. The optimization was performed for 40 grid-cells in South America to represent a variety of fire regimes

(Fig. 2). Most of them were selected in
:::
We

:::::::
selected

:::
the

::::
grid

::::
cells

::::::::
manually

::
to

:::::
cover

:
active fire regions , especially

::::::
(either

::
in

::
the

::::::
model

::
or

::
in

:::
the

:::::::::
evaluation

:::::
data),

:::::::::
specifically

:
in the Cerrado and Caatinga. In addition a few pixels with no or almost no fire5

occurrence (e.g.
:::
We

:::::::
selected

::
a

::::
high

::::::
density

::
of

::::
grid

::::
cells

::
in
:::

the
::::::::

Caatinga
::::::
region

::
to

:::::::
improve

:::
the

::::
very

::::
poor

::::::
model

:::::::::::
performance

::
in

:::
this

::::::
region.

:::
To

:::::
make

::::
sure

:::
that

:::
the

::::::
model

:::::::::::
performance

::
in

:::
the

::::::::
Caatinga

:::
and

:::::::
Cerrado

::::
was

:::
not

::::::::
achieved

::
at

:::
the

::::
cost

::
of

:
a
:::::

poor

::::::::::
performance

::
in

:::::
other

:::::
areas,

:::
we

::::
also

:::::::::::
additionally

:::::::
selected

:::::
some

::::
cells

::
in

:::::
areas

:::::
where

::::::
initial

:::
fire

::::::::
modeling

:::::
gave

::::
good

:::::::
results,

::
as

::::
well

::
as

::
in

:::::
areas

::::::
where

:::::::
minimal

::
or

:::
no

:::
fire

::::::
occurs

:
(central Brazilian Amazon)were chosen.

:::::
After

:::::::::
inspection

::
of

:::
the

:::::::
results,

:::::
minor

::::::::::
adjustments

::::
were

:::::
made

:::
and

:::
the

::::::::
selection

::
of

:::
the

::::
grid

::::
cells

:::
was

::::::::
modified

::
to

:::::::
account

:::
for

::::::::
neglected

::::::
regions

::::::
(which

:::::::
showed10

::::::::
worsening

:::
of

:::
the

:::::
model

::::::::::::
performance).

::::::
These

:::::
initial

:::::::
analysis

:::::::
actually

:::::::::::
demonstrate

::::
that

:::
the

::::::
choice

::
of

::::
grid

::::
cells

::
is
:::::::::
important

::
for

:::
the

::::::
model

:::::::::::
optimization

:::
and

:::::::
requires

:::
the

:::::::::::
development

::
of

::
a
:::::
more

::::::::
thorough

:::::::
selection

:::::::
method

::
in

:::::
future

::::::
model

:::::::::::
optimization

::::::::::
applications.

Several parameters of LPJmL4-SPITFIRE were included in the optimization that cover different fire processes
:::
(see

::::
Tab.

::
2):

ignition (human ignition parameter ph, Eq. 2), fire danger (scaling factors FDI (αi ::::
αNIi :::

and
::::::
αV PDi

), Eq. 10 and 13), fire spread15

(fire duration pd::
pt, Eq. 3), fuel bulk density (ρb, Eq. 4), surface intensity threshold and fire effects (scorch height parameter

FF, Eq. 5; crown mortality parameter rCKrCK, Eq. 7). While pd::
pt, ph and the surface intensity threshold are global parameters

(for all PFTs), the others were optimized for each PFT separately. Since we focus here on tropical South America, we used

tropical broadleaved evergreen (TrBE), tropical broadleaved raingreen (TrBR) and tropical herbaceous (TrH) PFTs for the op-

timization.20

::
In

::::::
genetic

::::::::::
optimization

::::::::::
algorithms,

::::
each

:::::
model

:::::::::
parameter

::
is

:::::
called

::
an

:::::::::
individual

::::
with

:
a
::::::::::::
corresponding

::::::
fitness,

:::::
which

:::::::::
represents

::
the

::::
cost

::
of

:::
the

::::::
model

::::::
against

:::
the

:::::::::::
observations.

:::
At

:::
the

::::::::
beginning

:::
of

:::
the

::::::::::
optimization

:::::::
process,

:::
the

:::::::::
GENOUD

:::::::::
algorithm

::::::
creates

:
a
:::::::::
generation

::
of

::::::::::
individuals

:::::
based

:::
on

:::::::
random

::::::::
sampling

::
of

:::::::::
parameter

::::
sets

:::::
within

:::
the

::::::::::
prescribed

::::::::
parameter

:::::::
ranges.

:::::
After

:::
the

:::::::::
calculation

::
of

:::
the

::::
cost

::
of

:::
all

:::::::::
individuals

::
of

:::
the

::::
first

:::::::::
generation,

::
a
::::
next

:::::::::
generation

::
is

::::::::
generated

::
by

:::::::
cloning

:::
the

::::
best

::::::::::
individuals,

::
by

::::::::
mutating

:::
the

:::::
genes

::
or

::
by

:::::::
crossing

::::::::
different

:::::::::
individuals

:::::::
(Mebane

::::
and

:::::::
Sekhon,

:::::
2011).

::::
This

:::::::
results,

::::
after

:::::
some

::::::::::
generations,

::
in25

:
a
:::
set

::
of

:::::::::
individuals

::::
with

:::::::
highest

::::::
fitness,

:::
i.e.

:::::::::
parameter

:::
sets

::::
with

:::::::::
minimized

:::::
cost.

::
To

::::
find

:::
an

:::::::
optimum

:::::::::
parameter

:::
set

:::
also

:::::
used

::
the

::::::
BFGS

:::::::
gradient

::::::
search

::::::::
algorithm

::::::::::::::::::::::::::
(named after the authors ????)

:::::
within

:::
the

:::::::::
GENOUD

:::::::::
algorithm.

:::
An

::::::::
optimized

:::::::::
parameter

::
set

:::
of

:::
the

:::::
BFGS

:::::::::
algorithm

::
is

::::
used

::
as

:::::::::
individual

::
in

:::
the

::::
next

::::::::::
generation.

:::
We

:::::
were

:::::::
applying

:::
the

:::::::::
GENOUD

:::::::::
algorithm

::::
with

:::
20

:::::::::
generations

::::
and

:
a
:::::::::
population

:::
size

::
of

::::
800

:::::::::
individuals

:::
per

:::::::::
generation,

::::::
which

::::::::::
corresponds

::
to

:::::
16000

:::::
single

::::::
model

::::
runs.

:::
We

:::::::
decided

::
on

:::
this

:::::::
amount

::
of

::::::::
iterations,

:::::::
because

:::
the

::::
cost

::::
kept

:::::
almost

:::::::
constant

::
in
:::
the

::::
last

:::::::
iterations

::::
and

:::
the

::::::::
parameter

::::::
values

:::
did

:::
not

::::::
change30

::
to

::
the

:::
6th

:::::
digit,

::::::
beyond

::::::
which

:::::::
changes

::
are

:::
not

:::::
really

:::::::
relevant

:::
for

:::::
model

:::::::::::
applications.

::::::
During

:::
the

:::::::::::
optimization

::
we

:::
ran

:::
the

::::::
model

::::::
parallel

:::
for

::::
each

::::
grid

:::
cell

:::
(40

::::
grid

::::
cells

::::
and

::::::
CPU’s,

:::::::
3.2GHz)

::::
and

:::
had

:
a
::::
total

:::::::::::
optimization

::::
time

::
of

:::
ca.

:::
24

:::::
hours.

The comparison of the two presented fire danger indices is the main objective of this study. Hence the optimization of the

PFT-dependend
::::::::::::
PFT-dependent

:
FDI scaling factors αi is very important and

::::
αNIi::::

and
::::::
αV PDi::

is
::::::
crucial

::::
and

:::::::::
obligatory for

the VPD obligatory because of no prior values. Accordingly, we conducted two different optimization experiments using35
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LPJmLmdi: First, using the VPD as FDI a
::::
FDI

:::::
based

:::
on

:::
the

::::
VPD (VPDoptim :::::::

hearafter) and secondly using the Nesterov index

as FDI
:
a
::::
FDI

:::::
based

::
on

:::
the

:::
NI (NIoptim :::::::

hereafter). Both resulting parameter sets were then used for a corresponding LPJmL4

run
::::
runs and were compared to the unoptimized original model version using the NI (NIorig::::::::

hereafter) and various evaluation

data sets.

5

2.5 Evaluation data

We used burnt area from the global fire emission database (GFED4; Giglio et al., 2013; Werf et al., 2017), in the model

optimization and to evaluate model results. The global data set is available at a resolution of 0.25◦× 0.25◦ in a monthly time

step from 1997 until 2016. The GFED burnt area product is based on the 500 m Collection 5.1 MODIS direct broadcast (DB)

burnt area product (MCD64A1, after 2001). We used data for the years 2003-2013 in the optimization in order to not include10

potential inconsistencies between the GLDAS 2.0 and 2.1 climate data sets or between burnt area observations within GFED

that originate from different satellite sensors. The GFED product comes with a stratification of burnt area by land cover from

the MODIS land cover map in the resolution of 500 m (Giglio et al., 2013). As LPJmL does not simulate fire on managed lands,

we excluded burnt area on cropland classes from model-data comparisons.
:::
Due

::
to

::::
lack

::
of

::::
data

:::
we

:::::::
however

:::
did

:::
not

:::::::
account

:::
for

::
the

:::::::::
proportion

:::
of

:::::::
pastures.

