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 10 

Abstract. Parameterizations for physical processes in weather and climate models are 11 

computationally expensive. We use model output from a set of simulations performed using the 12 

Weather Research Forecast (WRF) model to train deep neural networks and evaluate whether 13 

trained models can provide an accurate alternative to the physics-based parameterizations. 14 

Specifically, we develop an emulator using deep neural networks for a planetary boundary layer 15 

(PBL) parameterization in the WRF model. PBL parameterizations are commonly used in 16 

atmospheric models to represent the diurnal variation of the formation and collapse of the 17 

atmospheric boundary layer―the lowest part of the atmosphere. The dynamics of the atmospheric 18 

boundary layer, mixing and turbulence within the boundary layer, velocity, temperature, and 19 

humidity profiles are all critical for determining many of the physical processes in the atmosphere. 20 

PBL parameterizations are used to represent these processes that are usually unresolved in a typical 21 

numerical weather model that operates at horizontal spatial scales in the tens of kilometers. We 22 

demonstrate that a domain-aware deep neural network, which takes account of underlying domain 23 

structure that are locality specific (e.g., terrain, spatial dependence vertically), can successfully 24 

simulate the vertical profiles within the boundary layer of velocities, temperature, and water vapor 25 

over the entire diurnal cycle. We then assess the spatial transferability of the domain-aware neural 26 

networks by using a trained model from one location to nearby locations. Results show that a single 27 

trained model from a location over the midwestern United States produces predictions of wind 28 

components, temperature, and water vapor profiles over the entire diurnal cycle and all nearby 29 

locations with errors less than a few percent when compared with the WRF simulations used as 30 

the training dataset. 31 
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1 Introduction 32 

Model developers use approximations to represent the physical processes involved in climate and 33 

weather that cannot be resolved at the spatial resolution of the model grids or in cases where the 34 

phenomena are not fully understood (Williams, 2005). These approximations are referred to as 35 

parameterizations (McFarlane, 2011). While these parameterizations are designed to be 36 

computationally efficient, calculation of a model physics package still takes a good portion of the 37 

total computational time. For example, in the community atmospheric model (CAM) developed 38 

by National Center for Atmospheric Research (NCAR), with spatial resolution of approximately 39 

300 km and 26 vertical levels, the physical parameterizations account for about 70% of the total 40 

computational burden (Krasnopolsky and Fox-Rabinovitz, 2006). In the Weather Research 41 

Forecast (WRF) model, with spatial resolution of tens of kilometers, time spent by physics is 42 

approximately 40% of the computational burden. The input and output overhead is around 20% of 43 

the computational time at low node count (100’s) and can increase significantly at higher node 44 

count as a percentage of the total wall-clock time.   45 

An increasing need in the climate community is performing high spatial resolution simulations (10 46 

km or less grid spacing) and generating large ensembles of these simulations in order to address 47 

uncertainty in the model projections and to assess risk and vulnerability. Developing process 48 

emulators (Leeds et al., 2013; Lee et al., 2011) that can reduce the time spent in calculating the 49 

physical processes will lead to much faster model simulations, enabling researchers to generate 50 

high spatial resolution simulations and a large number of ensemble members.   51 

A neural network (NN) is composed of multiple layers of simple computational modules, where 52 

each module transforms its inputs to a nonlinear output. Given sufficient data, an appropriate NN 53 

can model the underlying nonlinear functional relationship between inputs and outputs with 54 

minimal human effort. During the past two decades, NN techniques have found a variety of 55 

applications in atmospheric science. For example, Collins and Tossot (2015) developed an 56 

artificial NN model by taking numerical weather prediction model (e.g., WRF) output as input to 57 

predict thunderstorm occurrence within a few hundreds of square kilometers about 12 hours in 58 

advance. Krasnopolsky et al. (2016) used NN techniques for filling the gaps in satellite 59 

measurements of ocean color data. Scher (2018) used deep learning to emulate the complete 60 

physics and dynamics of a simple general circulation model and indicated a potential capability of 61 
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weather forecasts using this NN-based emulator. Neural networks are particularly appealing for 62 

emulations of model physics parameterizations in numerical weather and climate modeling, where 63 

the goal is to find nonlinear functional relationship between inputs and outputs (Cybenko, 1989; 64 

Hornik, 1991; Chen and Chen, 1995a,b; Attali and Pagès, 1997).  NN techniques can be applied 65 

to weather and climate modeling in two ways. One approach involves developing new 66 

parameterizations by using NNs. For example, Chevallier et al. (1998; 2000) developed a new NN-67 

based longwave radiation parameterization, NeuroFlux, which has been used operationally in the 68 

