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Abstract. Rapid urbanization in China has led to heavy traffic flows in street networks within cities, especially in eastern 

China, the economically developed region. This has increased the risk of exposure to vehicle-related pollutants. To evaluate 

the impact of vehicle emissions and provide an on-road emission inventory with higher spatial–temporal resolution for street-10 

network air quality models, in this study, we developed the Real-time On-road Emission (ROE v1.0) model to calculate street-

scale on-road hot emissions by using real-time big data for traffic provided by the Gaode map navigation application. This 

Python-based model obtains street-scale traffic data from the map application programming interface (API), which are open-

access and updated every minute for each road segment. The results of application of the model to Guangzhou, one of the three 

major cities in China, showed on-road vehicle emissions of carbon monoxide (CO), nitrogen oxide (NOx), hydrocarbons (HC), 15 

PM2.5, and PM10 to be 35.22 × 104 Mg/yr, 12.05 × 104 Mg/yr, 4.10 × 104 Mg/yr, 0.49 × 104 Mg/yr, and 0.55 × 104 Mg/yr, 

respectively. The spatial distribution reveals that the emission hotspots are located in some highway-intensive areas and 

suburban town centers. Emission contribution shows that the dominant contributors are light-duty vehicles (LDVs) and heavy-

duty vehicles (HDVs) in urban areas and LDVs and heavy-duty trucks (HDTs) in suburban areas, indicating that the traffic 

control policies regarding duty trucks in urban areas are effective. In this study, the Model of Urban Network of Intersecting 20 

Canyons and Highways (MUNICH) was applied to investigate the impact of traffic volume change on street-scale 

photochemistry in the urban areas by using the on-road emission results from the ROE model. The modeling results indicate 

that the daytime NOx concentrations on national holidays are 26.5% and 9.1% lower than those on normal weekdays and 

normal weekends, respectively. Conversely, the national holiday O3 concentrations exceed normal weekday and normal 

weekend amounts by 13.9% and 10.6%, respectively, owing to changes in the ratio of emission of VOCs and NOx. Thus, not 25 

only the on-road emission, but other emissions should be controlled in order to improve the air quality in Guangzhou. More 

significantly, the newly developed ROE model may provide promising and effective methodologies for analyzing real-time 

street-level traffic emissions and high-resolution air quality assessment for more typical cities or urban districts. 

1 Introduction 

Rapid economic development and urbanization have led to the exponential growth in the number of vehicles in China has 30 

grown in recent years (National Bureau of Statistics of China, 2017). As one of the three major urban clusters, the Pearl River 

Delta (PRD) region, or its main city, Guangzhou, has experienced a significant increase in the number of vehicles. This increase 

has become the dominant contributor to carbon monoxide (CO), nitrogen oxide (NOx), and hydrocarbon (HC) emissions (He 

et al., 2002; Zheng et al., 2009a), which in turn are causing more frequent and more severe public health problems in Chinese 

megacities (An et al., 2013). Previous studies have shown that on-road vehicle emissions can contribute approximately 22–35 

52% of total CO, 37–47% of total NOx, and 24–41% of total HC emissions detected in cities (Zhang et al., 2009; Zheng et al., 

2009a, 2014; Li et al., 2017).  

Reliable on-road emission inventories can be used as input data for the numerical air quality models which are applied to 

estimate the impact of on-road emissions on the urban air quality (Wang and Xie, 2009; He et al., 2016). For this purpose, the 
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realistic on-road vehicle emission inventory should be developed as the pollutant source. The two main methodologies used in 

recent years to establish such inventories are top-down and bottom-up techniques.  

Top-down methods, such as that used in the MOBILE model devised by the US Environmental Protection Agency (EPA) 

and other similar macroscale models, first require information on vehicle population, vehicle kilometers travelled (VKT), and 

mean vehicle speed for an entire city to calculate the total amount of vehicular emissions. Then, the emissions are allocated to 5 

each grid cell utilizing parameters such as road density and road hierarchy (Saide et al., 2009; Jing et al., 2016; Liu et al., 

2018). Many studies have adopted this method to develop city- or national-level vehicle emission inventories in China (Hao 

et al., 2000; Cai and Xie, 2007; Guo et al., 2007; Saide et al., 2009; Zheng et al., 2009a; Sun et al., 2016). However, the top-

down inventories offer low-level spatial and temporal resolution because of the allocation method and input data used. 

Typically, the spatial allocation of a top-down inventory is based on the road network. The greater the road density and length, 10 

the higher the amount of emissions in the same grid. This allocation method simplifies the road emissions by assuming that 

every road of a specific road type (e.g., highway, arterial road, and local road) experiences the same traffic volume irrespective 

of its location. In addition, emission factors are considered to remain unchanged despite the traffic speed over the entire city, 

thereby leading to inaccurate results for the inventory. Moreover, some megacities (e.g., Guangzhou), have traffic control 

policies in place in certain specific urban areas, which implies that the emissions should differ across areas. Besides, the VKT 15 

data are usually provided on the yearly scale, which limits the temporal resolution of the inventory. For numerical modeling, 

the accuracy of the emission inventory may have a great impact on the simulation result because of the strong dependence of 

numerical models on it (Jing et al., 2016). This scale of the emission inventory may not reflect the real emission conditions for 

the on-road vehicles within the city, and thus, evaluations of traffic-related impacts on air pollution in complex situations such 

as street-level traffic flow are likely to be inaccurate (Huo et al., 2009).  20 

Consequently, several studies have established higher-resolution inventories using the bottom-up approach. The main 

difference from top-down method is that bottom-up inventories are based on information from road segments. Therefore, 

spatial distribution is directly obtained from the input data, and spatial and temporal allocations are not required. Among the 

input data, the traffic data are crucial for establishing the inventories and determining their accuracy. Some previous studies 

have used traffic simulation models to obtain traffic speed or volume data of road networks (Pallavidino et al., 2014; Zhang et 25 

al., 2016; Chen et al., 2017; Ibarra-Espinosa et al., 2018). Based on the traffic model, the method could provide traffic data for 

each road from low-resolution average data. However, the results from such traffic models may not reflect reality, thereby 

reducing the accuracy of the inventories. Many other studies have used realistic traffic data, namely road-side or on-board 

observational data obtained at certain road segments, to establish inventories and improve their accuracy (Huo et al., 2009; 

