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Abstract. Parameterizations for physical processes in weatr climate models are
computationally expensive. We use model output from a set of simulations performed using the
Weather Research Foreca®RF) model to train deep neural networks andleste whether
trained models can providen aaccuratealternative to lte physicsbased parameterizations.
Specifically,we developan emulatousing deep neural networks faplanetary boundary layer
(PBL) parameterizatiorin the WRF model PBL parameteriations areused in atmospheric
modelsto represent the diuah variation of the formation and collapse of the atmospheric
boundary layert he | owes't p a r .t Theodiynantickared tuabtilenceaspnrielleas e
velocity, temperatureand humidity profileswithin the boundary layewre all critical for
determining many of the physical processes in the atmosphere. PBL parameterizations are used
to represent these processes thatiatally unresolved in a typicalmericalweather modethat
operates at horizontal spatial scales in tdves of kilometes. We demonstrate that domain

aware deep neural netwonkhich takes account of underlying domain structerg., nonlocal

mixing between multiple verticadhyerg, can successfully simulate the vertical profiles within

the boundary layer of velocities, temperatued water vapor over the entire diurnal cy®hée

then assess the spatial transferabilitfythe domairaware neural netwoskby using atrained
modelfrom one location tanearby locationsResultsshow that a single trained model fran
locationoverthe midwestern United Statpsoduce predictions ofwind speed, temperaturgand

water vapor profiles over the entire diurnal cycle a@hrbylocationswith similar terrain
conditions with correlations higher than 0.9 when comparedavith the WRF simulationsised as

the training dataset
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1 Introduction

Model developers use approximations to represent the physical processes involved in climate and
weatherthat camot be resolved at the spatial resolution of the model gridis cases wherthe
phenomenare not fully understood(Williams, 2005) These approxiations are referred to as
parameterizationgMcFarlane, 2011) While these parameterizations are desigredbe
computationally efficient¢alculation of a model physics package still takes a good portiine of

totd computational time. For example, inetikommunity atmospheric model (CAM) developed

by National Center for Atmospheric Research (NCAR), with spatial resolution of approximately
300km and 26 vertical levelghe physical parameterizations account foruai®@% of the total
computational burder{Krasnopolskyand FoxRabinovitz 2006). In the Weather Research
Forecast \WVRF) model| with spatial resolution ofens of kilometerstime spent by physicss
approximately 4% of the computatical burden.Theinput and outpubverheads around 20%

of the computational time at | ow node count

count as gercentagefahe total wallclock time.

An increasing need in the climate community is perfogrhigh spatidresolution simulations
(grid spacing of4 km or les$ and generatg large ensembles of these simulatiemsrderto
address uncertainty in the model projections and to assess risk and vulnedability climate
variability at local scie. Developng process emulatortéeds et al., 2013; Lee et al., 201Hat
can reduce the time spent in calculating the physical processes will lead to much faster model
simulatiors, enabling researchet® generatehigh spatial resolution simulations caa large

number ofensemble members.

A neural network (NN) is composed of multiple layers of simple computational modules, where
each module transforms its inputs to a nonlinear output. Given sufficient datarapregte NN

can model the underlyingonlinear functional relationship between inputs and outputs with
minimal human effortDuring the past two decades, NN techniques have found a variety of
applications inatmospheric science~or example, Collins and $sot (201% developed a
artificial NN model by taking numerical weather prediction model (e.g., WRF) output as input to
predict thunderstorm occurrence within a few hundreds of square kilometers about 12 hours in
advance.Krasnopolsky et al. (2016) usedNNtechniqus for filling the gaps in atellite

measurements of ocean color daéaher (2018) used deep learning to emulate the complete
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physics and dynamics of a simple general circulation model and indicated a potential capability
of weather forecasts ung this NNbased emulator. éural netvorks are particularly appealing
for emulations of model physiggarameterizations numericalweather and climate modeling,
where the goal is to find nonlinear functional relationship between inputs and outputaK&ybe
1989; Hornik, 1991; Chen and ChelB95a,b; Attali andPagés 1997).NN technique can be
appliedto weather and climate modelimg two ways.One approach involvedeveloping new
parameterizationby using NNs. For exampleChevallieret al. (1998; 200) developed a new
NN-based longwas radiation parameterizatipNleuroFlux, which has been used operationally
in the European Centre for MedidRange Weather Forecasts falimensional variational data
assimilation systemNeuroFluxis found eight times faster than the previous paraniedéon.
Krasnopolsky et al. (2013) develegha stochastic convection parameterization based on learning
from data simulated by a cloudsolving model(CRM), initialized with and forced by the
observed meteorological data. The NN convection parametenizaias tested ithe NCAR
CAM and produced reasonable and promisegultsfor the tropical Pacific region. Jiang et al.
(2018) developed a deep Nddsed algrithm or parameterization to be usedhe WRF model

