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Abstract.

When the same weather or climate simulation is run on different High Performance Computing (HPC) platforms, model

outputs may not be identical for a given initial condition. While the role of HPC platforms in delivering better climate pro-

jections is often discussed in literature, attention is mainly focused on scalability and performance rather than on the impact

of machine-dependent processes on the numerical solution. At the same time, machine dependence is an overlooked source5

of uncertainty when it comes to discussing the model spread observed within the Coupled Model Intercomparison Projects

(CMIP).

Here we investigate the impact of machine dependence on model results and quantify, for a selected case study, the magnitude

of the uncertainty. We consider the Preindustrial (PI) simulation prepared by the UK Met Office for the forthcoming CMIP6.

We compare key climate variables between PI control simulations run on the UK Met Office supercomputer and the10

ARCHER HPC platform. Discrepancies strongly depend on the timescale. Decadal means show substantial differences of

up to 0.2 °C for global mean air temperature, 1 W /m2 for TOA outgoing longwave flux and 1.2 million km2 for South-

ern Hemisphere sea ice area. However, on multi-centennial timescales the differences are not significant and the long-term

statistics of the two runs are similar.

Differences between the two simulations can be linked to variations in the strongest modes of climate variability. In the15

Southern Hemisphere, this results in large SST anomalies where ENSO teleconnection patterns are expected that can reach 0.6

°C (and SNR ≥ 1) even on centennial timescales.

1 Introduction

Coupled model intercomparison projects (CMIP) have become an indispensable tool to progress our understanding of the Earth

system and inform decision makers on the state of the climate.20

The latest Coupled Model Intercomparison Project Phase 5 (CMIP5) collected numerical simulations performed with 60

models by 26 research institutes around the world. The follow-on CMIP6 archive, to be completed by December 2020, is

expected to gather model outputs from 32 research institutes.
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CMIP models differ among each other in their physical formulation, numerical discretization, physical process parametriza-

tions and code implementation. As each model rightfully represents a possible realization of the real world, it has been long

recognized that multi-model means are more meaningful than single-model means for any variable. The spread (standard de-

viation) among models associated to multi-model means is usually explained as the combination of model uncertainty (which

accounts for all the aforementioned inter-model differences) and internal (natural) climate variability, a consequence of the5

chaotic nature of the climate system. Furthermore, for future climate projections, the uncertainty associated with possible fu-

ture greenhouse gas emissions is classified separately as ‘scenario uncertainty’ (Hawkins and Sutton (2009) and Hawkins and

Sutton (2011)).

Recently, a few studies emphasized the need of separating the sources of uncertainty in climate simulations to learn about

their relative importance (e.g., Cox and Stephenson (2007), Knutti et al. (2008)), finding a robust way of estimating the internal10

climate variability (needed for detection and attribution studies) (e.g., Kay et al. (2015), Olonscheck and Notz (2017)), and

reducing the overall uncertainty of climate projections (e.g., Hawkins and Sutton (2009) and Hawkins and Sutton (2011)).

All these studies overlook the existence of another source of uncertainty associated with the computing environment where

numerical simulations are run. This type of uncertainty is due to machine-dependent processes and can contribute to the model

spread observed within the CMIP archives, and any other model intercomparison project, by an amount that has never been15

quantified.

The issue of being able to reproduce identical simulation results across different supercomputers, or following a system

upgrade on the same supercomputer, has long been known by numerical modellers and computer scientists. However, the

impact that a different computing environment can have on otherwise identical numerical simulations appears to be little

known by climate models users and model data analysts. In fact, the subject has never received much attention. It sometimes20

occupies a few sentences in research papers (see for example Lunt et al. (2012)) or is completely ignored.

While one could argue that ‘machine dependence uncertainty’ is embodied in the model uncertainty component we recall

that, being based on different physical and numerical formulations, model uncertainty has a completely different nature. Addi-

tionally, independent source codes and physics implementations have to be encouraged among the community to preserve the

independence across numerical experiments (see Abramowitz et al. (2019) for a review on the topic). On the contrary, machine25

dependence is a component of the total uncertainty of climate simulations which has the potential to be reduced or completely

removed (if, for example, all the models within the same model intercomparison project were run on the same supercomputer).