:
To constrain the simulated vegetation distribution, we used the AGB data set from Avitabile et al.15

(2016). This data set is approximately representative for the late 2000s and therefore we compared it against simulated AGB

for the years 2009-2011. We regridded all data set to a 0.5◦× 0.5◦ resolution. In addition, we used maps of PFTs as derived

from the ESA CCI land cover map V2.0.7 (Li et al., 2018; Forkel et al., 2014).

2.6 Evaluation metrics

To quantify the performance of the model output, we applied the Pearson Correlation between two time series, the normalized20

mean square error (NMSE; Kelley et al., 2013) and the Willmott coefficient of agreement (W; Willmott, 1982) to describe

differences between the model simulation and the reference data sets. The NMSE is calculated by:

NMSE =

∑N
i=1(yi−xi)2∑N
i=1(xi− x̄)2

(15)

where yi is the simulated and xi the observed value in the grid cell i. x̄ is the mean observed value. The NMSE is zero

for perfect agreement between simulated and modelled results, 1.0 if the model is as good as using the observed mean as a25

predictor and larger than 1.0 if the model performs worse than that.
::
We

:::::
chose

:::
the

::::::
NMSE

:::
to

:::::::
represent

::::
and

:::::::
compare

:::
the

::::::
model

:::::
errors,

::
as

::
it

:::
has

:
a
:::::::
squared

::::
error

:::::
term,

:::::
which

::::
puts

::
a

:::::::
stronger

:::::::
emphasis

:::
on

::::
large

:::::::::
deviations

:::::::
between

::::::::::
simulations

:::
and

:::::::::::
observations

::
as

::::::::
compared

:::
to

:
a
:::::
linear

:::::
term,

::::
and

:::
due

:::
to

::
its

::::::::::::
normalization

::
it
::
is

::::::::::
comparable

::::::
across

:::::::
different

::::::::::
parameters.

:::::::::
Especially

:::
for

::::
fire

:::::::::
simulations

:::
we

::::
have

::
a

::::::::
relatively

::::
large

::::::::
deviation

:::::::
between

::::::::::
simulations

:::
and

:::::::::::
observations.

The Willmott coefficient of agreement is given by:30

W = 1−
∑N

i=1(yi−xi)2 ·Ai∑N
i=1(|yi− x̄|+ |xi− x̄|)2 ·Ai

(16)

12



Figure 4. Yearly burnt area over a mean from 2005-2015 as fraction per cell. (a) GFED4 evaluation data of burnt area excluding crops and

simulated burnt area by SPTIFIRE using the (b) NIorig version, (c) VPDoptim version, (d) NIoptim version

which additionally accounts for the area weight Ai of the grid cell i.
:::
The

:::::::
Willmott

:::::::::
coefficient

::
is

:
a
:::::::
squared

:::::
index,

::::::
where

:
a
:::::
value

::
of

:
1
::::::
stands

::
for

::::::
perfect

:::::::::
agreement

:::::::
between

::::::::
simulated

::::
and

::::::::
modelled

:::
runs

::::
and

:::
gets

:::::::
smaller

::
for

::::::
worse

:::::::::
agreements

::::
with

::
a

::::::::
minimum

::
of

::
0.

::::::
Unlike

:::
the

:::::::::
coefficient

::
of

::::::::::::
determination,

:::
the

::::::::
Willmott

:::::::::
coefficient

::
is
::::::::::
additionally

::::::::
sensitive

::
to

::::::
biases

:::::::
between

::::::::::
simulations

:::
and

:::::::::::
observations.

3 Results5

3.1 Performance of optimized fire danger index formulations

Overall, the yearly burnt area simulated by the standard SPITFIRE model (using the original Nesterov index, NIorig) showed

poor simulations
::::::::
simulation

:
results over South America as compared to the GFED4 evaluation data set (Fig. 4 a and b:

NMSE=1.80, W=0.27). The average yearly burnt area (without croplands) for South America was with ca. 14 million ha

::
ha about 25 % smaller than the observed burnt area with 19 million ha in the shown period from 2005-2015. The spatial pattern10

of the modelled burnt area agreed well with the GFED4 data around the Cerrado /
::
in

:::
the

:::::
region

:::
of

:::
the

:::::::
Cerrado

:::
that

::
is

:::::
close

::
to

::
the

:
Caatinga border, while the fires in other semi-arid regions of the continent were underestimated. For example, simulated

fire is underestimated in the savanna-areas in the northern part of South America (on the Columbian-Venezuelian border) even

though there is a strong signal visible in the satellite observations. The biomes Caating
:::::::
Caatinga and Cerrado, which are of

special interest in this study, showed very different results: while fire in Caatinga was underestimated
::::::::::::
overestimated, it was15

overestimated
::::::::::::
underestimated in the Cerrado.
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Figure 5. Timeseries
::::::::
Time-series

:
of monthly burnt area from 2005 - 2015 simulated by SPITFIRE (red lines) compared to GFED4 eval-

uation data (blue lines) for: (a) The Cerrado region, using NIorig . (b) The Caatinga region, using the NIorig . (c) The Cerrado region,

using VPD
::
NIoptim. (d) The Caatinga region, using VPD

:
NIoptim. (e) The Cerrado region, using NI

:::
VPDoptim. (f) The Caatinga region, using

NI
:::
VPDoptim. Note different

::
the

:::::::::
logarithmic scale for each Figure

::
the

:::::::
Caatinga,

:::::
which

:::
was

::::::
applied

::
in

::::
order

:
to
::::::
account

:::
for

::
the

::::
large

:::::::::
differences

::::::
between

:::
the

::::::
different

:::::
model

:::::::
versions

:::
(for

:
a
::::::::::::
non-logarithmic

::::::
version

:::
see

:::
Fig.

:::
A6).

The optimized version using NIoptim (Fig. 4 d), led to an overall decrease of fire, with a slight improvement of NMSE (1.09) as

compared to NIorig and a worse Willmott coefficient of 0.08. While the overestimation of fire in Caatinga was reduced, all the

fires across South America also have decreased significantly, which led to a general underestimation of fire by 90 % (2 million

ha). The optimized version, using VPDoptim (Fig. 4 c), clearly improved the model performance, mainly by shifting much

of the simulated burnt area from the sparsely vegetated Caatinga towards the Cerrado region (NMSE=0.82 and W=0.56). In5

addition, by using VPDoptim, the model results also showed fire occurrence in northern South America, where fire was not at

all or only minimally simulated when using NIoptim or NIorig. The total burnt area was in this model version ca 20 % smaller

than the evaluation data set (16 million ha).

The burnt area time series from 2005 to 2015 provides a more detailed view on the model performance for the fire-prone

Cerrado and Caatinga region (Fig. 5). While model performance was relatively good for the Cerrado region with NIorig10

(NMSE=0.3, W=0.89, R2=0.78), the simulated burnt area was strongly overestimated in the Caatinga region throughout the
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whole period (NMSE=327.82, W=0.14, R2=0.59). After the optimization of the NI, the model performance indeed improved

for the Caatinga (NMSE=1.07, W=0.73, R2=0.31), but at the same time the performance for the Cerrado got much worse

:::::::
declined (NMSE=1.07, W=0.36, R2=0.4). On the other hand VPDoptim showed an improved fire representation compared to

the standard settings in the Cerrado (NMSE=0.27, W=0.9, R2=0.8) as well as in the Caatinga (NMSE=15.2, W=0.46, R2=0.56).

Even though fire in the Caatinga was still overestimated, the NMSE decreased by a factor of six.5

Overall, the total amount of burnt area in the Cerrado was for all three model versions smaller than in the evaluation data set.

Fire occurrence in the Caatinga was, on the other hand, largely overestimated by the NIorig and the VPDoptim version. Just

in the NIoptim version the burnt area of the Caatinga is in the same order of magnitude as the evaluation data set, which also

led, however, to a large underestimation in the Cerrado (Tab. 1 ).
:::
and

::::
Fig.

:::
4).

::::
Also

::::
the

:::::::::
Amazonia

:::::
region

::::::
mostly

:::::::::
improved

::
by

:::::
using

:::
the

:::::::::
VPDoptim::::::

version
:::::
(Tab.

::
1,

::::
Fig.

::::
A3).

::::
The

:::
R2

:::
and

:::
the

::::::::
Willmott

:::::::::
coefficient

::::::::
improved,

:::::
while

:::
the

:::::::
NMSE

::::::::
increased10

::::::
slightly.

:::::
With

:::
the

::::::::
Nesterov

:::::
index

:::
fire

:::
was

::::::::
strongly

::::::::::::
underestimated

::
in
:::
the

::::::::
Amazon

::::::
region,

:::::
while

:::
the

::::::::
optimized

:::::
VPD

::::
fixes

::::
this

:::::::::::::
underestimation.

::::
The

:::
fire

::
is

::::
only

::::::::
modelled

::::
(and

::::
also

::::::::
observed,

:::
see

::::
Fig.

::
4)

::
at

:::
the

:::::
edges

::
to
:::
the

::::::::
Amazon,

::::::
where

:::::
wood

::::::
density

::
is

:::::
lower

:::
and

:::::::::::
deforestation

:::::
takes

:::::
place.

::
In

:::
the

::::::
closed

::::::::::
continuous

:::::
forest

::::
area

:::::::
towards

:::
the

:::::
center

::
of

::::
the

:::::::
Amazon

::::::
almost

::
no

::::
fire

::
is

:::::::
observed

::::
and

::::::
neither

::::::::
modelled.

