
Fast domain-aware neural network emulation of a planetary 1

boundary layer parameterization in a numerical weather 2

forecast model 3

1Jiali Wang, 2Prasanna Balaprakash, and 1Rao Kotamarthi* 4

1Environmental Science Division, Argonne National Laboratory, 9700 South Cass Avenue, 5
Lemont, IL 60439, USA 6

2Mathematics and Computer Science Division, Argonne National Laboratory, 9700 South Cass 7
Avenue, Lemont, IL 60439, USA 8

Correspondence to: Rao Kotamarthi (vrkotamarthi@anl.gov) 9

 10

Abstract. Parameterizations for physical processes in weather and climate models are 11

computationally expensive. We use model output from a set of simulations performed using the 12

Weather Research Forecast (WRF) model to train deep neural networks and evaluate whether 13

trained models can provide an accurate alternative to the physics-based parameterizations. 14

Specifically, we develop an emulator using deep neural networks for a planetary boundary layer 15

(PBL) parameterization in the WRF model. PBL parameterizations are used in atmospheric 16

models to represent the diurnal variation of the formation and collapse of the atmospheric 17

boundary layer―the lowest part of the atmosphere. The dynamics and turbulence, as well as 18

velocity, temperature, and humidity profiles within the boundary layer are all critical for 19

determining many of the physical processes in the atmosphere. PBL parameterizations are used 20

to represent these processes that are usually unresolved in a typical numerical weather model that 21

operates at horizontal spatial scales in the tens of kilometers. We demonstrate that a domain-22

aware deep neural network, which takes account of underlying domain structure (e.g., nonlocal 23

mixing between multiple vertical layers), can successfully simulate the vertical profiles within 24

the boundary layer of velocities, temperature, and water vapor over the entire diurnal cycle. We 25

then assess the spatial transferability of the domain-aware neural networks by using a trained 26

model from one location to nearby locations. Results show that a single trained model from a 27

location over the midwestern United States produces predictions of wind speed, temperature, and 28

water vapor profiles over the entire diurnal cycle and nearby locations with similar terrain 29

conditions with correlations higher than 0.9 when compared with the WRF simulations used as 30

the training dataset. 31

mailto:vrkotamarthi@anl.gov
mailto:vrkotamarthi@anl.gov

1 Introduction 32

Model developers use approximations to represent the physical processes involved in climate and 33

weather that cannot be resolved at the spatial resolution of the model grids or in cases where the 34

phenomena are not fully understood (Williams, 2005). These approximations are referred to as 35

parameterizations (McFarlane, 2011). While these parameterizations are designed to be 36

computationally efficient, calculation of a model physics package still takes a good portion of the 37

total computational time. For example, in the community atmospheric model (CAM) developed 38

by National Center for Atmospheric Research (NCAR), with spatial resolution of approximately 39

300 km and 26 vertical levels, the physical parameterizations account for about 70% of the total 40

computational burden (Krasnopolsky and Fox-Rabinovitz, 2006). In the Weather Research 41

Forecast (WRF) model, with spatial resolution of tens of kilometers, time spent by physics is 42

approximately 40% of the computational burden. The input and output overhead is around 20% 43

of the computational time at low node count (100’s) and can increase significantly at higher node 44

count as a percentage of the total wall-clock time. 45

An increasing need in the climate community is performing high spatial resolution simulations 46

(grid spacing of 4 km or less) and generating large ensembles of these simulations in order to 47

address uncertainty in the model projections and to assess risk and vulnerability due to climate 48

variability at local scale. Developing process emulators (Leeds et al., 2013; Lee et al., 2011) that 49

can reduce the time spent in calculating the physical processes will lead to much faster model 50

simulations, enabling researchers to generate high spatial resolution simulations and a large 51

number of ensemble members. 52

A neural network (NN) is composed of multiple layers of simple computational modules, where 53

each module transforms its inputs to a nonlinear output. Given sufficient data, an appropriate NN 54

can model the underlying nonlinear functional relationship between inputs and outputs with 55

minimal human effort. During the past two decades, NN techniques have found a variety of 56

applications in atmospheric science. For example, Collins and Tossot (2015) developed an 57

artificial NN model by taking numerical weather prediction model (e.g., WRF) output as input to 58

predict thunderstorm occurrence within a few hundreds of square kilometers about 12 hours in 59

advance. Krasnopolsky et al. (2016) used NN techniques for filling the gaps in satellite 60

measurements of ocean color data. Scher (2018) used deep learning to emulate the complete 61

physics and dynamics of a simple general circulation model and indicated a potential capability 62

of weather forecasts using this NN-based emulator. Neural networks are particularly appealing 63

for emulations of model physics parameterizations in numerical weather and climate modeling, 64

where the goal is to find nonlinear functional relationship between inputs and outputs (Cybenko, 65

1989; Hornik, 1991; Chen and Chen, 1995a,b; Attali and Pagès, 1997). NN techniques can be 66

applied to weather and climate modeling in two ways. One approach involves developing new 67

parameterizations by using NNs. For example, Chevallier et al. (1998; 2000) developed a new 68

NN-based longwave radiation parameterization, NeuroFlux, which has been used operationally 69

in the European Centre for Medium-Range Weather Forecasts four-dimensional variational data 70

assimilation system. NeuroFlux is found eight times faster than the previous parameterization. 71

Krasnopolsky et al. (2013) developed a stochastic convection parameterization based on learning 72

from data simulated by a cloud-resolving model (CRM), initialized with and forced by the 73

observed meteorological data. The NN convection parameterization was tested in the NCAR 74

