
Dear Editor,

Please find attached our revised version of the manuscript gmd-2019-82 en-
titled ”pygeodyn 1.1.0: a Python package for geomagnetic data assimilation”,
by Huder, Gillet & Thollard, together with our response (in bold) to the points
made by the referees (recalled in normal font).

The main modification in comparison with the manuscript initially submit-
ted concerns the documentation of the package. Following referee 2’s major
comment, we indeed have collected and extended the documentation and up-
loaded a navigable version on the web. The version of pygeodyn was then
upgraded to 1.1.0 that is the version described in the paper. The title of the
article and Zenodo references have therefore been updated.

Do not hesitate to contact us if you need further information,

On behalf of the authors,
Löıc Huder

Response to Referee 1

This manuscript by Huder, Gillet and Tholland explains the Python code for
accessing and executing the code for their geodynamo data assimilation code.
The scientific work based on this code has been published in previous papers
(Barrois et al, 2017/2018, for example) and so it is to be applauded that they
have made the great effort to allow others to reproduce their scientific research
in an open manner.

The visualisation tools on the webgeodyn site are also very impressive, easy
to use and simple to understand and almost deserve a paper on their own merit.
I spent a long time examining the different plots and combinations of data that
can be placed together. Figure 2 is particularly stunning (on the website, it can
be rotated and animated).

The manuscipt is probably of most use to researchers interested in the de-
tails of how to recreate data assimilation within the scope of the geodynamo
snapshots though the authors have made it clear that a user can access the code
at the different levels of expertise required. In reality, it is a companion paper
to the Barrois et al and Aubert papers of the past five years. The parameters
and assumptions are well explained and the flow of the work load is clear.

⇒ We thank the referee for his positive remarks.

I have no major comments or suggestions to make. I would however, suggest
that the authors revise their frequent use of the phrase allows to which appears
several times. For example on page 7, line 15, they could write: The fifth group
allows the user to ...or on page 8, line 1: ... states that allow an estimate of the
background states ....
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⇒ Following the referee’s suggestion, the wording was changed in
the mentioned sentences and in a few others.

Minor corrections:

• Page 1, line 9: generated by motion of the liquid

⇒ Corrected.

• Page 1, line 14: that DNS are not capable of reproducing changes

⇒ Corrected.

• Page 3, line 24: but wants to run their own data. (and again on Line 27)

⇒ Corrected.

• Page 4, line 11: takes as input? (rather than basis)

⇒ Reworded as ’The algorithm is based on the radial induction
equation...’

• Page 5, line 8: consists of time-stepping

⇒ Corrected.

• Table 1: why is the default -m parameter equal to 10 in the Table but in
the text you recommend 20?

⇒ This is an outdated value that was used for tests. We thank
the referee for pointing that out. The default parameter is
set to 20 in the new version (1.1.0).

• Page 7, line 4: Im slightly confused about the decimal representation
explanation -surely the input magnetic or SV data are monthly means (or
4 monthly VO) so it hardlymatters how the date is represented at 64-bit
precision - were not at the microsecondlevel of precision. Its OK if that is
the default Python class to use.

⇒ The 64-bit precision is indeed the default NumPy way to
store dates. The point of using this class was not firstly to
enhance precision but rather to use a dedicated tool to store
dates that leaves no ambiguity. Our previous decimal rep-
resentation could lead to questionning on days and month
shifts (e.g.: is 1980.16667, the 1st, the 31st of January 1980,
or the 1st of Feburary 1980?)

• Figure 1: Is it better to have runtime on a log scale to emphasis the point?
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⇒ Unfortunately, as there is a part of the runtime that does
not depend on the number of cores, a log plot does not lead
to a straight line and is not clearer in our opinion. Still,
the units of the runtime (and of the fit) were changed from
seconds to hours for readability. The text describing the
graph was changed accordingly.

• Page 10, line 5: output files are directly

⇒ Corrected.

• Acknowledgement: Perhaps add a note about the use of INTERMAGNET
data (which I assume are used for the plots?)

⇒ That is indeed the case. The acknowledgement was added.

Response to Referee 2

The manuscript presents a python software package/library for the simulation
and data assimilation of geomagnetic models. The packages provides a sur-
face dynamic model, a reduced order model based on autoregressive processes,
geomagnetic observations, and an data assimilation method (the augmented
Kalman filter) in a single package. All of the results in the paper are easily
reproduced by downloading pygeodyn and the plotting package webgeodyn also
developed by the same group. Although there are some significant deficiencies in
the software package itself, as well as a lack of accessible user manual, the paper
present a comprehensive description of the default features and data. I recom-
mend accepting the paper after some minor revisions are done. The software
on the other hand, is far from ready for widespread user adoption. If the main
purpose is to make this package accessible, I strongly urge the developers to
provide a human-readable user manual, tutorial, and customization examples.

Major Comments:

1. My major concern is that the software is far from ready for use by non-
advanced python expert. The code is written is such a way that its all
but impossible to read and understand, much less modify to include new
data, models, assimilation techniques. Worst of all, there is no proper
documentation detailing the structure of the package, objects being used,
and organization of the assimilation system. These are indispensable el-
ements for customization and none are present. If the developers really
want a widespread adoption of pygeodyn, then they need to work hard on
making the software accessible and well documented. To be completely
sincere, I wouldnt recommend this package to anyone in the geosciences
community.
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⇒ In fact, such information existed under the form of a README
in the root folder, an advanced guide in the doc folder and
the online developer documentation. Still, we agree that
is was not easy enough to find nor organised enough. Fol-
lowing the referee’s comments, we have totally reworked
our documentation in the new version (1.1.0) in order to
present more clearly all the needed information (Now online
at https://geodynamo.gricad-pages.univ-grenoble-alpes.fr/
pygeodyn/ and offline in the docs folder after HTML gener-
ation). Namely:

– The package READMEs were broken down in several
sections that were also expanded.