Wang et al., 2008, 2010; Wang and Xie, 2009; Yao et al., 2013). Although the observed traffic data are helpful for inventory 30 

establishment, their limitation is obvious in that large-scale observation for a whole city requires extensive human labor, 

financial and material resources, which are expensive and time consuming. Moreover, such observation may not provide real-

time traffic data, thereby reducing the temporal resolution of the inventories.  

Recent developments in image identification technology and other observation detectors, are facilitating easy collection 

of real-time traffic data from road networks. The extensive implementation of closed circuit televisions and other detection 35 

subsystems in the cities helps in the implementation of intelligent transport systems (ITSs) in China (Wu et al., 2009), making 

it possible to attain real-time traffic data at city scale. Using the traffic data provided by ITSs, many previous studies have 

successfully developed inventories for different areas in China (Jing et al., 2016; Liu et al., 2018; Zhang et al., 2018). Such 

studies provided us a new direction for the establishment of bottom-up inventories. The real-time traffic data from the road 

network could be the most precise input data for on-road emission inventories and could significantly improve the spatial and 40 

temporal resolution of the inventories. However, there are still some difficulties in using the ITS data. In some cities, 

construction of the ITS is not complete yet or has not even been carried out. Moreover, the inconsistency of the data standards 

leads to an inefficient way of data utilization (Zhang, 2010). Furthermore, the low degree of the data sharing may be the biggest 

barrier to using traffic data obtained from the ITSs (Huang et al., 2017). 

With the help of a high-resolution emission inventory, numerical models can assess the impact of on-road vehicle 45 

emissions on the air quality (Huo et al., 2009). The flow and air quality modeling in cities are commonly categorized into four 
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groups by the length scales, i.e., street scale (~100 m), neighborhood scale (~1 km), city scale (~10 km), and regional scale 

(~100 km) (Britter and Hanna, 2003). A previous comprehensive literature review on this topic (Zhang et al., 2012) reports 

that regional-scale chemical transport models (CTMs) have been widely applied to investigate the chemistry and transport of 

air pollutants from their emission sources. Many studies have successfully applied regional-scale CTMs to investigate the 

impact of on-road vehicles on the air quality in urban areas in the regional scale (~100 km) (Che et al., 2011; Saikawa et al., 5 

2011; He et al., 2016; Ke et al., 2017). In addition, some researchers have studied street-scale and neighborhood-scale pollutant 

dispersion and urban air quality by adopting computational fluid dynamics (CFD) models (Fernando et al., 2010; Kim et al., 

2012; Kwak et al., 2013; Kwak and Baik, 2014; Park et al., 2015; Zhong et al., 2016; Hang et al., 2017). City-scale (~10 km) 

CFD modeling, however, usually requires consideration of billions of grids, because a city may include tens of thousands of 

buildings with high-resolution and complex street networks (Di Sabatino et al., 2008; Ashie and Kono, 2011). Thus, as city-10 

scale CFD simulations are very expensive and time consuming, they are currently rare. Recently, some models have been 

developed and applied to investigate street-level air quality at the city scale (Davies et al., 2007; Righi et al., 2009; Zhang et 

al., 2016; Kim et al., 2018) by balancing the requirements of high resolution and low computational cost.  

In this direction, the first purpose of this study was to find a new, open-access source of real-time and high-quality traffic 

data that could serve as the input for developing an on-road emission inventory with high spatial and temporal resolution for 15 

cities or urban districts. Guangzhou was selected as the target city for the initial application of this method not only because 

of the large number of vehicles in use there, but also because of its well-developed ITS which could obtain the traffic 

information from street networks (Xiong et al., 2010). A Python-based on-road emission model called the Real-time On-road 

Emission (ROE v1.0) model was developed in this study to utilize these traffic data and establish a bottom-up on-road emission 

inventory. A street-level chemistry transport model was then used to apply the emission results and study the impact of traffic 20 

volume variations on the air quality in the urban districts of Guangzhou.  

2 Description of the ROE model 

2.1 Model overview 

The ROE model is intended to establish the street-level emission inventories using the emissions of on-road vehicle in the 

street segment of interest using a bottom-up approach. First, the ROE model collects the real-time traffic information to obtain 25 

the traffic volume for each street segment from the ITS. Then, according to the vehicle fleet information, the ROE model 

calculates the number of vehicles for each vehicle category on each street segment (if available, these data could be obtained 

from the ITS and need not be calculated by model). Thereafter, the ROE model calculates the emissions for street segments 

based on the vehicle fleet information, traffic conditions, and environmental conditions. Lastly, the ROE model outputs the 

results, that is, street-level air quality inventories. 30 

2.2 Model structure 

The ROE model was developed to calculate on-road vehicle emissions from real-time traffic data. The structure of the model 

is shown in Figure 1. The model, which has been implemented in Python 3, can be divided into four modules: crawler, 

preprocessing, emission calculation, and output modules.  