to provide flowdependent typhoemducedsea surface temperature cooling. Resbidtsed on
four typhoon case studieshiowed that the algorithm redudemaximum wind intensity error by
60 70% comparedvith usingthe WRF model.The other approach for applying NN weather
and climate modelings to emulate existing parameterizationstivesemodels.For example,
Krasnopolsky et al. (2@) developed a NN-based emulats for imitating an existing
atmospheac longwave radiation parameterization the NCARCAM. They usd output from
the CAM simulatiors with the original parameterizaticior the NN training They found the
NN-based emulator was B80 times faster thathe original parameterizatioand produced

almost identical results.

We study NN modelsto emulateexisting physical parameterizat®im atmospheric modsl
Process emulators that can reproduce physics parameterization can ultimately lead to the
development of a faster model emulator that can operate at very high spatial resolason
comparedwith most currentmodel emulatorsthat have teded o focus on simplified physics
(Kheshigi et al., 1999 Specifically, this studyinvolves thedesignand develoment of a
domairawareNN to emulae a PBL parameterizationsing22-yearlong output created bg set

of WRF simulatiors. To the bestof our knowledge, we are among the first to apply deep neural
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networlks to the WRF model to explore themulationof physics parameterization&s far as we
know from the literature available at the time of this writingg tnly application of NAIfor
emulatirg the parameterizatienn the WRF modelis by Krasnopolsky et al. (2017In their
study, a thredayer NN was trained to reproduce the behavior of the Thompsorphysics
(Thompson 2008scheme in the WRARRW model. While we focus on learning the PBL
parameterization and developing domaiware NN for emulation of PBLhé ultimate goal of
our ongoing projectis to build a NN-based algorithm tempirically understand the process in
the numerical weather/climate mod#iat could be used to replaites physics parameterizations
that were derived from observational studies. This emulated model would be computationally
efficient, making the generatbn of large ensemble simulationfeasible at very high
spatial/temporal resolutionsith limited computatioal resourcesThe key objective®f this
study are to answer the followingiestionsspecifically for PBL parameterization emulatiqt)
Whatand fow muchdata do we need to train the model?\({&attype of NNshould we apply
for the PBL parameterizatiostudied here (3)Is the NN emulator accurate comparedth the
original physical parameterizatiorThis paper is organized as follewSection 2 describes the
data and the neural network developed in this study. éffeacy of the neural networks

investigatd in Section 3. Discussion and summary follow in Section 4.

2 Data and Method
2.1 Data

The data we use in this study22-year output fromthe regional climate modélWRF version

3.3.1 driven by NCEP-R2 for the period 1984-2005. WRF is a fully compressle,
nonhydrostatic, regional numerical prediction system with proven suitability for a broad range of
applicationsThe WRF model configurain and evaluationare given bywang and Kotamarthi
(2014).Covering all the troposphere &8 vertical ayers, between the surface to approximately

16 km (100 hPa). The lowest 17 layers cover from the surfagbaot 2km above the ground

The PBL parmeterization we used fohis WRF simulations known as the YSU schemiddng

et al., 2005 The YSU scheme usesreonlocaimixing scheme with an explicit treatment of
entrainment at the top of the boundary laged afirst-order closure for the Reynoldseraged

turbulence equations of momentum of air within the PBL.



122 The goal of the work described here is to develoNB-based parameterizati@mulator that
123 can be used teeplace thePBL parameterization in the WRF mod&hus, we expect the NN
124  submodelo receive a set of inputs that are ieglent to the inputs provided to the YSU scheme
125 at each timestep.