To the extent of our knowledge, only a few authors discussed the existence of machine dependence uncertainty and high-

lighted the importance of bit-for-bit numerical reproducibility in the context of climate model simulations. Song et al. (2012)

and Hong et al. (2013) investigated the uncertainty due to the round-off error in climate simulations. Liu et al. (2015b) and Liu30

et al. (2015a) discussed the importance of bitwise identical reproducibility in climate models, highlighting the lack of attention

that the climate modelling community gives to the subject.

In this paper, we investigate the machine dependence of climate model simulations by studying the behaviour of the UK

CMIP6 PI control simulation with the HadGEM3-GC3.1 model on two different HPC platforms. We quantify the magnitude

of the uncertainty attributable to machine-dependent processes and its impact on the physical interpretation of model outputs.35
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Note that the PI control simulation is a constant-forcing experiment and serves the purpose of estimating the internal climate

variability. No ensemble members are run for such experiment because, provided that the simulation is long enough, this will

return a picture of the natural climate variability.

We will focus on estimating how long constant-forcing climate simulations should be for machine dependence uncertainty

to become negligible. In the paper, discrepancies between the means of key climate variables like SST, Sea Ice Concentration,5

2m Air Temperature, LW and SW TOA radiation fluxes and Precipitation flux will be analysed at different timescales, from

decadal to centennial, and linked to variations in the strongest modes of climate variability.

The remainder of the paper is organized as follows. In section 2, mechanisms by which the computing environment can influ-

ence the numerical solution of chaotic dynamical systems are reviewed and discussed. In section 3, the numerical simulations

are presented and the methodology used for the data analysis is described. In section 4, the simulation results are presented and10

discussed. In section 5, the main conclusions of the present study are summarized.

2 The impact of machine dependence on the numerical solution

In this section, possible known ways in which machine-dependent processes can influence the numerical solution of chaotic

dynamical systems are reviewed and discussed.

Different compiling options, degrees of code optimization and basic library functions all have the potential to affect the15

reproducibility of model results across different HPC platforms, and on the same platform under different computing environ-

ments. Here we provide a few examples of machine-dependent numerical solutions using the 3D Lorenz model (Lorenz, 1963),

which is a simplified model for convection in deterministic flows. The Lorenz model consists of the following three differential

equations:

dx

dt
= α(y−x)

dy

dt
= γx− y− zx
dz

dt
= xy−βz

(1)20

where the parameters α= 10, γ = 28 and β = 8/3 were chosen to allow the generation of flow instabilities and obtain chaotic

solutions (Lorenz, 1963). The model was initialized with (x0,y0,z0) ≡ (1, 1, 1) and numerically integrated with a 4th-order

Runge-Kutta scheme using a time step of 0.01. The Lorenz model was run on two HPC platforms, namely: the UK Met Office

Supercomputer (hereinafter simply “MO”) and ARCHER.

To demonstrate first the implications of switching between different computing environments, the Lorenz model was run on25

the ARCHER platform using:

– two different FORTRAN compilers (cce8.5.8 and intel17.0), see Figure 1a and 1b;

– same FORTRAN compiler (cce8.5.8) but different degrees of floating-point optimization (-hfp0 and -hfp3), see

Figure 1c and 1d;
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– same FORTRAN compiler and compiling options but the x-component in (1) was perturbed by adding a noise term

obtained using the random_number and random_seed intrinsic FORTRAN functions. In particular, the seed of the

random number generator was set to 1 and 3 in two separate experiments, see Figure 1e and 1f.

Finally, to illustrate the role of using different HPC platforms, the Lorenz model was run on the ARCHER and MO platforms

using the same compiler (intel17.0) and identical compiling options (i.e. level of code optimization, floating-point precision,5

vectorization) (Figure 1g and 1h).

The divergence of the solutions in Figure 1a and 1b can likely be explained by the different ‘computation order’ of the two

compilers (i.e. the order in which a same arithmetic expression is computed). In Figure 1c and 1d, solutions differ because of the

round-off error introduced by the different precision of floating-point computation. In Figure 1e and 1f, the different seed used

to generate random numbers caused the system to be perturbed differently in the two cases. While this conclusion is straightfor-10

ward, it is worth mentioning that the use of random numbers is widespread in weather and climate modelling. Random number

generators are largely used in physics parametrizations for initialization and perturbation purposes (e.g. clouds, radiation and

turbulence parametrizations) and, as obvious, in stochastic parametrizations. The processes by which initial seeds are selected