European Centre for Medium-Range Weather Forecasts four-dimensional variational data 69 

assimilation system and is eight times faster than the previous parameterization. Krasnopolsky et 70 

al. (2013) developed a stochastic convection parameterization based on learning from data 71 

simulated by a cloud-resolving model, CRM, initialized with and forced by the observed 72 

meteorological data. The NN convection parameterization was tested in the NCAR CAM and 73 

produced reasonable and promising results for the tropical Pacific region. Jiang et al. (2018) 74 

developed a deep NN-based algorithm or parameterization to be used in the WRF model to provide 75 

flow-dependent typhoon-induced sea surface temperature cooling. Results based on four typhoon 76 

case studies showed that the algorithm reduced maximum wind intensity error by 60–70% 77 

compared with using the WRF model. The other approach for applying NN to weather and climate 78 

modeling is to emulate existing parameterizations in these models. For example, Krasnopolsky et 79 

al. (2005) developed an NN-based emulator for imitating an existing atmospheric longwave 80 

radiation parameterization for the NCAR CAM. They used output from the CAM simulations with 81 

the original parameterization for the NN training. They found the NN-based emulator was 50–80 82 

times faster than the original parameterization and produced almost identical results. 83 

We study NN models to emulate existing physical parameterizations in atmospheric models. 84 

Process emulators that can reproduce physics parameterization can ultimately lead to the 85 

development of a faster model emulator that can operate at very high spatial resolution as 86 

compared with most current model emulators that have tended to focus on simplified physics 87 

(Kheshigi et al., 1999). Specifically, this study involves the design and development of a domain-88 

aware NN to emulate a PBL parameterization using 22-year-long output created by a set of WRF 89 

simulations. To the best of our knowledge, we are among the first to apply deep neural networks 90 

to the WRF model to explore the emulation of physics parameterizations. As far as we know from 91 

the literature available at the time of this writing, the only application of NNs for emulating the 92 
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parameterizations in the WRF model is by Krasnopolsky et al. (2017). In their study, a three-layer 93 

NN was trained to reproduce the behavior of the Thompson microphysics (Thompson 2008) 94 

scheme in the WRF-ARW model. While we focus on learning the PBL parameterization and 95 

developing domain-aware NN for emulation of PBL, the ultimate goal of our on-going project is 96 

to build an NN-based algorithm to empirically understand the process in the numerical 97 

weather/climate models that could be used to replace the physics parameterizations that were 98 

derived from observational studies. This emulated model would be computationally efficient, 99 

making the generation of large ensemble simulations feasible at very high spatial/temporal 100 

resolutions with limited computational resources. The key objectives of this study are to answer 101 

the following questions specifically for PBL parameterization emulation: (1) What and how much 102 

data do we need to train the model? (2) What type of NN should we apply for the PBL 103 

parameterization studied here? (3) Is the NN emulator accurate compared with the original 104 

physical parameterization? This paper is organized as follows. Section 2 describes the data and the 105 

neural network developed in this study. The efficacy of the neural network is investigated in 106 

Section 3. Discussion and summary follow in Section 4.  107 

2 Data and Method 108 

2.1  Data 109 

The data we use in this study is output from the regional climate model WRF version 3.3.1. WRF 110 

is a fully compressible, nonhydrostatic, regional numerical prediction system with proven 111 

suitability for a broad range of applications. The WRF model configuration and evaluations are 112 

given by Wang and Kotamarthi (2014). Covering all the troposphere are 38 vertical layers, between 113 

the surface to approximately 16 km (100 hPa). The lowest 17 layers cover from the surface to 114 

about 2 km above the ground. The PBL parameterization we used for this WRF simulation is 115 

known as the YSU scheme (Yonsei University; Hong et al., 2006). The YSU scheme uses a 116 

nonlocal-mixing scheme with an explicit treatment of entrainment at the top of the boundary layer 117 

and a first-order closure for the Reynolds-averaged turbulence equations of momentum of air 118 

within the PBL.  119 

We use the output of the WRF model driven by NCEP-R2 for the period 1984–2005. The 22-year 120 

data was partitioned into three parts: a training set consisting of 20 years (1984–2003) of 3-hourly 121 
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data to train the NN; a development set (also called validation set) consisting of 1 year (2004) of 122 

3-hourly data used to tune the algorithm’s hyperparameters and to control overfitting (the situation 123 

where the trained network predicts well on the training data but not on the test data); and a test set 124 

consisting of 1 year of records (2005) for prediction and evaluations. The goal of the work 125 

described here is to develop an NN-based parameterization that can be used to replace the PBL 126 

parameterization in the WRF model. Thus, we expect the NN submodel to receive a set of inputs 127 

that are equivalent to the inputs provided to the YSU scheme at each timestep. However, a key 128 

difference in our approach is that the vertical profiles of various state variables are reconstructed 129 

by the NN using only the inputs (near-surface variables and 700 hPa geostrophic winds).  130 