::::
The

::::
total

:::::
burnt

:::
area

::::::::
increased

:::::
from

:::
0.7

::::::
million

:::
ha

::
to

:::
4.8

::::::
million

::
ha

::::
(for

:::::::::
VPDoptim)

:
,
::::::
which

::
is

:::
now

::
a
:::
bit

:::::::::::
overestimated

:::
to

:::
the

:::::::
observed

:::::
burnt

::::
area

::
of

:::
3.4

:::::::
million

:::
ha.

:::::
Using

:::
the

:::::::
NIoptim:::

all
::::
error

:::::::
metrics

::
as

::::
well

:::
as

:::
the

::::
total15

::::
burnt

::::
area

:::::::::
decreased.

3.2 Optimized model parameters

Seven fire-related parameters were optimized, in order to improve the fire representation in the LPJml4-SPITIFRE model. Here

we compare the optimized parameters for the different model versions in order to evaluate and discuss parameter variability and

changes. Table 2 shows all parameters, used for the optimization, their lower and upper boundary and the resulting optimized20

value. Since the FDI directly controls the amount of modelled fire, the FDI scaling factors for the different PFTs are central

for this analysis. For both optimization experiments the boundaries were, hence, set rather generously within one magnitude of

the original value. In the NIoptim experiment, all scaling factors generally decreased compared to the standard values used for

NIorig. Here, TrH displayed the smallest scaling factor (9.39 · 10−6), followed by TrBE (2.48 · 10−5) and TrBR (4.76 · 10−5).

Since the VPD is a newly implemented fire danger index, we have no standard values to compare the optimized scaling factors25

with. Here, the TrBE showed the largest value (22.41), ca. 20 times as large as the TrBR (1.21) and TrH (1.13) (Tab. 2).

In case of the other optimized parameters the boundaries were set smaller in order to decrease the possibility that a large error

in the estimation of several parameters would lead to a better overall cost in the optimization procedure. The human ignition

parameter became smaller for both optimizations, which led to a smaller amount of human ignitions (from -0.5 to -0.54 in

NIoptim and -0.53 in VPDoptim). The fuel bulk density increased for all three tropical PFTs in the NIoptim version, while for30

VPDoptim the fuel bulk density of the TrBE and TrH PFTs decreased and for the TrBR increased. For the NIoptim version, the

fire duration parameter (pd::
pt) increased, leading to a shorter fire duration (from -11.06 to -9), while the value for the VPDoptim

version stayed relatively similar (-11.37) to the prior value. The surface intensity threshhold
:::::::
threshold

:
became slightly larger

for the NIoptim version than the original value (from 10−6 to 1.03 · 10−6). For VPDoptim the parameter increased by a factor
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Table 1. Comparison of the
::::
burnt

:::
area

:
results in terms of NMSE, the Willmott coefficient of agreement and the sum (in ha per year) between

NIorig , VPDoptim, NIoptim and the GFED evaluation data

Region NMSE Willmott Sum

Spatial - South America

GFED 1.9 · 107

NIorig 1.80 0.27 1.4 · 107

VPDoptim 0.82 0.56 1.6 · 107

NIoptim 1.09 0.08 0.2 · 107

Temporal - Cerrado

GFED 9.2 · 106

NIorig 0.30 0.89 5.2 · 106

VPDoptim 0.27 0.90 6.4 · 106

NIoptim 1.07 0.36 0.6 · 106

Temporal - Caatinga

GFED ) 0.4 · 106

NIorig 327.82 0.14 6.0 · 106

VPDoptim 15.2 0.46 1.6 · 106

NIoptim 1.07 0.73 0.3 · 106

:::::::
Temporal

:
-
:::::::::

Amazonia

:::::
GFED

::::::
3.4 · 106

:::::
NIorig :::

0.83
: :::

0.56
: ::::::

0.7 · 106

::::::::
VPDoptim :::

0.93
: :::

0.83
: ::::::

4.8 · 106

::::::
NIoptim :::

1.22
: :::

0.32
:::::::
0.02 · 106
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Table 2. All optimized parameters with their standard values, the upper and lower boundary of the parameter ranges and the resulting

optimized value including parameter for specific PFTs and global parameter, which have the same value for all PFTs.
::
All

::::::::
parameters

:::::
exept

::
ρb :::

have
:::

no
:::
unit.

Parameter PFT Standard value (as in

Thonicke et al., 2010)

Lower

bound.

Upper

bound.

After optimiza-

tion

NIoptim
scaling factor FDI αi ::::

αNIi TrBE 3.34 · 10−5 7 · 10−6 1.33 · 10−4 2.4885 · 10−5

scaling factor FDI αi::::
αNIi TrBR 3.34 · 10−5 7 · 10−6 1.33 · 10−4 4.7649 · 10−5

scaling factor FDI αi::::
αNIi TrH 6.67 · 10−5 7 · 10−6 1.33 · 10−4 9.3949 · 10−6

fire duration parameter pd :
pt all PFTs -11.06 -13 -9 -9.0011

scorch height parameter F TrBE 0.1487 0.01 0.6 0.1282

scorch height parameter F TrBR 0.061 0.01 0.6 0.0752

crown mortality parameter rCK TrBE 1.0 0.5 1 0.5030

crown mortality parameter rCK TrBR 0.05 0 0.5 0.4038

fuel bulk density ρb ::
(kg

:::::
m−3) TrBE 25.0 22.5 27.5 26.6473

fuel bulk density ρb ::
(kg

:::::
m−3) TrBR 13.0 11.7 14.3 13.1896

fuel bulk density ρb ::
(kg

:::::
m−3) TrH 2.0 1.8 2.2 2.0019

human ignition parameter ph all PFTs -0.5 -0.6 -0.4 -0.5426

surface intensity threshold all PFTs 10−6 10−7 10−5 1.0317 · 10−6

VPDoptim

scaling factor FDI αi::::::
αV PDi TrBE - 1 50 22.4181

scaling factor FDI αi::::::
αV PDi TrBR - 1 50 1.2135

scaling factor FDI αi::::::
αV PDi TrH - 1 50 1.1299

fire duration parameter pd :
pt all PFTs -11.06 -13 -9 -11.3753

scorch height parameter F TrBE 0.1487 0.01 0.6 0.1930

scorch height parameter F TrBR 0.061 0.01 0.6 0.0799

crown mortality parameter rCK TrBE 1.0 0.5 1 0.9983

crown mortality parameter rCK TrBR 0.05 0 0.5 0.4801

fuel bulk density ρb ::
(kg

:::::
m−3) TrBE 25.0 22.5 27.5 22.5923

fuel bulk density ρb ::
(kg

:::::
m−3) TrBR 13.0 11.7 14.3 13.3750

fuel bulk density ρb ::
(kg

:::::
m−3) TrH 2.0 1.8 2.2 1.8944

human ignition parameter ph all PFTs -0.5 -0.6 -0.4 -0.5332

surface intensity threshold all PFTs 10−6 10−7 10−5 3.6317 · 10−6
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Figure 6. Relative uncertainty of model parameters after optimization for (a) VPD
::
NIoptim and (b) NI

::::
VPDoptim. The relative uncertainty is

the ratio of the uncertainty after the optimization (range of all parametersets
::::::::
parameter

:::
sets with low cost, below the 0.05 quantile) divided by

the uncertainty before the optimization (range of the parameters for the optimization). Low and high values of relative uncertainty indicate

strongly and weakly constrained parameters, respectively. All parameters are defined by PFT (red dots) or global (grey dots). The black lines

are added to support visual interpretation and show the relative uncertainty of each parameter. SIT denotes the surface intensity threshold.

:::::::::::
PFT-dependent

::::::::
parameters

:::
are

::::::
grouped

::::
with

:::
the

::::
same

::::
color.

of three (3.63 · 10−6). The mortality related parameters F and rCK
:
F

:::
and

::::
rCK led in the NIoptim version both to a decrease in

the fire-related mortality for TrBE and an increase for TrBR PFTs. The optimized parameters for VPDoptim led to a decrease

in the fire related
:::::::::
fire-related mortality for both PFTs

:::::
except

:::
for

:::
the

:::::
TrBR

::::
rCK,

::::::
which

:::
led

::
to

::
an

::::::::
increased

::::::::
mortality.

The relative uncertainties were for most optimized parameters very small (between 0 and 0.05
:::
10%), hence these parameters

were strongly constrained (Fig. 6). Just the fire-mortality related parameters (F and rCK
:
F

:::
and

::::
rCK) had large uncertainties5

for the TrBR, hence
:::
were

:
weakly constrained. For VPDoptim the uncertainty of rCK

::::
rCK (TrBR) was 0.8 and for NIoptim the

uncertainty of F
:
Fwas 0.9 and for rCK

::::
rCK 1 (TrBR).

:::
The

::::::::
decrease

::
in

:::
the

:::::
model

:::::
error

:::::
(cost)

:::
due

::
to

:::
the

:::::::::::
optimization

::::::
process

::::
has

::::
been

::::::
mainly

:::
due

::
to
::::::::::::
improvement

::
in

:::
the

::::
burnt

:::::
area.

:::::
While

:::
for

:::
the

::::::
NIoptim:::

the
::::
cost

::
of

:::
the

:::::
burnt

:::
area

::::::
dataset

:::::::::
improved

::
by

:::::
81%,

:::
the

:::
cost

::
of

:::
the

:::::::
biomass

::::::
dataset

::::::::
improved

::::
just

::
by

::::
6%.

::
In

::::
case

::
of

:::
the

:::::::::
VPDoptim:::

the
::::
cost

::
of

:::
the

:::::
burnt

::::
area

::::::
dataset

::::::::
improved

:::
by

::::
49%,

:::::::
whereas

:::
the

::::::::
biomass

::::::
dataset

::::::::
improved

::
by

:::::
19%10

::::
(Fig.