126 Table 1 shows the architectureterms of inputs and outpuiised in ouexperimens. The inputs

127 are neasurface characteristics includir@ymeter water vaporand air temperaturel0-meter

128 zonal and meridional wind, ground hdlaix, incoming shortwave radiatiomcomng longwave

129 radiation, PBL height, sensible heat flux, latent heat flux, surface friction velocity, ground
130 temperature soil temperatureat 2 m below the ground, sil moisture at 00.3cm below the

131 ground,andgeostophic wind component at 700Pa. The outputs fahe NN architecture are the

132 vertical profiles of the followindive model prognostic and diagnostic fieldemperature, water

133 vapor mixing ratiozonalandmeridional wind(including speed and directiy as well as vertical

134 mations In this study we developn NN emulationof the PBL parameterizatigrhencewe focus

135 only on predicting the profiles withirhe PBL, which ison averagearround 200 mand 400m

136 during the nightand afternoorf winter, respetively, and around 400 rand 1300 nduring the

137 night andafternoonof summey respectivelyfor the locations studied here. The dliel and

138 upper troposphere (all layers above the PBL) are considered fully resolved by the dynamics
139 simulated by the model drhence not parameterizeétherefore we do not consider the levels
140 above PBL height becaus@l) they carry no information about input/output functional
141 dependence that affects the PBL and (2) if not remayey introduce additional noise the

142 training Specifically, we use the WRF output from the first 17 layefsich are within 1900

143 metes and well cover the PBL.

144 2.2 Deepneural networks for PBL parameterization emulation

145 A class of machine learning approasithat is particularly suitable foemulation of PBL

146 parameterizations supervised learning. This approach models réilationship between the
147  outputs and independent input variabdgsisingtraining data (x yi), for x ¥ T O D, where T is

148 a set of training points, D is the full data set, anaihxl y = f(x;) are inputs ands corresponding
149 output y, respectively. The functiohthat maps the inputs to the outputs is typically unknown
150 and hard to derive analytically.h& goal of the supervised learning approach is to find a

151 surrogate functioh for f such that the difference betweix) andh(x;) is minimal for all xN T.



152 Many supervised learning algorithms existhie machine learnindjterature.This studyfocuses

153 on deep neural networkBNNS).

154 DNNs are composed dan input layer, a series of hidden layers, andutput layer The input
155 layer receives the inpug, which is connected to the hidden layeEach hiddenlayer receives

156 inputs fromthe previoushiddenlayer (except the first hidden layer that is connected to the input
157 layer) and perform certain nonlinear trdosnations through a system of weighted connections
158 and a nonlinear activation functioon the received input value$he lasthidden layer is
159 connected to theutput layer from which the predicted values are obtaifibd.training data is
160 given to theDNN through the inpubeurallayer. The training procedure consists of modifying
161 the weights of the connections in theéwerk to minimizea userdefined objective function that
162 measures the prediction error of the network. Each iteration ofaiménty procedure comprises
163 two phasestorward pass and backward palssthe forward passhe training datare passetb

164 the network andhe prediction errois computedin the backward passhegradients of therror

165 function with respect to all the weights in the netw@kcomputed and used to update the
166  weightsin orderto minimize the errorOnce the entire dataspassboth forward and backward

167 through theDNN (with many iterations), one epoch is completed.

168 Deep feedforward neural network (FFN): This is afully connected feedorward DNN
169 constructed as a sequencekatiiddenlayers where thanput of theith hidden layelis from{i-
170 1}th hidden layerand the outmt of theith hidden layeris given asthe inputof the {i+1}th
171 hidden layerThe size of the input and outg neurallayers are 16= nearsurface variablegnd
172 85 (= 17verticallevels x 5output variables See Figure 1a for alustration

173 While the FFN is a typical way of applyingN for finding the nonlinear relationship between
174 inputand output, a key drawback that it does notonsiderthe underlying PBLstructure such
175 asthe verticalconnectiorbetween different vertical levelgithin the PBL In fact, the FFN does
176 not know which datdamong the 85 variabled)elongs to which vertical levels in a certain
177  profile. This is not typically needed f&Ns in general and in fact is usually avoided becdoase
178 classification and regressipone can find visual featuresegardless otheir locatiors. For
179 example, a picture can be classified as a certain object even jiettttds never appeared in the
180 givenlocationin the training set. In our case, howewubelocation is fixed andhe profilesover

181 that locationis distinguishable from other locations if they have different terrain conditions.
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Consequentlyit is desiredto learnvertical connection between multiple layers within the RBL
the forecastFor examplethe feature at a lower level of a profpjays a role irthe feature at a
higher leveland can help refine the outpattthe higher level and accordingly the entire prafile
This dependence may inform the NN and provide better accuracgaaacefficiency. To that

end, we develop two variants DNNs for PBL emulation.

