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Abstract 11 
Tracers have been used for over half a century in hydrology to quantify water sources with 12 
the help of mixing models. In this paper, we build on classic Bayesian methods to quantify 13 
uncertainty in mixing ratios. Such methods infer the probability density function (pdf) of the 14 
mixing ratios by formulating pdfs for the source and target concentrations and inferring the 15 
underlying mixing ratios via Monte Carlo sampling. However, collected hydrological samples 16 
are rarely abundant enough to robustly fit a pdf to the sources. Our approach, called 17 
HydroMix, solves the linear mixing problem in a Bayesian inference framework where the 18 
likelihood is formulated for the error between observed and modelled target variables, which 19 
corresponds to the parameter inference set-up commonly used in hydrological models. To 20 
address small sample sizes, every combination of source samples is mixed with every target 21 
tracer concentration. Using a series of synthetic case studies, we evaluate the performance of 22 
HydroMix using a Markov Chain Monte Carlo sampler. We then use HydroMix to show that 23 
snowmelt accounts for 60-62% of groundwater recharge in a Swiss Alpine catchment (Vallon 24 
de Nant), despite snowfall only accounting for 40-45% of the annual precipitation. Using this 25 
example, we then demonstrate the flexibility of this approach to account for uncertainties in 26 
source characterization due to different hydrological processes. We also address an important 27 
bias in mixing models that arises when there is a large divergence between the number of 28 
collected source samples and their flux magnitudes. HydroMix can account for this bias by 29 
using composite likelihood functions that effectively weight the relative magnitude of source 30 
fluxes. The primary application target of this framework is hydrology, but it is by no means 31 
limited to this field. 32 
 33 
 34 
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1 Introduction 1 