::::
A5).
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Table 3. Comparison of the results for AGB and the TrBE PFT cover in terms of NMSE and the Willmott coefficient of agreement between

NIorig , VPDoptim and NIoptim in South America (SA)and ,
:
in the Cerrado

::
and

::
in

:::
the

::::::
Caatinga.

Region NMSE Willmott

AGB

SA (NIorig) 0.97 0.83

SA (VPDoptim) 0.91 0.84

SA (NIoptim) 0.99 0.83

Cerrado (NIorig) 15.06 0.25

Cerrado (VPDoptim) 12.36 0.28

Cerrado (NIoptim) 16.06 0.24

::::::
Caatinga

:::::::
(NIorig)

::::
11.93

: :::
0.32

:

::::::
Caatinga

::::::::::
(VPDoptim)

:::
8.57

: :::
0.36

:

::::::
Caatinga

::::::::
(NIoptim)

::::
10.44

: :::
0.33

:

FPC - Evergreem
::::::::
Evergreen

(TrBE)

SA (NIorig) 0.42 0.82

SA (VPDoptim) 0.41 0.82

SA (NIoptim) 0.43 0.81

Cerrado (NIorig) 1.04 0.60

Cerrado (VPDoptim) 0.70 0.64

Cerrado (NIoptim) 1.40 0.55

::::::
Caatinga

:::::::
(NIorig)

:::
1.73

: :::
0.40

:

::::::
Caatinga

::::::::::
(VPDoptim)

:::
1.54

: :::
0.29

:

::::::
Caatinga

::::::::
(NIoptim)

:::
2.05

: :::
0.44

:

3.3 Model evaluation for South America

The modelled above-ground biomass (AGB) of trees in South America was throughout all model versions larger than the eval-

uation data set indicates (Fig. 7). Especially the
::::::
biomass

::
in

:::
the

:
Amazon region is with an average of ca. 20 kgC/m2 about one

third overestimated. The drier savanna regions on the continent yielded a biomass of ca. 5-10 kgC/m2, which also constitutes

an overestimation in wide parts of the Cerrado and the Caatinga biome (evaluation data shows between 1-5 kgC/m2, also see5

Roitman et al., 2018).
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Figure 7. Annual above ground biomass (AGB) of trees over a mean from 2005-2015 in kgC/m2. (a) Avitabile evaluation data. (b) Simulated

AGB by LPJmL4-SPITFIRE in the NIorig version. (c) Difference between VPDoptim and NIorig . (d) Difference between NIoptim and

NIorig . Red (blue) color indicates a larger (smaller) biomass after the optimization.

The differences among the different model versions are marginal: The VPDoptim version had the best performance com-

pared to the evaluation data set (NMSE= 0.91, W=0.84), the NIorig version had the second best performance (NMSE=0.97,

W=0.84) and the NIoptim the worst performance (NMSE=0.99, W=0.83). The model optimization scheme focuses on fire

parameter
:::::::::
parameters, hence the model performance

::
for

:::::
AGB can only improve in fire-prone biomes, i.e. not in , e. g. , wet

tropical forest where fire is absent
::::
areas,

::::::
where

:::
the

:::
fire

:::::::::
occurrence

:::
has

::::
been

::::::::
modelled

::::::
poorly

:::
and

:::
the

::::::::::::
vegetation-fire

::::::::::
interactions5

::::
have

::::::::
improved

:::
due

::
to
:::
the

:::::::::::
optimization

:::::::
process.

:::
For

::::::::
example

::
in

:::
the

:::::
center

::
of

:::
the

::::::::
Amazon

::::::::
rainforest

::::::
almost

::
no

::::
fire

:
is
::::::
found

::
in

::
the

:::::::::
evaluation

::::
data

:::
nor

::
is

:::::::::
simulated.

:::::
Hence

:::
no

:::::::::::
improvement

::
of

:::::
burnt

::::
area

::
as

::::
well

::
as

:::::
AGB

:::
can

::
be

::::::::
achieved.

:::
On

:::
the

:::::
other

:::::
hand,

::
in

::::::
regions

:::::
where

:::
the

:::::::::
modelling

::::
error

::
of

:::::
burnt

::::
area

::
is

:::
now

::::::::
reduced,

:::
this

:::
can

::::
also

:::::::
improve

::::::::
simulated

::::::
AGB,

:::::
hence

::::::::::::
vegetation-fire

:::::::::
interactions. In the fire-prone Caatinga and Cerrado the VPDoptim version mostly decreased the biomass by up to 3 kgC/m2,

showing a better performance compared to the evaluation data set (e.g. in the Cerrado the NMSE decreased from from 15.0610

to 12.36 in the VPDoptim version compared to NIorig,
:
see Tab. 3).

The modelled foliage projective cover (FPC) showed for all three model versions a strong underestimation compared to the

evaluation data set of the TrBE throughout the whole Amazonian region (ca. 50% compared to ca. 100% in the evaluation

dateset). In the fire-prone biomes Cerrado and Caatinga, however, the TrBE PFT was sometimes overestimated (TrBE cover

between 0 and 40 %, Fig. 8). In the regions with less TrBE the dominant PFT was mostly TrBR (Cerrado) or TrH (Caatinga)15

:::
(see

::::
Fig.

:::
A1

:::
and

::::
A2).

NIoptim led to an overall decrease in the model performance also in terms of FPC
::
the

:::::
TrBE

::::::::::
distribution, as both, the NMSE
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Figure 8. Annual FPC cover by tropical broadleaved evergreen PFT over a mean from 2005-2015 as fraction per cell. (a) ESA-CCI evaluation

data (b) Simulated FPC by LPJmL4-SPITFIRE using the NIorig version (c) Simulated FPC by LPJmL4-SPITFIRE using the VPDoptim

version (d) Simulated FPC by LPJmL4-SPITFIRE using the NIoptim version

and the Willmott coefficient worsened
:::::::
declined compared to NIorig (NIorig: NMSE=0.42, W=0.82; NIoptim: NMSE=0.43,

W=0.81).

The VPDoptim version, on the other hand, showed an slightly improved FPC
::::
TrBE

:
distribution (NMSE=0.41, W=0.82) but

also here we got
:
in
::::
this

::::
case

:::
we

:::::::
obtained

:
an even larger improvement, when only the fire-prone regions Cerrado or Caatinga

are considered (Tab. 3).
::::
Also

:::
for

:::
the

:::::
TrBR

:::
and

::::
TrH

::::
PFT

::::::::::
distributions

:::
the

:::::::::::
optimization

::::
lead

::
to

::
an

::::::::
improved

:::::::::::
performance

:::::
using5

::
the

:::::::::
VPDoptim:::

in
:::
the

:::::::
Caatinga

::::
and

::::::::
Cerrado,

:::::::
whereas

:::
the

::::
PFT

::::::::::
distribution

::
in

:::
the

::::::::
Amazon

::::::::
remained

::::::
similar

::
to

:::
the

:::::
prior

::::
PFT

::::::::::
distribution.

::
In

:::
the

:::::::
NIoptim:::::::

version,
::::::::
parameter

:::::::::::
optimization

::::
only

:::::::
slightly

:::::::
reduced

:::::
TrBR

:::::
cover

:::::::
showing

::
a

:::::
worse

:::::::::::
performance

::::::::
compared

::
to

:::::::::
VPDoptim.

::::::::
However,

::::::::::
herbaceous

:::::
cover

:::::::
changed

::::
only

::::::
slightly

:::
in

::
all

:::::::::::
optimization

::::::::::
experiments

::::
(Fig.

:::
A1

::::
and

::::
A2).

4 Discussion

In summary, our results show that the implementation of a new fire danger index based on the water vapor pressure deficit10

FDIV PD and its optimization against satellite data sets improved the simulations of fire in LPJmL4-SPITFIRE, both in terms

of spatial patterns as well as temporal dynamics of burnt area. In the following, we discuss the model improvements, limitations

and recommendations for future improvements of process-based global fire models within the DGVM framework.
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4.1 Improvements in model performance

The VPD results showed a better model performance for fire in the spatial dimension, as well as in the temporal dimension

(Tab. 1 and 3). Compared to the Nesterov index, FDIV PD uses additional climate input as relative humidity and precipitation.

In the calculation of the Nesterov index precipitation is just used as a threshold. This leads to a better accounting of the

very different climatic conditions among various biomes. Furthermore, the FDIV PD includes a direct representation of the5

vegetation density. The significante
:::::::::
significance

:
of this has been recently shown by findings of Forkel et al. (2019a) who

have emphasized the importance of past plant productivity and fuel production for burnt area. This is particular
:::::::::
particularly

important for differentiating between fires in biomes with similar PFT distribution. For example, the vegetation density is much

higher
::::
larger

:
in the Cerrado, even though the Caatinga and Cerrado have a similar modelled PFT composition. A larger VD

provides more fire
:
,
:::::
which

:::::::
provides

:::::
more fuel and therefore leads to a higher fire danger.10

While the seasonal and interannual variability in the Caatinga has improved largely using the FDIV PD (NMSE decreased by

a factor of ca. 20), the improvement in the Cerrado was relatively small (NMSE decreased by ca. 10%). This is due to the

fact, that the optimization tries to obtain a compromise between the different optimized cells. As the model performance was

originally much better for the Cerrado, the largest improvement could be achieved for the Caatinga. We have also chosen a

large amount of cells in the Caatinga, because the model performance was here particular
::::::::::
particularly bad. This leads to a large15

improvement in the time series of the Caatinga region, while the improvement for the Cerrado was less significant.
::::
With

:::
the

:::::::
Nesterov

:::::
index

::::
fire

:::
was

::::::::
strongly

::::::::::::
underestimated

:::
in

:::
the

:::::::::
Amazonia

::::::
region,

:::::
while

:::
the

:::::::::
optimized

:::::
VPD

::::::::
increases

:::
the

::::::::
modelled

::::
burnt

:::::
area.