within the model code are thus crucial in order to assure numerical reproducibility. Furthermore, different compilers may have

different default seeds.15

As for Figure 1g and 1h, this is probably the most relevant result for the present paper. It highlights the influence of the HPC

platform (and of its hardware specifications) on the final numerical solution. In Figure 1g and 1h the two solutions diverge

in time similarly to Figure 1a - 1d, however identifying reasons for the observed differences is not straightforward. While we

speculate that reasons may be down to machine architecture and/or chip-set, further investigations on the subject were not

pursued as this would be beyond the scope of this study.20

The three mechanisms discussed above were selected because illustrative of the problem and easily testable via a simple

model such as the Lorenz model. However, there are a number of additional software and hardware specifications that can

influence numerical reproducibility, and that only emerge when more complex codes, like weather and climate models, are run.

These are: number of processors and processor decomposition, communications software (i.e. MPI libraries), threading (i.e.

OpenMP libraries).25

We conclude this section stressing that the four case studies presented in Figure 1 (and the additional mechanisms discussed

in this section) are all essentially a consequence of the chaotic nature of the system. When machine-dependent processes

introduce a small perturbation/error into the system (no matter by which mean), they cause it to evolve differently after a few

time-steps.
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3 Methodology

3.1 Numerical simulations

In this study, we consider two versions of the Preindustrial (PI) control simulation prepared by the UK Met Office for the

sixth coupled model intercomparison project (CMIP6) (Eyring et al., 2016). This PI control experiment is used to study the

(natural) unforced variability of the climate system and it is one of the reference simulations against which all the other CMIP65

experiments will be analysed.

The PI simulation considered in this paper uses the N96 resolution version of the HadGEM3-GC3.1 climate model (N96ORCA1).

The model set-up, initialization, performance and physical basis are documented in Menary et al. (2018) and Williams et al.

(2018), to which publications the reader is referred for a detailed description. In summary, HadGEM3-GC3.1 is a global cou-

pled atmosphere-land-ocean-ice model that comprises the Unified Model (UM) atmosphere model (Walters et al., 2017), the10

JULES land surface model (Walters et al., 2017), the NEMO ocean model (Madec et al., 2015) and the CICE sea ice model

(Ridley et al., 2018). The UM vertical grid contains 85 pressure levels (terrain-following hybrid height coordinates) while the

NEMO vertical gird contains 75 depth levels (rescaled-height coordinates). In the N96 resolution version, the atmospheric

model utilizes a horizontal grid-spacing of approximately 135 km on a regular latitude-longitude grid. The grid spacing of the

ocean model, which employs an ortoghonal curvilinear grid, is 1◦ everywhere but decreases down to 0.33◦ between 15◦ N and15

15◦ S of the equator, as described by Kuhlbrodt et al. (2018).

Following the CMIP6 guidelines, the model was initialized using constant 1850 GHGs, ozone, solar, tropospheric aerosol,

stratospheric volcanic aerosol and land use forcings. The UK CMIP6 PI control simulation (hereinafter referred to as PIMO)

was originally run on the MO HPC platform on 2500 cores. The model was at first run for 700 model-years to allow the

atmospheric and oceanic masses to attain a steady state (model spin-up), and then run for further 500 model-years (actual run20

length) (see Menary et al. (2018) for details). A copy of the PI control simulation was ported to the ARCHER HPC platform

(hereinafter referred to as PIAR), initialized using the atmospheric and oceanic fields from the end of the spin-up and run

for 200 model-years using 1500 cores. The source codes of the atmosphere and ocean models were compiled on the two

platforms using the same levels of code optimization (-O option), vectorization (-Ovector option), floating-point precision

(-hfp option) and, for numerical reproducibility purposes, selecting the least tolerant behaviour in terms of code optimization25

when the number of ranks or threads varies (-hflex_mp option). For the atmosphere component the following options

were used: -O2 -Ovector1 -hfp0 -hflex_mp=strict. For the ocean component the following options were used:

-O3 -Ovector1 -hfp0 -hflex_mp=strict .

Table 1 provides an overview of the hardware and software specifications of the two HPC platforms where the model was

run.30

Of the possible mechanisms discussed in section 2, the ARCHER and MO simulations were likely affected by differences

in compiler, processor type, number of processors and processor decomposition (alongside the different machine).
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Table 1. Hardware and software specifications of the ARCHER and MO HPC platforms as used to run the HadGEM3-GC3.1 model.