Table 1 shows the architecture in terms of inputs and outputs used in our experiments. The inputs 131 

are near-surface characteristics including 2-meter water vapor, 2-meter air temperature, 10-meter 132 

zonal and meridional wind, ground heat flux, incoming shortwave radiation, incoming longwave 133 

radiation, PBL height, sensible heat flux, latent heat flux, surface friction velocity, ground temp, 134 

soil temperature at 2 m below the ground, soil moisture at 0–0.3cm below the ground, and 135 

geostrophic wind component at 700 hPa. The outputs for the NN architecture are the vertical 136 

profiles of the following model prognostic and diagnostic fields: temperature, water vapor mixing 137 

ratio, and zonal and meridional wind (including speed and direction). In this study we develop an 138 

NN emulation of the PBL parameterization; hence we focus only on predicting the profiles within 139 

the PBL, which is on average around 200 m and 400 m during the night and afternoon of winter, 140 

respectively, and around 400 m and 1300 m during the night and afternoon of summer, 141 

respectively, for the locations studied here. The middle and upper troposphere (all layers above 142 

the PBL) are considered fully resolved by the dynamics simulated by the model and hence not 143 

parameterized. Therefore, we do not consider the levels above PBL height because (1) they carry 144 

no information about input/output functional dependence that affects the PBL and (2) if not 145 

removed, they introduce additional noise in training. Specifically, we use the WRF output from 146 

the first 17 layers, which are within 1,900 meters and well cover the PBL. 147 

2.2  Deep neural networks for PBL parameterization emulation 148 

A class of machine learning approaches that is particularly suitable for emulation of PBL 149 

parameterization is supervised learning. This approach models the relationship between the 150 

outputs and independent input variables by using training data (xi, yi), for xi ∈ T ⊂ D, where T is 151 
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a set of training points, D is the full data set, and xi and yi = f(xi) are inputs and its corresponding 152 

output yi, respectively. The function f that maps the inputs to the outputs is typically unknown and 153 

hard to derive analytically. The goal of the supervised learning approach is to find a surrogate 154 

function h for f such that the difference between f(xi) and h(xi) is minimal for all xi ∈ T. Many 155 

supervised learning algorithms exist in the machine learning literature. In this paper, we focus on 156 

deep neural networks (DNNs). 157 

DNNs are composed of neural layers: a stack of nodes organized in a hierarchical way to model a 158 

nonlinear function. Within each neural layer, nodes receive inputs from previous neural layers and 159 

perform certain nonlinear transformations through a system of weighted connections on the 160 

received input values. The training data is given to the neural network through the input neural 161 

layer. The last neural layer of the stack in the network is the output neural layer from which the 162 

predicted values are obtained. The training procedure consists of modifying the weights of the 163 

connections in the network to minimize a user-defined objective function that measures the 164 

prediction error of the network. Each iteration of the training procedure comprises two phases: the 165 

forward pass consists of passing the training data to the network and computing the prediction 166 

error; in the backward pass, the gradients of the error function with respect to all the weights in 167 

the network is computed and used to update the weights in order to minimize the error. Once the 168 

entire dataset is passed both forward and backward through the neural network (with many 169 

iterations), one epoch is completed. 170 

We consider three variants of DNN (see below). We construct all of them using a neural block that 171 

comprises a dense neural layer with N nodes and a rectified linear activation function, where N is 172 

user-defined parameters. 173 

Naïve DNN: 174 

Deep feed-forward neural network (FFN): This is a fully connected feed-forward deep neural 175 

network constructed as a sequence of K neural blocks, where the input of the ith neural block is 176 

from {i-1}th block and the output of the ith neural block is given as the input of the {i+1}th neural 177 

block. The sizes of the input and output neural layers are 16 (= near-surface variables) and 85 (= 178 

17 vertical levels × 5 output variables). See Figure 1a for an illustration.  179 

Domain-aware DNN: 180 
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While the FFN is a typical way of applying NN for finding the nonlinear relationship between 181 

input and output, a key drawback of the naïve FFN is that it does not consider the underlying PBL 182 

domain structure, such as the patterns that are locality specific and the vertical dependence between 183 

different vertical levels of each profile. This is not typically needed for NNs in general and in fact 184 

is usually avoided because, for classification and regression, one can find visual features regardless 185 

of their locations. For example, a picture can be classified as a certain object even that object has 186 

never appeared in the given location in the training set. In our case, however, the location is fixed 187 

and the profiles over that location is distinguishable from other locations if they have different 188 

terrain conditions. Consequently, we want to learn the particular influence of location in the 189 

forecast. For example, the feature at a lower level of a profile plays a role in the feature at a higher 190 

level and can help refine the output at the higher level and accordingly the entire profile. This 191 

dependence may inform the NN and provide better accuracy and data efficiency. To that end, we 192 

develop two variants of domain-aware DNNs for PBL emulation.  193 

Hierarchically connected network with previous layer only connection (HPC): We assume 194 

that the outputs at each altitude level depend not only on the 16 near-surface variables but also on 195 

the altitude level below it. To model this explicitly, we develop a domain-aware DNN variant in 196 

which 17 neural blocks are connected as follows: the input to an ith (i>1) neural block comprises 197 

the input neural layer of the 16 near-surface variables and the 5 outputs of the {i-1}th neural block. 198 