Hierarchically connected network with previous layer only connection (HPC)We assume
that the outpts at eaclaltitude leveldependnot only on the 16 neauiface variables but also

on theadjacentaltitude levelbelow it To model this explicitly we developa DNN variantas
follows: the input layer is connected to thiest hiddenlayer followed by the output layerf size

5 (five variable at each layetemperature, water vapor, zonal and meridional wind, and vertical
motiong that corresponds to the first PBThis output layeralong with the input layers
connected to second hidden lgyehich is connected to treecond outpulayer of size 5that
corresponds to theecond PB. Thus the input to arith hidden layercomprises the input layer

of the 16 neasurface variables antiei-1th outputlayerbelow it See Figure 1b for an example.

Hierarchically connected network with all previous layers connection (HAC):We assume
that the outputs at eadPBL dependnot only on the 16 neaurface variables but also ati

altitude levelsbelow it To model this exptitly, we modify HPCDNN asfollows: the input to
an ith hidden layercomprisesthe input layer of the 16 nearsurface variables andll output

layers{1, 2, é ,i-1} below it. See Figure 1c faan example.

From the physical proceperspectiveHPCand HACconsiderdoth local andhonlocal mixing
proceseswithin the PBLby taking into accountot only the connection betweangiven point
and its adjacenpoint (local mixing), but alsothe connectioa from multiple vertical altitude
levels(e.g., surface and all the points that below the given poi@tanpared withsolely local
mixing proces, nontlocal mixing processs showed to perfornrmore accurately in simuiag

deeper mixing withiran unstable PB(Cohen et al. 2015

From the neural network perspectittee key advantage of HPC and HAC over FNN is effective
backpropagation while tiaing. In HPC and HAC, each hidden layer has an output ;layer
consequentlyduring the back propagation, tiggadients from each of the output layen be
used toupdate the weights of the hidden layer directlyrimimize the error for PB specific

outputs.
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2.3 Setup

For preprocessing, we applied StandardSdaémoves the mean and scadesh variabléo unit

variance) and MinMaxSocal (scales each variable between 0 and 1) transformations before

training andwe applied the inverse transformatiorieafprediction sahatthe evaluation metrics

are computed on the original scale.

We note that there is no default value FMwnitsin a denseniddenlayer. We conducted an

experimental studgn FFNand found that settiny to 16results in god predictions. Therefore,

we used the same valuedt 16in HPC and HAC.

For the implementation of DNN, we used Keras (version 2.0.8), aléwgh neural network

Python library that runs on the top of the TensorHibwvary (version 1.3.0)We usedhe scikit-

learn library (version 0.19.0) for the preprocessing module. The experiments were run on a

Python (Intel distribution, version 3.6.3) environment.

All three DNNs used the following setup for training: optimizer = adam, learning rate = 0.001,

epocts =1000, batch size 64. Note that batch size and number of epochs define the number of

randomly sampled training points required before updating thelrpadeneters and the number

times that training will work through the entire training data$et.awid overfitting issues in

DNNs, we usean early stopping criteriomn which the trainingstops when the validation error

does not reduce for 10 subsequgrdahs.

The 22year data from the WRF simulation was partitioned into three parts: a training set

corsisting of 20 year$1984 2003) of 3-hourly data to train th&N; a development set (also

called validation set) consisting of 1 yg@004)of 3-hourly data usedo tune thea | gor i t hmé s

hyperparameterand tocontrol overfitting (the situation where thmainhed network predictaell

on the training data but not on the test JJaiad a test set consisting of 1 yearecords(2005)

for predictionand evaluations

We rantraining and inference on a NVIDIA DGX platform: Dual 28Core Intel Xeon E£2698

vi2 2 GHz processor with
and inference leveraged only a single GPU.