HPC Platform Machine Compiler Processor

MO Cray XC40 cce 8.3.4 Broadwell

ARCHER Cray XC30 cce 8.5.5 Ivy Bridge

3.2 Data post-processing and analysis

During the analysis of the results, the following climate variables were considered: sea surface temperature (SST), sea ice

area/concentration (SIA/SIC), 1.5m air temperature (SAT), the outgoing long-wave and short-wave radiation fluxes at top of

the atmosphere (LW TOA and SW TOA), and the precipitation flux (P). These variables were selected as representative of the

ocean and atmosphere domains and because they are commonly used to evaluate the status of the climate system.5

Discrepancies between the means of the selected variables were analysed at different timescales, from decadal to centennial.

To compute 10-, 30-, 50- and 100-year means, (PIMO - PIAR) 200-year time-series were divided into 20, 6, 4 and 2 seg-

ments respectively. Spatial maps were simply created by averaging each segment over time. Additionally, to create the scatter

plots presented in section 4.1, the time average was combined with an area-weighted spatial average. Except for SIC, all the

variables were averaged globally. Additionally, SIC, SST and SAT were regionally-averaged over the Northern and Southern10

Hemisphere, while SW TOA, LW TOA and P were regionally-averaged over the tropics, Northern extra-tropics and Southern

extra-tropics according to the underlying physical processes.

Note that, when calculating (PIMO - PIAR) differences, PIMO and PIAR segments are subtracted in chronological order.

Thus, for example, the first 10 years of PIAR are subtracted from the first 10 years of PIMO and so on. In fact, because the PI

control simulation is run with a constant climate forcing, using a ’chronological order’ in the strictest sense is meaningless, as15

every 10 years segment is equally representative of the pre-industrial decadal variability. We acknowledge that an alternative

approach, equally valid, would be to subtract PIAR and PIMO segments without a prescribed order. This approach would

probably lead to a spread between the simulations not identical to the one presented in section 4.1, but not more (or less)

meaningful. More importantly, by following a chronological order, we compare same time-steps. This is helpful in investigating

the impact of machine dependence on model results.20

The divergence of the results between the two runs was quantified by computing the Signal-to-Noise Ratio (SNR) for each

considered variable at each timescale. The signal is represented by the mean of the differences between PIMO and PIAR (

µMO−AR ) and the noise is represented by the standard deviation of (PIMO - PIAR) ( σMO−AR ) divided by
√

2 (see below

for details). Thus, SNR is defined as:

SNR=
|µMO−AR|
|σMO−AR|√

2

(2)25
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when SNR < 1, (PIMO - PIAR) differences can be interpreted as fluctuations of the system not necessarily linked to machine

dependence (i.e. PIMO and PIAR do not differ more than PIMO (or PIAR) evaluated at two different points in time). When

SNR > 1, the observed differences are outside of the expected range of variability and PIMO and PIAR are considered to be

different.

Note that (2) makes use of two mathematical assumptions: PIMO and PIAR are uncorrelated (i.e. their covariance is zero),5

and have the same variance. Under these assumptions, the noise can be represented as the standard deviation of the differences

between PIMO and PIAR divided by
√

2.

While the first assumption is justified by the chaotic nature of the system, which causes the two simulations to start diverging

after the first few time-steps, the equal variances assumption only holds when variables are analysed on a 200-year timescale.

This assumption weakens and breaks down at smaller timescales, where (PIMO - PIAR) differences are the largest. While one10

could think to use σAR and/or σMO in (2) to evaluate SNR on shorter timescales, we point out that a change of methodology is

not necessary. In fact, by dividing (µMO−AR) by (σMO−AR/
√

2) in (2) we decrease the signal-to-noise ratio, as the standard

deviation of (PIMO - PIAR) differences is higher than the standard deviation of the single PIMO and PIAR time-series. Thus,

on short timescales, a SNR > 1 computed using (2) would only be larger if the above alternative method were to be used.