:::
The

:::
fire

::
is
::::
only

:::::::
present

::
at

::
the

::::::
edges

::
of

:::
the

:::::::
Amazon

:::::
(both

::
in

:::::
model

::::
and

::::::::::
observation,

:::
see

::::
Fig.

:::
4),

:::::
where

:::
tree

:::::::
density

:
is
:::::
lower

::::
and

:::::::::::
deforestation

::::
takes

::::::
place.

::
In

:::
the

:::::
closed

::::::::::
continuous

:::::
forest

::::
area

::::::
towards

:::
the

::::::
center

::
of

:::
the

:::::::
Amazon

::::::
almost

:::
no

:::
fire

::
is

:::::::
observed

::::
and

:::
also

:::
not

:::::::::
simulated.

:
20

Another result of the optimizing procedure, using FDIV PD, was the improvement of the PFT distribution and the above-

ground biomass of trees especially in the fire-prone biomes Caatinga and Cerrado (Fig. 8). The
::
For

::::::::
example,

::::
the

::::::
central

Amazon, where fire is a scarce event, shows almost no changes compared to the non-optimized model version. Here, it is the

improvement of the vegetation model itself, and not the fire module, which can help to improve the model performance of

LPJmL4-SPITFIRE. Hence, it emphasizes that three parameter sets determining
::
we

:::::
need

::
to

::::::
include

::::::
further

::::::::::
parameters

::
in

:::
the25

:::::::::::
optimization,

:::::
which

::::::
impact

:::::::
directly

::
the

:
PFT distribution, biomass and fire are required in the optimization to obtain a realistic

::::::::
significant

::::::::::::
improvement

::
in

:::
the

:
spatial and temporal distribution of both, vegetation and fire. It becomes especially visible

::::::::
However,

:::
this

:::::
study

::::::
focused

::::::
solely

::
on

:::
the

:::::::::
parameters

::::::
within

:::
the

:::::::::
SPITFIRE

:::::::
module.

::::
Due

::
to

:::
the

::::
focus

:::
on

:::
fire

::::::
related

:::::::::
parameter,

::
the

::::
cost

:::
of

:::
the

::::
burnt

::::
area

:::::::
dataset

::::::::
decreases

:::::
much

:::::
more

::::
than

:::
the

::::
cost

::
of

:::
the

:::::::
biomass

:::::::
dataset

::::
(Fig.

::::
A5).

::::::
Hence

:::
we

::::
only

:::
get

::
a

:::::::::
substantial

:::::::::::
improvement

::
in

:::::
model

:::::::::::
performance in semi-arid, hence fire-prone biomes, where vegetation dynamics and fire are30

strongly coupled.

During the optimization-process most of the optimized parameters were well constrained, except for the mortality-related

parameters for the TrBR PFT
::::
(Fig.

::
6). The TrBR PFT is dominant in the fire-prone regions, where the mortality-related param-

eters have a large impact on vegetation dynamics. Hence, they impact multiple LPJmL routines, which are responsible for the
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PFT distribution and carbon cycling. This leads in turn to a less certain parameter estimation. In order to better constrain these

parameters also the optimization of vegetation model parameters would be an approach
:::::::
necessary

:
to decrease the uncertainties.

:::
The

:::
fire

::::::
danger

:::::
index

::::::
scaling

::::::
factors

:::::
(αNIi::::

and
:::::::
αV PDi

)
::::::
convert

:::
the

:::::::::
quantified

:::
fire

:::
risk

::::
(NI

::
or

:::::
VPD)

:::
into

:::
the

::::::
actual

:::
fire

::::::
danger

:::::
(FDI).

::::
Both

:::::::
scaling

::::::
factors

:::
thus

:::
set

:::
the

:::::::::
magnitude

::
of

:::
the

:::
fire

::::::
danger

:::
for

:::
the

:::::::
different

::::::
PFTs.

:::::
Hence

::::
they

::::::
impact

:::::::
directly

:::
the

:::
fire

::::::
spread,

::::
burnt

::::
area

:::
and

:::
the

:::::::
number

::
of

::::
fires

::
as

::::
well

::
as

::::::::
indirectly

:::
fire

::::::::
mortality.

:::::
These

::::
very

::::::::
important

:::::::::
parameters

::::
vary

:::::::::::
significantly5

::
for

:::
the

::::::::
different

:::::
PFTs.

::::
TrH

:::
has

:::
the

:::::::
smallest

::::::
scaling

::::::
factor

::
in

::::
case

::
of

::::
both

:::::
FDIs,

::::::
which

::::
leads

::
to
::

a
:::::
lower

:::
fire

::::::
danger

:::::::::
compared

::
to

::
the

:::::
other

:::::
PFTs.

::::
This

::::::::
indicates

:
a
:::::
prior

::::::::::::
overestimation

::
of

:::
the

:::
fire

::::::
danger

::
of
:::::
grass

::
in

:::::::
tropical

:::::
South

::::::::
America,

::
as

:::::::::
grasslands

:::
are

:::::::
generally

:::::::::::
parametrized

::
to
:::::
have

:
a
:::
low

::::
fire

::::::::
resistance

:::
and

::::::::
moisture

::::::
content

::::
and

:::
can

:::::
hence

::::
burn

::::
very

::::::
easily.

::::
This

:::::::::::::
overestimation,

::::::::
compared

::
to

:::
tree

:::::
PFTs

:::
has

:::::
been

::::::::
decreased

:::
by

:::
the

:::::::::::
optimization.

::
In

::::
case

::
of

:::
the

::::
VPD

::::
also

:::
the

:::::
TrBR

::
is

:::::
scaled

:::
by

:
a
:::::
much

:::::::
smaller

:::::
factor

::::
than

:::
the

:::::
TrBE,

::::::
which

::::
leads

:::
to

:
a
:::::
lower

:::
fire

:::::::
danger

:::::
index.

::::
This

::
is
::::
due

::
to

:::
the

::::
fact,

::::
that

:::
the

:::::
TrBR

::
is

::::::::
dominant

::
in

:::
dry

::::
and10

::::::::
fire-prone

:::::::
regions,

:::::
which

:::::::::
experience

::::::::
frequent

::::
fires.

:::::
Here

:::
the

::::
burnt

::::
area

::::
was

:::::
often

:::::::::::
overestimated

:::
by

:::::::::
SPITFIRE

::::
(e.g.

::::::::
Caatinga

::
or

::::::
eastern

::::::::
Cerrado)

:::
and

::
is
::::
now

:::::::::
decreased.

::::
On

:::
the

::::
other

:::::
hand,

::
a
:::::
larger

::::
FDI

:::
for

:::
the

:::::
TrBE

::::::
allows

:::::
more

:::
fire

:::
in

:::::
wetter

:::::::
regions

:
at
:::

the
:::::

edge
:::::::
between

:::
the

:::::::
Cerrado

::::
and

:::
the

:::::::
Amazon

::::::::::
rainforests,

:::::
where

:::::
TrBE

::
is

:::::
more

::::::::
dominant.

::::
The

::::::::
mortality

::::
risk

::
of

:::::
TrBE

:::
for

::::::::
VPDoptim:::::::

remains
:::::
close

::
to

:::
the

:::::
prior

::::
value

:::
of

::
1,

:::::::::
confirming

::::::::
previous

::::::::::
assumptions

:::::
about

:::
its

:::
fire

:::::::::
sensitivity.

::::::::
Whereas

:::
the rCK

::
for

:::::
TrBR

::::::::
increased

::
to
:::::
0.48,

::::
close

:::
to

::
the

::::::
upper

::::::::
boundary,

:::::::
meaning

::::
that

:
a
::::::::
mortality

::::
risk

::
of

::::
50%

:::::
when

:::
the

:::
full

:::::
crown

::
is

::::::::
scorched15

:::
and

:
a
:::
7%

::::::::
mortality

::::
risk

:::::
when

::::
50%

::
of

:::
the

::::::
crown

:
is
:::::::::
scorched,

:::::
which

::::::
makes

:::
the

:::::
TrBR

:::
less

:::::::
resistant

:::::::
against

:::::
crown

:::::::
damage

::::
than

::::::
before.

:::
Due

::
to
::::
this

:::::::
changes

:::
the

::::::::::::
overestimation

::
of

:::::::
biomass

::
in

:::
the

:::::::
original

:::::
model

:::
for

:::
the

::::::::::::::
Cerrado/Caatinga

::::::
region

::::::::
decreased

::::
(see

:::
Fig.

:::
7).

4.2 Limitations during
::
of the optimization process

::::::::
Generally,

::::::::::
optimizing

:
a
::::::
model

::::::
against

::::::
burned

::::
area

::
is

::::::::::
challenging

:::::::
because

::
1)

:::
of

:::
the

::::::
skewed

::::::::
statistical

::::::::::
distribution

:::
of

::::::
burned20

:::
area

::::
and

::
2)

::::::
because

::::::::
temporal

::
or

::::::
spatial

::::::::::
mismatches

::
in

::::::::
simulated

::::::
burning

::::
can

::::
cause

:::::
large

:::::::::
model-data

::::::
errors.