CAM and produced reasonable and promising results for the tropical Pacific region. Jiang et al. 75

(2018) developed a deep NN-based algorithm or parameterization to be used in the WRF model 76

to provide flow-dependent typhoon-induced sea surface temperature cooling. Results based on 77

four typhoon case studies showed that the algorithm reduced maximum wind intensity error by 78

60–70% compared with using the WRF model. The other approach for applying NN to weather 79

and climate modeling is to emulate existing parameterizations in these models. For example, 80

Krasnopolsky et al. (2005) developed an NN-based emulator for imitating an existing 81

atmospheric longwave radiation parameterization for the NCAR CAM. They used output from 82

the CAM simulations with the original parameterization for the NN training. They found the 83

NN-based emulator was 50–80 times faster than the original parameterization and produced 84

almost identical results. 85

We study NN models to emulate existing physical parameterizations in atmospheric models. 86

Process emulators that can reproduce physics parameterization can ultimately lead to the 87

development of a faster model emulator that can operate at very high spatial resolution as 88

compared with most current model emulators that have tended to focus on simplified physics 89

(Kheshigi et al., 1999). Specifically, this study involves the design and development of a 90

domain-aware NN to emulate a PBL parameterization using 22-year-long output created by a set 91

of WRF simulations. To the best of our knowledge, we are among the first to apply deep neural 92

networks to the WRF model to explore the emulation of physics parameterizations. As far as we 93

know from the literature available at the time of this writing, the only application of NNs for 94

emulating the parameterizations in the WRF model is by Krasnopolsky et al. (2017). In their 95

study, a three-layer NN was trained to reproduce the behavior of the Thompson microphysics 96

(Thompson 2008) scheme in the WRF-ARW model. While we focus on learning the PBL 97

parameterization and developing domain-aware NN for emulation of PBL, the ultimate goal of 98

our on-going project is to build an NN-based algorithm to empirically understand the process in 99

the numerical weather/climate models that could be used to replace the physics parameterizations 100

that were derived from observational studies. This emulated model would be computationally 101

efficient, making the generation of large ensemble simulations feasible at very high 102

spatial/temporal resolutions with limited computational resources. The key objectives of this 103

study are to answer the following questions specifically for PBL parameterization emulation: (1) 104

What and how much data do we need to train the model? (2) What type of NN should we apply 105

for the PBL parameterization studied here? (3) Is the NN emulator accurate compared with the 106

original physical parameterization? This paper is organized as follows. Section 2 describes the 107

data and the neural network developed in this study. The efficacy of the neural network is 108

investigated in Section 3. Discussion and summary follow in Section 4. 109

2 Data and Method 110

2.1 Data 111

The data we use in this study is 22-year output from the regional climate model WRF version 112

3.3.1, driven by NCEP-R2 for the period 1984-2005. WRF is a fully compressible, 113

nonhydrostatic, regional numerical prediction system with proven suitability for a broad range of 114

applications. The WRF model configuration and evaluations are given by Wang and Kotamarthi 115

(2014). Covering all the troposphere are 38 vertical layers, between the surface to approximately 116

16 km (100 hPa). The lowest 17 layers cover from the surface to about 2 km above the ground. 117

The PBL parameterization we used for this WRF simulation is known as the YSU scheme (Hong 118

et al., 2006). The YSU scheme uses a nonlocal-mixing scheme with an explicit treatment of 119

entrainment at the top of the boundary layer and a first-order closure for the Reynolds-averaged 120

turbulence equations of momentum of air within the PBL. 121

The goal of the work described here is to develop an NN-based parameterization emulator that 122

can be used to replace the PBL parameterization in the WRF model. Thus, we expect the NN 123

submodel to receive a set of inputs that are equivalent to the inputs provided to the YSU scheme 124

at each timestep. 125

Table 1 shows the architecture in terms of inputs and outputs used in our experiments. The inputs 126

are near-surface characteristics including 2-meter water vapor and air temperature, 10-meter 127

zonal and meridional wind, ground heat flux, incoming shortwave radiation, incoming longwave 128

radiation, PBL height, sensible heat flux, latent heat flux, surface friction velocity, ground 129

temperature, soil temperature at 2 m below the ground, soil moisture at 0–0.3cm below the 130

ground, and geostrophic wind component at 700 hPa. The outputs for the NN architecture are the 131

vertical profiles of the following five model prognostic and diagnostic fields: temperature, water 132

vapor mixing ratio, zonal and meridional wind (including speed and direction), as well as vertical 133

motions. In this study we develop an NN emulation of the PBL parameterization; hence we focus 134

only on predicting the profiles within the PBL, which is on average around 200 m and 400 m 135

during the night and afternoon of winter, respectively, and around 400 m and 1300 m during the 136

night and afternoon of summer, respectively, for the locations studied here. The middle and 137

upper troposphere (all layers above the PBL) are considered fully resolved by the dynamics 138

simulated by the model and hence not parameterized. Therefore, we do not consider the levels 139

above PBL height because (1) they carry no information about input/output functional 140

dependence that affects the PBL and (2) if not removed, they introduce additional noise in the 141

training. Specifically, we use the WRF output from the first 17 layers, which are within 1,900 142

meters and well cover the PBL. 143

2.2 Deep neural networks for PBL parameterization emulation 144

A class of machine learning approaches that is particularly suitable for emulation of PBL 145

parameterization is supervised learning. This approach models the relationship between the 146

outputs and independent input variables by using training data (xi, yi), for xi ∈ T ⊂ D, where T is 147

a set of training points, D is the full data set, and xi and yi = f(xi) are inputs and its corresponding 148

output yi, respectively. The function f that maps the inputs to the outputs is typically unknown 149

and hard to derive analytically. The goal of the supervised learning approach is to find a 150

surrogate function h for f such that the difference between f(xi) and h(xi) is minimal for all xi ∈ T. 151