The first neural block, which is next to the input layer, receives inputs only from the input neural 199 

layer of the 16 near-surface variables. See Figure 1b for an example.  200 

Hierarchically connected network with all previous layers connection (HAC): We assume that 201 

the outputs at each PBL depend not only on the 16 near-surface variables but also on all altitude 202 

levels below it. The input to an ith neural block comprises the input neural layer of the 16 near-203 

surface variables and all outputs of the {1, 2, …, i-1} neural blocks below it. See Figure 1c for an 204 

example.  205 

2.3  Setup 206 

For preprocessing, we applied StandardScaler (removes the mean and scales each variable to unit 207 

variance) and MinMaxScaler (scales each variable between 0 and 1) transformations before 208 
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training, and we applied the inverse transformation after prediction so that the evaluation metrics 209 

are computed on the original scale. 210 

We note that there is no default value for N nodes in a dense neural layer. We conducted an 211 

experimental study on FFN and found that setting N to 16 results in good predictions. Therefore, 212 

we used the same value of N = 16 in HPC and HAC. 213 

For the implementation of DNN, we used Keras (version 2.0.8), a high-level neural network 214 

Python library that runs on the top of the TensorFlow library (version 1.3.0). We used the scikit-215 

learn library (version 0.19.0) for the preprocessing module. The experiments were run on a Python 216 

(Intel distribution, version 3.6.3) environment. 217 

All three DNNs used the following setup for training: optimizer = adam, learning rate = 0.001, 218 

epochs = 1000, batch size = 64. Note that batch size and number of epochs define the number of 219 

randomly sampled training points required before updating the model parameters and the number 220 

times that training will work through the entire training dataset. To avoid overfitting issues in 221 

DNNs, we use an early stopping criterion in which the training stops when the validation error 222 

does not reduce for 10 subsequent epochs. 223 

We ran training and inference on a NVIDIA DGX-1 platform: Dual 20-Core Intel Xeon E5-2698 224 

v4 2.2 GHz processor with 8 NVIDIA P100 GPUs with 512 GB of memory. The DNN’s training 225 

and inference leveraged only a single GPU. 226 

3 Results  227 

In the following discussion we evaluate the efficacy of the three DNNs by comparing their 228 

prediction results with WRF model simulations. We refer to the results of WRF model simulations 229 

as observations because the DNN learns all the knowledge from the WRF model output, not from 230 

in situ measurements. We refer to the values from the DNN models as predictions. We initiate our 231 

DNN development at one grid cell from WRF output that is close to a site in the midwestern United 232 

States (Logan, Kansas, latitude= 38.8701°N; longitude= 100.9627°W) and another grid cell at a 233 

site in Alaska (Kenai Peninsula Borough, AK, latitude= 60.7237 °N; longitude=150.4484 °W) to 234 

evaluate the robustness of the developed DNNs. We then apply our DNNs to stations within 800 235 

km from the Logan site to assess the spatial transferability of the DNNs. While the Alaska site has 236 
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different vertical profiles, especially for wind directions, and lower PBL heights in both January 237 

and July, the conclusion in terms of the model performance is similar to the site over Logan, 238 

Kansas.   239 

3.1  DNN performance in temperature and water vapor 240 

Figure 2 shows the diurnal variation (explicitly 3 PM and 12 AM local time at Logan, Kansas) of 241 

temperature and water vapor mixing ratio vertical profiles in the first 17 layers from the 242 

observation and three DNN model predictions. The 17 layers are within 1,900 meters and well 243 

cover the PBL. The figures present results for both January and July. The dashed lines show the 244 

lowest and highest (5th and 95th percentile, respectively) PBL heights for that particular time. In 245 

general, the DNNs are able to produce similar shapes of the observed profiles, especially within 246 

the PBL. Both the temperature and water vapor mixing ratio are lower in January and higher in 247 

July. Within the PBL, the temperature and water vapor do not change much with height; above the 248 

PBL to the entrainment zone, the temperature and water vapor start decreasing. Among the three 249 

DNNs, HAC and HPC show very low bias and high accuracy in the PBL, but the FFN shows a 250 

relatively large discrepancy from the observation. Figure 3 shows the root-mean-square error 251 

(RMSE) and Pearson correlation coefficient (COR) between observation and three DNN 252 

predictions in the afternoon and midnight of January and July. The RMSE and COR consider not 253 

only the time series of observation and prediction but also their vertical profiles below the PBL 254 

heights for each particular time. Among the three DNNs, HPC and HAC always show better skill 255 

with smaller RMSEs and higher CORs than does FFN. The reason is that the FFN uses only the 256 