– These sections are now navigable online and comprise:

∗ Installation instructions

∗ A brief scientific overview of the algorithm

∗ An expanded description of the run algo script (in-
cluding structure)

∗ Tutorials on the definition of new types and on the
reuse of forecast/analysis steps

∗ The developer API that was originally online

We are grateful to the referee for triggering this documenta-
tion rework that should be a big step towards the accessibity
of pygeodyn.

2. The git repository should only be used for the python software and not
for the data. I strongly suggest that the data be stored on a separate
repository or server since it is over one gigabyte of data. It makes no
sense to store the data together with the python scripts.

⇒ We followed the referee’s suggestion by separating the pack-
age sources from the data, each having now their own repos-
itory. We provide the user the commands to either fetch
only the sources or the complete package.

Minor Comments:

1. On the Introduction (page 2, lines 36) the authors mention that there are
two main families: sequential and variational. This might be an over-
simplification since the 3D-Var is a variational method that is sequential,
and ensemble Kalman smoother is not a variational that is a smoother. I
suggest the authors rework this sentence since its misleading.

⇒ We agree with the referee, and now present the two main
families of DA tools as being the variational (minimizing a
cost function) and statistical (based on Bayes rule) avenues,
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with references to the books by Kalnay (2003) and Evensen
(2009).

2. In section 2.2, the authors further classify the type of users for pygeodyn.
As stated above, the software is far from ready for customization so I
would suggest the authors rework or remove this section since it would be
misleading to claim that the python package is accessible, it is not.

⇒ The end of the section was rewritten to integrate the rework
of the documentation. We hope that this will improve the
accessibility of the package.

3. The proper websites of where to download pygeodyn is buried at the very
end of the paper. I strongly suggest this be moved in the forefront, maybe
at the end of the introduction.

⇒ Actually the recommendation of the referee goes against
the journal guidelines asking to put the links for download
in the Code and data availability section.

4. increase the font size on the axis and labels for Figure 4

⇒ This figure was generated directly from the webtool as a
demonstration and is therefore not easily manipulated. We
increased the size of the figure to accommodate this but the
customization of these plots is part of future development
of the webtool. Note however that the raw data can be
exported to do a plot with other plotting softwares.
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pygeodyn 1.0
✿✿✿✿✿

1.1.0: a Python package for geomagnetic data

assimilation

Loïc Huder1, Nicolas Gillet1, and Franck Thollard1

1Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, 38000 Grenoble, France

Correspondence: Nicolas Gillet (nicolas.gillet@univ-grenoble-alpes.fr)

Abstract. pygeodyn is a sequential geomagnetic data assimilation package written in Python. It gives access to the core

surface dynamics, controlled by geomagnetic observations, by means of a stochastic model anchored to geodynamo simulation

statistics. pygeodyn aims at giving access to a user-friendly and flexible data assimilation algorithm. It is designed to be tunable

by the community by different means: possibility to use embedded data and priors, or to supply custom ones; tunable parameters

through configuration files; adapted documentation for several user profiles. In addition, output files are directly supported by5

the package webgeodyn
✿✿✿✿✿✿✿✿✿✿

webgeodyn that provides a set of visualisation tools to explore the results of computations.

Copyright statement. TEXT

1 Introduction

The magnetic field of the Earth is generated by motions
✿✿✿✿✿✿

motion
✿

of liquid metal in the outer core, a process called the "geo-

dynamo". To tackle this complex problem, direct numerical simulations (DNS) have been developed to model the coupling10

between the primitive equations for heat, momentum and induction in a rotating spherical shell. With the development of com-

puting power, DNS capture more and more of the physics thought to be at work in the Earth core (degree of dipolarity, ratio of

magnetic to kinetic energy, occurrence of torsional Alfvén waves, etc. see for instance Schaeffer et al., 2017). However, despite

such advances, the geodynamo problem is so challenging that DNS are not suited yet to reproduce
✿✿✿✿✿✿

capable
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿

reproducing

changes observed at interannual periods with modern data (e.g. ?)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(e.g. Finlay et al., 2016). Simulating numerically dynamo15

action at Earth-like rotation rates indeed requires resolving time-scales 108 orders of magnitude apart (from a fraction of day

to 10 kyrs) for N ≈ (106)3 degrees of freedom. This requirement is unlikely to be satisfied in a nearby future with DNS, mak-

ing the prediction of the geomagnetic field evolution an extremely challenging task. For these reasons, promising strategies

involving large-eddy simulations (LES, see Aubert et al., 2017) are emerging, but these are currently unable to ingest recent

geophysical records.20

Many efforts were devoted to the improvement of observable geodynamo quantities: the magnetic field above the surface of

the Earth and its rate of change with respect to time, the so-called secular variation (SV). The launch of low orbiting satellite
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missions (Ørsted, CHAMP, SWARM
✿✿✿✿✿✿

Swarm) dedicated to magnetic field measurements indeed presented a huge leap on the

quality and coverage of measured data (see for instance Finlay et al., 2017).

In this context, the development of geomagnetic data assimilation (DA) algorithms is timely. DA consists in the estimation

of a model state trajectory using (i) a numerical model that advects the state in time and (ii) measurements used to correct its

trajectory. DA algorithms can be split in two main families: sequential methods that alternate between forecast (integration of5

the forward model) and analysis (statistical state inference from observations)steps, and variational methods that minimise the

misfit between the observations and model state predictions over the whole considered time-span by

–
✿✿✿✿✿✿✿✿✿

variational
✿✿✿✿✿✿✿

methods
✿✿✿✿

that
✿✿✿✿✿

imply
✿✿

to
✿✿✿✿✿✿✿✿✿

minimize
✿

a
✿✿✿✿

cost
✿✿✿✿✿✿✿

function
✿✿✿✿✿✿

(based
✿✿✿

on
✿✿

a
✿✿✿✿✿✿✿✿✿✿✿

least-squares
✿✿✿✿✿✿✿✿✿

approach);
✿✿

in
✿✿

a
✿✿✿✿✿✿✿✿✿✿✿✿✿

time-dependent

✿✿✿✿✿✿✿

problem,
✿✿✿✿

one
✿✿✿✿

ends
✿✿

up
✿

tuning the initial state conditions and model parameters
✿✿✿✿✿✿✿

condition
✿

by means of adjoint equations.