:::::
These

:::::
issues

:::
can

:::
be

::::::
avoided

::::
with

:::
the

::::::
choice

::
of

::
an

::::::::::
appropriate

::::
cost

:::::::
function.

::::
For

:::::::
example,

::::::::::::
squared-error

::::::
metrics

::::
tend

::
to

::::::::::::
underestimate

:::
the

:::::::
variance

::
of

::::::
burned

::::
area

::
in

::::::::::
comparison

:::
to,

::::
e.g.,

:::
the

:::::::::::
Kling-Gupta

::::::::
efficiency

:::
as

::
it

:::
has

::::
been

::::::
shown

:::
in

:::
the

:::::::::::
optimization

::
of

::
an

:::::::::
empirical

:::::
model

:::
for

::::::
burned

::::
area

::::
(see

::::
Tab.

:::
A3

:::
in

::::::::::::::::
Forkel et al. (2017)

:
).

:::::
Here,

:::
the

::::::::
optimum

:::::::::
parameter

::
set

:::
for

::::
the

:::::::
Nesterov

:::::::::::
index-based

:::::
model

:::::::
resulted

::
in

::::::
almost

::
no

::::
fires

::::::
across

:::::
South

::::::::
America.

:::::::
Thereby

:::
the

:::::::::::
optimization

::::::::
algorithm

::::
tries

::
to

::::::::
decrease

:::
the

:::::
model

:::::
error25

::
by

:::::::
tending

::::::
towards

::
a
::::::::::
conservative

:::
’no

::::
fire

:::::::
strategy’

:::
for

::
all

:::::::
biomes.

::::
This

:::::
result

::::::
nicely

:::::::::::
demonstrates

:::
the

::::
need

::
to

:::::::
evaluate

::::::
model

::::::::::
optimization

::::::
results

::::::
against

:::::::
spatially

::::
and

:::::::::
temporally

::::::::::
independent

::::
data

:::
and

:::::::::::
independent

:::::::
variables

::::::::::::::::::
(Keenan et al., 2011).

:

:::
The

::::::::
Nesterov

:::::
index

:
is
:::
not

::::
able

::
to

::::::
capture

:::
fire

:::::::::
variability

::::::
within

::
the

::::::::
Caatinga

::
as

::::
well

::
as

:::
the

:::::::
Cerrado

::
at

::
the

:::::
same

::::
time.

::::
This

::::::
shows

:::
that

:::
the

:::::::::
difference

::
in

:::
the

::::
PFT

:::::::::
distribution

::::::::
between

::::
these

::::
two

::::::
biomes

::
is

:::
not

:::::::::
adequately

::::::::
modelled

:::
by

::::::
LPJmL

::
or

::::
just

:::::
using

::::
PFT

::::::::
dependent

:::::::
scaling

::::::
factors

:::
did

:::
not

::::::::::
sufficiently

:::::::
improve

:::
the

::::::
model

::::::::::
performance

:::::
when

:::::
using

:::
the

::::::::
Nesterov

::::::
index.

:::
On

:::
the

:::::
other30

::::
hand,

:::::
using

:::
the

:::::
VPD

:::
fire

::::::
danger

:::::
index

:::::::
reduced

::::
the

:::::
model

:::::
error

:::
for

::::::
burned

::::
area

::
in

::::
both

:::::::
biomes,

:::
by

:::::::::
improving

:::
the

::::::::
modelled

::::::::::
performance

:::
for

:::
the

::::::::
Caatinga

:::
and

::::::::::
maintaining

::::
the

::::
good

:::::::::::
performance

::
of

:::
the

:::::::
Cerrado

::::::
region.

::::::
Since

::::::::
improved

::::::::::
performance

:::
of

::
the

::::
fire

:::::
model

::::::
mainly

::::
had

:::::
minor

:::::
effect

:::
on

:::::::::
improving

::::
FPC

::
of

:::
the

:::::::
tropical

:::::
PFTs,

:::
the

::::::::
presented

:::::::::::
optimization

:::::::
scheme

:::
has

::
to

:::
go

::::
along

:::::
with

::::::::::::
process-based

::::::::::::
improvements

::
in

:::::
both,

::
in

:::
the

:::
fire

:::
and

::
in

:::
the

:::::::::
vegetation

:::::::
modules

::
of
:::::::
LPJmL.

:
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Fire largely depends on the vegetation type and their associated flammability, fire tolerance and mortality. Hence an accurately

modelled vegetation distribution is crucial for a good model performance in terms of burnt area and fire effects (Forkel et al.,

2019a; Rogers et al., 2015). As shown in Fig. 8,
::
A1

:::
and

::::
A2, the modelled PFT coverage showed an equal distribution of tropi-

cal raingreen and evergreen PFTs throughout wide parts of central-northern South America. Evaluation data shows, however,

an evergreen
::::
TrBE

:
dominance in the wet rainforest regions and a raingreen

::::
TrBR

:
dominance in the Cerrado and Caatinga.5

By choosing a large amount of optimization cells in the, by NIorig, strongly overestimated Caatinga region, the burned area

decreased there significantly after the optimization. Because the modelled proportion of tropical evergreen trees in the Cerrado

is similar to the Caatinga biome, fire occurrence in the Cerrado has also over-proportional decreased for NIoptim (Fig. 4). As a

result the modelled fire in whole South America was rather low, which improved the performance in the Caatinga but decreased

it in other regions.Even though the VPD suffers from the same limitations, its optimized version has indeed improved simulated10

fire in wide parts of South America (including both Caatinga and Cerrado) and led to a better overall model performance for

South America in terms of burnt area, biomass and PFT distribution. The reason for this behaviour is the above discussed

impact of vegetation density and the more comprehensive representation of the climate impact. This emphasizes the potential

of the VPD to be used as the standard fire danger index in SPITFIRE and to improve the fire modelling even further, based

on a possible
::
an

:
improved PFT distribution. In the tropical rainforest the modelled TrBE proportion should be much larger.15

In the Cerrado and especially the Caatinga, however, trees suffer from water stress in the dry season and should shed their

leaves to avoid mortality related to drought or growth efficiency. The resulting dominance of the TrBR PFT has a very different

effect
::::
TrBR

:::::::::
proportion

::
is
::::::::::::
overestimated,

::::::
which

::::
leads

::
to

::::::::
problems

::
in

:::
the

:::::::::::
optimization

:::::::::
procedure,

::::
since

:::::
TrBR

:::
has

::::
very

::::::::
different

:::::
effects

:
on fire spread and is more fire-tolerant (different fuel characteristics and resulting fire intensity), thus has

:
.
::::
This

:::::
leads

::
to a lower fire-related mortality.,

::::::
which

:::
fits

:::::
better

::
to
:::
the

:::::
drier

:::
and

::::
fire

:::::
prone

::::::::::
savanna-like

:::::::
regions

::::
(e.g.

::::::::
Cerrado).

::::
The

::::::
poorly20

:::::::
modelled

:::::
PFT

:::::::::
distribution

::::
also

::
is

::::::::::
responsible

:::
for

:::
the

::::::::::::
overestimation

:::
of

:::
the

::::
burnt

::::
area

::
in
::::

the
:::::::
Amazon

::::::
region.

:::::::
Because

:::
of

:::
the

:::
too

::::
large

:::::::
fraction

::
of

:::::
TrBE

::
in

:::
the

::::::::::::::
Cerrado/Caatinga

::::::
region

:::
the

::::::
scaling

:::::
factor

:::
for

:::
this

::::
PFT

::
is

::::::::
relatively

::::
high.

::::
This

:::::
leads

::
in

::::
turn

::
to

::
an

::::::::::::
overestimation

::
in

:::
the

:::::::
Amazon

:::::::
region,

:::::
where

:::
the

:::::::
fraction

::
of

:::
the

:::::
TrBE

:
is
::::::
larger.

As stated before, the VPD fire danger index requires additional climate variables which are available from re-analysis data.We

have chosen the GLDAS climate data set for its good performance to capture South-American climate. Because GLDAS25

2.0 (covering 1948-2010) is just forced with Princeton meterological data, while GLDAS 2.1 (2000-now) includes various

observational and meteorological data, both versions result in a small offset.Since the offset is very small, the years 2000-2003

(first three years of GLDAS 2.1, before the optimization period) are enough for the model to recover from the offset and the

carbon pools to return to equilibrium. To exclude the possibility that long-term trends within GLDAS 2.0 changed the modelled

vegetation state significantly, we tested our optimization also just based on GLDAS 2.0 data (until 2010) and just based on30

GLDAS 2.1 data (2000-2017)
::::
only, using the same years for model spinup, optimization and evaluation. Both versions yielded

similar results compared to the optimization presented in this study (results not shown).

Due to the fact that evaluation data are only available for the last 10-20 years, we are constrained to optimize the model in

this relatively short time period. In South America these years were subject to an unusual high amount of severe droughts

and other extreme events (Panisset et al., 2017). As a result, an optimization in this period could lead to a worse model per-35
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formance in a period with less pronounced droughts. This is due to the non-linear relationship between the drought signal in

the input data set and the resulting modelled biosphere behaviour
:::::::
behavior. Nonetheless, we were able to improve the inter-

annual variability and hence, the model performance during extreme years
:
to
::

a
:::::
great

:::::
extent

:::
for

:::
the

::::::::
Caatinga

:::
and

:::::::
slightly for

the Cerrado and Caatinga regions (e. g. for 2007/2008, Fig. 5).
::::::
Amazon

:::::::
regions

::::
(Fig.

::
5
:::
and

:::::
A3).