Many supervised learning algorithms exist in the machine learning literature. This study focuses 152

on deep neural networks (DNNs). 153

DNNs are composed of an input layer, a series of hidden layers, and an output layer. The input 154

layer receives the input xi, which is connected to the hidden layers. Each hidden layer receives 155

inputs from the previous hidden layer (except the first hidden layer that is connected to the input 156

layer) and perform certain nonlinear transformations through a system of weighted connections 157

and a nonlinear activation function on the received input values. The last hidden layer is 158

connected to the output layer from which the predicted values are obtained. The training data is 159

given to the DNN through the input neural layer. The training procedure consists of modifying 160

the weights of the connections in the network to minimize a user-defined objective function that 161

measures the prediction error of the network. Each iteration of the training procedure comprises 162

two phases: forward pass and backward pass. In the forward pass, the training data are passed to 163

the network and the prediction error is computed; in the backward pass, the gradients of the error 164

function with respect to all the weights in the network is computed and used to update the 165

weights in order to minimize the error. Once the entire dataset pass both forward and backward 166

through the DNN (with many iterations), one epoch is completed. 167

Deep feed-forward neural network (FFN): This is a fully connected feed-forward DNN 168

constructed as a sequence of K hidden layers, where the input of the ith hidden layer is from {i-169

1}th hidden layer and the output of the ith hidden layer is given as the input of the {i+1}th 170

hidden layer. The sizes of the input and output neural layers are 16 (= near-surface variables) and 171

85 (= 17 vertical levels × 5 output variables). See Figure 1a for an illustration. 172

While the FFN is a typical way of applying NN for finding the nonlinear relationship between 173

input and output, a key drawback is that it does not consider the underlying PBL structure, such 174

as the vertical connection between different vertical levels within the PBL. In fact, the FFN does 175

not know which data (among the 85 variables) belongs to which vertical levels in a certain 176

profile. This is not typically needed for NNs in general and in fact is usually avoided because, for 177

classification and regression, one can find visual features regardless of their locations. For 178

example, a picture can be classified as a certain object even that object has never appeared in the 179

given location in the training set. In our case, however, the location is fixed and the profiles over 180

that location is distinguishable from other locations if they have different terrain conditions. 181

Consequently, it is desired to learn vertical connection between multiple layers within the PBL in 182

the forecast. For example, the feature at a lower level of a profile plays a role in the feature at a 183

higher level and can help refine the output at the higher level and accordingly the entire profile. 184

This dependence may inform the NN and provide better accuracy and data efficiency. To that 185

end, we develop two variants of DNNs for PBL emulation. 186

Hierarchically connected network with previous layer only connection (HPC): We assume 187

that the outputs at each altitude level depend not only on the 16 near-surface variables but also 188

on the adjacent altitude level below it. To model this explicitly, we develop a DNN variant as 189

follows: the input layer is connected to the first hidden layer followed by the output layer of size 190

5 (five variable at each layer: temperature, water vapor, zonal and meridional wind, and vertical 191

motions) that corresponds to the first PBL. This output layer along with the input layer is 192

connected to second hidden layer, which is connected to the second output layer of size 5 that 193

corresponds to the second PBL. Thus, the input to an ith hidden layer comprises the input layer 194

of the 16 near-surface variables and the i-1th output layer below it See Figure 1b for an example. 195

Hierarchically connected network with all previous layers connection (HAC): We assume 196

that the outputs at each PBL depend not only on the 16 near-surface variables but also on all 197

altitude levels below it. To model this explicitly, we modify HPC DNN as follows: the input to 198

an ith hidden layer comprises the input layer of the 16 near-surface variables and all output 199

layers {1, 2, …, i-1} below it. See Figure 1c for an example. 200

From the physical process perspective, HPC and HAC considers both local and non-local mixing 201

processes within the PBL by taking into account not only the connection between a given point 202

and its adjacent point (local mixing), but also the connections from multiple vertical altitude 203

levels (e.g., surface and all the points that below the given points). Compared with solely local 204

mixing process, non-local mixing process is showed to perform more accurately in simulating 205

deeper mixing within an unstable PBL (Cohen et al. 2015). 206

From the neural network perspective, the key advantage of HPC and HAC over FNN is effective 207

back-propagation while training. In HPC and HAC, each hidden layer has an output layer; 208

consequently, during the back propagation, the gradients from each of the output layer can be 209

used to update the weights of the hidden layer directly to minimize the error for PBL specific 210

outputs. 211

2.3 Setup 212

For preprocessing, we applied StandardScaler (removes the mean and scales each variable to unit 213

variance) and MinMaxScaler (scales each variable between 0 and 1) transformations before 214

training, and we applied the inverse transformation after prediction so that the evaluation metrics 215

are computed on the original scale. 216

We note that there is no default value for N units in a dense hidden layer. We conducted an 217

experimental study on FFN and found that setting N to 16 results in good predictions. Therefore, 218

we used the same value of N = 16 in HPC and HAC. 219

For the implementation of DNN, we used Keras (version 2.0.8), a high-level neural network 220

Python library that runs on the top of the TensorFlow library (version 1.3.0). We used the scikit-221

learn library (version 0.19.0) for the preprocessing module. The experiments were run on a 222