 2 
Most water resources are a mixture of different water sources that have travelled via distinct 3 
flow paths in the landscape (e.g. streams, lakes, groundwater). A key challenge in hydrology 4 
is to infer source contributions to understand the flow paths to a given water body using a 5 
source attribution technique. A classic example is the two-component hydrograph separation 6 
model to quantify the proportion of groundwater and rainfall in streamflow, often referred to 7 
as “pre-event” water vs “event” water (Burns et al., 2001; Klaus and McDonnell, 2013; 8 
Schmieder et al., 2016). Other examples include estimating the proportional contribution of 9 
rainfall and snowmelt to groundwater recharge (Beria et al., 2018; Jasechko et al., 2017; 10 
Jeelani et al., 2010), fog to the amount of throughfall (Scholl et al., 2011, 2002; Uehara and 11 
Kume, 2012), and soil moisture (at varying depths) and groundwater to vegetation water use 12 
(Ehleringer and Dawson, 1992; Evaristo et al., 2017; Rothfuss and Javaux, 2017). 13 
 14 
The primary goal of such attribution in hydrology is to infer the contribution of different 15 
sources to a target water body, where the tracer can be an observable compound like a dye, 16 
or a conservative solute, or even a proxy for chemical composition such as electrical 17 
conductivity. The key requirement is that the concentration of the tracer is distinguishable 18 
between different sources. The stable isotope composition of hydrogen and oxygen in water 19 
(subsequently referred to as ‘stable isotopes of water’) are used as tracers in hydrology. Other 20 
commonly used tracers include electrical conductivity (Hoeg et al., 2000; Laudon and 21 
Slaymaker, 1997; Lopes et al., 2018; Pellerin et al., 2007; Weijs et al., 2013) and conservative 22 
geochemical solutes such as chloride and silica (Rice and Hornberger, 1998; Wels et al., 1991). 23 
 24 
Classically, attribution analysis is done by assigning an average tracer concentration to each 25 
source, estimated typically from time or space-averages of observed field data (Maule et al., 26 
1994; Winograd et al., 1998), and then solving a serious of linear equations. In order to express 27 
uncertainty in the attribution analysis, a tracer-based hydrograph separation approach was 28 
first proposed in the work of Genereux, (1998) and has subsequently been used in many 29 
studies (Genereux et al., 2002; Koutsouris and Lyon, 2018; Zhu et al., 2019). Bayesian mixing 30 
approaches offer a useful alternative to classic hydrograph separation, as Bayesian 31 
approaches explicitly acknowledge the variability of source tracer concentrations estimated 32 
from observed samples (Barbeta and Peñuelas, 2017; Blake et al., 2018). Rather than a single 33 
estimate of source contributions, Bayesian approaches yield full probability density functions 34 
(pdfs) of the fraction of different sources in the target mixture (Parnell et al., 2010; Stock et 35 
al., 2018), hereafter referred to as ‘mixing ratios’. 36 
 37 
Bayesian mixing was first developed in ecology to estimate the proportion of different food 38 
sources to animal diets (Parnell et al., 2010; Stock et al., 2018). Hydrological applications of 39 
such models are still rare (Blake et al., 2018; Evaristo et al., 2016, 2017; Oerter et al., 2019). In 40 
a Bayesian mixing model, a statistical distribution is fitted to both the measured source tracer 41 
concentrations, and to the measured tracer concentrations from the target (e.g. river, 42 
groundwater, vegetation). The distribution of the mixing ratios is then inferred via Bayesian 43 
inference. With recent advances in probabilistic programming languages like Stan (Carpenter 44 
et al., 2017), Bayesian inference has become a relatively simple task. 45 
 46 
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However, the key limitation with the above approach is that the source compositions are 1 
assumed to come from standard statistical distributions. Typically, the sources are assumed 2 
to be drawn from Gaussian distributions, which can be fully characterized by the mean and 3 
variance of the data available for each source (Stock et al., 2018). This limits both the potential 4 
applicability and the insights that can be gained from tracer information in hydrology because 5 
the sample mean and variance may not accurately reflect the statistical properties of the 6 
actual source composition and the Gaussian approach represents an unnecessary 7 
simplification in cases where a large amount of information on source composition is 8 
available. 9 
 10 
An additional complication in hydrology comes from the fact that observed point-scale 11 
samples do not necessarily capture the tracer concentrations in the actual sources, which are 12 
spatially distributed and whose contribution can be temporally variable depending on the 13 
state of the catchment (Harman, 2015). For instance, if we were to characterize the 14 
contribution of snowmelt to groundwater, we need to capture (1) the temporal evolution of 15 
the isotopic ratio of snowmelt, which strongly varies in space (Beria et al., 2018; Earman et al., 16 
2006), and (2) the temporal evolution of the area actually covered by snow. This spatially and 17 
temporally distributed nature of the sources can be hard to account for in both the analytical 18 
and the Bayesian mixing approaches. 19 
 20 
To overcome the limitations of source heterogeneity and the previously discussed restriction 21 
to Gaussian distributions, we present a new mixing approach for hydrological applications, 22 
called HydroMix. This approach does not require a parametric description of observed source 23 
or target tracer concentrations. Instead, HydroMix formulates the linear mixing problem in a 24 
Bayesian inference framework similar to hydrological rainfall-runoff models (Kavetski et al., 25 
2006a), where the mixing ratios of the different sources are treated as model parameters. 26 
Multiple model parameters can be inferred in such a setup allowing parameterization of 27 
additional hydrologic processes that can modify source tracer concentrations (shown in 28 
Section 3.5). A more detailed account of the advantages and limitations of this new approach 29 
is given in Section 5. 30 
 31 
In this paper, we first describe the theoretical details of HydroMix for a simple case study with 32 
two sources, one mixture and one tracer (Section 2). Section 3 presents synthetic and real-33 
world case studies that demonstrate the accuracy, robustness and flexibility of HydroMix. In 34 
the synthetic case study, we use a conceptual hydrologic model to simulate tracer 35 
concentrations. We also introduce a composite likelihood function that accounts for the 36 
magnitude of the different sources. The real-world case study applies HydroMix in a high-37 
elevation headwater catchment in Switzerland. The results of these applications are 38 
presented in Section 4 before summarizing the main outcomes, applicability, and limitations 39 
of HydroMix in Section 5. 40 

2 Model description and implementation 41 

 42 
A system with n sources mixing linearly in a target water body can be written as:  43 
 44 

𝝆𝟏𝑺 𝟏
𝒌 + 𝝆𝟐𝑺 𝟐

𝒌 + ⋯ + 𝝆𝒏𝑺 𝒏
𝒌 = 𝒀𝒌, 1 45 

 46 
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where Yk is the concentration of the kth tracer in the target mixture, 𝑆 𝑖
𝑘 is the concentration 1 

of the kth tracer in source i. 𝜌𝑖 (i=1, .., n) are the fractions of all sources in the mixture, with 2 
∑ 𝜌𝑖 = 1𝑛

𝑖=1 , corresponding to the aggregation of different sources in the mixture. In order to 3 
solve this system of linear equations, “n-1” different tracers are required. 4 
 5 
Section 2.1 details the general modeling approach for a simplified system with two sources 6 
and one tracer. This is followed by a detailed discussion on the choice of the parameter 7 
inference approach used. 8 
 9 