:::
The

:::::::
Cerrado

:::::::
already

:::
had

::
a

::::
very

::::
good

:::::::::
modelling

:::::::::::
performance

::::::
before

:::
the

::::::::::
optimization

::::::::
process,

:::::
which

::::
now

::::
only

:::::::
slightly

:::::::::
improved.

::::
The

::::::::::
performance

:::
of5

::
the

::::::::::
interannual

:::
and

::::::::
seasonal

::::::::
variability

::
of

:::::
burnt

::::
area

:::
for

::::
total

:::::
South

:::::::
America

:::::::::
improved

::::::::::
substantially

::::
(Fig.

:::::
A3). The optimized

SPITFIRE is now able to model
::::
better

::::
able

::
to

:::::::
simulate

:
accurately the climate dependent seasonal and interannual variability

as well as the spatial extent of fire on natural land throughout the fire-prone woodlands of South America.

:::::::::
Systematic

:::::::::::
optimizations

::::::
within

:
a
::::::::::
model-data

:::::::::
integration

:::::
setup

::
of

:::
fire

:::::::
models

:::::
which

:::
are

:::::::::
embedded

::
in

:
a
:::::::
DGVM

:::
are

::::
still

::::
very

::::
rare.

:::::::::
Previously,

::::::::::::::::
Rabin et al. (2018)

::::::::
optimized

:::
the

:::
fire

::::::
model

::::::::
FINAL.1

:::::
within

:::
the

:::::::::::
land-surface

:::::
model

:::::
LM3.

::::
Our

:::::
study

::::::
differs10

::::
from

::::::::::::::::
Rabin et al. (2018)

::
in

:::
the

:::::::::
conceptual

::::::
design

::
of

:::
the

::::::::::::
vegetation-fire

::::::
models

::::
and

:::
the

::::::::::
optimization

:::::::
process.

::::::
While

::::
LM3

::::
has

::::
been

:::
run

:::
on

:
a
:::
2°

::::::::
longitude

::
by

::::
2.5°

:::::::
latitude,

::::::
which

::
is

:::::
much

::::::
coarser

::::
than

:::::::
LPJmL

::::
with

::::
0.5°

::
by

:::::
0.5°.

::::
This

:::::::::
difference

:::::
allows

:::
us

::
to

::::::
account

:::
for

::
a
::::::
locally

:::::
better

:::::::
climate

:::::
input,

:::::::::
vegetation

:::
and

::::
fire

::::::::::::::
interaction.While

::::::::
FINAL.1

::
is
::
a

::::::::::::
process-based

::::::
model,

:::::
many

::::::::::
calculations

::::
(e.g.

:::
the

::::
fire

::::::
spread

:::::::
routine)

:::
are

:::::
done

::
by

::::::::::
multiplying

::::
the

::::::::
important

::::::
factors

::::
and

::::::
fitting

:::
the

::::::::
resulting

:::::
values

:::
to

:::::::::::
observational

::::
data.

:::::::::
SPITFIRE

::::
tries

::
to

:::::
model

:::
the

:::::::::
important

:::
fire

:::::::
variables

:::
by

:::::::::
simulating

:::
the

:::::::::
underlying

::::::::
processes,

::::
and

::
by

::::::
taking15

::
the

::::::::
influence

:::
of

::::::
climate

:::
and

:::
the

::::::::
different

:::
fire

:::::::
ignitions

::::
into

:::::::
account.

:::
An

:::::::::
advantage

::
of

::::::::
FINAL.1

::
is

:::
the

::::::::
inclusion

::
of

::::::::::
agricultural

:::
fires

:::::
based

:::
on

:
a
::::::::
statistical

::::::::
approach.

::::::::
Whereas

:::::::::::::::
Rabin et al. (2018)

::::
used

:
a
:::::
local

:::::
search

::::::::
algorithm

:::::::::::::::::::
(Levenberg-Marquardt

:::::::::
algorithm)

::
to

:::::::
optimize

:::::
their

::::::
model,

:::
we

::::
used

::
a
::::::
global

:::::
search

:::::::::
algorithm

:::::::
(genetic

::::::::::::
optimization).

:::::
Local

::::::
search

:::::::::
algorithms

:::::::
depend

:::
on

:::
the

::::::
chosen

:::::
initial

:::::::::
parameter

:::
sets

::::
and

:::::
might

:::::::::
eventually

::::
end

:::
up

::
in

::
a

::::
local

:::::::::
optimum.

::
A

::::::
genetic

:::::::::::
optimization

:::::::::
algorithm

:::::
allows

:::
to

::::::
explore

:::
the

:::
full

:::::::::
parameter

::::
space

::::
and

:::::
hence

:::::
gives

:
a
::::::
higher

::::::
chance

::
to

:::
find

:::
the

::::::
global

::::::::
optimum.

::::::::
However,

::::
local

::::::
search

:::::::::
algorithms20

::::::
require

:::
less

::::::::
iterations

::::
than

::::::
global

::::::
search

:::::::::
algorithms

::::
(300

:::
in

::::::::::::::::
Rabin et al. (2018)

::
vs.

::::::
16000

::
in

:::
our

::::::
study).

:::::::::::::::::
Forkel et al. (2014)

:::::
tested

:::
the

:::::::::::
optimization

::
of
:::::::

LPJmL
:::::

with
:::::::
different

:::::::::::
optimization

::::::::::
algorithms

::::
and

:::::
found

::::
that

::
it
::::
was

:::
not

:::::::
feasible

:::
to

::::::::
optimize

::::::
LPJmL

::::
with

::
a

::::
local

::::::
search

:::::::::
algorithm.

::::::::::::::::
Rabin et al. (2018)

:::
ran

:::
the

:::::
model

::::::
during

:::
the

:::::::::::
optimization

:::::::
process

::::
only

:::
for

:::
the

::::::
period

::
of

:::::::::
1991-2009,

:::::::
whereas

:::
we

:::::
made

::::::::
complete

::::::
model

::::
runs

::::::::
including

::::
5000

:::::
years

::
of

::::::
spinup

::
in

:::::
order

::
to

:::
get

:
a
::::::
model

::::::::::
equilibrium

:::
for

::::
each

:::::
tested

::::::::
parameter

:::::::::::
combination.

:
25

4.3 Outlook - the way ahead in improving
::::::::::
Limitations

::
of

:
fire modules

::::::::
modelling

:
in DGVMs

::::::::::::::::::
LPJmL4-SPITFIRE

In fire-prone regions the interactions between fire and vegetation dynamics is
:::
are

:
strong, hence

:::
are posing a challenge for

global fire models embedded in DGVMs. By just focussing on fire-related parameter
:::::::::
parameters, an optimization approach can

only to a certain extent additionally improve PFT distribution and simulated biomass. For a good fire representation e.g. in

the Cerrado and Caatinga, a shrub PFT could further improve the model performance. Most fires in this region occur, where30

shrub PFTs are abundant. LPJmL tries to account for this by establishing rather small raingreen PFTs as a shrub replacement.

A much better option would be a seperate
:::::::
separate

:
shrub PFT with parameters leading to a high flammability, but also a low

fire mortality. An optimization of LPJmL4-SPITFIRE, including shrub PFTs could yield much better results than shown in this

study.

25



Even though
:::
Fire

::::::
models

:::::::::
embedded

::
in
::::::::

DGVMs
::::::
should

:::::
build

::
on

::
a
::::
FDI

:::::
which

::
is

::::::::
complex

::::::
enough

::
to

:::::::
account

:::
for

::::::
various

::::
fire

::::::::
dynamics,

:::::
while

:::
it’s

::::::::::::::
parameterization

::::::
should

:::
be

::::::
simple

::::::
enough

::
to

:::
be

::::::::
accurately

:::::::
applied

:::
on

:
a
::::::
global

:::::
scale.

:::::
While

:
the VPD is

more complex than the Nesterov index and takes into account more climatic input , it would be possible to use an even more

comprehensive fire danger index (e.g. Canadian Fire Weather Index; Wagner et al., 1987) or different fire danger indices for

different biomes.
:
as

:::
the

::::::::
Nesterov

:::::
index,

::
it
::
is

:::
still

::::::::
relatively

::::
easy

::
to
:::::::::
implement

::
in
::
a
:::::
global

::::
fire

::::::
model.5

There are various other fire danger indices used for modelling purposes, as well as real fire danger assessment and fire forecast

purposes. For example, fire-prone countries have developed their own fire danger indices (e.g. Canada, Australia), which are

suited to the unique local fire regimes and vegetation dynamics. In a global modelling approach, however, we need to find

one fire danger index, which suits best for all regions of the world and has a relatively easy implementation to decrease

computational cost and the number of input data sets (which might be unavailable or uncertain).10

Currently, SPITFIRE does not account for fire in managed land like cropland or managed grassland. We accounted for this by

excluding cropland fires from the evaluation burnt area data set. We do, however, not account for the proportion of grassland,

which is used for e.g. cattle ranching. Since in SPITFIRE fire is not enabled on managed grassland
:::::
pasture, our results show

a slightly smaller fire amplitude
::::
burnt

::::
area

:
throughout South America than could be expected with managed land included

and hence also compared to the GFED4 evaluation data set. The
:::
This

:::::
effect

::
is
::::::::
however

:::::
small,

:::::::
because

::::::
pasture

:::::
lands

:::::
cover

::
a15

:::::::::
substantial

::::::
fraction

::::
only

::
in
:::::
very

:::
few

::::
grid

::::
cells

:::::::::::::::::::::::::::::::::::
(e.g. southern Cerrado; Parente et al., 2017)

:
.
::::
Fire

::
on

::::::::
managed

::::
land

::
is

::::::::
generally

::::::
difficult

::
to
:::::::
predict

::
in

:
a
:::::::
DGVM

:::::::
because

:::
the reason and timing of using fire on managed land depends less on climatic factors

but mostly on social and political decisions , which vary among different countries, as well as different regions within e.g.