–
✿✿✿✿✿✿✿✿

statistical
✿✿✿✿✿✿✿

methods,
✿✿✿✿✿✿

which
✿✿✿

are
✿✿✿✿✿✿✿✿✿✿

applications
✿✿

of
✿✿✿✿✿

Bayes
✿✿✿✿

rule
✿✿

to
✿✿✿✿✿

obtain
✿✿✿

the
✿✿✿✿✿

most
✿✿✿✿✿✿✿

probable
✿✿✿✿

state
✿✿✿✿✿✿

model
✿✿✿✿✿

given
✿✿✿✿✿✿✿✿✿✿

observations
✿✿✿✿

and10

✿✿✿✿

their
✿✿✿✿✿✿✿✿✿✿✿

uncertainties;
✿

it
✿✿✿✿✿✿

comes
✿✿✿✿✿

down
✿✿

to
✿✿✿✿✿✿✿✿✿

estimating
✿

a
✿✿✿✿✿

"Best
✿✿✿✿✿

Linear
✿✿✿✿✿✿✿✿

Unbiased
✿✿✿✿✿✿✿✿✿

Estimate"
✿✿✿✿✿✿✿

(BLUE)
✿✿✿✿✿

under
✿✿✿✿✿✿✿

Gaussian
✿✿✿✿✿✿✿✿✿✿✿

assumptions

✿✿

for
✿✿✿

the
✿✿✿✿✿

prior
✿✿✿✿✿✿✿✿✿✿

uncertainties
✿✿✿✿

and
✿✿✿✿✿

model
✿✿✿✿✿✿✿✿✿✿✿

distributions.
✿

✿✿✿✿✿

There
✿✿✿

are
✿✿✿✿✿✿✿✿✿

numerous
✿✿✿✿✿✿✿✿

variations
✿✿✿✿✿✿✿

around
✿✿✿✿✿

those
✿✿✿✿✿✿✿

methods
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(for reviews, see Kalnay, 2003; Evensen, 2009)
✿

. Both types of algo-

rithms are already commonplace in meteorology and oceanography, but have only been recently introduced in geomagnetism

(for details, see Fournier et al., 2010; ?)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(for details, see Fournier et al., 2010; Gillet, 2019).15

In this article, we present a Python package called pygeodyn devoted to geomagnetic DA based on a sequential
✿✿✿✿✿✿✿✿

statistical

method, namely an augmented state Kalman Filter (see ?)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(see Evensen, 2003). It uses a reduced numerical model of the core

surface dynamics that allows to alleviate the computation time inherent to DA algorithms. The reduced model is based on

stochastic Auto-Regressive processes of order 1 (AR-1 processes). These are anchored to cross-covariances derived from three-

dimensional numerical geodynamo simulations. We provide examples involving the ‘coupled-earth’ (Aubert et al., 2013) and20

‘mid-path’
✿✿✿✿✿✿✿✿✿✿✿

coupled-earth
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Aubert et al., 2013)
✿✿

and
✿✿✿✿✿✿✿

midpath (Aubert et al., 2017) dynamos.

The aim of pygeodyn is to provide the community with a tool that can easily be used or built upon. It is made to ease the

updating of data and the integration of new numerical models, for instance to test them against geophysical data. This way, it can

be compared with other existing DA algorithms (e.g. Bärenzung et al., 2018)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(e.g. Bärenzung et al., 2018; Sanchez et al., 2019)

.25

The manuscript is organised
✿✿✿✿✿✿✿✿

organized as follows: Section §2 presents the principles under which the pygeodyn package was

developed. Section §3 is a technical description of the version 1.0
✿✿

1.1.0 of the package (Huder et al., 2019a) that also gives the

basic necessary scientific background (for details, see Barrois et al., 2017, 2018; Gillet et al., 2019). In §4 we give examples of

the visualization interface webgeodyn
✿✿✿✿✿✿✿✿✿✿

webgeodyn to which is coupled the core surface DA tool pygeodyn. We discuss in §5

possible future developments and applications of this tool.30
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2 pygeodyn outlook

2.1 Principles

In order to support the use of DA in geomagnetism, the package is designed with the following characteristics in mind:

Easy-to-use:

– It is written in Python3
✿✿✿✿✿✿

Python
✿

3, now a widespread language in the scientific community thanks to the NumPy/Scipy5

suites.

– It is based on few and classical dependencies.

– A README file documents the installation procedure ; it
✿✿✿

The
✿✿✿✿✿✿✿✿✿✿

installation
✿✿✿✿✿✿✿✿

procedure
✿

only requires Python with

NumPy and a Fortran compiler (other dependencies are installed during the setup).

–
✿✿

An
✿✿✿✿✿✿

online
✿✿✿✿✿✿✿✿✿✿✿✿

documentation
✿✿✿✿✿✿✿✿

describes
✿✿✿✿

how
✿✿

to
✿✿✿✿✿✿

install,
✿✿✿

use
✿✿✿✿

and
✿✿✿✿

build
✿✿✿✿✿

upon
✿✿✿

the
✿✿✿✿✿✿✿

package.
✿

10

Flexible:

– Algorithm parameters can be tuned through configuration files and command line arguments.

– Algorithms are designed to be modular, in order to allow the independent use of their composing steps.

– Extension of the features is eased by readable open-source code (following PEP8) that is documented inline and

online with Sphinx.15

Reproducible/stable:

– The source code is versioned on a Git repository, with tracking of bugs and development versions with clear release

notes.

– Unitary and functional tests are routinely launched by continuous integration pipelines. Most of the tests use the

Hypothesis library1 to cover a wide range of test cases.20

– Logging of algorithm operations is done by default with the logging library.