16 near-surface variables as inputs and does not consider dependence between each of the vertical 257 

levels. In contrast, HPC and HAC use not only the near-surface variables but also the five variables 258 

of one previous vertical level (HPC) or all previous vertical levels (HAC) as inputs for predicting 259 

the profiles of each field. This approach is important because PBL parameterizations are used to 260 

represent the vertical dependence of these variables and are usually unresolved in a typical climate 261 

and weather models that operate at horizontal spatial scales in the tens of kilometers. Compared 262 

with HAC, HPC sometimes shows slightly better accuracy with smaller RMSEs and higher CORs, 263 

but in other cases HPC performs similar to HAC. These results indicate that the information from 264 

all previous levels is not as important as information from the previous layer right below the 265 

predicted layer.  266 

9

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-79
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 29 April 2019
c© Author(s) 2019. CC BY 4.0 License.



3.2  DNN performance in wind component 267 

Figure 4 shows the diurnal variation of wind (including wind speed and direction) profiles in 268 

January and July 2005 from observation and three DNN predictions. Compared with the 269 

temperature and water vapor profiles, the wind profiles are more difficult to predict, especially for 270 

days (e.g., summer) that have a higher PBL. The wind direction does not change much below the 271 

majority of the PBL, and it turns to westerly winds when going up and beyond the PBL. The DNN 272 

prediction has difficulty predicting the profile above the PBL height, as is expected because these 273 

layers are considered fully resolved by the dynamics simulated by the WRF model and hence not 274 

parameterized. Therefore, we do not consider DNN performance at the levels above PBL height, 275 

because the DNNs carry no information about input/output functional dependence that affects the 276 

PBL. The wind speed increases with height in both January and July within the PBL. Above the 277 

PBL heights, the wind speed still increases in January but decreases in July. The reason is that in 278 

January the zonal wind, especially westerly wind, is dominant in the atmosphere and the wind 279 

speed increases with height; in July, however, the zonal wind is relatively weak, and the meridional 280 

wind is dominant with southerly wind below ~2 km and northerly wind above 2 km. The decrease 281 

in wind speed above the PBL is just about the transition of wind direction from southerly to 282 

northerly wind. Figure 5 shows the RMSEs and CORs between the observed and predicted wind 283 

component within the PBL. The wind component is fairly well predicted especially by the HAC 284 

and HPC networks with correlation above 0.8 for wind speed and 0.7 for wind direction except in 285 

July at midnight, which is below zero. Similar to the predictions for temperature and water vapor, 286 

the FFN shows the poorest prediction accuracy, especially for wind direction. For accurately 287 

predicting the wind direction, we found that using the geostrophic wind at 700 hPa as one of the 288 

inputs for the DNNs is important. 289 

3.3  DNN dependence on length of training period 290 

Next, we evaluate how sensitive the DNN is to the amount of available training data and how much 291 

data one would need in order to train a DNN. While we present Figures 2–5 using 20-year (1984–292 

2003) training data, here we gradually decrease the length of the training set to 12 (1992–2003), 6 293 

(1998–2003), 2 (2002–2003) years, and 1 (2003) year. The validation data (for tuning hyper-294 

parameters and controlling overfit) and the test data (for prediction) are kept the same as in our 295 

standard training dataset, which is year 2004 and 2005, respectively. Figures 6 and 7 show the 296 
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RMSE and CORs between observed and predicted profiles of temperature, water vapor, and wind 297 

component for January and July at their local midnight. Overall, the FFN network depends heavily 298 

on the length of training dataset. For example, the RMSE of FFN predicted temperature decreases 299 

from 7.2 K using one year of training data to 3.0 K using 20-year training data. HAC and HPC 300 

also depend on the length of training data especially when less than 6-year training data is 301 

available, but even their worst prediction accuracy (using one year of training data) is still better 302 

than FFN using 20-year training data. The RMSEs of HPC and HAC predicted temperature 303 

decrease from ~2.4 using 1 year of training data to ~1.5 using 20 years of training data. The CORs 304 

of FFN predicted temperature increase from 0.73 using one year of training data to 0.92 using 20 305 

years of training data. The CORs for HPC and HAC increase slightly with more training data, but 306 

overall they are above 0.85 using one year to 20 years of training data.    307 

Regarding the question about how much data one would need to train a DDN, for FFN, at least 308 

from this study, the performance is not stable until one has 12 or more years of training data, which 309 

is significantly better than having only 6 years or less of training data. For HAC and HPC, however, 310 

having 6 years of training data seems sufficient to show a stable prediction. Increasing the amount 311 

of training data shows only marginal improvement in predictive accuracy. In fact, in contrast to 312 

HAC and HPC, the performance of FFN has not reached a plateau even with the 20 years of 313 

training data. This suggests that with longer training sets the predicting skill of an even naïve 314 

approach like FFN could be further improved and eventually reach the accuracy of HAC and HPC 315 

using 6 or more years of training data. 316 

3.4  DNN performance for nearby stations 317 

This section assesses the spatial transferability of the domain-aware neural networks (specifically 318 