Python (Intel distribution, version 3.6.3) environment. 223

All three DNNs used the following setup for training: optimizer = adam, learning rate = 0.001, 224

epochs = 1000, batch size = 64. Note that batch size and number of epochs define the number of 225

randomly sampled training points required before updating the model parameters and the number 226

times that training will work through the entire training dataset. To avoid overfitting issues in 227

DNNs, we use an early stopping criterion in which the training stops when the validation error 228

does not reduce for 10 subsequent epochs. 229

The 22-year data from the WRF simulation was partitioned into three parts: a training set 230

consisting of 20 years (1984–2003) of 3-hourly data to train the NN; a development set (also 231

called validation set) consisting of 1 year (2004) of 3-hourly data used to tune the algorithm’s 232

hyperparameters and to control overfitting (the situation where the trained network predicts well 233

on the training data but not on the test data); and a test set consisting of 1 year of records (2005) 234

for prediction and evaluations. 235

We ran training and inference on a NVIDIA DGX-1 platform: Dual 20-Core Intel Xeon E5-2698 236

v4 2.2 GHz processor with 8 NVIDIA P100 GPUs with 512 GB of memory. The DNN’s training 237

and inference leveraged only a single GPU. 238

3 Results 239

In the following discussion we evaluate the efficacy of the three DNNs by comparing their 240

prediction results with WRF model simulations. We refer to the results of WRF model 241

simulations as observations because the DNN learns all the knowledge from the WRF model 242

output, not from in situ measurements. We refer to the values from the DNN models as 243

predictions. We initiate our DNN development at one grid cell from WRF output that is close to 244

a site in the midwestern United States (Logan, Kansas, latitude= 38.8701°N; longitude= 245

100.9627°W) and another grid cell at a site in Alaska (Kenai Peninsula Borough, AK, latitude= 246

60.7237 °N; longitude=150.4484 °W) to evaluate the robustness of the developed DNNs. We 247

then apply our DNNs to an area with size of ~1100 km x 1100 km, centered at the Logan site to 248

assess the spatial transferability of the DNNs. In other words, we train our DNNs using a single 249

location, and then apply the DNNs to multiple grid points nearby. While the Alaska site has 250

different vertical profiles, especially for wind directions, and lower PBL heights in both January 251

and July, the conclusion in terms of the model performance is similar to the site over Logan, 252

Kansas. 253

3.1 DNN performance in temperature and water vapor 254

Figure 2 shows the diurnal variation (explicitly 3 PM and 12 AM local time at Logan, Kansas) of 255

temperature and water vapor mixing ratio vertical profiles in the first 17 layers from the 256

observation and three DNN model predictions. The figures present results for both January and 257

July of 2005. The dashed lines show the lowest and highest (5th and 95th percentile, respectively) 258

PBL heights for that particular time. In general, the DNNs are able to produce similar shapes of 259

the observed profiles, especially within the PBL. Both the temperature and water vapor mixing 260

ratio are lower in January and higher in July. Within the PBL, the temperature and water vapor 261

do not change much with height; above the PBL to the entrainment zone, the temperature and 262

water vapor start decreasing. Among the three DNNs, HAC and HPC show very low bias and 263

high accuracy in the PBL; the FFN shows a relatively large discrepancy from the observation. 264

Figure 3 shows the root-mean-square error (RMSE) and Pearson correlation coefficient (COR) 265

between observation and three DNN predictions in the afternoon and midnight of January and 266

July. The RMSE and COR consider not only the time series of observation and prediction but 267

also their vertical profiles below the PBL heights for each particular time. Among the three 268

DNNs, HPC and HAC always show better skill with smaller RMSEs and higher CORs than does 269

FFN. The reason is that the FFN uses only the 16 near-surface variables as inputs and all the 85 270

variables (17 layers × 5 variables/layer) as output, and does not have the knowledge about the 271

vertical connections between each of the vertical levels. In contrast, HPC and HAC use both the 272

near-surface variables and the five output variables of one previous vertical level (HPC) or all 273

previous vertical levels (HAC) as inputs for predicting a certain vertical level of each field. This 274

architecture is helpful for reducing errors of each hidden layer during the backward propagation. 275

It is also important because PBL parameterizations are used to represent the vertical mixing of 276

heat, moist, and momentum within the PBL and this mixing can be across a larger scale than just 277

the adjacent altitude levels. This process is usually unresolved in a typical climate and weather 278

models that operate at horizontal spatial scales in the tens of kilometers. We find in general HAC 279

and HPC perform similarly, although in winter especially midnight when the PBL is shallow, the 280

RMSE of temperature predicted by HAC is larger than that predicted by HPC. In contrast, in 281

summer especially in afternoon when the PBL is deep, the RMSE of temperature predicted by 282

HAC is smaller than that predicted by HPC. This emphasizes the importance of consideration of 283

multi-level vertical connection for deep PBL case in the DNNs. 284

3.2 DNN performance in wind component 285

Figure 4 shows the diurnal variation of zonal and meridional wind (including wind speed and 286

direction) profiles in January and July 2005 from observation and three DNN predictions. 287

Compared with the temperature and water vapor profiles, the wind profiles are more difficult to 288

predict, especially for days (e.g., summer) that have a higher PBL. The wind direction does not 289

change much below the majority of the PBL, and it turns to westerly winds when going up and 290

beyond the PBL. The DNN prediction has difficulty predicting the profile above the PBL height, 291

as is expected because these layers are considered fully resolved by the dynamics simulated by 292

the WRF model and hence not parameterized. Therefore, we do not consider DNN performance 293

at the levels above PBL height, because the DNNs carry no information about input/output 294

functional dependence that affects the PBL. The wind speed increases with height in both 295