For the final step of the analysis, the El Niño Southern Hemisphere Oscillation (ENSO), the Southern Annular Mode (SAM)15

and the North Atlantic Oscillation (NAO) indexes were computed for the ARCHER and MO simulations. These three climate

oscillations help us investigate the behaviour of the climate system across the simulations. We chose the NINO3.4 index with

a 3-month running mean to represent the ENSO signal (Trenberth, 1997), the Gong and Wang index (Gong and Wang, 1999)

based on annual data to represent the SAM signal, and the winter Hurrell index (Hurrell, 1995) to represent the NAO signal.

The indexes are defined as follows:20

NINO3.4 = SSTmnth−SST30yr if 5◦ N ≤ latitude≤ 5◦ S and 120◦ W ≤ longitude≤ 170◦ W (3)

SAM index= SLP ∗40◦S −SLP ∗65◦S where SLP ∗ =
SLPmnth−SLP30yr

STDEV (SLP30yr)
(4)

NAO index= SLP ∗Lisbon−SLP ∗Reykjavik where SLP ∗ =
SLPDJFM −SLPlongterm

STDEV (SLPlongterm)
(5)

where SSTmnth and SLPmnth are monthly sea surface temperature and sea level pressure (SLP) values and SLPDJFM are

SLP December-January-February-March seasonal means. For the ENSO and SAM indexes, the climatological means of the25

first 30 years of simulation (SST30yr and SLP30yr) were used to compute the anomalies. For the NAO index, SLP anomalies

were computed using the long-term mean (SLPlongterm). Finally, note that SLP ∗40◦S and SLP ∗65◦S are zonal means, while

SLP ∗Lisbon and SLP ∗Reykjavik correspond to single-point SLP values over Lisbon (PT) and Reykjavik (IS) obtained through

interpolation on the model grid.
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4 Results and discussion

4.1 Timescales of divergence

The long-term means of the selected variables, and the associated SNR, are shown in Figures 2 and 3. All the variables exhibit

a SNR < 1, indicating that on multi-centennial timescales the differences observed between the two simulations fall into the

expected range of variability of the PI control run. However, it is worth noting that some variables have a SNR close to 1 in5

both the Southern and Northern Hemisphere; see for example SST in Figure 2b, where SNR≈ 0.9, or SIC in Figure 2d and 2h,

where SNR ≈ 0.7. The strengthening of the anomalies is geographically confined to areas where the ENSO and NAO climate

modes primarily manifest, a physical interpretation of the enhancement of SNR in these areas will be provided in section 4.2.

When maps like the ones in Figure 2 and 3 are computed using 10-, 30-, 50- and 100-year averaging periods (not shown), the

magnitude of the anomalies increase and (PIMO - PIAR) differences become significant (SNR » 1). This behaviour is discussed10

below.

Figures 4 to 9 show annual-mean time-series of spatially averaged SST, SIA, SAT, SW TOA, LW TOA and P, respectively.

Figures 4d to 9d show (PIMO - PIAR) differences as a function of the averaging timescale for each variable (see section 3.2

for details on the computation of the means). The 200-year global-mean and standard deviation of each variable are shown in

Table 2.15

For all the considered variables, PIMO and PIAR start diverging quickly after the first 1 − 2 years of simulation, once the

system has lost memory of the initial conditions. See section 2 (Figure 1) for further discussion on how machine-dependent

processes can influence the temporal evolution of the system.

SST, SAT, SW TOA and LW TOA differ the most in the Northern Hemisphere (and particularly on decadal timescales)

(yellow diamonds in Figures 4d,6d,7d,8d), while SIA anomalies are particularly high in the Southern Hemisphere (red crosses20

in Figure 5d) and P anomalies in the tropics (green circles in Figure 9d). Overall, discrepancies are the largest at decadal

timescales where the spread between the two simulations can reach |0.2| °C in global mean air temperature (Figure 6d), |1.2|
million km2 in Southern Hemisphere sea ice area (Figure 5d), or |1|W /m2 in global TOA outgoing LW flux (Figure 8d).

As the timescale increases, (PIMO - PIAR) differences get smaller and approach zero when a 200-year timescale is con-

sidered. This happens because 200 years is a long enough averaging-period for the positive and negative extremes in the25

time-series of Figure 4 - 9 to average out. On shorter time-intervals, strong increasing/decreasing trends in one simulation may

not be compensated by trends of opposite sign in the the other simulation and may result in SNR » 1. See for example the first

10 years of the NH SIA time-series in Figure 5a. Additionally, the 200-year mean of the SIA seasonal cycle shown in Figure 5c

is almost identical for ARCHER and MO, confirming that on a 200-year timescale the two runs are comparable. This suggests

that the overall physical behaviour of the model has not been affected by the porting.30

It is worth noting that 200 years is a considerable length for a fully coupled (Atmosphere–Ocean–Sea Ice–Land Surface)

climate model simulation. A 200-year run is not always possible because of the significant computational resources required. As

an example, the CMIP6 minimum run length requirement for most of the Model Intercomparison Projects (MIP) is 100 years.