Efficient:

– Direct integration of parallelisation is possible using Message Passing Interface (MPI)

– Lengthy computations (such as Legendre polynomial evaluations) are performed by Fortran routines wrapped in

Python.25

Easy to post-process:

1https://hypothesis.works/
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– Output files are generated in HDF5 binary file format that is highly versatile (close to NumPy syntax) and more

time- and size-efficient.

– The output format is directly supported by the visualisation package webgeodyn
✿✿✿✿✿✿✿✿✿✿

visualization
✿✿✿✿✿✿✿

package
✿✿✿✿✿✿✿✿✿✿

webgeodyn

for efficient exploration of the computed data (see Section §4).

2.2 User profiles5

The package was designed for several user types:

Standard user: the user will use the supplied DA algorithms with the supplied data. The algorithms can be modified through

the configuration files so this requires almost no programming skill.

Advanced user: the user will use the supplied DA algorithms but wants to run it on its
✿✿✿✿

their
✿

own data. In this case, the

user needs to follow the documentation to implement the reading methods of the data2. This requires a few Python10

programming skills and a basic knowledge of object-type structures.

Developer user: the user wants to design its
✿✿✿✿

their own algorithm using the low-level functions implemented in the package.

The how-to is also documented but it requires some experience in Python programming and object-type structures.

The documentation

✿✿✿

The
✿✿✿✿✿✿✿✿✿✿✿✿✿

documentation
✿✿✿✿✿✿✿✿

(available
✿✿✿✿✿✿

online3
✿

)
✿

was written with these categories of users in mind. The README explains how to15

install and
✿✿✿✿

First,
✿✿✿✿✿✿✿✿✿✿

installation
✿✿✿✿✿✿✿✿✿✿

instructions
✿✿✿

and
✿✿

a
✿✿✿✿

brief
✿✿✿✿✿✿✿✿

scientific
✿✿✿✿✿✿✿✿

overview
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

algorithm
✿✿✿

are
✿✿✿✿✿✿✿✿✿

provided.
✿✿✿✿✿

Then,
✿

it
✿✿✿✿✿✿✿✿

explains
✿✿✿✿

how

launch computations with the facilities provided for all kinds of users
✿

a
✿✿✿✿✿✿✿

supplied
✿✿✿✿✿

script
✿✿✿✿

that
✿✿✿✿✿

takes
✿✿✿✿

care
✿✿

of
✿✿✿✿✿✿✿

looping
✿✿✿✿✿✿

through
✿✿✿✿

DA

✿✿✿✿

steps,
✿✿✿✿✿✿✿✿

logging,
✿✿✿✿✿✿✿✿✿✿✿

parallelisation
✿✿✿✿

and
✿✿✿✿✿✿

saving
✿✿✿

files. For more advanced uses, an in-depth guide was written composed of two parts:

the first one explains
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

documentation
✿✿✿✿✿✿✿

includes
✿✿✿✿✿✿✿

tutorials
✿✿✿

on how to set up new data types as input (advanced users) whereas

the second part is dedicated to developer users who want
✿✿✿

and
✿✿✿✿

how to use low-level features. This last part is also intended20

to be used with the developer documentationthat is generated with Sphinx and available online4
✿✿✿

DA
✿✿✿✿✿

steps
✿✿

on
✿✿✿✿✿✿✿✿✿✿✿✿

CoreState

✿✿✿✿✿✿

objects.
✿✿✿✿

The
✿✿✿✿✿✿✿✿

developer
✿✿✿✿✿✿✿✿✿✿✿✿✿

documentation,
✿✿✿✿✿✿✿✿

gathering
✿✿✿

all
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

documentation
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

functions/objects
✿✿✿✿✿✿✿✿✿✿✿

implemented
✿✿

in
✿✿✿✿✿✿✿✿✿

pygeodyn,
✿✿

is

✿✿✿

also
✿✿✿✿✿✿✿✿

available
✿✿✿✿✿

online.

3 pygeodyn 1.0
✿✿✿

1.1.0 content

3.1 Model state25

DA algorithms are to be supplied in the forms of subpackages for pygeodyn. The intention is to have interchangable
✿✿✿✿✿✿✿✿✿✿✿✿✿

interchangeable

algorithms and be able to easily expand the existing algorithms. In the version described in this article(0.8.0), we provide a

2https://geodynamo.gricad-pages.univ-grenoble-alpes.fr/pygeodyn/new_types.html
3
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

https://geodynamo.gricad-pages.univ-grenoble-alpes.fr/pygeodyn/index.html
4https://geodynamo.gricad-pages.univ-grenoble-alpes.fr/pygeodyn/index.html
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subpackage augkf that implements algorithms based on an augmented state Kalman filter (AugKF) initiated by Barrois et al.

(2017). The algorithm takes for basis the
✿✿

is
✿✿✿✿✿

based
✿✿✿

on
✿✿✿

the
✿✿✿✿✿

radial
✿

induction equation at the core surface that we write in the

spherical harmonic spectral domain as:

ḃ=A(b)u+ er . (1)

Vector b (resp. u and ḃ) stores the (Schmidt semi-normalized) spherical harmonic coefficients of the magnetic field (resp. the5

core flow and the SV) up to a truncation degree Lb (resp. Lu and Lsv). The number of stored coefficients in those vectors are

respectively Nb = Lb(Lb +2), Nu = 2Lu(Lu +2) and Nsv = Lsv(Lsv +2). A(b) is the matrix of Gaunt-Elsasser integrals

(Moon, 1979) of dimensions Nsv ×Nu, depending on b. The vector er stands for errors of representativeness (of dimen-

sion Nsv). This term accounts for both subgrid induction (arising due to the truncation of the fields) and magnetic diffusion.