January and July within the PBL. Above the PBL heights, the wind speed still increases in 296

January but decreases in July. The reason is that in January the zonal wind, especially westerly 297

wind, is dominant in the atmosphere and the wind speed increases with height; in July, however, 298

the zonal wind is relatively weak, and the meridional wind is dominant with southerly wind 299

below ~2 km and northerly wind above 2 km. The decrease in wind speed above the PBL is just 300

about the transition of wind direction from southerly to northerly wind. Figure 5 shows the 301

RMSEs and CORs between the observed and predicted wind component within the PBL. The 302

wind component is fairly well predicted by the HAC and HPC networks with correlation above 303

0.8 for wind speed and 0.7 for wind direction except in July at midnight, which is near 0.5. 304

Similar to the predictions for temperature and water vapor, the FFN shows the poorest prediction 305

accuracy with large RMSEs and low CORs, especially for wind direction in July midnight, the 306

COR is below zero. For accurately predicting the wind direction, we found that using the 307

geostrophic wind at 700 hPa as one of the inputs for the DNNs is important. 308

3.3 DNN dependence on length of training period 309

Next, we evaluate how sensitive the DNN is to the amount of available training data and how 310

much data one would need in order to train a DNN. While we present Figures 2–5 using 20-year 311

(1984–2003) training data, here we gradually decrease the length of the training set to 12 (1992–312

2003), 6 (1998–2003), 2 (2002–2003) years, and 1 (2003) year. The validation data (for tuning 313

hyper-parameters and controlling overfit) and the test data (for prediction) are kept the same as 314

in our standard training dataset, which is year 2004 and 2005, respectively. Figures 6 and 7 show 315

the RMSE and CORs between observed and predicted profiles of temperature, water vapor, and 316

wind component for January midnight. Overall, the FFN network depends heavily on the length 317

of training dataset. For example, the RMSE of FFN predicted temperature decreases from 7.2 K 318

using one year of training data to 3.0 K using 20-year training data. HAC and HPC also depend 319

on the length of training data especially when less than 6-year training data is available, but even 320

their worst prediction accuracy (using one year of training data) is still better than FFN using 20-321

year training data. The RMSEs of HPC and HAC predicted temperature decrease from ~2.4 K 322

using 1 year of training data to ~1.5 K using 20 years of training data. The CORs of FFN 323

predicted temperature increase from 0.73 using one year of training data to 0.92 using 20 years 324

of training data. The CORs for HPC and HAC increase slightly with more training data, but 325

overall they are above 0.85 using one year to 20 years of training data. 326

Regarding the question about how much data one would need to train a DDN, for FFN, at least 327

from this study, the performance is not stable until one has 12 or more years of training data, 328

which is significantly better than having only 6 years or less of training data. For HAC and HPC, 329

however, having 6 years of training data seems sufficient to show a stable prediction. Increasing 330

the amount of training data shows only marginal improvement in predictive accuracy. In fact, in 331

contrast to HAC and HPC, the performance of FFN has not reached a plateau even with the 20 332

years of training data. This suggests that with longer training sets the predicting skill of FFN 333

could be further improved even though it does not explicitly consider the physical process within 334

a PBL. 335

3.4 DNN performance for nearby locations 336

This section assesses the spatial transferability of the domain-aware neural networks (specifically 337

HAC and HPC) by using a trained model from one location (at Logan, Kansas, as presented 338

above) to other locations within an area with size of 1100 km x 1100 km, covering latitude from 339

33.431 to 44.086°N, and longitude from 107.418 to 93.6975°W, centered at the Logan site with 340

different terrain and vegetation conditions (Figure 8, top). To reduce the computational burden, 341

we pick every other 7 grid points in this area and use the 13 × 13 grid points (which can still 342

capture the terrain variability) to test the spatial transferability of the DNNs developed based on 343

the single location at Logan, Kansas. For each of the 13× 13 grid points, we calculate the 344

differences and correlations between observations and predictions. Different from the preceding 345

section, here we calculate normalized RMSEs relative to each grid point’s observations averaged 346

over a particular time period, in order to make the comparison feasible between different grid 347

points over the area. As shown in Figures 8 and 9 by the normalized RMSEs and Pearson 348

correlations, in general, for temperature, water vapor, and wind speed, the neural network still 349

work fairly well for surrounding locations and even far locations with similar terrain height, 350

except over the grid points where the terrain height is much higher than the Logan site, and the 351

prediction skill gets worse with larger RMSEs. This suggests the DNNs developed based on 352

Logan site are not applicable for these locations. However, for wind direction, the prediction 353

skill is good over the western part of the tested area, but is not so good over the far eastern part 354

of the area. One of the reasons is perhaps because that the driver of the wind direction over the 355

western and the eastern part of the area are different (complex terrain versus large-scale system). 356

Overall, the results indicate that, at least for this study, as long as the terrain conditions (slope, 357

elevation, and orientation) are similar, the DNNs developed based on one single location can be 358

applied with similar prediction skill for locations that are as far as 520 km (equal to more than 40 359

grid cells in the WRF output used in this study) to predict the variables assessed in this study. 360

The results also suggest that when implementing the NN-based algorithm into the WRF model, if 361

a number of grid cells are over a homogenous region, one may not need to train the NN over 362

every grid cell. This will significantly save computing time because the training process takes the 363

majority of the computing resource (see below). While we show results predicted by HAC in 364