(1) The most crucial part of the emission inventory involves obtaining the real-world traffic data. The crawler module is 35 

designed for “crawling” the real-time traffic data from the ITS, Internet, or any other data source if the code is updated to 

match the format of the data source. Moreover, the study area should be set in the module, and if needed (in case the coordinates 

differ), the coordinate transformation script should be activated. The current version of the ROE model includes the crawler 

module for the amap.com (also called the Gaode map) application (Figure 2), a widely adopted map application in China 

(additional details are provided in section 2.4). (2) The preprocessing module is used for fitting the time frequency between 40 

the data source and the air quality modeling system. Subsequently, the traffic volume data are also calculated from the traffic 



 

4 

 

speed data in this module if the traffic volume or vehicle fleet information is not available from the data source. Otherwise, 

the number of vehicles in each category can be used directly for the emission calculation. (3) The emission calculation module 

uses traffic information from the preprocessing module and information about vehicle fleets to calculate emissions for each 

street segment using the following equation: 

                             𝐸𝑠,𝑡 = ∑𝐸𝐹𝑠,𝑣 × 𝑉𝑣,𝑡 × 𝐿,                                          (1) 5 

where Es,t is the emission of pollutant s at time t (g/h), EFs,v is the emission factor of pollutant s for vehicle category v (g/km), 

Vv,t is the traffic volume of the vehicle (i.e., the number of vehicles, veh) category v at time t (veh/h), and L is the length of the 

street segment (km). The total emission in one specific area is given by the sum of emissions in every street segment within 

the area. (4) The output module sums up all the information given by the emission calculation module and can be modified to 

provide all the results produced during the calculation of the emissions. In addition, the model includes a tool that can modify 10 

the formats of the emissions, making it possible to provide the on-road emissions to other air quality models.  

2.3 Emission factors 

In this study, nation-wide vehicle emission factors mandated by the Ministry of Ecology and Environment (MEP) of the 

People’s Republic of China were adopted to calculate the on-road  vehicle emissions (MEP, 2014). They are listed in Tables 

S1 and S2 in the supplementary materials. The emission factors of liquefied petroleum gas (LPG) vehicles were sourced from 15 

a previous study conducted in Guangzhou (Zhang et al., 2013). According to the MEP guide, vehicles are classified as one of 

the following: a light-duty vehicle (LDV), a middle-duty vehicle (MDV), a heavy-duty vehicle (HDV), a light-duty truck 

(LDT), a middle-duty truck (MDT), a heavy-duty truck (HDT), a motorcycle (MC), a taxi, or a bus. The fuel type is classified 

as petrol, diesel, or other (such as LPG or natural gas). The emission standard is classified as Pre-China I, China I, China II, 

China III, China IV, or China V. In addition, the evaporation of petrol was considered during the calculation of the emissions. 20 

HC evaporation was also considered as per the details provided in the MEP guidebook (Table S3). 

The correction factors involving environmental conditions (e.g., temperature, relative humidity, and altitude) and traffic 

conditions obtained from the technical guide were considered in the study. They are listed in Tables S4–S10 in the 

supplementary materials. These correction factors were applied to reduce the effects of uncertainties associated with the 

emission factors.  25 

 To estimate the uncertainties of the emissions factors, the results of previous studies (Zheng et al., 2009a; Zhang et al., 

2013, 2016; Tang et al., 2016; Wang et al., 2017) were summarized and compared with the emission factors obtained in this 

study. These results appear in Figure S1 of the supplementary materials. 

 In addition, the emission factors can be easily updated once the local emission factors data are available. 

2.4 Traffic data of floating vehicle 30 

In this study, the traffic speed data of each street segment were obtained from Gaode map. The Gaode map traffic data are 

quite extensive as it covers over 40 cities in China so far (with most of them being major cities). Based on the GPS and mobile 

network information, details on vehicle speed and location are collected from the map users’ devices while using the map 

navigation on the road. This aspect saves a considerable amount of human labor and material resources with regard to traffic 

condition observations. These data are updated in real time and can be used through an open-access application programming 35 

interface (API), thus overcoming the barrier of obtaining data. As the data can be updated in real time, the emission data can 

also be refreshed in real time.  

However, the map application cannot provide the traffic volume data directly. Many studies have shown that the traffic 

volume can be estimated using the average traffic speed based on the relationship between the traffic speed and the volume 

(Wang, 2003; Kuo and Tang, 2011; Xu et al., 2013; Yao et al., 2013; Hooper et al., 2014; Jing et al., 2016). Many speed–flow 40 

models exist for this purpose, and each of them has certain advantages and disadvantages. In this study, the Underwood volume 

calculation model (Underwood, 1961) was used to retrieve the information on traffic volume because of its history of successful 

application in China (Jing et al., 2016). The model is described by Eq. (2): 
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𝑉 = 𝑘𝑚𝑢 ln
𝑢𝑓

𝑢
,                                                  (2) 

where V is the traffic volume at speed u (veh/h), km is the traffic density (veh/km), u is the traffic speed (km/h), and uf is the 

free speed (km/h). In this study, km and uf are given by fitting the model based on observation data obtained at the roadside and 

video identification data gained from different road types (Zheng et al., 2009a; Jing et al., 2016; Liu et al., 2018). 

 To calculate the traffic volume on national highways, another speed–flow model, which was previously applied in an 5 

observation-based study undertaken in China (Wang, 2003), was used. This model is described as follows: 

When the speed limit is 120 km/h, 

𝑉 = −0.611𝑢2 + 73.320𝑢;                                             (3) 

when the speed limit is 100 km/h, 

𝑉 = −0.880𝑢2 + 88.000𝑢;                                             (4) 10 

when the speed limit is 80 km/h, 

𝑉 = −1.250𝑢2 + 100.000𝑢;                                            (5) 

when the speed limit is 60 km/h, 

𝑉 = −2.000𝑢2 + 120.000𝑢;                                            (6) 

where V is the traffic volume at speed u (veh/h), and u is the traffic speed (km/h). 15 

 Given Guangzhou’s traffic control policies, the whole city is divided into two areas: urban area and suburban (Figure 3). 