3 Results
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240 In the following discussiowe evaluate the efficacy of the thrE@NNs by comparing their
241 prediction results withWRF mocal simulations We refer to theresults of WRF model
242  simulatiors as observationbecause the DNN learns all the knowledge from the WRF model
243 output not from in situ measuremenisWe refer to thevalues from the DNN models as
244  predictions We initiate ourDNN development at one grid cell from WRF output that is close to
245 a sitein the mdwestern United State¢lLogan, Kansas latitude= 38.8701°N; longude=
246 100.9627°W)and anothegrid cell at asitein Alaska(Kenai Peninsula Borough,KA latitude=

247 60.7237 °N longitude=150.4484 °WY}o evaluate the robustness of the developed DNMs

248 then apply our DINsto an area with size 61100 kmx 1100 km, centered #te Logansite to

249 assesshe spatial transferability of the DNNIn other wordswe train our DNNs using single

250 location and then apply the DNiNto multiple grid points nearbyVhile the Alaska site ha

251 different vertical profilesespecially for wind direction@nd lower PBL heights in both January
252 and July,the conclusion in tens of the mdel performance is similar to the site ouargan,

253 Kansas
254 3.1 DNN performance in temperature and water vapor

255  Figure 2 shows the diurnal variatioexplicitly 3 PM and 12AM local time atLogan,Kansa} of
256 temperature and water vapor mixing oatiertical profiles in the first 17 layersrom the
257 observation and three DNModelpredictions.The figures present results for both January and
258  Julyof 2005 The dashed lines shaive lowestand higrest(5" and 9%' percentile respectively
259 PBL heighs for that particulatime. In general, the DNNs are able gooducesimilar shaps of
260 the obsened profiles, especially within the PBLBoth the temperature and water vapor mixing
261 ratio are lowe in January andhigher in July. Within the PBL, theiemperature andiater vapor
262 do not change muchWith height;above the PBL to the entrainment zone, tdraperature and
263 water vapor start decreasingmong the three DNNs, HAC and HPC show very low biad a
264  high accuracy in the PBlthe FFN shows relatively large discrepancy frothe observation.
265 Figure 3 showsthe rootmeansquare error (RMSE) anéearson correlatiorcoefficient(COR)
266 between observation and three DNN predictionthaafternoon ad midnight ofJanuary and
267 July. The RMSEand CORconsidernot onlythe time serie®f observation and predion but
268 also theirvertical profiles below the PBL heighs for each particular timeAmong the three
269 DNNs, HPC and HAGalwaysshow better skill wh smaller RMSE and higheiCORsthan does
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FFN. The reasons thatthe FFN uss only the 16 neasurface variableas inputsandall the 85
variables (17 layers 5 variables/layer) as output, addes not have the knowledge about the
vertical connectionbetweeneach of thevertical levelsin contrast HPC and HAQuseboththe
nearsurfacevariablesandthe five outputvariablesof one previousvertical level (HPC) or all
previousvertical levels(HAC) as inputs for préicting a certain vertical levedf each field This
architecture is helpful fareducingerrorsof each hidden layer during the backward agaion.

It is alsoimportant becausBBL parameterizations are used to represenvéitical mixing of
heat, moist, and momentum within the PBL and this mixingbeaacross larger scale than just
the adjacengltitude levels. This process isisually unresolved in a typical climaaedweather
models hat operate at horizontal spatial scales inénsof kilometers. We findin generaHAC
and HPC perform similar|yalthough inwinter especially midnightvhen the PBL is shallow, the
RMSE of temperate predicted byHAC is larger than that predicted by HP. contrast,in
summer especially in afternoon when the PBL is deep, the RMSE of temperature predicted by
HAC is smaller than thatrpdicted by HPCThis emphaizes the importance of consideratioh o

multi-level vertical connection for deep PBL case in the DNNSs.
3.2DNN performance in wind component

Figure 4 shows the diurnal variatioaf zonal and meridionalind (including wind speed and
direction) profiles in January and Jul005 from observationand three DNN predictiors.
Comparedwith the temperature and water vapor profikbg wind profiles are more difficult to
predict especially for dayge.g, summer) that have a higher PBThewind direction does not
change much below the majority ofetl?BL, and iturns to weserly windswhen goingup and
beyond the PBL. The DNN prediction has diffigufiredicting theprofile above the PBL height,
asis expectedecause these layers are considered fully resolved by the dynamics simulated by
the WRF mdel and hence not parameterized. Therefore, we do not considepBifddmance

at the levels above PBL height, becatise DNNscarry no information about input/output
functional dependence that affects the PBhe wind speedncreases with height in both
January and Julwithin the PBL Above the PBL heights, the wind speed still increases in
January but decreases in Julye reaon is thain January the zonal win@specially westerly
wind, is dominant in the atmosphere and the wind speed increasekeight; in July, however,

the zonal wind is relatively weak, and the meridional wind is dominant with southerly wind