2.1 Linear mixing model with non-concomitant observed data 10 
 11 
For a system with two sources that combine linearly to form a mixture, the mixing model can 12 
be formulated as: 13 
𝜌𝑆1(𝑡) + (1 − 𝜌)𝑆2(𝑡) = 𝑌(𝑡 + 𝜏), 2 14 
 15 
where 𝑆1(𝑡) is the concentration of tracer in source 1 at timestep 𝑡, 𝑆2(𝑡) is the concentration 16 
of tracer in source 2 at timestep 𝑡, 𝑌(𝑡 + 𝜏) is the concentration of the mixture (i.e. the tracer 17 
concentration in the target) at timestep 𝑡 + 𝜏, 𝜌 is the mixing ratio and 𝜏 is the time delay 18 
between the time when source enters the system and the time when it is observed in the 19 
mixture. As an example, for a case where the two sources are snowmelt and rainfall and the 20 
mixture is groundwater, 𝜌 represents the proportional groundwater recharged from 21 
snowmelt and 𝜏 represents the average time lag for rain and snowmelt to reach the 22 
groundwater once they enter into the soil. In other words, the time lag (𝜏) stands for any delay 23 
caused by tracer transport from the source to the output; we assume that the source 24 
components are conservative in nature. 25 
 26 
The two parameters in this system, the mixing ratio (𝜌) and the time delay (𝜏), can be inferred 27 
via classical Bayesian parameter inference which is widely used in hydrology (Kavetski et al., 28 
2006a, 2006b; Schaefli and Kavetski, 2017). This implies taking an observed timeseries of the 29 
target (e.g. the tracer concentration in groundwater) and building a vector of model residuals: 30 
 31 

𝜀𝑡 = �̃�𝑡 − �̂�𝑡,  3 32 
 33 

where �̃�𝑡 represents the observed mixture concentration and �̂�𝑡 represents the simulated 34 
mixture concentration. However, in real environmental systems like that of groundwater 35 
recharge from rainfall and snowmelt, there are four major difficulties which can prevent the 36 
inference of 𝜌 and 𝜏 from the observed data. 37 
 38 

i.𝜌 and 𝜏 strongly vary in time depending on catchment conditions such as soil moisture (as 39 
previously discussed in the context of the ‘inverse storage effect’ (Benettin et al., 2017; 40 
Harman, 2015)). 41 

ii.Long time series of the tracer concentration in both the sources and mixture are rare. 42 
iii.The effect of seasonality in precipitation can make the inference of 𝜏 very difficult in case the 43 

goal is to understand the intra-annual recharge dynamics. 44 
iv.The tracer concentration in the different sources are generally measured at point scales 45 

whereas the tracer concentration in the target integrates inputs over the entire source area. 46 
 47 
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Our practical solution to limitation iv) is to assume that tracer concentrations in the two 1 
sources are functions of observable point processes: 2 
 3 

𝑆𝑖(𝑡) = 𝑓𝑖(𝑃𝑖(𝑡)),  4 4 
 5 
where the function fi represents the transformation from the point to the catchment scale for 6 
source i. Limitation iii) can be relaxed by assuming a long enough timestep (eg: long term 7 
groundwater recharge dynamics), where the observed samples are samples from the long 8 
term (>> 1 year) source and target compositions. This allows to replace the timestep ‘t’ and 9 
‘t+ 𝜏‘ with Δ𝑡 and write Eq. (2) as: 10 
 11 
𝜌𝑆1

′(Δ𝑡) + (1 − 𝜌)𝑆2
′ (Δ𝑡) = 𝑌′(Δ𝑡),  5 12 

 13 
where the ′ signifies the new time-integrated variables. Now, any observed point-scale tracer 14 
concentration pi in a given source i or in the output (e.g., the isotopic ratio of snowmelt) can 15 
be assumed to represent a sample from a stationary process (from S’1 or S’2 or Y’),. This 16 
assumption is in fact implicitly underlying most of the existing hydrological mixing models 17 
where point samples are used to characterize a spatial process and where the time reference 18 
of the samples is discarded. 19 
 20 
By utilizing all the available measurements {𝑝1

′ }𝑖=1..𝑛 and {𝑝2
′ }𝑗=1..𝑚 of the two sources in the 21 

above model, with 𝑛 samples of source 1 and 𝑚 samples of source 2, we can build 22 
𝑛 × 𝑚 predictions and compare them with the 𝑞 observed samples of the target as: 23 
 24 

𝜀𝑖𝑗
𝑘 = �̃�𝑜𝑏𝑠

𝑘 − �̂�𝑖𝑗,  6 25 

 26 

where �̃�𝑜𝑏𝑠
𝑘  is the k-th observed target concentration out of a total number of 𝑞 target 27 

concentrations.  28 
 29 
Assuming that the residuals can be described with a Gaussian error model with a mean of zero 30 
and constant variance 𝜎, 31 
 32 
𝜀~𝑁(0, 𝜎),  7 33 
 34 
we can compute the likelihood function of the residuals as the joint probability of all the 35 
residuals: 36 
 37 