Therefore, the traffic volume is also calculated accordingly (Figure 4). The main traffic control policies in urban areas are as 

follows: (1) No truck is allowed to enter the urban area during 7:00–9:00 (morning rush hours) and 18:00–20:00 (evening rush 

hours), (2) no middle- and heavy-duty truck is permitted to enter the urban area during 7:00–22:00, (3) no non-local truck can 

enter the urban area during 7:00–22:00, and (4) no motorcycle can enter the urban area. 20 

2.5 Vehicle fleet information 

In this study, the fleet information on each vehicle classification was sourced from the Statistical Yearbook of Guangzhou 

(Guangzhou Bureau of Statistics, 2017) (Figure 5(a)). The emission standards (Figure 5(b)) and fuel type data (Figure 6) for 

the vehicles were source from previous studies undertaken in Guangzhou (Zhang et al., 2013, 2015). Due to the lack of the 

street-level vehicle fleet information, this study used a uniform percentage of emission standard, fuel type and number of 25 

vehicles in each category for each segment. The number of each vehicle type was calculated based on the total traffic volume 

of each street segment and the vehicle fleet percentage. It should be noted that this information could be updated if the street-

level fleet information becomes available in the future.  

3 Description of the street-level air quality model  

To evaluate the impact of on-road emissions on air quality at the street level in Guangzhou, an air quality model called the 30 

Model of Urban Network of Intersecting Canyons and Highways (MUNICH) was employed in this study with the on-road 

emission results from the ROE model. MUNICH is a street-network CTM that includes street-canyon and street-intersection 

components in the model (Kim et al., 2018).  

In this study, the Weather Research and Forecasting (WRF) model (version 3.7.1) (Skamarock et al., 2008) was used to 

provide the meteorological data (wind profile, boundary layer height, and friction velocity) for the modeling. The WRF 35 

simulation was conducted with four nested domains at resolutions of 27 km, 9 km, 3 km, and 1 km (Figure 7a). The physical 

scheme is listed in Table 1.  

In MUNICH, the CB05 chemical kinetic mechanism (Yarwood et al., 2005) was used to simulate the photochemical 

reactions at the street level in an urban street network. For the MUNICH run, the model was applied to simulate pollutant 

dispersion in Tianhe District, which serves as the Central Business District (CBD) of Guangzhou. The district is characterized 40 

by significant diurnal traffic variation compared with other districts in urban areas. The simulation area comprised 31 main 
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street segments selected to simulate the variation in pollutant concentrations, because continuous traffic data existed for these 

street segments during the simulation period, which were representative of the street network. 

The urban morphology data for the building height were obtained from the World Urban Database and Access Portal 

Tools (WUDAPT) dataset (Ching et al., 2018). The street data were sourced from the OpenStreetMap dataset 

(https://www.openstreetmap.org/). The street length data were calculated directly from the locations of the start and end 5 

intersections of each street segment. Data on the street width were retrieved from the feature class of the road, and the width 

of each lane was assumed to be 3.5 m. 

The simulation period of the study spanned from April 28th, 2018 to May 2nd, 2018, which included a Chinese national 

holiday from April 29th, 2018 to May 1st, 2018. Significant traffic volume change exists between the holidays and non-holidays. 

This simulation period covered holidays and non-holidays, which was helpful to investigate the impact of traffic volume 10 

variations on air quality. Another 3-day simulation period was conducted before this period to spin up the model.  

For modeling evaluation and background concentrations, the observational concentration data for NO2 and O3 were 

obtained from the Guangzhou environmental monitoring sites network. NO2 concentrations were measured with a 

chemiluminescence instrument (Model 42i, Thermo Scientific) and O3 was measured by a UV photometric analyzer (Model 

49i, Thermo Scientific). The minimum detection limit (3S/N) of the analyzer was 0.4 ppbV (approximately 0.8 μg/m3) for NO2 15 

and 1.0 ppbV (approximately 2.0 μg/m3) for O3. The total measurement uncertainty of these two instruments was estimated to 

be approximately 5% (Zhang et al., 2014).  

Two monitoring sites, Tiyuxi (TYX) site and YangJi (YJ) site, were selected for this study (Figure 7c). The observational 

data from TYX were used for modeling evaluation because TYX locates inside the simulation area, and thus these data which 

could be used for comparison with the model results. In addition, YJ is located near but not within the simulation street network. 20 

The observational data from YJ could be used as the background concentration data for the modeling. Due to the lack of NO 

observational data, the concentration ratio of NO2 to NO was assumed as 4:1 in this study. 

4 Application of the ROE model to Guangzhou 

4.1 On-road emission inventory from the ROE model 

4.1.1 Overview of the emission inventory 25 

Using the high-resolution spatial and temporal traffic data from the map application, the emission inventory of on-road vehicles 

from the ROE model was established for this study. Table 2 shows the annual emissions from vehicles in Guangzhou city 

compared with two other gridded emission inventories in China: the MEIC model (http://meicmodel.org/) and a PRD region 

local emission inventory (Zheng et al., 2009b). These two emission inventories used the top-down method to establish on-road 

emission inventories. Unlike the bottom-up method used in this study, these two inventories first calculated the total emissions 30 

based on the VKT data of vehicle categories. In the MEIC inventory, the total number of vehicles was obtained from the 

relationship between total vehicle ownership and economic development (Zheng et al., 2014), while the PRD inventory 

acquired information on the number of vehicles from the city-level statistics Yearbook. Then, the spatial distribution of these 

two inventories was established based on the road network density.  