HAC and HPC) by using a trained model from one location (at Logan, Kansas, as presented above) 319 

to other locations within 800 kilometers from the Logan site with different terrain conditions and 320 

vegetation types. We choose ten locations, as shown in Figure 8, among which two (Sites 1 and 2) 321 

are 300 km away from the Logan site; three (Sites 3, 4, and 5) are 430 km away from the Logan 322 

site; and five (Sites 6 to 10) are 450–800 km away from the Logan site, with Sites 9 and 10 the 323 

furthest and having the most different elevations from the Logan site. Different from the preceding 324 

section, here we calculate normalized RMSEs relative to each site’s observations at a particular 325 

time, in order to make the comparison feasible between different sites. As shown in Figures 9 and 326 
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10 by the normalized RMSEs and Pearson correlations, in general, when going farther from Logan 327 

site, where our domain-aware neural networks (HPC and HAC) were developed, the prediction 328 

skill either does not change or gets slightly worse depending on the locations and the difference in 329 

terrain conditions between the reference site (Logan, Kansas) and the remote sites (S1 to S10 in 330 

Figure 8). For example, the RMSEs for wind direction over Sites 2, 4, and 8 are similar to that 331 

over the Logan site. However, the RMSEs over the other sites, which have different elevations 332 

(either higher or lower) than that for Logan site, are much larger, suggesting the DNNs developed 333 

based on Logan site are not applicable for these locations. These results indicate that, at least for 334 

this study, as long as the terrain conditions (slope, elevation, and orientation) are similar, the DNNs 335 

can be applied with similar prediction skill for locations that are as far as 520 km (equal to more 336 

than 40 grid cells in the WRF output used in this study) to predict the wind and also other variables 337 

assessed in this study. The results also suggest that when implementing the NN-based algorithm 338 

into the WRF model, if a number of grid cells are over a homogenous region, one may not need to 339 

train the NN over every grid cell. This will significantly save computing time because the training 340 

process takes the majority of the computing resource (see below). Similar to Figure 6, we see that 341 

the HPC network works better than HAC especially for temperature and water vapor over all the 342 

sites and for wind component over most of the sites examined here, indicating that the input from 343 

all previous layers is not as important as that from the input from only the layer next to the predicted 344 

layer. 345 

3.5  DNN training and prediction time 346 

Table 2 shows the number of epochs and time required for training FNN, HPC, and HAC for 347 

various numbers of training years. Because of the early stopping criterion, the number of training 348 

epochs performed by different methods is not same. Despite setting the maximum epochs to 1,000, 349 

all these methods terminate within 178 epochs. We observed that HPC performs more training 350 

epochs than do FFN and HAC: given the same optimizer and learning rate for all the methods, 351 

HPC has a better learning capability because it can improve the validation error more than HAC 352 

and FNN can. For a given set of training data, the difference in the training time per epoch can be 353 

attributed to the number of trainable parameters in FNN, HPC, and HAC (10,693, 16,597, and 354 

26,197, respectively). As we increase the size of training data, the training time per epoch increases 355 

significantly for all three DNN models. The increase also depends on the number of parameters in 356 

12

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-79
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 29 April 2019
c© Author(s) 2019. CC BY 4.0 License.



the model. For example, increasing the training data from 1 year to 20 years increases the training 357 

time per epoch from 1.4 seconds to 11.4 seconds for FNN, from 1.1 seconds to 17.4 seconds, and 358 

from 1.4 seconds to 19.6 seconds for HPC and HAC, respectively. 359 

The prediction times of FNN, HPC, and HAC are within 0.5 seconds for one-year data, making 360 

these models promising for PBL emulation deployment. The difference in the prediction time 361 

between models can be attributed to the number of parameters in the DNNs: the larger the number 362 

of parameters, the higher the prediction time. For example, the prediction times for FFN are below 363 

0.2 seconds when using different numbers of years for training, while those for HAC are around 364 

0.4 seconds. Despite the difference in the number of training years, the number of parameters for 365 

a given model is fixed. Therefore, once the model is trained, the DNN prediction time depends 366 

only on the model and the number of points in the test data (1 year in this study). Theoretically, 367 

for the given model and the test data, the prediction time should be constant even with different 368 

amounts of training dataset. However, we observed slight variations in the prediction times that 369 

range from 0.17 to 0.29 seconds for FNN, 0.30 to 0.34 seconds for HPC, and 0.36 to 0.42 seconds 370 

for HAC, which can be attributed to the system software. 371 

4 Summary and Discussion 372 

This study developed DNNs for emulating a PBL parameterization that is used by the WRF model. 373 

Two of the DDNs take into account the domain-specific features such as spatial dependence in the 374 

vertical direction over the location where we develop the DNNs. The input and output data for the 375 