Our results suggest that 100 years may not be enough to make machine dependence influences negligible. This is particularly
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Table 2. 200-year global mean and standard deviation for SST, SIA, SAT, SW TOA, LW TOA and P.

MO ARCHER

Mean , StDev Mean , StDev

SST (°C) 17.93 , 0.07 17.95 , 0.08

SIA (106 km2) 21.44 , 0.65 21.30 , 0.68

SAT (°C) 13.71 , 0.10 13.75 , 0.12

SW TOA (W /m2) 98.83 , 0.24 98.76 , 0.27

LW TOA (W /m2) 241.29 , 0.27 241.36 , 0.33

P (10−6 kg /m2 /s) 36.22 , 0.12 36.25 , 0.14

true when we look at the spatial patterns of (PIMO - PIAR) differences (see section 4.2 for further discussion). Additionally,

when model intercomparison analyses are conducted on climatological (30 years) or decadal (10 years) timescales, results in

Figures 4-9 indicate that the multiplicity of HPC platforms used to perform the simulations may substantially contribute to the

spread among models.

In Figures 4d to 9d, the variation of (PIMO - PIAR) with the timescale suggests the existence of power law relationship1. To5

investigate this behaviour, a base-10 logarithmic transformation was applied to the x- and y-axes of Figure 4d to 9d and linear

regression was used to find the straight-lines that best fit the data.

Figure 10 shows log-log plots for SST, SAT, SW TOA, LW TOA and P for the maximum (PIMO - PIAR) values at each

timescale. To ease the comparison, all the variables were averaged globally and over the SH and NH Hemispheres. Global,

NH and SH mean data all align along a straight line, confirming the existence of a power law. However, the most interesting10

result emerges at the global scale where (PIMO - PIAR) differences vary following a same power law relationship, regardless

the physical quantity considered. More precisely, the actual slope values for SST, SAT, SW TOA, LW TOA and P are: -0.65,

-0.65, -0.64, -0.66, -0.67 respectively. Thus, all the straight-lines that best fit the global mean data in Figure 10 have a slope of

≈ 2/3. The existence of a ≈ 2/3 power law, which does not depend on the single quantity, suggests that the machine-induced

uncertainty scales consistently with the timescale across the whole climate simulation.15

SIA (not shown) was the only variables that did not show a≈ 2/3 power law relationship. This however should not invalidate

the analysis presented above. The sea ice area is an integral computed on a limited area, and not a mean computed on a globally

uniform surface (like all the other variables considered here), and thus represents a signal of a different nature.

1Note that, for readability, the ticks of the x-axes of Figures 4d to 9d were equally spaced. This partially masks the power law behaviour discussed in the

paper, which can be better detected when the natural x-axes are used.
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4.2 The physical implications

In this section, the impact of machine dependence on model results is analysed from a physical point of view. As mentioned in

section 4.1, (PIMO - PIAR) differences materialize into spatial patterns that are signatures of physical processes (Figure 2 and

3). The interpretation of such patterns can sometimes be misleading. For example, while Figure 3g may suggest a westward

shift of the Intratropical Convergence Zone (ITCZ) between PIMO and PIAR, the associated SNR in Figure 3h is small (6 0.4)5

and indicates that the two simulations cannot be considered significantly different on a 200-year timescale.

However, unlike P, other variables like SST and SIC have a high SNR despite the use of a 200-year averaging period.

Interestingly, for these variables, SNR is maximum where the ENSO and NAO climate modes subsist and it becomes larger

than one on centennial scales (Figure 11).

To assess whether the climate system of the ARCHER and MO simulations behaves differently, the ENSO (Figure 12a),10

NAO (Figure 12b) and SAM (Figure 12c) indexes were computed for PIMO and PIAR as described in section 3.2. These three

climate oscillations were selected because they interact with most of the physical processes governing the climate system.