300 below ~2km and northerly wind abovekdn. The decrease in wind speed above the PBusis
301 about the transition of wind direction fronowtherly to northerly windFigure 5showsthe
302 RMSEsand CORs béweenthe observed and predicted wind componesithin the PBL The
303 wind component idairly well predictedoy the HAC and HPC netwoskwith correlation above
304 0.8 for wind speed anf@.7 for wind direction ecept in July at midnight which is near0.5.
305 Similar to thepredictions foitemperature and water vapor, the FFN shows theegtaediction
306 accuacywith large RMSEs and low CORsspecially for wind directiom July midnight, the
307 COR is below zeroFor accurately predicting the windirection, we found that using the

308 geostrophic windit 700 hPasone of thenputs for the DNNsis important
309 3.3DNN dependence on length of training period

310 Next, we evaluatéow sensitivethe DNN s to the amount of available training daad how
311 much data one would ne@dorde to train a DNN While we present Figures 2 using 20year
312 (1984 2003)training data, hereve gradually decrease the length of the trainingséf (1992
313 2003) 6 (1998 2003) 2 (2002 2003) yearsand 1(2003)year. The validation dat@dor tuning
314 hyperparameters and controlling overfahd thetest data (fopredicion) are kept the same as
315 in our standard training datasethich is year 2004nd 2005, respdeely. Figures6 and 7 show
316 the RMSE andCORs between observed and predicted profiles of temperature, water aagor
317 wind component for Jarary midnight Overall, the FFN network depemteavily on the length
318 of training dataset-or example, he RMSE of FFN predicted temperatudecreasefrom 7.2K
319 usingoneyear of training data to @K using20-yea training dataHAC and HPC also depend
320 on the length of training dataspecially wheress thar6-yeartraining datas available buteven
321 theirworg prediction accuracyusingoneyea of training data)s still better than FFNising20-
322 yeartraining data. The RMSEsf HPC and HAC predicted temperatutecrease from ~2.K
323 using 1 year of training data to ~1/& using 20 yeas of training data.The CORs of FFN
324 predicted temperature increase from 0.73 using one year of training data to 0.92 using 20 years
325 of training caita. The CORs for HPC and HAC increase slightly with more training bata
326 overall they are above 0.85 using gmar to 20 years of training data.

327 Regarding the question about how much data one would need to train a DDN, fatF&ast
328 from this study,the performance is not stablintil onehas12 or more yearsof training data

329 which is significantlybetterthan havingonly 6 yearsor lessof trainingdata.For HAC and HPC,



330 howeverhaving6 yearsof training data seemsufficientto show a stable prediction. Increasing
331 the amount of training data showsly marginal improvement ipredictive accuracy In fad, in
332 contrast to HAC and HPGhe performance of FFN has not reacheglateaueven withthe 20
333 years of trainingdata. This suggests thawith longer training setshe predictingskill of FFN
334 couldbefurther improveceven thaigh it does noéexplicitly consider the physical procesgthin
335 aPBL

336 3.4DNN performance for nearbylocations

337 This sectiomssesssthe spatial transferability of thethainaware neural netwosispecifically
338 HAC and HPC)by using a trained model fromne location (at Logan,Kansas,as presented
339 above)to otherlocations withinan area with size of D0 km x 1100 km covering latitude from
340 33.431 to 44.086N, andlongitude from 107.418 to 93.6%°W, centered athe Logan sitewith
341 differentterrainand vegetatiomonditions(Figure 8, top) To reduce the computational burden,
342 we pick every other 7 grid points this areaand use thd.3 x 13 grid points(which can still
343 capture the terrain variabilityd test the spatial transferability of tiNNs developedbased on
344 the single location at Logan, Kansas. For each of the 3x 13 grid points, we calculat¢he
345 differences and correlations betweabservations and predictioriBifferent fromthe preceding
346  sectionhere wecalculatenormalized RMSErelative toeachgrid poin sbservations\aeraged
347 over a particular timeperiod in orderto makethe comparisorieasible between differengrid
348 points overthe area As shown in Figure 8 and9 by the normalized RMSEs and Pearson
349 correlations in generalfor temperature, water vapor, and wind spebd, neural network still
350 work fairly well for surroundhg locations and even far locations with similar terrain height,
351 except over the grid points where the terrain height is rhigther than the Logan sitend the
352 prediction skillges worse with largeRMSEs. This suggest the DNNs developetbased on
353 Logan site are not applicable for these locatidtewever, for wind direction, the prediction
354  skill is good over thavestern part of the tested area, ksutot so good over thefar esstern part
355 of the areaOne of the reasons is perhaps because thhe driver of the wind direction overthe
356 westernand the eastern part of the area are different (complexterrain versus large-scale system).
357 Overall, the resultsindicate that, at least for this study, as long as the terrain corgdjilmpe,
358 elevation, and oentation)aresimilar, the DNNsdevelopedbased on one single location can be