Given the shorter total road length and traffic control policies in urban areas (Figure 3), the urban on-road emissions of 35 

CO, NOx, HC, PM2.5, and PM10 comprised only 13.1%, 8.8%, 12.7%, 8.2%, and 9.1% of the total on-road emissions, 

respectively, suggesting that the suburban areas are the dominant contributor of on-road emissions in Guangzhou. 

In general, the difference between the amounts of PM2.5 and PM10 was smaller than that for other gaseous emissions 

among different inventories. This was because the uncertainty of particulate matter emission factors was lower than the 

corresponding values of the other gaseous emissions, which led to the large difference for the gaseous emissions and the 40 

smaller differences for PM2.5 and PM10. For NOx emissions, however, this study showed a higher NOx estimate than that in the 

other two inventories. One of the reasons for the higher NOx estimate may be the application of the updated LPG bus emission 
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factors in this study. Based on a previous local emission factor study, the NOx emission factor of an LPG-fueled bus is 1.7 

times that of a diesel-fueled bus in Guangzhou (Zhang et al., 2013). The results in Figure 8 show that the NOx emissions 

attributable to buses in urban and suburban areas were 20.5% and 10.8% of the total NOx emissions, respectively, showing that 

the LPG-fueled buses may be responsible for higher NOx estimates in this study compared to those in the other two inventories.  

As shown in Table 3, the emission contribution of local roads in urban areas is the highest component because of the total 5 

length of the local roads, which is 5.4 times and 4.8 times that of highways and arterial roads in urban areas, respectively. 

Although the total length of the highways is shorter, the traffic volume on the highway is much higher than that on the local 

roads (Figure 4), thus causing the highest contribution of emissions from the suburban areas. Moreover, the emission 

contributions from urban and suburban areas differ on weekdays and weekends. In urban areas, the daily total weekday and 

weekend emissions are 129.94 Mg/d and 118.29 Mg/d of CO, 30.15 Mg/d and 27.71 Mg/d of NOx, 14.74 Mg/d and 13.40 10 

Mg/d of HC, 1.27 Mg/d and 1.16 Mg/d of PM2.5, and 1.41 Mg/d and 1.29 Mg/d of PM10, respectively. In suburban areas, the 

total weekday and weekend emissions are 873.97 Mg/d and 758.41 Mg/d of CO, 315.10 Mg/d and 267.91 Mg/d of NOx, 102.46 

Mg/d and 88.22 Mg/d of HC, 13.01 Mg/d and 10.98 Mg/d of PM2.5, and 14.45 Mg/d and 12.19 Mg/d of PM10, respectively. 

The total respective emissions of CO, NOx, HC, PM2.5, and PM10 on a weekday are 114.5%, 116.8%, 115.3%, 117.6%, and 

117.7% of the values on a weekend, respectively. 15 

4.1.2 Spatial distribution of emissions 

Due to the vehicular activities, the spatial distribution of on-road emissions was consistent with the structure of the street 

network. For a better description of this spatial distribution, the emissions were mapped onto a 1-km-resolution fishnet and the 

total emissions of one grid cell were the sum of all on-road emissions from within the same grid cell. The spatial distribution 

of each pollutant is shown in Figure 9. Overall, the high-value grid cells were generally located along the highways. In suburban 20 

areas, high-value areas located away from the highways and arterial roads normally denoted suburban town centers that had 

more local roads and higher traffic volume density. In urban areas, the high-value areas were more closely related to the 

densities of the urban local roads. The emission hotspots were less prominent in urban areas than in suburban areas due to the 

strict traffic control policies in urban area. The spatial distribution indicated that the next effective control on-road emissions 

policy should pay more attention to the control of vehicles in suburban areas. 25 

 Moreover, the spatial distributions of these three emission inventories were compared in this study. Figure 10 shows the 

distributions of CO from the three different inventories. The results of both MEIC-2016 and PRD-2015 showed the urban areas 

as emission hotspots. However, the results from the ROE model were much lower for such areas. This may be due to the fact 

that the ROE model considers the traffic control policies, while the other two inventories do not. In suburban town centers, 

especially in the eastern and southern parts of Guangzhou, all three inventories showed the same results, namely that these 30 

areas were large contributors of on-road emissions. Notably, highways and arterial roads also contributed high emissions in all 

three inventories.  

4.1.3 Emission contributions of vehicles by their classification 

The emission contributions of different vehicle classifications in the urban and suburban areas are shown in Figure 8. As LDVs 

accounted for the largest number, their emission contribution comprised the dominant proportion of total emissions in urban 35 

areas for each pollutant. The contribution percentages of CO, HC, NOx, PM2.5, and PM10 were 80.9%, 84.1%, 26.4%, 38.3%, 

and 38.2%, respectively. HDVs were the second largest contributor to on-road emissions, the relevant percentages being 5.8%, 

2.9%, 30.3%, 35.2%, and 35.2% for CO, HC, NOx, PM2.5, and PM10, respectively. As for the buses, except for the contribution 

of NOx, which accounted for 20.5% of the total emissions mentioned above, the proportions of the other pollutants were less 

than 2% because of the use of LPG as the fuel. In the case of trucks, the total contribution of LDTs, MDTs, and HDTs were 40 

10.3%, 9.3%, 21.2%, 23.3%, and 23.3% for CO, HC, NOx, PM2.5, and PM10, respectively, considering the traffic control 

policies in the urban areas. The contribution of taxi was less than 1% because of the small number of taxis and their use of 

LPG. In suburban areas, the LDVs were the dominant contributor of CO and HC emissions because of their high numbers. For 
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NOx, PM2.5, and PM10, however, the HDT provided the largest contribution, at 36.5%, 43.2%, and 43.3%, respectively. 