While the NAO and SAM signals are presented in Figure 12 for completeness, the following analysis will mainly focus on the

ENSO signal, as an example of the impact of machine dependence on model results.

The connection between SIC (and SST) anomalies in the Southern Hemisphere and ENSO has been widely documented in15

literature, e.g. Kwok and Comiso (2002), Liu et al. (2002), Turner (2004), Welhouse et al. (2016), Pope et al. (2017).

The warm (El Niño) and cold (La Niña) phases of ENSO manifest in the Amundsen–Bellingshausen Sea (ABS) and Ross

Sea sectors in a diametrically opposite way. While El Niño events favour an increase of winter sea ice concentration in the ABS

sector and a decrease of winter sea ice concentration in the Ross Sea sector, La Niña events are associated with negative SIC

anomalies in the ABS sector and positive SIC anomalies in the Ross Sea sector (Kwok and Comiso (2002), Pope et al. (2017)).20

In Figure 2g and 2h, SIC anomalies and the associated SNR are the largest in West Antarctica where ENSO teleconnection

patterns are expected. This suggests that (PIMO - PIAR) differences are driven by two different ENSO regimes.

This hypothesis is confirmed by the ENSO signal in Figure 12a. A few times, to a strong El Niño (/La Niña) event in PIMO

corresponds a strong La Niña (/El Niño) event in PIAR. This opposite behaviour enlarges SIC (and SST) differences between

the two runs and strengthens the µMO−AR signal, resulting in a strong SNR. Additionally, PIMO have a few more EL Niño25

events (orange shaded areas in Figure 12a) than PIAR. While in Figure 12a the ENSO index of PIMO is greater than/or equal

to 0.5 (threshold value for the ENSO onset) 894 times, the ENSO index of PIAR is greater than/or equal to 0.5 768 times. At

the same time, PIAR seems to simulate overall more intense La Niña events (green shaded areas in Figure 12a), as its ENSO

index takes values in the interval [-2 , -3] more often than PIMO. This analysis is supported by the positive 200-year mean

SIC anomalies in the ABS sector in Figure 2g (i.e. more El Niño events result in larger PIMO sea ice concentration) and the30

corresponding negative SST anomalies in Figure 2c.

Finally, because of the same mechanism described above, SST and SIC exhibit a SNR larger than one when a 100-year

timescale is used (Figure 11). This result highlights that, even on a climate (/long) timescale, the uncertainty introduced by

machine dependence may be not negligible.
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5 Conclusions

In this paper, machine dependence is discussed. Two versions of the UK CMIP6 PI control simulation run on the UK Met Office

supercomputer (MO) (PIMO) and ARCHER (PIAR) HPC platforms were used to illustrate the impact of machine dependence

of coupled climate model simulations. Simulations used the N96ORCA1 HadGEM3-GC3.1 model. Discrepancies between the

means of key climate variables (SST, SIA/SIC, SAT, SW TOA, LW TOA and P) were analysed at different timescales, from5

decadal to centennial.

Although the two versions of the same PI control simulation do not bit-compare, we found that the long-term statistics of the

two runs are similar and that, on multi-centennial timescales, the considered variables show a signal-to-noise ratio (SNR) less

than one. However, inconsistencies between the two runs increase and become significant (SNR ≥ 1) for shorter timescales,

being the largest at decadal timescales. For example, when a 10-year averaging period is used, machine dependence can account10

for up to |0.2| °C global mean air temperature anomalies, or |1.2| million km2 Southern Hemisphere sea ice area anomalies.

Differences between the two simulations can be linked to variations in the strongest modes of climate variability. In the

Southern Hemisphere, this results in large SST anomalies where ENSO teleconnection patterns are expected that can reach 0.6

°C (and SNR 1) even on centennial timescales.

The relationship between global mean differences and timescale exhibits a 2/3 power law behaviour, regardless the physical15

quantity considered. This suggests a consistent time-dependent scaling of the machine-induced bias across the whole climate

simulation.

CMIP6 guidelines recommend a minimum simulation length of 100 years for most of the MIP experiments. Our results

suggest that 100 years may not be enough to make machine dependence influences negligible. Additionally, Figure 4d-9d

indicate that model intercomparison analyses conducted on climatological (30 years) or decadal (10 years) timescales may be20

substantially influenced by the diversity of HPC platforms used to perform the simulations. This result is in contrast with what

previously found by Song et al. (2012), who stated that for (30-year) climatological means machine dependence uncertainty is

negligible.