Quantities b(t), u(t) and er(t) describe the model state X(t) at a given epoch t on which algorithm steps act.10

The model states are stored as a subclass of NumPy array called CoreState (implemented in corestate.py). The

subclass allows efficient storing and easy access to the
✿✿✿✿

This
✿✿✿✿✿✿✿

subclass
✿✿

is
✿✿✿✿✿✿✿✿

dedicated
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿

storage
✿✿

of
✿✿✿✿✿✿✿

spectral
✿✿✿✿✿

Gauss
✿

coefficients

for b, u, er
✿✿

er
✿

and ḃ but can also include additional quantities if needed.
✿✿✿✿✿

Details
✿✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿✿✿

CoreState
✿✿✿

are
✿✿✿✿✿

given
✿✿

in
✿

a
✿✿✿✿✿✿✿✿✿

dedicated

✿✿✿✿✿✿

section
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

documentation
✿

4
✿

.

3.2 Algorithm steps15

The sequential DA algorithm is composed of two kinds of operations:

Forecasts are performed every ∆tf . An ensemble of Ne core states is time stepped between t and t+∆tf .

Analyses are performed every ∆ta with ∆ta = n∆tf (analyses are performed every n forecasts). The ensemble of core states

at ta is adjusted by performing a Best Linear Unbiased Estimate (BLUE )
✿✿✿✿✿✿

BLUE using observations at t= ta.

These steps require spatial cross-covariances that are derived from geodynamo runs (referred to as priors, see §3.3.3). Real-20

izations associated with those priors are noted b∗, u∗ and e∗r for respectively the magnetic field, the core flow and errors of

representativeness.

From a technical point of view, algorithm steps take CoreState objects as inputs and return the CoreState result-

ing from the operations. Forecasts and analyses are handled by the Forecaster and Analyser modules that are imple-

mented in the augkf subpackage according to the AugKF algorithm.
✿✿✿✿✿✿

Again,
✿✿✿✿✿✿

details
✿✿

on
✿✿✿✿✿

these
✿✿✿✿✿

steps
✿✿✿

are
✿✿✿✿✿

given
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

relevant25

✿✿✿✿✿✿✿✿✿✿✿✿

documentation
✿✿✿✿✿✿

section
✿

5
✿

.

3.2.1 Forecast and AR(1) processes

The forecast step consists in
✿

of
✿

time-stepping X(t) between two epochs. AR-1 processes built on geodynamo cross-covariances

are used to forecast u(t) and er(t). We write u(t) = u0 +u′(t), with u0 the background flow (temporal average from the

4https://geodynamo.gricad-pages.univ-grenoble-alpes.fr/pygeodyn/usage_corestate.html
5https://geodynamo.gricad-pages.univ-grenoble-alpes.fr/pygeodyn/usage_steps.html
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geodynamo run) – and similar notations for er(t). Their numerical integration is based on an Euler-Maruyama scheme, which

takes the form






u′(t+∆tf ) = u′(t)−∆tfDuu
′(t)+

√

∆tfζu(t)

e′r(t+∆tf ) = e′r(t)−∆tfDee
′

r(t)+
√

∆tfζe(t)
. (2)

Du is the drift matrix for u. ζu is a Gaussian noise, uncorrelated in time and constructed such that spatial cross-covariances

Puu = E
(

u′u′T
)

of u match those of the prior geodynamo samples u∗. E(. . .) stands for statistical expectation. Similar ex-5

pressions and notations holds for er. Note that u and er are supposed independent, which is verified for numerical simulations.

Drift matrices are estimated with different manners depending on the characteristics of the considered geodynamo priors. In

the case where the geodynamo series do not allow to derive meaningful temporal statistics (e.g. too few samples, or simulations

parameters leading to relatively too slow Alfvén waves, see Schaeffer et al., 2017), the two drift matrices are simply diagonal,

and controlled by a single free parameter (τu for u and τe for er):10

Du =
1

τu
Iu and De =

1

τe
Ie , (3)

with Iu (resp. Ie) the identity matrix of rank Nu (resp. Ne).
✿

The drift matrices being diagonal, the process is hereafter referred

to as ‘diagonal’
✿✿✿✿✿✿✿

diagonal AR-1. Barrois et al. (2017, 2019) used such diagonal AR-1 processes, based on the ’coupled-earth’

✿✿✿✿✿✿✿✿✿✿✿

coupled-earth dynamo simulation.

In the case where geophysically meaningful temporal statistics can be extracted from geodynamo samples, time cross-15

covariance matrices






Puu+ = E
(

u′(t)u′(t+∆t∗)T
)

Pee+ = E
(

e′r(t)e
′

r(t+∆t∗)T
)

, (4)

are derived according to a sampling time ∆t∗. Du,e are then defined as (see Gillet et al., 2019, for details and an application to the ‘mid-path’

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(see Gillet et al., 2019, for details and an application to the mid-path dynamo):











Du =
Iu − (P−1

uuPuu+)T

∆t∗

De =
Ie − (P−1

ee Pee+)
T

∆t∗

. (5)20

Du,e are now dense, hence processes using this expression are referred to as ‘dense’
✿✿✿✿

dense AR-1 processes.

The first step of the forecast is to compute u(t+∆tf ) and er(t+∆tf ) using Eqs. (2) (with matrices depending on the AR-1

process type). Then, the vector b(t+∆tf ) is evaluated thanks to Eq. (1) by using u(t+∆tf ), er(t+∆tf ) and b(t) with an

explicit Euler scheme:

b(t+∆tf ) = b(t)+∆tf [A(b(t))u(t+∆tf )+ er(t+∆tf )] . (6)25

This yields the forecast core state Xf (t+∆tf ). As this step is performed independently for every realization, realizations can

be forecast in parallel. This is implemented in supplied algorithms with a MPI scheme.
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Table 1. Command line arguments of pygeodyn/run_algo.py

Argument Default value Description

-conf none Path to the configuration file (see Sec. 3.3.2)

-algo augkf Name of the algorithm to use

-m 10
✿✿

20 Ensemble size (number of realisations
✿✿✿✿✿✿✿✿

realizations) to consider in the computation

-seed Random Seed used to initialize NumPy random state

-path User_directory/pygeodyn_results Path where the folder containing the output files will be created