Moreover, LDVs, HDVs, and buses were important contributors of NOx, at 19.4%, 17.4%, and 10.8%, respectively. Regarding 

particulate matter, the respective percentages of emissions (for both PM2.5 and PM10) owing to LDVs, HDVs, and LDTs were 

19.7%, 20.5%, and 9.0%, suggesting that these vehicles were also important sources of both PM2.5 and PM10. 

4.2 Application of the ROE model’s results to the street-level air quality model 5 

4.2.1 Modeling performance in Guangzhou urban area 

During the simulation period, the model results were evaluated for the TYX observation site located within the street 

network. The on-road emissions were provided by the ROE model, as discussed previously. Street segments to which high 

NOx emission values were attributed were also responsible for high HC emissions because of the positive relationship 

between traffic volume and on-road emissions as shown in Figure 11.  10 

The time series for the simulated NO2 and O3 concentrations within the street network were compared with the 

observed concentrations (Figure 12). As the results show, daytime NO2 concentrations were overestimated while nighttime 

concentrations were underestimated during the simulation period. The O3 concentrations, however, were underpredicted 

during daytime and overpredicted at nighttime. Several modeling sensitivity cases were analyzed to identify what factors 

may have affected the model simulation. The sensitivity analysis results are provided in the supplementary materials section 15 

S3. Typically, the overestimated background concentrations of NO2 and O3 were attributed as the reason for the 

overprediction of the daytime NO2 and nighttime O3 concentrations, respectively. The underestimated NO titration was the 

other main reason for the overprediction of O3 and the underprediction of NO2 concentrations at night. Due to the only 

consideration of on-road emission in the simulation street network, daytime O3 concentrations were underpredicted in the 

results.  20 

Moreover, the performance statistics for NO2 and O3 are shown in Table 4. Here, the statistical measures of the 

observation (OBS) mean, simulation (SIM) mean, mean bias (MB), normalized mean bias (NMB), normalized mean error 

(NME), mean relative bias (MRB), mean relative error (MRE), root mean squared error (RMSE), and the correlation 

coefficient (CORR) were used to validate the model. The NMB, NME, and CORR values of NO2 and O3 in this study were 

within the recommended ranges in the MEP Technical Guide for Air Quality Model Selection (MEP, 2012). These 25 

recommended values were -40% < NMB < 50%, NME < 80%, and R2 > 0.3 for NO2, -15% < NMB < 15%, NME < 35%, 

and R2 > 0.4 for O3. Additionally, the values obtained in this study fell within the range of those reported by other modeling 

studies in Guangzhou; the NMB, NME, and RMSE values for simulated urban NO2 in Guangzhou ranged from -27.5% to -

6%, 29.2% to 53.0%, and 16 to 37.3, respectively, and the corresponding ranges for O3 were -21.2% to 20.0%, 38.2% to 

98%, and 9.4 to 40.1 (Che et al., 2011; Fan et al., 2015; Wang et al., 2016). Overall, the model showed good simulation 30 

performance and can be applied to future studies investigating the impact of on-road vehicles on air quality. 

 

4.2.2 Impact of traffic volume variations on air quality 

To investigate how traffic volume change affects air quality at the street level, a Chinese national holiday was chosen as the 

target simulation period for the modeling. Figure 13 shows the diurnal variation in the traffic volume during the national 35 

holiday, normal weekday, and normal weekend before and after the holiday in the simulation street network. On the normal 

weekday, two typical rush hour trends appeared during the 8:00–10:00 and 17:00–19:00 (although April 28th was a Saturday, 

it was a normal workday to compensate for the holiday). For the normal weekend and the national holiday, the peak in traffic 

volume was noted between 14:00 and 16:00 and no rush hour peak occurred on these days. At nighttime, not much difference 

was noted for the traffic volumes on the normal weekday, normal weekend, and national holiday, especially after midnight. 40 

However, the higher traffic volume between 21:00 and 23:00 on April 28th at night may have been caused by people traveling 

out of the city before the national holiday (e.g., returning home across the city or traveling to other places).  
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Three sensitivity cases were carried out to study the impact of traffic volume change on the air quality in urban areas: (1) 

in the national holiday case, wherein the on-road emissions between April 29th and May 1st were regarded as the original 

emissions during the simulation period(this represents the base case), (2) in the normal weekday case, diurnal on-road 

emissions for three national holidays were replaced by the emissions of April 28th, and (3) in the normal weekend case, the 

national holiday period emissions were replaced by the diurnal on-road emissions of May 5th. The diurnal variations in NOx 5 

and O3 in the three cases are shown in Figure 14. During 0:00–5:00, because of similar traffic volume, there were no large 

differences in the NOx and O3 concentrations during this time. Due to the morning rush hour, the NOx concentrations for the 

normal weekday case were much higher than those for the national holiday case in the morning. As shown in Table 5, the NOx 

concentrations were 12.0–26.5% higher for the normal weekday case during this time. In the normal weekend case too, the 

NOx concentrations simultaneously increased by 9.1% compared to those on the national holiday in the morning. This increase 10 

was caused by people traveling for normal weekend engagements. In the afternoon, however, the difference between the NOx 

concentrations was less than 10% due to the rising traffic volume on the national holiday. During the evening rush hour, 

although the traffic volume on the normal weekday was 1.3 times that on the national holiday, the maximum difference between 

the NOx concentrations was only 7.3%. This shows that the variations in NOx concentrations were affected to a greater extent 

by the background concentrations (i.e., boundary conditions) in the evening. 15 

 Compared with the national holiday case, the O3 concentrations were much lower in the normal weekday case. In the 

afternoon, as shown in Table 6, when photochemical reactions are more prevalent, the national holiday O3 concentrations 

exceeded those on normal weekdays and weekends by 13.9% and 10.6%, respectively. This is because the simulation street 

network in the urban areas is in the VOC-sensitive regime (Ye et al., 2016). The O3 concentrations were positively correlated 

with the VOC emissions. As the NOx emissions were higher than the VOC emissions, the reduction in the NOx emissions was 20 

also much higher than in the VOC emissions when the number of vehicles decreased on the national holiday. The larger NOx 

emission reduction led to a higher VOCs-to-NOx emission ratio, which resulted in a higher O3 concentration during the national 

holiday (Sanford and He, 2002).  

