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presents a series of neural networks designed to reproduce the output of the YSU
PBL parameterization in the WRF model. The goal is to use the NN as a proxy model
to reduce the computational cost of running the WRF model. The premise of the work
is interesting and worthy of publication. There are several points of clarification and
confusion however.

1. The topology of the models is confusing. The FFN is fine, but the size of the hidden
layers should be noted. The two hierarchical models appear to be a series of nested
single layer neural networks that output at each level. The goal is to enforce layer
specificity, though | am not sure why this cannot also happen in the FFN as with what |
assume are a larger number of internal weights and fully connected, it should be able
to encode this information as well.

Response: In the revised manuscript, we detailed the figure description for Figure 1,
which shows the architecture of each neural network. We specified that we have 17
hidden layers for all three neural network, indicated by the purple unit in Figure 1.
We also revise the manuscript to further emphasize the difference between the three
neural networks. The FFN takes all the output data (17 vertical WRF model layer x
5 variables/layer) and input data for training. The training process doesn’t know which
data belongs to which layer, the output layer comprises 85 output variables. While this
is a typical way to develop neural network, it doesn’t consider any vertical mixing in a
PBL profile. Therefore, we develop the other two neural networks, which has 17 output
layers with each of them having 5 output variables for the particular PBL layer. Each
of the 17 hidden layers uses the output from each of these output layers and also the
near-surface input, and calculate the output for the next output layer. From the neural
network perspective, the key advantage of HPC and HAC over FNN is effective back-
propagation while training. In HPC and HAC, each hidden layer has an output layer;
therefore, during the back propagation, the gradients from each of the output layer can
be used to update the weights of the hidden layer directly to minimize the error for PBL
layer specific outputs.
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2. | don’t understand why the FFN performance is so much worse. If the intermediate
layers are sized large enough, then it should have a much larger number of connec-
tions and be able to encode more than the hierarchical models. It appears to cut out in
training much earlier however. Is this just overfitting due to larger number of connec-
tions vs training data? If the amount of data was vastly increased, would we expect
FFN to eventually overtake the performance of the hierarchical models?

Response: We clarified this issue and provided an explanation in the revised
manuscript. As we mentioned in the response to your first comment, the FFN takes all
the output data (17 vertical WRF model layers x 5 variables per layer) and input data
for training. The training process doesn’t know which data belongs to which layer, the
85 variables are treated as a whole thing. The key advantage of HPC and HAC over
FNN is that, during the training of HPC and HAC, because each of their hidden layer
has an output layer, so during the back propagation, the gradients from each of the
output layer can be used to update the weights of the hidden layer directly to minimize
the error for that particular PBL layer. While for FFN, there is no output layers for each
hidden layer, so there is no information that the backward propagation of FFN can take
to update weights and minimize errors.

3. The writeup of the evaluation is a bit confusing. In particular L231-236. | assume it
means that you trained using a single grid location, then applied the model to multiple
grid points within 800km. If so this should be made more clear. Also why specify indi-
vidual sites. One could calculate performance on all grid points within 800km. While
doing this, it would be useful to see the drop off in performance as a function of dis-
tance. The last two plots start down this path, but with the density of points in a model,
it should be straight forward to give performance as a function of distance from training
point within the 800km range.

Response: Thanks for your suggestions. We have modified the text in line 231-236 to
clarify that we trained our DNNs at a single location (e.g, Logan, Kansas) and then we
apply the DNN to multiple grid points nearby. We also update the last two figures and
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the corresponding discussions. Instead of picking several stations, we test the DNN
models over all the grid points of an 1100 x 1100 km area, with 90x91 grid points.
To reduce the computing burden, we pick every other 7 grid points and get 13x13
grid points over the area, which still maintain the terrain height variability. Then we
calculate RMSE and Pearson correlations of the neural network predictions compared
with observations (here WRF model simulation), and see how RMSE and correlation
change with distance from the center (where we develop the DNNSs) of the 13x13 area.
Results show that the neural network can be used by other locations if they are not
far, and they have very similar terrain conditions for temperature, water vapor and wind
speed. For wind direction, to use the same neural network, the nearby grid points
should also under the same weather regimes, such as the large-scale circulations, etc.
This indicates that, it's not always safe to train one model over a region unless the
region has homogenous features in every regard we discussed here.