January here, we find similar conclusion from HPC prediction and both HAC and HPC 365

predictions in July, expect that the prediction skills are even better in July for the adjacent 366

locations. 367

3.5 DNN training and prediction time 368

Table 2 shows the number of epochs and time required for training FNN, HPC, and HAC for 369

various numbers of training years. Because of the early stopping criterion, the number of training 370

epochs performed by different methods is not same. Despite setting the maximum epochs to 371

1000, all these methods terminate within 178 epochs. We observed that HPC performs more 372

training epochs than do FFN and HAC: given the same optimizer and learning rate for all the 373

methods, HPC has a better learning capability because it can improve the validation error more 374

than HAC and FNN can. For a given set of training data, the difference in the training time per 375

epoch can be attributed to the number of trainable parameters in FNN, HPC, and HAC (10,693, 376

16,597, and 26,197, respectively). As we increase the size of training data, the training time per 377

epoch increases significantly for all three DNN models. The increase also depends on the 378

number of parameters in the model. For example, increasing the training data from 1 year to 20 379

years increases the training time per epoch from 1.4 seconds to 11.4 seconds for FNN, from 1.1 380

seconds to 17.4 seconds, and from 1.4 seconds to 19.6 seconds for HPC and HAC, respectively. 381

The prediction times of FNN, HPC, and HAC are within 0.5 seconds for one-year data, making 382

these models promising for PBL emulation deployment. The difference in the prediction time 383

between models can be attributed to the number of parameters in the DNNs: the larger the 384

number of parameters, the longer the prediction time. For example, the prediction times for FFN 385

are below 0.2 seconds when using different numbers of years for training, while those for HAC 386

are around 0.4 seconds. Despite the difference in the number of training years, the number of 387

parameters for a given model is fixed. Therefore, once the model is trained, the DNN prediction 388

time depends only on the model and the number of points in the test data (1 year in this study). 389

Theoretically, for the given model and the test data, the prediction time should be constant even 390

with different amounts of training dataset. However, we observed slight variations in the 391

prediction times that range from 0.17 to 0.29 seconds for FNN, 0.30 to 0.34 seconds for HPC, 392

and 0.36 to 0.42 seconds for HAC, which can be attributed to the system software. 393

4 Summary and Discussion 394

This study developed DNNs for emulating the YSU PBL parameterization that is used by the 395

WRF model. Two of the DDNs take into account the domain-specific features (e.g., nonlocal 396

mixing in terms of vertical dependence between multiple PBL layers. The input and output data 397

for the DNNs are taken from a set of 22-year-long WRF simulations. We developed the DNNs 398

based on a midwestern location in the United States. We found that the domain-aware DNNs can 399

reproduce the vertical profiles of wind, temperature, and water vapor mixing ratio with high 400

accuracy yet require fewer data than the traditional DNN, which does not care about the domain-401

specific features. The training process takes the majority of the computing time. Once trained, 402

the model can quickly predict the variables with decent accuracy. This ability makes the deep 403

neural network appealing for parameterization emulator. 404

Following the same architecture that we developed for Logan, Kansas, we also built DNNs for 405

one location at Alaska. The results share the same conclusion as we have seen for the Logan site. 406

For example, among the three DNNs, HPC and HAC show much better skill with smaller 407

RMSEs and higher correlations than does FFN. The wind profiles are more difficult to predict 408

than the profiles of temperature and water vapor. For FFN, the prediction accuracy increases 409

with more training data; for HPC and HAC, the prediction skill stays similar when having six or 410

more years of training data. 411

While we trained our DNNs over individual locations in this study using only one computing 412

node (with multiple processors), there are 300,000 grid cells over our WRF model domain, 413

which simulated the North American continent as a horizontal resolution of 12 km. To train a 414

model for all the grid cells or all the homogeneous regions over this large domain, we will need 415

to scale up the algorithm to hundreds if not thousands of computing nodes to accelerate the 416

training time and the make the entire NN-based simulation faster than the original 417

parameterization. 418

The ultimate goal of this project is to build an NN-based algorithm to empirically understand the 419

process in the numerical weather and climate models and to replace the PBL parameterization 420

and other time-consuming parameterizations that were derived from observational studies. The 421

DNNs developed in this study can provide numerically efficient solutions to a wide range of 422

problems in environmental numerical models where lengthy, complicated calculations describing 423

physical processes must be repeated frequently or need a large ensemble of simulations to 424

represent uncertainty. A possible future direction for this research is implementing these NN-425

based schemes in WRF for a new generation of hybrid regional-scale weather/climate models 426

that fully represent the physics at a very high spatial resolution at a fast computational time so as 427

to provide the means for generating large ensemble model runs. 428

Data and code availability. The data used and the code developed in this study are available at 429

https://github.com/pbalapra/dl-pbl. 430

Author contributions. JW participated in the entire project by providing domain expertise and 431

analyzing the results from the NN-based emulator. PB developed the deep neural networks and 432

conducted the experiments. RK proposed the idea of this project and provided high-level 433

guidance and insight for the entire study. 434

Competing interests. The authors declare that they have no conflict of interest. 435

Acknowledgments. The WRF model output was developed through computational support by the 436

Argonne National Laboratory Computing Resource Center and Argonne Leadership Computing 437

