
Geosci. Model Dev. Discuss.,
https://doi.org/10.5194/gmd-2019-86-AC2, 2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Interactive comment on “Slate: extending
Firedrake’s domain-specific abstraction to
hybridized solvers for geoscience and beyond” by
Thomas H. Gibson et al.

Thomas H. Gibson et al.

t.gibson15@imperial.ac.uk

Received and published: 28 October 2019

The authors would like to sincerely thank the referee for the careful review and con-
structive comments for improving the manuscript.

1) “How is the .inv() command translated to generated code? Are you using
LU/Cholesky or directly inverting the matrix? It is clear the former for the A.solve()
command as the decomposition is passed, but not for .inv().”

This is a good question, and we will make this more clear in the updated version of
the paper. As mentioned on page 6, Slate expressions are transformed into C++ code

C1

using Eigen as the main linear algebra interface. By default, A.inv() gets translated
to the corresponding Eigen call: .inverse(), which uses LU with partial pivoting for
general matrices. It is also the default behavior of A.solve(B). A complete list of
factorization strategies compatible with the current version of Slate are documented on
Eigen’s public webpage (https://eigen.tuxfamily.org/dox/), under the cat-
egory: “Dense linear problems and decompositions.” An example of how one would
specify a factorization type directly is shown in Listing 1, lines 28 and 30.

2) “How would you deal in practice with non-linear problems solved using, e.g., a
Newton-Krylov method? Is it possible to compose SLEPc and the Preconditioned
Krylov Solvers? How would one setup SLEPc to call the code to recover the inter-
nal/local variables between Newton iterations?”

If you mean “can we differentiate through Slate expressions?” for problems with local
non-linear systems, this is not currently supported. However, one can imagine extend-
ing the Slate abstraction to support non-linear solvers. The question then becomes:
“how do we generate code for this?” This is a topic of on-going discussion within the
Firedrake project, and therefore, something like this may very well become part of the
core Slate abstraction.

For global non-linear problems, we don’t need to do anything extra in Slate. One can
use the technology provided in Section 4 of the paper together with PETSc/SLEPc
non-linear solvers. Standard Newton, for example, requires the solution of the lin-
earized Jacobian system for the linear updates. Each Newton iteration, therefore,
requires a linear solve. In Firedrake, the Jacobian is constructed by differentiating
the non-linear PDE (expressed in UFL), which generates yet another UFL expres-
sion for the Jacobian. The result is then used as the operator for the linear solver
(in PETSc, these are “KSP”s). Hybridization or static condensation can then be
used by specifying the correct solver options. In practice, a single Newton iteration
would look very similar to the Picard method described in Section 5.2. By design,
all preconditioners presented in Section 4 are entirely composable with the PETSc

C2



library and can be applied in the usual way, even when nested inside of an outer
non-linear method (e.g. snes_type newtonls, ksp_type preonly, pc_type
python, pc_python_type firedrake.SCPC). This follows from the framework de-
veloped in (Kirby & Mitchell, 2018). We shall stress this more clearly in the revised
manuscript.

3) “What does the generated Eigen code look like?”

A .zip file is attached as a supplement (static_condensation.zip), which pro-
vides an entire generated C++ code and a PDF displaying just the kernel for static
condensation (all generated from Slate). This was generated by an example taken
directly from the shallow water test case in Section 5.2.

Slate’s linear algebra compiler generates templated C++ code conforming to PyOP2’s
application program interface, described in (Rathgeber et al., 2012). Typically, the gen-
erated kernel will take an output tensor, any coefficients, and possibly external data as
arguments. The body of the kernel will make appropriate function calls to local assem-
bly kernels generated by Firedrake’s form compiler TSFC (Homolya et al., 2018). Local
data structures (element matrices/vectors) are derived types of Eigen’s Matrix class
(https://eigen.tuxfamily.org/dox/group__TutorialMatrixClass.html),
and populated by the output of the local assembly kernels. Once all local data struc-
tures are filled, the dense linear algebra operations are performed and populated
into the output tensor. The result is then passed onto Firedrake’s global assembler
(PyOP2).

We have discussed the possibility of providing a code listing in the paper, which would
show some generated C++. We came to the conclusion that it would be unhelpful at
best and, at worst, distracting away from the central message of the paper, which is
the Slate abstraction itself.

4) “It is not totally clear how the output from TSFC is fed into the linear algebra compiler.
Do you call the TSFC kernel, get the complete cell tensor, split it and then perform the

C3

dense linear algebra operations? Or is everything ’interleaved’ into one single cell
tensor kernel by the linear algebra compiler? Or do you call multiple TSFC kernels,
one for each sub-block and then perform the dense linear algebra operations?”

TSFC splits an assembly kernel for a mixed operator into separate kernels for each
sub-block of the local tensor. Then the single kernel responsible for performing the
dense linear algebra will first need to make multiple function calls to gather each local
contribution. We shall make this more clear in Section 2 of the paper.

5) “The high-level problem setup in sections 1 and 2 is pretty terse. I don’t think some-
one who has some knowledge of FEM but is not a real subject expert could get through
this section. Some of the wording is quite heavy on jargon too, e.g. global data struc-
ture = sparse matrix? I appreciate you don’t have time to do a deep-dive into FE,
but a bit more text and some pointers to more detailed explanations (other Firedrake
papers?) would be useful.”

This is a very fair point. We will improve the sections to make the content more acces-
sible to a general reader. In particular, we will steer away from too much jargon (or give
concrete definitions) and provide appropriate references for the more technical details.

6) “Small notational comments: * You do not mention the bold symbol = vector function
convention.

* Your convention of non-bold capitals being (local? - not sure) discrete linear operators
(matrices and vectors) is also not mentioned, although K (the finite element cell) would
break this ’convention’. I’d also note that K is used twice for different objects (the finite
element cell and a matrix in eq.76) It would probably aid readability if it was possible
to distinguish between matrices and vectors, global and local, especially when the
operations become more complex in the later sections. There also seem to be (global?
- not sure) discrete linear operators in bold.”

We shall clarify our notation throughout the paper to better distinguish between local

C4



and global tensors and their ranks (matrix vs vector). We will also avoid repeated use
of particular characters, as you have pointed out (K the cell vs K the element tensor).

References

Kirby, Robert C., and Lawrence Mitchell. “Solver composition across the PDE/linear algebra
barrier.” SIAM Journal on Scientific Computing 40.1 (2018): C76-C98.

Rathgeber, Florian, et al. “PyOP2: A high-level framework for performance-portable simulations
on unstructured meshes.” 2012 SC Companion: High Performance Computing, Networking
Storage and Analysis. IEEE (2012).

Homolya, Miklós, et al. "TSFC: a structure-preserving form compiler." SIAM Journal on Scien-
tific Computing 40.3 (2018): C401-C428.

Please also note the supplement to this comment:
https://www.geosci-model-dev-discuss.net/gmd-2019-86/gmd-2019-86-AC2-
supplement.zip

Interactive comment on Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-86,
2019.

C5