-cname Current_computation Name of the folder that will be created to store the output files

-l none Name of the logfile

-v 2 Verbosity level of the log (1: debug, 2: info, 3: warning, 4: error, 5: critical)

3.2.2 Analysis

The analysis step takes as input the ensemble of forecast core states Xf (ta), the geodynamo statistics, plus main field and SV

observations at t= ta together with their uncertainties. It is performed in two steps:

(i) First, a BLUE of an ensemble of realisations
✿✿✿✿✿✿✿✿✿

realizations of b is performed from magnetic field observations bo(t) and

the ensemble of forecasts bf (t) using the forecast cross-covariance matrix for b.5

(ii) Second, a BLUE of an ensemble of realisations
✿✿✿✿✿✿✿✿✿✿

realizations of the augmented state z = [uTeTr ]
T is performed from SV

observations ḃo(t), the ensemble of analysed
✿✿✿✿✿✿✿

analyzed main field from step (i), and the ensemble of forecasts for uf (t)

and efr (t), using a forecast cross-covariance matrix for z.

For more details on the above steps, we refer to Barrois et al. (2017, 2018, 2019); Gillet et al. (2019).

3.3 Input data10

3.3.1 Command line arguments

Computations can be launched by running run_algo.py that accepts several command line arguments. These arguments

and their default value (taken if not supplied) are given in Table 1. The first group corresponds to the computation parameters,

the only non-optional parameter being the path to the configuration file. The second group of parameters is linked to the output

files: name of data files and logs. We stress the importance of the argument -m that fixes the ensemble size Ne, meaning the15

number of realisations
✿✿✿✿✿✿✿✿✿

realizations
✿

on which the Kalman filter will be performed. As Ne forecasts are performed at each epoch,

this value has an important impact on the computation time (see §3.4). It is advised to set it to at least 20 to get a converged

measure of the dispersion within the ensemble of realizations.
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Table 2. Parameters available in a pygeodyn configuration file.

Parameter Name in the file Description

Lb Lb Maximal spherical harmonic degree of the magnetic

Lu Lu Maximal spherical harmonic degree of the core

Lsv Lsv Maximal spherical harmonic degree of the secular v

Nθ N
✿✿✿✿

Nth_theta
✿✿✿✿✿✿✿✿✿

legendre Number of angles to use for the evaluation of Legendre polynomials

tstart t_start Starting time for the algorithm

tend t_end Ending time for the algorithm

∆tf dt_f Time step between forecasts

∆ta dt_a Time step between

AR type ar_type Type of Auto-Regressive (AR) process to use in forecasts (see Sec.

τu TauU Time constant for the core flow diagonal

τe TauE Time constant for the subgrid errors diagonal

∆t
⋆ dt_sampling Sampling timestep for computing dense AR(1)

Npca N_pca Number of Principal Components (PC) for PCAnalysis of the core

PCA normalisation
✿✿✿✿✿✿✿✿✿

normalization
✿

pca_norm Normalisation
✿✿✿✿✿✿✿✿✿✿

Normalization
✿

to use on the core flow on which the PCA is performed

Type of initialisation
✿✿✿✿✿✿✿✿✿

initialization core_state_init Method to use to generate the initial core

File to use for initialisation
✿✿✿✿✿✿✿✿✿

initialization
✿

init_file Complete path of the file containing the desired initial core

Date to use for initialisation
✿✿✿✿✿✿✿✿✿

initialization init_date Date of the desired initial core

Prior directory prior_dir Directory containing the prior

Prior type prior_type Type of the prior

Obs directory obs_dir Directory containing the observation

Obs type obs_type Type of the observation

3.3.2 Configuration file

The pygeodyn configuration file allows to set
✿✿✿

sets
✿

the values of quantities used in the algorithm
✿

(called parameters
✿

). This

configuration file is a text-file containing three columns: one for the parameter name, one for the type and one for the parameter

value. We refer to Table 2 for the list of parameters that can be set this way.

The first group of parameters sets the number
✿✿✿

The
✿✿✿✿

table
✿✿

is
✿✿✿✿✿✿✿✿

separated
✿✿

in
✿✿✿

six
✿✿✿✿✿✿✿

groups:5

1.
✿✿✿✿✿✿✿

Number of coefficients to consider for the core state quantities and the Legendre polynomials that are used to evaluate

the Gaunt-Elsasser integrals that enter A(b).

The second group sets the time-span

8



2.
✿✿✿✿✿✿✿✿✿

Time-spans: starting time tstart, final time tend, and time intervals (in months) for forecasts ∆tf and analyses ∆tathat

were already addressed. To avoid imprecise decimal representation, the times are handled with NumPy’s datetime64

and timedelta64 classes (e.g. January 1980 is ’1980-01’6).

3. Parameters of the third group tune the AR-1 processes used in the forecasts. ar_type can be set to diag (in this case,

τu and τe will be used as in Eq. (3)) or to dense (in this case, ∆t⋆ will be used to sample the prior data and compute5

drift matrices with Eqs. (5)).

The fourth group allows to trigger the use of

4.
✿✿✿✿✿✿✿✿✿

Parameters
✿✿✿

for
✿✿✿✿

using
✿

a principal component analysis (PCA) for the core flow. By setting Npca, the algorithm will perform

forecasts and analyses on the subset composed of the first Npca principal components describing the core flow (stored

by decreasing explained variance), rather than on the entire core flow model. This is advised when using dense AR-110

processes (see Gillet et al., 2019). The normalisation
✿✿✿✿✿✿✿✿✿✿✿

normalization
✿

of the PCA can be modified by setting pca_norm

to energy (so that the variance of each principal component is homogeneous to a core surface kinetic energy) or to

None (PCA performed directly on the Schmidt semi-normalized core flow Gauss coefficients).