If we trained the network over a larger domain, we may need larger dataset for training.
There is likely an optimum domain size over which a network would be useful. There-
fore, we think that there may be a small number of region specific networks necessary
for representing the PBL process for our entire model coverage of North American con-
tinent. The transferability tests described in the paper are one approach that we can
use to determine the size of a single DNN model and its application extent. Developing
DNNs for the whole region will require significantly larger computing resources. These
ideas are beyond the scope of this study and will be explored in the future.

4. Can the authors comment on where they see this being put in an online model? It
seems like the round trip to and from a GPU (I0) would cause a much bigger delay
than just calculating the YSU parameterization in place. Offline this is not as much of
a concern as all the data can be preloaded, but when there is a round trip at every
model time step, it seems like the 10 would become the predominant factor, and not
the computation.

Response: We need GPUs for faster training. In a deployment scenario, as shown in
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several deep learning case studies, CPUs are enough for fast inference/prediction. In
that case, we do not need GPUs and can avoid the data movement cost. Moreover,
we are anticipating that the next HPC platforms that will be available will be ‘acceler-
ated’ CPUs (e.g. the exascale systems at the DOE leadership computing facilities at
Argonne National Laboratory and Oak Ridge Laboratory). The goal of the accelerated
CPU architecture is to decrease the 10 costs and make the GPU an integral part of
the CPU design. The types of models we discuss here will be highly suitable for these
machines.

5. I assume this is meant to be used as a proxy model for YSU when you are inter-
ested in fiddling with a different portion of the model and just want something "good
enough" that is computationally cheap (For instance, you’re examining microphysical
parameterizations, and don’t care about PBL explicitly). Is there a concern that the
feedback loops with being off by as much as this NN is (up to 60% for some parame-
ters, though much less for most) would cause the output from YSU and this model to
diverge quite quickly when being run as a replacement for YSU? If so is this just meant
to be a parallel option for a parameterization, or as a drop in for YSU?

Response: The expectation we have is that these types of DNN models could function
as a drop-in replacement for existing parameterizations. We have trained the model
with a limited amount of grid cells as a proof of concept. Eventually, this model will be
trained for all regions and conditions for the extensive simulation database we have.
The goal is to develop DNN emulators for all the expensive parts of the model (ra-
diation, microphysics, cumulus etc.) that would function as a high-spatial resolution
‘emulator’ of the model. Another possible path is to develop an emulator for the entire
model disregarding each process (e.g. Scher, JGR 2019). We expect both paths to
lead to the development of emulators that will be critical for generating larger ensemble
of model simulations for uncertainty quantification in future climate projections.

Reference:
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Scher, S.: Toward data-driven weather and climate forecasting: Approximating a sim-
ple general circulation model with deep learning. Geophysical Research Letters, 45,
12,616-12,622, 2018.

Anonymous Referee #2
Received and published: 6 June 2019

This is a very interesting work. To the best of my knowledge, the authors are the first
researchers who applied machine learning techniques to PBL parameterization. Their
results are thought-provoking. Of course, the final evaluation of the developed NN must
be performed in parallel runs of WRF with the original PBL parameterization and with
the developed NN. However, it is an issue for a separate paper. | believe that this paper
should be accepted after some revision and clarifications.

General comments:

1. It is not clear from the text if the authors developed a NN emulation of the PBL
parameterization. NN emulation has the same inputs (sometimes augmented by addi-
tional metadata) and the same outputs as the original (in this case YSU) parameteri-
zation. Is this the case for the presented study?

Response: The DNN developed here is an emulator in the sense that it is trained using
the output from YSU scheme (not MYJ or MYNN PBL scheme). The inputs for our
DNNs closely correspond to variables that are used as inputs to the YSU scheme in
the WRF model.

2. Domain-aware NN is a confusing term. Which domain are the authors talking about
(geographic domain, domain covered by inputs in the input space, etc.)? From the
sentence in the paper: “a key drawback of the naive FFN is that it does not consider
the underlying PBL domain structure, such as the patterns that are locality specific and
the vertical dependence between different vertical levels of each profile”, it can be con-
cluded that it is about vertical correlations between different vertical levels. Probably
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“domain-aware” name is misplaced (see also comment 5).