DNNs are taken from a set of 22-year-long WRF simulations. We developed the DNNs based on 376 

a midwestern location in the United States. We found that the domain-aware DNNs can reproduce 377 

the vertical profiles of wind, temperature, and water vapor mixing ratio with high accuracy yet 378 

require fewer data than the traditional DNN, which does not care about the domain-specific 379 

features. The training process takes the majority of the computing time. Once trained, the model 380 

can quickly predict the variables with decent accuracy. This ability makes the deep neural network 381 

appealing for parameterization emulator. 382 

Following the same architecture that we applied for Logan, Kansas, we also built DNNs for one 383 

location at Alaska. The results share the same conclusion as we have seen for the Logan site. For 384 

example, among the three DNNs, HPC and HAC show much better skill with smaller RMSEs and 385 
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higher correlations than does FFN. The wind profiles are more difficult to predict than the profiles 386 

of temperature and water vapor. For FFN, the prediction accuracy increases with more training 387 

data; for HPC and HAC, the prediction skill stays similar when having six or more years of training 388 

data. 389 

While we trained our DNNs over individual locations in this study using only one computing node 390 

(with multiple processors), there are 300,000 grid cells over our WRF model domain, which 391 

simulated the North American continent as a horizontal resolution of 12 km. To train a model for 392 

all the grid cells or all the homogeneous regions over this large domain, we will need to scale up 393 

the algorithm to hundreds if not thousands of computing nodes to accelerate the training time and 394 

the make the entire NN-based simulation faster than the original parameterization. 395 

The ultimate goal of this project is to build an NN-based algorithm to empirically understand the 396 

process in the numerical weather and climate models and to replace the PBL parameterization and 397 

other time-consuming parameterizations that were derived from observational studies. This 398 

emulated model thus would be computationally efficient and enable researchers to generate large 399 

ensemble simulations at very high spatial/temporal resolutions with limited computational 400 

resources. The DNNs developed in this study can provide numerically efficient solutions to a wide 401 

range of problems in environmental numerical models where lengthy, complicated calculations 402 

describing physical processes must be repeated frequently or need a large ensemble of simulations 403 

to represent uncertainty. A possible future direction for this research is implementing these NN-404 

based schemes in WRF for a new generation of hybrid regional-scale weather/climate models that 405 

fully represent the physics at a very high spatial resolution at a fast computational time so as to 406 

provide the means for generating large ensemble model runs.  407 

Data and code availability. The data used and the code developed in this study are available at 408 

https://github.com/pbalapra/dl-pbl. 409 
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Figure captions 508 

Figure 1: Three variants of DNN developed in this study: (a) fully connected feed forward 509 

neural network (FFN), (b) hierarchically connected network with previous layer only 510 

connection (HPC), and (c) hierarchically connected network with all previous layers 511 

connection (HAC). 512 

Figure 2: Temperature and water vapor mixing ratio from the observation and three DNN 513 

predictions: FFN, HPC, and HAC in January and July 2005 at 3 PM and 12 AM local time. 514 

The y-axis uses log scale. The training data are from 20 years (1984 to 2003) of 3-hourly WRF 515 

output. The lower and upper dash lines show the lowest and highest (5th and 95th percentile) 516 

PBL heights at that particular time. For example, in January 12 AM, the lowest PBL height 517 

is about 19 m, while the highest PBL height is about 365 m.   518 

Figure 3: RMSE and correlations for time series of temperature and water vapor vertical 519 

profiles within the PBL predicted by the three DNNs compared with the observations. The 520 

vertical lines show the range of RMSEs and correlations when considering the lowest and 521 

highest PBL heights at each particular time (shown by the dashed horizontal lines in Figure 522 

2). The training data are 3-hourly WRF output from 1984 to 2003.   523 

Figure 4: Same as Figure 2 but for wind direction and wind speed.  524 

Figure 5: Same as Figure 3 but for wind components. 525 

Figure 6: RMSEs for temperature, water vapor, and wind components at midnight of 526 

January using three DNNs. Left y-axis is for RMSEs of HAC and HPC; right y-axis is for 527 

RMSE of FFN. The RMSEs are calculated along the time series below the PBL height for 528 

January midnight at local time. The lower and upper end of the dash lines are RMSEs that 529 

consider the lowest and highest PBL heights as shown in Figure 2.  530 
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Figure 7: Same as Figure 6 but for Pearson correlations.  531 

Figure 8: Terrain height (left) and vegetation types (right) for Logan, Kansas, and other 532 

locations that we used to assess the spatial transferability of our domain-aware DNNs. 533 

Figure 9: Normalized RMSEs relative to their corresponding observations at midnight of 534 

January for temperature, water vapor mixing ratio, and wind component. The sites are in 535 

the order of short to long distance from the reference site at Logan, Kansas. 536 