The fifth group allows to change the initial

5.
✿✿✿✿✿

Initial conditions of the algorithm. By setting core_state_init to constant, all realisations
✿✿✿✿✿✿✿✿✿

realizations
✿

of the15

initial core state will be equal to the average prior. If set to normal, realisations
✿✿✿✿✿✿✿✿✿✿

realizations of the initial core state

will be drawn according to a normal distribution centered on the dynamo prior average, within the dynamo prior cross-

covariances (default behaviour
✿✿✿✿✿✿✿

behavior). It is possible to set the initial core state to the core state from a previous

computation by setting core_state_init to from_file. In this latter case, the full path of the hdf5 file of the

previous computation and the date of the core state to use must be given (init_file and init_date).20

The last group of parameters allow to set

6.
✿✿✿✿✿✿✿✿✿

Parameters
✿✿✿✿✿✿✿✿✿

describing
✿

the types of input data (priors and observations) that are presented in more details in the next

section.

3.3.3 Priors

Priors are composed of a series of snapshot core states that allow
✿✿✿

are
✿✿✿✿

used
✿

to estimate the background states and the cross-25

covariance matrices. The mandatory priors are those for the magnetic field b, the core flow u and the subgrid errors er that

allow to derive
✿✿✿✿

from
✿✿✿✿✿✿

which the respective cross-covariance matrices Puu, Pee, etc.
✿

,
✿✿✿

are
✿✿✿✿✿✿✿

derived.

The aforementioned snapshots currently come from geodynamo simulations, meaning that the covariance matrices for b, u,

and er will reflect the characteristics of the simulations. As a consequence, the forecasts will be done according to the statistics

of the dynamo simulations. As examples, pygeodyn comes with two prior types derived from two simulations:30

6More precisely, January 1
st 1980
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– coupled_earth from Aubert et al. (2013)

– midpath from Aubert et al. (2017)

Technically, the two types are interchangeable. However, only the midpath prior type allows the use of dense AR-1 processes

as it requires time-correlations that cannot be extracted from coupled_earth runs.

3.3.4 Observations5

Observations are measurements of the magnetic field and of the SV at a set of dates. These observations are used in the analysis

step to perform the BLUE of the core state (see §3.2.2). pygeodyn provides two types of observations:

– covobs: Gauss coefficients and associated uncertainties at a series of epochs (every 6 months from 1840 to 2015), from

the COV-OBS.x1 model derived by ?
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Gillet et al. (2015).

– go_vo: Ground-based observatory (GO) and virtual observatory (VO) data (Br, Bθ, Bφ) and their associated un-10

certainties. VO gather in one location at satellite altitude observations recorded by the spacecrafts around this site.

GO are provided every 4 months from March 1997 onward for ground-based series, and VO every 4 months from

March 2000 onward for virtual observatories. The satellite data come from the CHAMP and SWARM
✿✿✿✿✿

Swarm
✿

mis-

sions. Both VO and GO are cleaned as much as possible from external sources (for details, see Barrois et al., 2018)

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(for details, see Barrois et al., 2018; Hammer, 2018).15

In the code, observation data are to be supplied with the observation operator and errors in the form of a Observation ob-

ject. This allows to have a consistent interface between spectral data (covobs) and data recorded in the direct space (go_vo).

3.3.5 Beyond the supplied data

For advanced users, pygeodyn allows
✿✿✿✿✿✿✿

provides
✿✿✿

the
✿✿✿✿✿✿✿✿✿

possibility
✿

to define custom prior and observations types by supplying new

data reading methods in the dedicated pygeodyn modules. Defining a custom prior type allows to use custom geodynamo sim-20

ulation data to compute covariance matrices that will be used in the forecasts and analyses steps. Similarly, a new observation

type can be supplied with custom observation data that will be used to estimate the core state in the analysis step.

In other words, an advanced user can completely control the input data of the algorithm to test new magnetic observations

and/or new numerical models, and derive new predictions from them.

3.4 Runtime scaling25

To reduce computation time, supplied algorithms use MPI to perform forecasts (§3.2.1) of different realizations in parallel.

Analysis steps are not implemented in parallel, as they require in one go the whole ensemble of realizations.

To assert the effect of this parallelisation, model computations were performed on a varying number of cores. The config-

uration for this benchmark re-analysis is the following: the AugKF algorithm with diagonal AR-1 processes, using m= 50

realizations over tend − tstart = 60 years, ∆tf = 6 months and ∆ta = 12 months.30
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Figure 1. Evolution of
✿✿

the
✿

runtime with respect to
✿✿

the number of MPI processes (see text for details). Dots are the observed runtimes
✿✿

(in

✿✿✿✿✿

hours) and the dashed line is a fit by
✿✿

of the power law
✿✿✿

form
✿

t= a ·n
b
+ c.

The results are displayed on Fig. 1 with runtimes varying between 1 and 8
✿

6 hours. The power law fit appears to be close to

1/n (with n the number of cores), with an offset time of 889 seconds
✿✿✿✿✿✿

around
✿✿

15
✿✿✿✿✿✿✿

minutes that is probably associated with the 60

analysis steps whose duration do not depend upon the number of cores. Note that the computations remain tractable whatever

the number of cores. A basic sequential computation (n= 1) for a re-analysis using 50 realizations over 100 yrs is performed

in less than half a day
✿

6
✿✿✿✿✿

hours, while using 32 cores will reduce it to half an hour.5

4 Visualisation
✿✿✿✿✿✿✿✿✿✿✿

Visualization

The format of pygeodyn output files is
✿✿✿

are directly supported by the web-based visualisation package webgeodyn
✿✿✿✿✿✿✿✿✿✿

visualization

✿✿✿✿✿✿✿

package
✿✿✿✿✿✿✿✿✿

webgeodyn
✿

also developed in our group. The source code of this package
✿✿✿✿✿✿✿✿✿✿

webgeodyn is hosted at its own Git reposi-

tory7. Being available on the Python package index, it can also be installed through the Python package installer pip.

webgeodyn
✿✿✿✿✿✿✿✿✿✿

webgeodyn implements a web application with several modes of representation that allow to explore, display10

and diagnose the products of the re-analyses (Barrois et al., 2018). It is deployed at http://geodyn.univ-grenoble-alpes.fr

but can also be used locally on any pygeodyn data, once installed. We illustrate here several possibilities offered by the version

0.6.0 of this tool (Huder et al., 2019b).