Because machine dependence uncertainty is essentially a consequence of the sensitivity of the climate system to the ini-

tial conditions (see section 2 for a more detailed discussion), repeating a similar analysis but using varying-forcing climate25

simulations and ensemble means would be a straightforward extension of this work. The question to answer is whether the

spread between the same set of ensemble members run on the ARCHER and MO platforms is any different. Song et al. (2012)

addressed the same question (using the Community Climate System Model Version 3) showing that a minimum of 15 ensemble

members are needed to make machine dependence uncertainty negligible.

CMIP6 guidelines advise modelling groups to create ensembles for the so-called ‘historical simulations’ with a minimum of30

3 members. The small number of ensemble members required, unlikely to be exceeded by much by modelling groups because

of computational resources availability reasons, is a further indication that machine dependence may contribute to the spread

among CMIP models even when ensemble means for each model are considered.
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While the quantitative analysis presented in this paper applies strictly to HadGEM3-GC3.1 constant-forcing climate simula-

tions only, this study has the broader purpose of increasing the awareness of the climate modelling community on the subject

of machine dependence of climate simulations.

The results presented here have immediate applications for those members of the the UK CMIP6 community who will run

individual MIP experiments on the ARCHER HPC platform, and will compare their results against the reference PI simulation5

run on the MO platform by the UK Met Office. In particular, the magnitude of (PIMO - PIAR) differences presented in this

paper should be regarded as a threshold value below which differences between ARCHER and MO simulations must be treated

as suspicious. Although our results are based on a single case study, they suggest that machine dependence can contribute to the

total uncertainty that accompanies model intercomparison analyses by an amount that can be at least equal to the one presented

in this study.10
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Figure 1. Attractor (left-hand side) and time-series of the x-component (right-hand side) of the 3D Lorenz model for simulations run on

ARCHER using: the cce8.3.4 and intel17.0 compilers (a, b), same compiler but different level of floating-point optimization (c, d), same

compiler and compiling options but different seed for random number generator (e, f). g and h are the Lorenz attractor and the x-component

time-series for the Lorenz model run on MO and ARCHER using same compiler and compiling options.
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Figure 2. 200-year means and corresponding SNR of (PIMO - PIAR) differences for NH SST (a, b), SH SST (c, d), NH SIC (e, f) and SH

SIC (g, h). 16
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Figure 3. 200-year means and corresponding SNR of (PIMO - PIAR) differences for SAT (a, b), SW TOA (c, d), LW TOA (e, f) and P (g, h).
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Figure 4. Annual-mean time-series of Global SST (a), Northern Hemisphere SST (b) and Southern Hemisphere SST (c) for PIMO (grey

line) and PIAR (dashed line). d shows how SST differences vary as a function of the timescale.
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Figure 5. Annual-mean time-series of Northern Hemisphere SIA (a) and Southern Hemisphere SIA (b) for PIMO (grey line) and PIAR

(dashed line). The 200-year mean of the NH and SH SIA seasonal cycle is shown in c. d shows how SIA differences vary as a function of the

timescale.
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Figure 6. As in 4 but for SAT.
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Figure 7. Annual-mean time-series of SW TOA in the tropics (a), SW TOA in the Northern Extratropics (b) and SW TOA in the Southern

Extratropics (c) for PIMO (grey line) and PIAR (dashed line). d shows how SW TOA differences vary as a function of the timescale.
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Figure 8. As in 4 but for LW TOA.

Figure 9. As in 4 but for P.
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Figure 10. Log-log plots of SST (a), SAT (b), SW TOA (c), LW TOA (d) and P (e) representing maximum (PIMO - PIAR) differences as a

function of the timescale. All the variables were averaged globally (green circles) and over the SH (red crosses) and NH (yellow diamonds)

Hemispheres. The straight-lines represent the best fit lines for the data obtained by linear regression.
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Figure 11. 100-year means and corresponding SNR of (PIMO - PIAR) differences for SH SST (a, b) and SH SIC (c, d).
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Figure 12. The ENSO (a), winter NAO (b) and annual SAM (c) indexes for PIMO and PIAR. In a, a 3-month running mean was applied to

the ENSO signal and values greater/smaller than or equal to ± 0.5 are shaded in orange/green.
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