359 applied with similamprediction skillfor locations that are as far as 520 {equal to more than 40



360 grid cells in he WRF output used in this study) predict thevariables assessed in this study
361 The resultalso suggest thathen implementing the NiBased algorithm into the WRF modil,

362 a number ofgrid cells are over a homogenous region, one may not need to train the NN over
363 every grid cell. This wilkignificantlysave computing time becaus$e training process takes the

364 majority of thecomputing resourcésee below)While we show results predicted by HAC in

365 January here, we find similar conclusion from HPC prediction and both HAC and HPC

366 predictions in July, expect that the prediction skills are even better in July for the adjacent

367 locations.

368 3.5DNN training and prediction time

369 Table 2shows thenumber of epochs arntime required for training FNN, HPC, and HAGr
370 various numbeyof training yearsBecause othe early stopping criterion, the number of training
371 epochs performed by differemiethods is not sam@®espite setting the maximum epods
372 1000, all these methods terminate within 178 epochs. We olostrat HPC perforra more
373 training epochghando FFN andHAC: given the same optimizer and learning rate for all the
374 methods, HPC has better learning capabilityecauset can improve thevalidation error more
375 than HAC and FNNcan For a gven set oftraining data, the difference in the trainitigne per
376 epochcan be attributed to the numbertddinableparameters in FNN, HPC, and IEA(10693,
377 16,597, and 26,197, respectively. As we increase th&ize oftraining datathe trainingtime per
378 epochincreases significantly for all three DNModels. The increasalso depends on the
379 number of parameters in the model. For exafiptreasig the training dat&om 1 yearto 20
380 yearsincreases the training tinper epoch from 1.4econdsto 114 seconds for FNNfrom 1.1
381 seconddo 174 secondsand from 14 secondsd 196 seconds for HPC and HAGespectively.

382 The predictiontimes of FNN, HPC, and HACare within 0.5 secais foroneyeardatg makng
383 these models promising for PBdmulationdeployment The difference in thgredictiontime
384 between models can be attributed to the number of parameters in the DidN&@rger the
385 number of paraeters,thelonger the predictiontime. For example, the prediction times for FFN
386 are below 0.2 seconds when using different nusbkeyeas for training, while those for HAC
387 arearound0.4 secondsDespite the difference in the number of trainireans, the number of
388 parameters for a given model is fix&therefore, oncéhe model igrained the DNN prediction

389 time depend®nly on the model and the number of points in the test data (liryéais study)
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Theoretically,for the given model and thest datathe prediction time should be constaten
with different amourg of training datasetHowever, we observed slight variations in the
prediction times thatange from 0.17 to Q9 secondsfor FNN, 0.3 to 0.34 gconds fotHPC,
and0.36to 0.2 seconddor HAC, which can be atibuted to the system software.

4 Summary and Discussion

This study develope®NNs for emulatingthe YSUPBL parameterization that is used by the
WRF model. Two of the DDNs take into account the dorsakecific featurege.g, nonlocal
mixing in terms ofvertical dependenceetween multiple PBllayers The input and output data
for the DNNs are taken from a set2i#-yearlong WRF simulatios. We developed the DNNs
based on aidwesterrlocation in theUnited StatesWe foundthatthe domairaware DNNs can
reproduce the vertical profiles of wind, temperatued water vapor mixing ratio with high
accuracy yet require fewer data than the trad@i®NN, which does not caraboutthe domain
specific featuresThe training process takes the majority of the computing time. Once trained
the model can quickly predict the variables with decent accuracy.abilisy makes the deep

neural network appéag for parameterization emulator.

Following the same architectutbat we develod for Logan, Knsaswe also buil DNNs for

one location at Alaska. The results share the same conclusion as we have thedroffan site.