4.1 Mapping on Earth’s globe projections

Quantities at a given time can be displayed at the core surface in the Earth’s core surface tab. Two representations can be15

used simultaneously: a streamdots/streamlines representation for the core flow components (orthoradial, azimuthal and norm)

and a color plot for all quantities (core flow horizontal divergence and components included). A timeslider allows to change

7https://gricad-gitlab.univ-grenoble-alpes.fr/Geodynamo/webgeodyn
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Figure 2. Example of map for the magnetic field and the flow at the core surface, obtained using webgeodyn
✿✿✿✿✿✿✿✿

webgeodyn, for the model

calculated by Barrois et al. (2019). Here the radial magnetic field (colorscale) and streamlines for the core flow (black lines, which thickness

indicates the intensity) are evaluated in 2016 from VO derived from the SWARM
✿✿✿✿✿

Swarm data.

the epoch at which the quantities are evaluated. Figure 2 shows an example with magnetic field as color plot and norm of the

core flow for the stream lines, for a re-analysis of VO and GO data using a diagonal AR-1 model. The plot is interactive with

zooming, exporting (as pictures or animations) and display tuning features.

4.2 Time-series of harmonic coefficients

In the Spherical Harmonics tab, it is possible to look at the time evolution of a single spherical harmonic coefficient for a given5

quantity (core flow, magnetic field, SV), or of the length-of-day. Several models can be displayed at once for comparison.

Figure 3 shows the time evolution of one SV coefficient from a re-analysis of SV Gauss coefficient data using a dense AR-1

model. The interface gives the possibility to also represent the contribution from er. It is possible to zoom on the plot and

export it as a picture or raw CSV data.

12



Figure 3. Time series for the SV spherical harmonic coefficient h1

2 using webgeodyn
✿✿✿✿✿✿✿✿

webgeodyn. In red (‘GHA19’) the re-analysis by

Gillet et al. (2019), obtained from the COV-OBS.x1 observations (in black) by ?
✿✿✿✿✿✿✿✿✿✿✿✿✿

Gillet et al. (2015). The solid lines represent the ensemble

average, and the shaded areas the ±1σ uncertainties. The dotted line gives the contribution from er .

4.3 Comparison with ground-based and virtual observatory data

Computed data can be easily compared with the geomagnetic observations used for the analysis in the Observatory data tab.

It allows to display the spatial components (radial, azimuthal and ortho-radial) of the magnetic field and its SV recorded

by observatories. These can be either GO or VO data. Data can be displayed by clicking on a location on the globe and be

compared with spectral model data predictions evaluated at the observatory location. Figure 4 shows an example of the SV5

at a ground-based site in South America. One can compare how predictions from a re-analysis, together with its associated

uncertainties, follow geophysical data (black dots) – here the model by Barrois et al. (2019), which uses a diagonal AR-1 model

from GO and VO series. It can also be used to compare predictions from several magnetic field models – here COV-OBS.x1,

which is constrained by magnetic data only up to 2014.5.

On top of the three examples illustrated above, the package webgeodyn
✿✿✿✿✿✿✿✿✿✿

webgeodyn also gives the possibility to display10

and export Lowes-Mauersberger spatial spectra, or cross-sections at the core surface as a function of time and longitude

(respectively latitude) for a given latitude (respectively longitude).

5 Conclusions

We presented the Python toolkit pygeodyn that allows to:

13



Figure 4. Time series of the three components of the SV (in spherical coordinates) at the Kourou observatory (French Guyana, location in

dark red on the globe on the left) using webgeodyn
✿✿✿✿✿✿✿✿✿

webgeodyn. The green line (‘Barrois_VO_2018e’) is from the core surface re-analysis

by Barrois et al. (2019), using as observations GO and VO data, and a diagonal AR-1 model. For comparison are also shown (in orange) the

COV-OBS.x1 model predictions at this site. The solid lines are the ensemble mean, and the shaded areas represent the ±1σ uncertainties.
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– calculate models of the flow at the core surface from SV Gauss coefficient data

– calculate models of the flow and the magnetic field at the core surface from measurements of the magnetic field and its

SV above the Earth’s surface

– represent and analyse the results via the web interface webgeodyn
✿✿✿✿✿✿✿✿✿✿

webgeodyn.

The underlying algorithm relies on AR-1 stochastic processes to advect the model in time. It is anchored to statistics (in5

space and optionally in time) from free runs of geodynamo models. It furthermore accounts for errors of representativeness

due to the finite resolution of the magnetic and velocity fields.

This Python tool has been designed with several purposes in mind, among which :

– test of the Earth-likeness of geodynamo models

– comparison with alternative geomagnetic DA algorithms10

– production of magnetic models under some constraints from the core dynamics

– education of students on issues linked to core dynamics and geomagnetic inverse problem.

Code and data availability. The version 1.1.0 of pygeodyn is archived on Zenodo (Huder et al., 2019a). Other versions (with or without data)

are available on the Git repository located at https://gricad-gitlab.univ-grenoble-alpes.fr/Geodynamo/pygeodyn. The version 0.6.0 of web-

geodyn used for the plots is archived at https://doi.org/10.5281/zenodo.2645025. This version (and others) can be installed from the Git repos-15

itory (https://gricad-gitlab.univ-grenoble-alpes.fr/Geodynamo/webgeodyn) or as a Python package with pip. Data sets can be downloaded

on http://geodyn.univ-grenoble-alpes.fr or on the git repository https://gricad-gitlab.univ-grenoble-alpes.fr/Geodynamo/pygeodyn_data
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