5 Discussion and conclusions 

Using real-world traffic information, the Real-time On-road Emission (ROE v1.0) model can provide real-time and high-25 

resolution emission inventories for regional or street-level air quality models in China. The results show that the ROE model 

can simulate the emissions of CO, NOx, HC, PM2.5, PM10 and any other pollutant provided the relevant emission factors are 

included in the model. (This aspect will be updated in subsequent releases.) As it uses the bottom-up method, the ROE model 

facilitates the calculation of the emissions in each street segment. 

In this study, the traffic information of Guangzhou was obtained from the Gaode map, the data for which are collected 30 

from map users while they are driving. The geographic and speed information were sourced from the map users’ GPS devices 

and can be used through the map API. Using the ROE model and fully considering the traffic control policies of Guangzhou 

city, the annual total on-road emissions of CO, NOx, HC, PM2.5, and PM10 were modeled to be 35.22 × 104 Mg/yr, 12.05 × 104 

Mg/yr, 4.10 × 104 Mg/yr, 0.49 × 104 Mg/yr, and 0.55 ×104 Mg/yr, respectively. Spatial distribution analysis showed that 

hotspots of on-road emissions were situated along the highways and suburban town centers. The comparison of spatial 35 

distribution between the ROE model’s results and those of two other inventories showed that the ROE model provided had 

lower urban emissions as it considered the traffic control polices. However, it should be noted that this comparison was only 

preliminary. The spatial resolutions of the three inventories are inconsistent in this study. Moreover, due to the lack of temporal 

information about the other two emission inventories, a comparison of the temporal difference could not be conducted. Future 

studies should focus on improving the accuracy of such comparisons. 40 

 Owing to the number of vehicles and their respective distributions, LDVs constituted the dominant source of on-road 

emissions in Guangzhou. In suburban areas, however, HDTs were the highest contributors of NOx, PM2.5, and PM10. Daily 

emissions of CO, NOx, HC, PM2.5, and PM10 on a weekday were found to be 14.5%, 16.8%, 15.3%, 17.6, and 17.7% higher 
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than the daily emissions on a weekend, respectively. However, due to the lack of street-level vehicle fleet information, this 

study applied a city-level average uniform percentage for every street segment. This may increase the uncertainty of the 

inventory, but this aspect could be improved upon provided additional data become available in the future. Given the high 

spatial and temporal resolutions of the emission inventory of the ROE model, three sensitivity cases were analyzed to study 

the effect of vehicular on-road emissions on urban street-level air quality. On a national holiday, NOx concentrations were 5 

12.0–26.5% less than those on a normal weekday as no morning rush hours occurred on holidays. Moreover, compared with 

the normal weekend, the NOx concentrations on a national holiday also show a decrease of 9.1% in the peak value in the 

morning. However, the reduction in the NOx concentrations in the afternoon was smaller than that in the morning, suggesting 

that the transportation of NOx from the surrounding areas was the main reason for the variation in the afternoon NOx 

concentrations. In addition, as the simulation street network lies in the VOC-sensitive regime, the lower traffic on a national 10 

holiday and a normal weekend caused the NOx and VOC emissions to be lower than those on a normal weekday. However, the 

reductions in NOx were higher than the decrease in VOC emissions, which led to a higher VOCs-to-NOx emission ratio and 

O3 concentrations on holidays and normal weekends. In this study, only 31 main street segments were selected to study the 

impact of a holiday on air quality in a certain urban area of Guangzhou. Additional investigations are required to understand 

the variations in street-level air quality in urban or suburban area of a megacity. The results of the ROE model showed that the 15 

suburban town centers of Guangzhou served as emission hotspots. These areas had relatively higher emissions than the other 

suburban areas and less stringent control policies than the urban area, which suffers from more serious air quality problems. 

In general, the ROE model could provide a high-resolution on-road emission inventory when the real-time traffic 

information and emission factors were fed into the model. It is worth noting that the ROE model is highly dependent on the 

ITS traffic data. For economically underdeveloped cities, this aspect may pose a barrier against the use of the ROE model. In 20 

addition, China is promoting the CHINA VI emission standards for on-road vehicles. The ROE model only considers Pre-

CHINA I to CHINA V currently. Thus, the model will be updated in the near future to include the CHINA VI emission standards. 

Recently studies had shown that traffic forecasting models are effective within cities (Min et al., 2009; Cortez et al., 2012; 

Vlahogianni et al., 2014). These models allow one to obtain predicted traffic-based on-road emissions. Combined with the 

meteorological forecasting systems and regional air quality forecasting systems, which provide the meteorological and 25 

background concentration predictions, respectively, street-level air quality models could be used for street-level air quality 

forecasting as well.  