Facility. This material is based upon work supported by the U.S. Department of Energy, Office 438

of Science, under contract DE-AC02-06CH11357. 439

References 440

Attali, J. G., and Pagès, G.: Approximations of functions by a multilayer perception: A new 441

approach, Neural Networks, 6, 1069–1081, 1997. 442

 443

Chevallier, F., Chéruy, F., Scott, N. A., and Chédin, A.: A neural network approach for a fast and 444

accurate computation of longwave radiative budget, J. Appl. Meteorol., 37, 1385–1397, 1998. 445

 446

https://github.com/pbalapra/dl-pbl
https://github.com/pbalapra/dl-pbl

Chen, T., and Chen, H.: Approximation capability to functions of several variables, nonlinear 447

functionals and operators by radial basis function neural networks, Neural Networks, 6, 904– 448

910, 1995a. 449

 450

Chen, T., and Chen, H.: Universal approximation to nonlinear operators by neural networks with 451

arbitrary activation function and its application to dynamical systems, Neural Networks, 6, 911– 452

917, 1995b. 453

 454

Chevallier, F., Morcrette, J.‐J., Chéruy, F., and Scott, N. A.: Use of a neural‐network‐based 455

longwave radiative transfer scheme in the EMCWF atmospheric model, Q. J. R. Meteorol. Soc., 456

126, 761– 776, 2000. 457

 458

Collins, W., and Tissot, P.: An artificial neural network model to predict thunderstorms within 459

400 km2 South Texas domains, Meteorol. Appl., 22 (3), 650-665, 2015. 460

 461

Cohen, A.E., Cavallo, S.M., Coniglio, M.C., Brooks, H.E.: A review of planetary boundary layer 462

parameterization schemes and their sensitivity in simulating a southeast U.S. cold season severe 463

weather environment, Weather Forecast., 30, 591-612, 2015. 464

 465

Cybenko, G.: Approximation by superposition of sigmoidal functions, Math. Control Signals 466

Syst., 2, 303–314, 1989. 467

 468

Hauser, A., and Bühlmann, P.: Characterization and greedy learning of interventional Markov 469

equivalence classes of directed acyclic graphs. J. Mach. Learn. Res., 13, 2409–2464, 2002. 470

 471

Hong, S.-Y., Noh, S.Y., and Dudhia, J.: A new vertical diffusion package with an explicit 472

treatment of entrainment processes. Mon. Wea. Rev., 134, 2318–2341, 2006. 473

 474

Hornik, K.: Approximation capabilities of multilayer feedforward network, Neural Networks, 4, 475

251–257, 1991. 476

 477

Jiang, G.-Q., Xu, J., and Wei, J.: A deep learning algorithm of neural network for the 478

parameterization of typhoon-ocean feedback in typhoon forecast models, Geophysical Research 479

Letters, 45, 3706–3716, 2018. 480

 481

Kheshgi, H. S., Jain, A. K., Kotamarthi, V. R., and Wuebbles, D. J.: Future atmospheric methane 482

concentrations in the context of the stabilization of greenhouse gas concentrations. Journal of 483

Geophysical Research: Atmospheres, 104, D16: 19183–19190, 1999. 484

 485

Krasnopolsky, V. M., Fox‐Rabinovitz, M. S., and Chalikov, D. V.: New approach to calculation 486

of atmospheric model physics: Accurate and fast neural network emulation of long wave 487

radiation in a climate model, Mon. Weather Rev., 133, 1370–1383, 2005. 488

 489

Krasnopolsky, V. M., and Fox‐Rabinovitz, M. S.: Complex hybrid models combining 490

deterministic and machine learning components for numerical climate modeling and weather 491

prediction, Neural Networks, 19, 122–134, 2006. 492

 493

Krasnopolsky, V. M., Fox-Rabinovitz, M.S., and Belochitski, A. A.: Using ensemble of neural 494

networks to learn stochastic convection parameterizations for climate and numerical weather 495

prediction models from data simulated by a cloud resolving model. Adv. Artif. Neural. Syst., 1–496

13, 2013. 497

 498

Krasnopolsky, V. M., S. Nadiga, A. Mehra, E. Bayler, and D. Behringer: Neural networks 499

technique for filling gaps in satellite measurements: Application to ocean color observations, 500

Computational Intelligence and Neuroscience, 2016, Article ID 6156513, 9 pages, 2016. 501

doi:10.1155/2016/6156513 502

 503

Krasnopolsky, V. M., J. Middlecoff, J. Beck, I. Geresdi, and Z. Toth. A neural network emulator 504

for microphysics schemes. 97th AMS annual meeting, Seattle, WA. January 24, 2017. 505

 506

Lee, L. A., Carslaw, K. S., Pringle, K. J., Mann, G. M., and Spracklen, D. V.: Emulation of a 507

complex global aerosol model to quantify sensitivity to uncertain parameters, Atmos. Chem. 508

Phys., 11, 12,253–12,273, 2011. 509

 510

Leeds, W. B., Wikle, C. K., Fiechter, J., Brown, J., and Milliff, R. F.: Modeling 3D spatio‐511

temporal biogeochemical processes with a forest of 1D statistical emulators. Environmetrics, 512

24(1): 1–12, 2013. 513

 514

McFarlane, N.: Parameterizations: representing key processes in climate models without 515

resolving them. Wiley Interdisciplinary Reviews: Climate Change, 2 (4): 482–497, 2011. 516

 517

Scher, S.: Toward data-driven weather and climate forecasting: Approximating a simple general 518

circulation model with deep learning. Geophysical Research Letters, 45, 12,616–12,622, 2018. 519