Response: We have used the word “domain-aware” to mean subject expertise and the
word “domain” to mean the domain of science rather than a geographical or spatial do-
main. Thus, one of the goals of this study is to show the importance of collaborations
between data scientists and domain science experts. We first develop a neural net-
work without any additional insights from a domain expert, such as local and nonlocal
mixing in the vertical direction but purely driven by a knowledge of the key inputs to the
YSU scheme. We then develop neural network that incorporate domain expertise, and
we consider both the local and non-local mixing by taking into account the connection
between one certain layer and the previous one layer (HPC) and the previous all lay-
ers (HAC) as well as the near-surface variable as inputs. This leads to a significant
improvement of the prediction accuracy. We had an explanation of the use of domain-
aware in the abstract; in the revised manuscript; we made an effort to further explain
it by pointing the nonlocal mixing, which are vital for the PBL process to capture the
turbulence in the lower troposphere.

As we respond to Reviewer #1, the FFN takes all the output data (17 vertical WRF
model layer x 5 variables/layer) and input data for training. The training process doesn'’t
know which data (among the 85 variables) belongs to which layer, the output layer of
FFN consider all 85 variables as a whole thing. While this is a typical way to develop
neural network, it doesn’t consider any vertical mixing in a PBL layer. Therefore, we
develop the other two neural networks, which have 17 output layers with each of them
having 5 variables for the particular PBL layer. Each hidden layer uses the output from
each of these output layers and also the near-surface input, and calculate the output
for the next output layer. From the neural network perspective, the key advantage of
HPC and HAC over FNN is effective back-propagation while training. In HPC and HAC,
each hidden layer has an output layer; so during the back propagation, the gradients
from each of the output layer can be used to update the weights of the hidden layer
directly to minimize the error for PBL layer specific outputs.
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In summary, we still keep the domain-aware term, but we clarified that the domain-
aware is about considering local and non-local mixing in the PBL.

3. | cannot completely agree with the aforementioned (in comment 2) sentence from
the paper. First, FFN does accounts for vertical correlations in profiles because all
level components of profile are built from the same neurons of the previous hidden
layer. Second, in this particular study, as is explained in the text, all outputs (including
all vertical components of the same profile) are normalized independently, which sig-
nificantly reduces the sensitivity of FFN (and any NN) to vertical correlations between
levels. To preserve vertical dependencies, a profile should be normalized as a whole
but not each component independently.

Response: In the revised manuscript, we made an efforts to clarify the difference be-
tween FFN and HAC/HPC in both text and Figure 1. As we response to your comment
2, FFN takes all the output data (17 vertical WRF model layer x 5 variables/layer) and
input data for training. The training process doesn’t know which data belongs to which
layer, the 85 output variables are treated as a whole. So it doesn’t consider any vertical
correlations in the profile.

We apologize for any unclear text in the original manuscript. we normalize each out-
put variable independently, not each vertical layer independently. In other words, we
normalize the whole profile of each variable separately, because the values of the five
output variables are in different scale (range of values). The normalization is done per
output variable so that they all have the same scale. This is a common approach in
NN training as it allows the back propagation to treat the errors equally. Note that for
prediction, we apply inverse transformation and compute the prediction error (R"2 and
RMSE) in the original scale.

4. The time length of data set to be used for training is not a valuable and universal
characteristic. It depends on representativeness of data set, i.e. on how well the variety
of atmospheric states is represented in the training set, or how well the domain of input
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space is sampled. For example, including in the training set more grid points would
enrich it with new/different atmospheric states and made more representative. It may
shorten the time length of data required for training.

Response: Thanks for your comment. Reviewer #1 also had a similar insight. We do
agree that the neural network developed in this study based on the individual location
(Logan, Kansas) likely will not be applicable universally. However, this model will have
a region of applicability that can be tested using similar approach to those discussed
in the manuscript. We may need several such networks to cover the entire model
simulated region or train the DNN with data from the entire model simulated region.
The later option as explained will need to performed on HPC systems and will be the
target of our future research.

We agree that training more grid points (in space) would enrich the dataset, but it also
have the risk of introducing more noise for the neural network, unless the regions is
homogenous. This might be done over a very small region by taking several grid points
but not a relatively large region. By homogenous we mean that different grid points
should also under the same weather regimes, such as the large scale circulations, etc.
The reason we say this is that, from our spatial transferability analysis, we found the
neural network can be used for temperature, water vapor, and even wind speed over
other locations as far as 500km, but for wind direction, the different grid points should
also under the same circulation patterns (for example, if the wind is driven by terrain
over one location, then the network doesn’t apply to locations that are driven by large-
scale circulations). On the other hand, we do see it is worthwhile to develop DNNs for
the whole region instead of individual locations. As we mentioned in our discussion,
however, this will require additional computational consideration on HPC and will be
considered in the follow-on effort.