Brazil. With fires on managed land included we would expect to further improve the simulated interannual variability.
:::::
which

:::
can

::::
vary

:::::::
between

::::::::
countries,

::::::
regions

::::
and

::::::::
localities.

:::
We

::::::
expect

::::::
further

:::::::::::
improvement

::
of

:::::
model

:::::::::::
performance

::::::::
especially

::
in
:::::::
regions20

::
of

::::
large

:::::::
land-use

:::::
areas

::::
with

::::
fires

:::
on

:::::::
pastures

:::::::
included

::::::::::::::::::::::::::::::::::::
(e.g. Rabin et al., 2018; Pfeiffer et al., 2013).

:

5 Conclusions

We have demonstrated a major improvement of
::::::::::
significantly

:::::::::
improved

:
the fire representation within LPJmL4-SPITFIRE

:
,

::::::
applied

:::
for

:::::
South

::::::::
America,

:
by implementing a new fire danger index and applying a model-data integration setup to opti-

mize fire-related parameters. We improved the seasonal and interannual variability, as well as the spatial pattern of burnt area25

in South America. In addition, modelling of related vegetation variables, e.g., the biomass and the PFT distribution in the

fire-prone Cerrado and Caatinga biomes have also been improved. To our knowledge this is the first study that attempts to

systematically optimize a process-based fire model within a complex DGVM. E.g. Rabin et al. (2018) did an optimization of a

fire model, which is not embedded in a DGVM.

Optimizing fire parameter
:::::::::
Optimizing

::::
fire

:::::::::
parameters has its limits due to error propagation of the PFT distribution and hence30

their fire traits influencing simulated fire spread and behaviour
:::::::
behavior. Furthermore, it remains a challenge to find a fire danger

index that is physically interpretable and can be applied globally. In this study, the parameter-optimization by using FDINI

led to a large underestimation of fire and a generally worse model performance, when focusing on the Cerrado and Caatinga
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biome. However, implementing the more complex FDIV PD and optimizing it thereafter, led to an improved model perfor-

mance compared to the original SPITFIRE implementation for South America. Our results demonstrate that the improvement

of model processes, as well as a systematic model-data optimization are required in order to obtain a more accurate fire rep-

resentation within complex DGVMs, where observations or experimental evidence to constraint fire parameter is
:::
are scarce.

This work highlights the potential for future model-data integration approaches to obtain a better fire model performance in5

a global setting, based on improved vegetation dynamics within LPJmL4. A realistic representation of fire is also crucial for

fire-vegetation-climate feedbacks and is hence necessary for DGVMs coupled within an comprehensive Earth system model.

Code availability. Upon request. With publication of this article the model code will be published at https://github.com/PIK-LPJmL, anal-

ogously to Schaphoff et al. (2018a). We will publish the code of LPJmLmdi along with the model code on the github page of LPJmL:

https://github.com/PIK-LPJmL/LPJmLmdi10
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Appendix A

Figure A1.
:::::
Annual

::::
FPC

:::::
cover

::
by

:::::::
tropical

:::::::::
broadleaved

::::::::
raingreen

:::
PFT

::::
over

::
a
::::
mean

:::::
from

::::::::
2005-2015

::
as

:::::::
fraction

:::
per

:::
cell.

:::
(a)

::::::::
ESA-CCI

:::::::
evaluation

::::
data

:::
(b)

::::::::
Simulated

:::
FPC

:::
by

:::::::::::::::
LPJmL4-SPITFIRE

::::
using

:::
the

::::::
NIorig ::::::

version
::
(c)

::::::::
Simulated

::::
FPC

::
by

:::::::::::::::
LPJmL4-SPITFIRE

:::::
using

:::
the

::::::::
VPDoptim :::::

version
:::
(d)

::::::::
Simulated

:::
FPC

:::
by

::::::::::::::
LPJmL4-SPITFIRE

:::::
using

::
the

:::::::
NIoptim :::::

version
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Figure A2.
:::::
Annual

::::
FPC

::::
cover

:::
by

::::::
tropical

::::::::
herbaceous

::::
PFT

::::
over

:
a
::::
mean

::::
from

:::::::::
2005-2015

::
as

::::::
fraction

:::
per

:::
cell.

:::
(a)

:::::::
ESA-CCI

::::::::
evaluation

::::
data

::
(b)

::::::::
Simulated

::::
FPC

::
by

:::::::::::::::
LPJmL4-SPITFIRE

::::
using

:::
the

:::::
NIorig::::::

version
::
(c)

::::::::
Simulated

::::
FPC

::
by

:::::::::::::::
LPJmL4-SPITFIRE

::::
using

:::
the

::::::::
VPDoptim::::::

version

::
(d)

::::::::
Simulated

::::
FPC

::
by

:::::::::::::::
LPJmL4-SPITFIRE

::::
using

:::
the

::::::
NIoptim::::::

version
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Figure A3.
::::::::
Time-series

::
of
:::::::
monthly

::::
burnt

::::
area

::::
from

::::
2005

:
-
::::
2015

::::::::
simulated

::
by

::::::::
SPITFIRE

::::
(red

::::
lines)

::::::::
compared

::
to

::::::
GFED4

::::::::
evaluation

::::
data

::::
(blue

::::
lines)

:::
for:

:::
(a)

:::
The

::::::::
Amazonia

:::::
region,

::::
using

::::::
NIorig .

::
(b)

:::::
Total

::::
South

:::::::
America,

:::::
using

::
the

::::::
NIorig .

::
(c)

:::
The

::::::::
Amazonia

::::::
region,

::::
using

:::::::
NIoptim.

::
(d)

::::
Total

:::::
South

:::::::
America,

::::
using

:::::::
NIoptim.

:::
(e)

:::
The

::::::::
Amazonia

:::::
region,

::::
using

:::::::::
VPDoptim.

::
(f)

::::
Total

:::::
South

:::::::
America,

::::
using

:::::::::
VPDoptim.
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Figure A4.
:::
Cost

:::::::
reduction

::
of

:::
the

::::
burnt

:::
area

:::
and

:::
the

::::::
biomass

:::::
during

:::
the

:::::::::
optimization

:::::::
process,

::
by

::::::
showing

:::
the

::::::
various

:::::::::
components

::
of

::
the

::::
cost

:::
that

::
are

::::::
related

:
to
:::::::::
model-data

::::
bias,

::::::
variance

::::
ratio

:::
and

:::::::::
correlation.

:::
The

:::
cost

:::
for

::::
burnt

:::
area

:::
for

::::::
NIoptim::::::::

decreased
::
by

::
ca.

::::
81%,

:::::::
whereas

::
the

::::
cost

:
of
:::

the
:::::::
biomass

:::
only

::::::::
decreases

::
by

::
ca.

:::
6%

::
(a

:::
and

::
b).

:::
For

::::::::
VPDoptim:::

the
::::
cost

:::::::
decreased

::
by

:::
ca.

::::
48%

::
for

::::
burnt

::::
area

:::
and

::
ca.

::::
19%

:::
for

::
the

:::::::
biomass

:
(c
:::
and

:::
d).

:::::
Hence

:::
the

:::::
impact

::
of

::
the

::::::::::
optimization

::::::
process

::
on

::::
burnt

::::
area

:
is
:::::

much
:::::
larger

:::
due

:
to
:::
the

::::
focus

:::
on

:::
fire

::::::::
parameters.
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Figure A5.
:::::
Annual

:::::
above

::::::
ground

:::::::
biomass

::::::
(AGB)

::
of

::::
trees

::::
over

:
a
:::::

mean
::::
from

:::::::::
2005-2015

::
in

:::::::
kgC/m2.

::
(a)

::::::::
Avitabile

::::::::
evaluation

::::
data.

:::
(b)

:::::::
Simulated

:::::
AGB

::
by

:::::::::::::::
LPJmL4-SPITFIRE

::
in
:::

the
::::::
NIorig ::::::

version.
:::
(c)

::::::::
Simulated

::::
AGB

::
by

:::::::::::::::
LPJmL4-SPITFIRE

::
in
:::

the
:::::::::

VPDoptim ::::::
version.

:::
(d)

:::::::
Simulated

::::
AGB

:::
by

:::::::::::::::
LPJmL4-SPITFIRE

:
in
:::
the

::::::
NIoptim:::::::

version.
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Figure A6.
::::::::
Time-series

::
of
:::::::
monthly

::::
burnt

::::
area

::::
from

::::
2005

:
-
::::
2015

::::::::
simulated

::
by

::::::::
SPITFIRE

::::
(red

::::
lines)

::::::::
compared

::
to

::::::
GFED4

::::::::
evaluation

::::
data

::::
(blue

::::
lines)

:::
for:

:::
(a)

:::
The

::::::
Cerrado

::::::
region,

::::
using

::::::
NIorig .

::
(b)

::::
The

::::::
Caatinga

::::::
region,

::::
using

:::
the

::::::
NIorig .

::
(c)

:::
The

::::::
Cerrado

::::::
region,

::::
using

:::::::
NIoptim.

:::
(d)

:::
The

:::::::
Caatinga

:::::
region,

::::
using

:::::::
NIoptim.

:::
(e)

:::
The

::::::
Cerrado

::::::
region,

::::
using

:::::::::
VPDoptim.

::
(f)

:::
The

:::::::
Caatinga

:::::
region,

:::::
using

::::::::
VPDoptim.
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