Figure 10: Same as Figure 9 but for correlations between DNN predictions and observations.  537 
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Table 1: Inputs and outputs for the NN developed in this study. The variable names of these 538 

inputs and outputs in the WRF are shown in the parentheses. 539 

Input Variable  Output Variable 

2-meter water vapor mixing ratio (Q2),  zonal wind (U) 

2-meter air temperature (T2),  meridional wind (V) 

10-meter zonal and meridional wind (U10, V10)  temperature (tk) 

Ground heat flux (GRDFLX)  water vapor mixing ratio (QVAPOR) 

Downward short wave flux (SWDOWN)   

Downward long wave flux (GLW)   

Latent heat flux (LH)   

Upward heat flux (HFX)   

Planetary boundary layer height (PBLH)   

Surface friction velocity (UST)   

Ground temp (TSK)   

Soil temperature at 2 m below ground (TSLB)   

Soil moisture for 0-0.3cm below ground (SMOIS)   

Geostrophic wind component at 700 hPa (Ug, Vg)   

 540 
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Table 2: Training and prediction time (unit: seconds) for the three DNNs using different 541 

lengths of training data. The predicted period is for one year (2005). 542 

DNN Type 

Training 

Data 

(years) 

Training 

Time (s) 

Number 

of 

Epochs 

Training Time (s) 

per Epoch 

Prediction 

Time (s) 

for 1 Year 

(2005) 

FNN 1 85.969 61 1.409 0.197 

FNN 2 137.359 47 2.923 0.196 

FNN 6 376.209 70 5.374 0.171 

FNN 12 199.468 23 8.673 0.193 

FNN 20 306.665 27 11.358 0.199 

      

HPC 1 199.152 178 1.119 0.336 

HPC 2 454.225 91 4.991 0.343 

HPC 6 1233.908 133 9.278 0.317 

HPC 12 1225.880 88 13.930 0.302 

HPC 20 1181.716 68 17.378 0.331 

      

HAC 1 131.104 95 1.380 0.366 

HAC 2 468.884 85 5.516 0.411 

HAC 6 870.753 80 10.884 0.406 

HAC 12 737.921 47 15.700 0.420 

HAC 20 1351.898 69 19.593 0.381 

 543 
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(a) 544 

(b) 545 

(c) 546 

Figure 1: Three variants of DNN developed in this study: (a) fully connected feed forward 547 

neural network (FFN), (b) hierarchically connected network with previous layer only 548 

connection (HPC), and (c) hierarchically connected network with all previous layers 549 

connection (HAC). 550 
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 551 

Figure 2: Temperature and water vapor mixing ratio from the observation and three DNN 552 

predictions: FFN, HPC, and HAC in January and July of 2005 at 3 PM and 12 AM local 553 

time. The y-axis uses log scale. The training data are from 20 years (1984 to 2003) of 3-hourly 554 

WRF output. The lower and upper dash lines show the lowest and highest (5th and 95th 555 

percentile) PBL heights at that particular time. For example, in January 12 AM, the lowest 556 

PBL height is about 19 m, while the highest PBL height is about 365 m.   557 
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 558 

Figure 3: RMSE and correlations for time series of temperature and water vapor vertical 559 

profiles within the PBL predicted by the three DNNs compared with the observations. The 560 

vertical lines show the range of RMSEs and correlations when considering the lowest and 561 

highest PBL heights at each particular time (shown by the dashed horizontal lines in Figure 562 

2). The training data are 3-hourly WRF output from 1984 to 2003.   563 
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 564 

Figure 4: Same as Figure 2 but for wind direction and wind speed.  565 
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 566 

Figure 5: Same as Figure 3 but for wind components. 567 
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 568 

Figure 6: RMSEs for temperature, water vapor, and wind components at midnight of 569 

January using three DNNs. Left y-axis is for RMSEs of HAC and HPC; right y-axis is for 570 

RMSE of FFN. The RMSEs are calculated along the time series below the PBL height for 571 

January midnight at local time. The lower and upper end of the dash lines are RMSEs 572 

that consider the lowest and highest PBL heights as shown in Figure 2.  573 
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 574 

Figure 7: Same as Figure 6 but for Pearson correlations.   575 
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  576 

Figure 8: Terrain height (left) and vegetation types (right) for Logan, Kansas, and other 577 

locations that we used to assess the spatial transferability of our domain-aware DNNs. 578 
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 579 

Figure 9: Normalized RMSEs relative to their corresponding observations at midnight of 580 

January for temperature, water vapor mixing ratio, and wind component. The sites are in 581 

the order of short to long distance from the reference site at Logan, Kansas. 582 

30

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-79
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 29 April 2019
c© Author(s) 2019. CC BY 4.0 License.



 583 

Figure 10: Same as Figure 9 but for correlations between DNN predictions and observations. 584 

31

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-79
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 29 April 2019
c© Author(s) 2019. CC BY 4.0 License.