In summary, the newly developed ROE model was confirmed to be effective for analyzing real-time city-scale traffic 

emissions and performing high-resolution air quality assessments in the street networks of Guangzhou city. The methodologies 

presented in this work can be further extended to more typical cities or urban districts in China or other countries. 30 
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Table 1. Physical parameterization configurations for WRF v3.7.1 model 

Physical parameterizations  

Microphysics Scheme Morrison (2 moments) (Morrison et al., 2009) 

Land-surface Scheme Pleim-Xiu (Xiu and Pleim, 2001) 

Cumulus Scheme Kain-Fristsch (Kain, 2004) 

Longwave Radiation Scheme Rapid Radiative Transfer Model (RRTM) (Mlawer et al., 1997) 

Shortwave Radiation Scheme Dudhia (Dudhia, 1989) 

Boundary-layer Scheme Asymmetric Convective Model version 2 (ACM2) (Pleim, 2007) 

Urban Surface Scheme Urban Canopy Model (UCM) (Chen et al., 2011) 

 

Table 2. Annual on-road emissions in Guangzhou (unit: 104 Mg/yr)  15 

  CO NOx HC PM
2.5

 PM
10

 

 Urban 4.61 1.07 0.52 0.04 0.05 

This study Suburban 30.61 10.98 3.58 0.45 0.50 

 Total 35.22 12.05 4.10 0.49 0.55 

MEIC-2016 (Gridded) 43.56 8.45 9.26 0.46 0.47 

PRD-2015 (Gridded) 28.89 6.99 4.65 0.52 0.52 

 

 

Table 3. Daily emissions on different road type in urban and suburban area (unit: Mg/day) 

  Road type Length(km) CO NOx HC PM2.5 PM10 

weekday urban highway 301.87 9.71 3.15 1.02 0.11 0.12 

  artery 337.19 17.24 4.95 1.88 0.19 0.21 

  local 1629.92 102.99 22.05 11.84 0.97 1.08 

 suburban highway 2316.73 417.49 168.29 45.51 6.50 7.22 

  artery 747.63 61.12 26.54 7.24 1.11 1.23 

  local 8867.69 395.36 120.27 49.71 5.40 6.00 

weekend urban highway 301.87 7.47 2.34 0.79 0.08 0.09 

  artery 337.19 13.20 4.23 1.40 0.15 0.17 

  local 1629.92 97.62 21.14 11.21 0.93 1.03 

 suburban highway 2316.73 428.30 156.78 47.14 6.07 6.74 



 

16 

 

  artery 747.63 59.20 26.56 6.99 1.10 1.22 

  local 8867.69 270.91 84.57 34.09 3.81 4.23 

 

 

Table 4 The performance statistics for NO2 and O3 in modeling (unit: μg/m3) 

 Mean        

 OBSa SIMb MBc NMBd NMEe MRBf MREg RMSEh CORRi 

NO2 30.8 35.4 4.7 15.2% 68.8% 3.0% 3.2% 25.7 0.90 

O3 60.9 59.3 -1.6 -2.7% 24.3% <0.1% 0.3% 18.7 0.80 

a OBS (Observation). b SIM (Simulation). c MB (Mean Bias). d NMB (Normalized Mean Bias). e NME (Normalized Mean Error). f MRB (Mean Relative Bias). g MRE 

(Mean Relative Error). h RMSE (Root Mean Squared Error). i CORR (correlation coefficient). 5 

 

 

Table 5. Daytime percentage difference of NOx compared to National holiday case 

 

Table 6. Daytime percentage difference of O3 compared to National holiday case 10 

 

 

time 6:00 7:00 8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 

normal 

weekday 

12.7 21.7 16.8 26.5 14.7 12.0 4.9 0.6 8.6 2.2 0.7 0.2 7.3 5.9 7.1 

normal 

weekend 

-4.4 0.1 9.1 6.7 0.2 7.0 1.2 2.6 6.2 0.8 -0.6 -0.9 2.1 -5.7 4.9 

time 6:00 7:00 8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 

normal 

weekday 

-4.5 -15.7 -52.8 -48.9 -37.5 -25.9 -15.6 0.2 -7.9 -13.9 -7.4 -11.1 -46.3 -38.4 -32.3 

normal 

weekend 

2.9 6.3 -2.6 -4.9 -15.0 0.5 -4.0 -1.6 -5.7 -10.6 -0.4 12.4 -15.3 -0.1 3.7 
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Figure 1. The structure of ROE model. 

 

 

Figure 2. Traffic information from Gaode map. 5 
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Figure 3. Traffic control area. 

 

 

Figure 4. Diurnal variation of average traffic speed and traffic volume in (a, b) urban area and (c, d) suburban area during 5 

weekday and weekend. 
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Figure 5. The percentage of (a) vehicle classification and (b) emission standard. 

 

 
Figure 6. Fuel type percentage of each vehicle classification. 5 
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Figure 7. Simulation domain from regional scale to street-level scale: (a) four-nested simulation for WRF; (b) domains 3 and 4 

covering the Pearl River Delta Region and Guangzhou city, the innermost box corresponds to the Tianhe District; (c) 31 street 

segments and two observation sites (triangle) within the MUNICH study domain.   

 5 

 

Figure 8. Emission contribution of each vehicle classification in (a) urban area and (b) suburban area. 
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Figure 9. Spatial distribution of (a) CO, (b) NOx, (c) HC, (d) PM2.5, and (e) PM10 from the on-road emissions in Guangzhou (blue 

lines: highways; green lines: arterial roads; local roads are not shown).   

 

 5 

Figure 10. Spatial distribution of CO from (a) ROE model, (b) MEIC-2016 and (c) PRD-2015 in Guangzhou. 
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Figure 11. The spatial distribution of weekday (a) NOx and (b) HC emission in the simulated street network. 

 

 5 

Figure 12. Time series of (a) NO2 and (b) O3 during the simulation period. (black solid line: observation; red dashed line: 

simulation).  

 



 

23 

 

 

Figure 13. The diurnal variation of the total traffic volume in the simulation street network (solid line: normal weekday; dashed 

line: national holiday; dotted line: normal weekend). 

 

 5 

Figure 14. The (a) NOx and (b) O3 diurnal variation of different sensitivity cases in the simulation street network 

 

 