𝐿𝑗(�̃�𝑜𝑏𝑠|𝑆1, 𝑆2, 𝜽) =  ∏ ∏ ∏ (2𝜋𝜎2)−0.5 exp (−
1

2
 

(�̃�𝑜𝑏𝑠
𝑘 − �̂�𝑖𝑗)2

𝜎2 )𝑛
𝑖=1

𝑚
𝑗=1

𝑞
𝑘=1 ,  8 38 

 39 
where 𝜽 represents all the model parameters. The above Gaussian error model could in 40 
principle be replaced with any other stochastic process. However, the Gaussian error model 41 
has been shown to be relatively robust in this kind of an application (Lyon, 2013; Schaefli and 42 
Kavetski, 2017). 43 
 44 
In the case of linear mixing between two sources, the two model parameters considered at 45 
this stage are the mixing ratio 𝜌 and the error variance 𝜎. The error variance can either be 46 
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computed from the observed residuals or be treated as a model parameter (Kuczera and 1 
Parent, 1998; Schaefli et al., 2007). For the examples shown in this paper, the error variance 2 
is computed from the residuals. 3 
 4 
In order to avoid numerical problems, we use the log-likelihood form of Eq. (8): 5 
 6 

log 𝐿𝑗(�̃�𝑜𝑏𝑠|𝑆1, 𝑆2, 𝜃) =  ∑ ∑ ∑ −0.5 [2𝜋𝜎2 +
(�̃�𝑜𝑏𝑠

𝑘 − �̂�𝑖𝑗)
2

𝜎2 )]𝑛
𝑖=1

𝑚
𝑗=1

𝑞
𝑘=1 .  9 7 

 8 

2.2 Parameter inference in a Bayesian framework 9 
 10 
Following the general Bayes’ equation, the posterior distribution of the model parameters 11 
can be written as: 12 
 13 

𝑝(𝜽|𝑆1, 𝑆2, �̃�) =
𝑝(�̃�|𝜃,𝑆1,𝑆2)𝑝(𝜃)

𝑝(�̃�|𝑆1, 𝑆2)
, 10 14 

 15 

where 𝑝(𝜽) is the prior distribution of the model parameters and 𝑝(�̃�|𝜽, 𝑆1, 𝑆2) is the 16 
likelihood function. The denominator of Eq. (10) can generally not be computed as that would 17 
require integration over the whole parameter space which is computationally expensive, 18 
which is why Eq. (10) is reduced to: 19 
 20 

𝑝(𝜽|𝑆1, 𝑆2, �̃�) ∝ 𝑝(�̃�|𝜽, 𝑆1, 𝑆2)𝑝(𝜽).  11 21 

 22 
Two methods are traditionally used in hydrology to infer the posterior distribution from Eq. 23 
(11), Markov Chain Monte Carlo (MCMC) sampling (Hastings, 1970; Metropolis and Ulam, 24 
1949) and importance sampling (Glynn and Iglehart, 1989; Neal, 2001). In the case of MCMC 25 
sampling, a common approach is the Metropolis algorithm (Kuczera and Parent, 1998; Schaefli 26 
et al., 2007; Vrugt et al., 2003). In importance sampling, the posterior distribution is obtained 27 
from weighted samples drawn from the so-called importance distribution. For typical 28 
multivariate hydrological problems, the only possible choices for the importance distribution 29 
are either uniform sampling over a hypercube or sampling from an over-dispersed multi-30 
normal distribution (Kuczera and Parent, 1998). A stochastic process is defined as over-31 
dispersed when the variance of the underlying distribution is greater than its mean (Inouye et 32 
al., 2017). The sampling distributions in such cases have large variance, allowing sufficient 33 
sampling over the entire parameter range. 34 
 35 
We implement a MCMC sampling algorithm using a Metropolis-Hastings (Hastings, 1970) 36 
criterion to infer the posterior distribution of the mixing ratio. For the synthetic case study 37 
(Section 3.1), we setup 10 parallel MCMC chains to monitor convergence according to the 38 
classical Gelman-Rubin convergence criterion (Gelman and Rubin, 1992). Each chain is 39 
initiated by assigning a uniform prior distribution for the mixing ratio, where the mixing ratio 40 
varies between 0 and 1. For the subsequent case studies, we use importance sampling for the 41 
sake of simplicity. The prior distribution of additional model parameters (if applicable) are 42 
discussed in the corresponding case study section. Apart from the prior distribution of the 43 
model parameters, HydroMix requires tracer concentration of the different sources and of the 44 