For example, among therde DNNs, HPC and HAC show much betshill with smaller
RMSEs and higher correlations than does FFN. The wind pdailemore difficult to predict

than the profiles of temperature and water vapor. For FFN, the prediction accuracy increases
with more taining data; for HPC and HAC, the pretibn skill stays similar when having six or

more yeas of training data.

While we trained our DNNs over individual locations in this study using only one computing
node (with multiple processors)there are 30000 grid cells over our WRF modalomain
which simulated the North American continent as a horizontal resolution kfnldo train a
model for all the grid cells or all the homogeneous regions over this large domain, weeualill

to scale up the algorithm tbundreds if not thousands obmputingnodes to accelerate the
training time and the make the entire NBsed simulationfaster than the original

parameterization



419 The ultimate goal othis project is to build @NN-based algorithm to empirically understicime

420 process in the numericaveatherand climate models and to replace the PBL parameterization
421 and other timeonsuming parameterizations that were derived from observational stlidees.
422 DNNs developed in this study can provide numerically efficient solutions to a wide range of
423 problems in environmentaumerical models whetdengthy, complicated calculations desarnip

424  physical processes must be repeated frequantlpeeda large ensemble of simulations to
425 represent uncertaintyA possible future direction for this research ngplementing these NN

426  basedschemes in WRF for aew generation of hybridegionalscale weather/climatmodels

427 thatfully represent the physics at a very high spatial resolution at a fast computationsd t@se

428 to provide the means for generating large ensemble model runs

429 Dataandcodeavailability. Thedata used and the codeveloped in this study are available at
430 https://github.com/pbalapra‘gbl.
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532 Table 1: Inputs and outputs for the NN developed in this study. The variable names of

533 these inputs and outputs in the WRF are shown in the parenthes.

InputVariable OutputVariable
2-meter water vapor mixing ratio (Q2), zonal wind (U)
2-meter air temperature (T2), meridional wind (V)

10-meter zonal and meridional wind (U10, V10  temperature (tk)
Ground heat flux (GRDFLX) water vapor mixing ratio (QVAPOR
Downward short wave flux (SWDOWN)

Downward long wave flux (GLW)

Latent heat flux (LH)

Upward heat flux (HFX)
Planetaryboundarylayerheight (PBLH)

Surface friction velocity (UST)

Ground temp (TSK)

Soil temperature at th belowground (TSIB)

Soil moisture for €.3cm below ground (SMOIS
Geostrophic wind component at 76Pa (Ug, VQg)

534



535 Table 2: Training and prediction time (unit: seconds) for the three DNNs using different

536 lengths of training data. The predictedperiod is for one year (2005).

Training - Number - . Pr_ediction
DNNType Data T_ralnlng of TrainingTime (s)  Time(s)
Time (s) perEpoch for 1 Year
(years) Epochs (2005)
FNN 1 85.969 61 1.409 0.197
FNN 2 137.359 47 2.923 0.196
FNN 6 376.209 70 5.374 0.171
FNN 12 199.468 23 8.673 0.193
FNN 20 306.665 27 11.358 0.199
HPC 1 199.152 178 1.119 0.336
HPC 2 454.225 91 4.991 0.343
HPC 6 1233.908 133 9.278 0.317
HPC 12 1225.880 88 13.930 0.302
HPC 20 1181.716 68 17.378 0.331
HAC 1 131.104 95 1.380 0.366
HAC 2 468.884 85 5.516 0.411
HAC 6 870.753 80 10.884 0.406
HAC 12 737.921 47 15.700 0.420
HAC 20 1351.898 69 19.593 0.381

537
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Figure 1: Three variants of DNN developed in this studyRed, yellow, and pumple indicate
the input layer (16 nearsurface variableg, output layers, and hidden layers, respectively.
(a) fully connected feed forward neural network (FFN),which has only one output layer
with 85 variables (5 variables for each of the 17 WRF model vertical levels), and 17 hidden
layers which only caonsider the nearsurface variables as inputs (b) hierarchically
connected network with previous layer only connetion (HPC), which has 17 output layers
(corresponding tothe PBL levels) with each of them having 5 variablesand 17 hidden
layers with each them consideing both near-surface variables andoutput variables from
previous output layer as inputs (c) hierarchically connected network with all previous
layers connection (HAC) same as HPC, buteach hidden layer also consides output

variables from all previous autput layers as inputs