 520

Thompson, G., Field, P.R., Rasmussen, R.M., Hall, W.D.: Explicit forecasts of winter 521

precipitation using an improved bulk microphysics scheme. Part II: Implementationof a new 522

snow parameterization, Mon. Weather Rev. 136, 5095–5115, 2008. 523

 524

Wang, J., and Kotamarthi, V. R.: Downscaling with a nested regional climate model in near-525

surface fields over the contiguous United States, Journal of Geophysical Research, Atmosphere, 526

119, 8778–8797, 2014. 527

 528

Williams, P. D.: Modelling climate change: the role of unresolved processes. Philosophical 529

Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 363 530

(1837): 2931–2946, 2005. 531

Table 1: Inputs and outputs for the NN developed in this study. The variable names of 532

these inputs and outputs in the WRF are shown in the parentheses. 533

Input Variable Output Variable

2-meter water vapor mixing ratio (Q2), zonal wind (U)

2-meter air temperature (T2), meridional wind (V)

10-meter zonal and meridional wind (U10, V10) temperature (tk)

Ground heat flux (GRDFLX) water vapor mixing ratio (QVAPOR)

Downward short wave flux (SWDOWN)

Downward long wave flux (GLW)

Latent heat flux (LH)

Upward heat flux (HFX)

Planetary boundary layer height (PBLH)

Surface friction velocity (UST)

Ground temp (TSK)

Soil temperature at 2 m below ground (TSLB)

Soil moisture for 0-0.3cm below ground (SMOIS)

Geostrophic wind component at 700 hPa (Ug, Vg)

 534

Table 2: Training and prediction time (unit: seconds) for the three DNNs using different 535

lengths of training data. The predicted period is for one year (2005). 536

DNN Type

Training

Data

(years)

Training

Time (s)

Number

of

Epochs

Training Time (s)

per Epoch

Prediction

Time (s)

for 1 Year

(2005)

FNN 1 85.969 61 1.409 0.197

FNN 2 137.359 47 2.923 0.196

FNN 6 376.209 70 5.374 0.171

FNN 12 199.468 23 8.673 0.193

FNN 20 306.665 27 11.358 0.199

HPC 1 199.152 178 1.119 0.336

HPC 2 454.225 91 4.991 0.343

HPC 6 1233.908 133 9.278 0.317

HPC 12 1225.880 88 13.930 0.302

HPC 20 1181.716 68 17.378 0.331

HAC 1 131.104 95 1.380 0.366

HAC 2 468.884 85 5.516 0.411

HAC 6 870.753 80 10.884 0.406

HAC 12 737.921 47 15.700 0.420

HAC 20 1351.898 69 19.593 0.381

 537

(a) 538

(b) 539

(c) 540

Figure 1: Three variants of DNN developed in this study. Red, yellow, and purple indicate 541

the input layer (16 near-surface variables), output layers, and hidden layers, respectively. 542

(a) fully connected feed forward neural network (FFN), which has only one output layer 543

with 85 variables (5 variables for each of the 17 WRF model vertical levels), and 17 hidden 544

layers which only consider the near-surface variables as inputs. (b) hierarchically 545

connected network with previous layer only connection (HPC), which has 17 output layers 546

(corresponding to the PBL levels) with each of them having 5 variables, and 17 hidden 547

layers with each them considering both near-surface variables and output variables from 548

previous output layer as inputs. (c) hierarchically connected network with all previous 549

layers connection (HAC), same as HPC, but each hidden layer also considers output 550

variables from all previous output layers as inputs. 551

In
pu

t
Lay

er
(1

6)

O
ut

pu
t

Lay
er

(8
5)

In
pu

t
Lay

er
(1

6)

In
pu

t
Lay

er
(1

6)

 552

Figure 2: Temperature and water vapor mixing ratio from the observation and three DNN 553

predictions: FFN, HPC, and HAC in January and July of 2005 at 3 PM and 12 AM local 554

time. The y-axis uses log scale. The training data are from 20 years (1984 to 2003) of 3-555

hourly WRF output. The lower and upper dash lines show the lowest and highest (5th and 556

95th percentile) PBL heights at that particular time. For example, in January 12 AM, the 557

lowest PBL height is about 19 m, while the highest PBL height is about 365 m. 558

 559

Figure 3: RMSE and correlations for time series of temperature and water vapor vertical 560

profiles within the PBL predicted by the three DNNs compared with the observations. The 561

vertical lines show the range of RMSEs and correlations when considering the lowest and 562

highest PBL heights at each particular time (shown by the dashed horizontal lines in 563

Figure 2). The training data are 3-hourly WRF output from 1984 to 2003. 564

 565

Figure 4: Same as Figure 2 but for wind direction and wind speed. 566

 567

Figure 5: Same as Figure 3 but for wind components. 568

 569

Figure 6: RMSEs for temperature, water vapor, and wind components at midnight of 570

January using three DNNs. Left y-axis is for RMSEs of HAC and HPC; right y-axis is 571

for RMSE of FFN. The RMSEs are calculated along the time series below the PBL 572

height for January midnight at local time. The lower and upper end of the dash lines 573

are RMSEs that consider the lowest and highest PBL heights as shown in Figure 2. 574

 575

Figure 7: Same as Figure 6 but for Pearson correlations. 576

577

 578

Figure 8: Terrain height (in meters) over the tested area; and normalized RMSEs in % 579

(relative to their corresponding observations) of HAC predicted temperature, water vapor 580

mixing ratio, wind direction and speed at midnight of January. The star shows where the 581

DNNs are developed (Logan, Kansas). 582

 583

 584

Figure 9: Person correlations between observed and HAC predicted temperature, water 585

mixing ratio, wind direction and speed for midnight of January in 2005. 586