5. Most/all problems with applications to neighboring grid points can be alleviated or
completely removed if all grid points (entire grid) are included in training set together
with some metadata, i.e. if lat, lon, and the terrain conditions (elevation etc.) are
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included as additional inputs at each grid point. The NN trained in such a way I'd call
“domain-aware NN”.

Response: Thanks for the suggestion and we found it’s very helpful. In our revised
manuscript, for the last two figures, instead of picking several stations we test the
DNN models over all the grids of a 1100x1100 km area, with 90x91 grid points over
that area. To reduce the computing burden, we pick every other 7 grid points and
get 13x13 grid points over the area, which still maintain the terrain height variability.
Then we calculate RMSE and correlations of the neural network prediction compared
with observations (here WRF model simulation), and see how RMSE and correlation
change with distance from the center (where we develop the DNNs) of the 13x13 area.

As we respond to your comment 2, we use the word ‘domain’ in the sense of domain-
science expertise and not spatial domain. In other words, our neural networks were
not developed considering spatial domain factors, they were developed only based
on individual locations. It is referred to domain knowledges about the PBL structure,
specifically, the local and nonlocal mixing of turbulence in the lower troposphere.

Specific comments:

1. Is the sizes of the input and output layers are 16 + 85 = 101? (= near-surface
variables) and 85 (= 17 vertical levels _ 5 output variables).

Response: For FFN, we have an input layer, which has 16 near-surface variables; we
have 17 hidden layers; and one output layer, which has 85 variables (5 variables for
each of the 17 WRF vertical layer).

For HPC, we have 16 near-surface variables as one part of the input, and we also use
the output (5 variables) of each previous hidden layer as input for the next hidden layer.
We have 17 hidden layers, and 17 output layers. HAC is similar to HPC, but uses the
output of ALL the previous hidden layer as input for the next hidden layer. We have
specified this in text and also added clarifications in the caption of Figure 1.
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2. ltis not clear from the text how 17-level profiles produced by NN are integrated with
WREF profiles in total 38 level profiles?

Response: The middle and upper troposphere (all layers above the PBL) are consid-
ered fully resolved by the dynamics simulated by the WRF model. So the upper 21
layers will be still from the WRF model itself. There may be discontinuity between the
17th and the 18th layer (which are from NN and the WRF, respectively), and need to
be smoothed. This will be future study when we implement the NNs into WRF.

3. How many hidden layers have different NNs that the authors use?

Response: we used 17 hidden layers for all three NNs developed in this study. We add
this information in the revised manuscript. The hidden layers are represented by the
purple unit in Figure 1.

4. How many trained parameters (NN weights) has each of these NNs?

Response: for FNN we have 10,693 trained parameters; for HPC we have 16,597
trained parameters, and for HAC we have 26,197 trained parameters.

5. How many records has the training set that is used?

Response: We have described this in data at line 120-125 in the original manuscript.
in the revised manuscript we move this description to 2.3 Setup as following: “The
22-year data from the WRF simulation was partitioned into three parts: a training set
consisting of 20 years (1984—2003) of 3-hourly data to train the NN; a development
set (also called validation set) consisting of 1 year (2004) of 3-hourly data used to
tune the algorithm’s hyperparameters and to control overfitting (the situation where the
trained network predicts well on the training data but not on the test data); and a test
set consisting of 1 year of records (2005) for prediction and evaluations.”

6. Did not the authors try to train a shallow NN with the same number of weights as
the best DNN has? Without all this information it is difficult to understand why NNs with
different architectures perform so differently.
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Response: as we explained earlier, the FFN takes all the output data (17 vertical
WRF model layer x 5 variables/layer) and input data for training. The training process
doesn’t know which data belongs to which layer, the 85 variables are treated as a
whole. While this is a typical way to develop neural network, it doesn’t consider any
vertical mixing in a PBL layer. Therefore, we develop the other two neural networks,
which has 17 output layers with each of them having 5 variables for the particular PBL
layer. Each hidden layer uses the output from each of these output layers and also the
near-surface input, and calculate the output for the next output layer. From the neural
network perspective, the key advantage of HPC and HAC over FNN is effective back-
propagation while training. In HPC and HAC, each hidden layer has an output layer;
consequently, during the back propagation, the gradients from each of the output layer
can be used to update the weights of the hidden layer directly to minimize the error for
PBL layer specific outputs.

Please also note the supplement to this comment:
https://www.geosci-model-dev-discuss.net/gmd-2019-79/gmd-2019-79-AC1-
supplement.pdf

Interactive comment on Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-79,
2019.
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