 7 

mixture. The error model variance is not jointly inferred with other model parameters but 1 
calculated for each sample parameter set from the residuals according to Eq. (6). 2 
 3 

3 Case studies 4 

 5 
We provide a comprehensive overview of the performance of HydroMix based on a set of 6 
synthetic case studies (case studies 3.1 and 3.2) and a real-world application to demonstrate 7 
the practical relevance for hydrologic applications (case studies 3.4 and 3.5). The first case 8 
study demonstrates the ability of HydroMix to converge on the correct posterior distribution 9 
for synthetically generated data. The second case study uses a synthetic dataset of rain, snow 10 
and groundwater isotopic ratios using a conceptual hydrologic model, and compares the 11 
results of HydroMix to the actual mixing ratios assumed to generate the data set. It then 12 
weights the sources samples and evaluates the effect of weighting on the mixing ratio. In the 13 
third and fourth case studies, HydroMix is applied to observed tracer data from an Alpine 14 
catchment in the Swiss Alps to infer source mixing ratios and an additional parameter (isotopic 15 
lapse rate). 16 
 17 

3.1 Mixing using Gaussian distributions 18 
 19 
In this example, sources 𝑆1 and 𝑆2 are drawn from two Gaussian distributions with different 20 
means (𝜇1, 𝜇2) and standard deviations (𝜎1, 𝜎2) and combined to form the mixture Y with a 21 
constant mixing ratio 𝜌:  22 
 23 
𝜌𝑆1 + (1 − 𝜌)𝑆2 = 𝑌. 12 24 
 25 
Assuming the two distributions are independent, the resultant mixture is normally distributed 26 
with mean and variance defined as: 27 
 28 

𝑌 ~ 𝑁(𝜌𝜇1 + (1 − 𝜌)𝜇2,  𝜌2𝜎1
2 + (1 − 𝜌)2𝜎2

2).  13 29 
 30 
A given number of samples are drawn from the distributions of 𝑆1 and 𝑆2 and of the mixture 31 

𝑌. The posterior distribution of the mixing ratio, 𝑝(𝝆|𝑆1̃, 𝑆2̃, �̃�), is then inferred using 32 
HydroMix for i) a case where the two source distributions are well identifiable, and ii) a case 33 
where the distributions have a large overlap. Different values of mixing ratios are tested, with 34 
ratios varying from 0.05 to 0.95 in steps of 0.05. 35 
 36 
The sensitivity of HydroMix to the number of samples drawn from 𝑆1, 𝑆2 and 𝑌, along with the 37 
time to convergence is assessed based on the sum of the absolute error between the 38 
estimated mixing ratio �̂� and its true value 𝜌. 39 
 40 

3.2 Mixing with a time series generated using a hydrologic model 41 
 42 
In this case study, we build a conceptual hydrologic model where groundwater is assumed to 43 
be recharged directly from rainfall and snowmelt. Stable isotopes of water in deuterium (δ2H) 44 
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is used to see how the isotopic ratio in groundwater evolves under different assumptions of 1 
rain and snow recharge efficiencies. 2 
 3 
Synthetic time series are generated for precipitation, isotopic ratio in precipitation and air 4 
temperature at a daily timestep. For generating the precipitation time series, the time 5 
between two successive precipitation events is assumed to be a Poisson process with the 6 
precipitation intensity following an exponential distribution (Botter et al., 2007; Rodriguez-7 
Iturbe et al., 1999). Time series of air temperature and of isotopic ratios in precipitation are 8 
obtained by generating an uncorrelated Gaussian process with the mean following a sine 9 
function (to emulate a seasonal signal) and with constant variance (Allen et al., 2018; Parton 10 
and Logan, 1981). The separation of precipitation into rainfall (𝑃𝑟) and snowfall (𝑃𝑠) is done 11 
based on a temperature threshold approach (Harpold et al., 2017a), where the fraction of 12 
rainfall 𝑓𝑟(t) at time step t is computed as a function of air temperature 𝑇(𝑡):  13 
 14 

𝑓𝑟(𝑡) = {

0  if 𝑇(𝑡) < 𝑇𝐿
𝑇(𝑡)−𝑇𝐿

𝑇𝐻−𝑇𝐿
   if 𝑇𝐿 ≤ 𝑇(𝑡) ≤ 𝑇𝐻

1   𝑇(𝑡) > 𝑇𝐻 ,

 14 15 

 16 
where 𝑇𝐿 and 𝑇𝐻 are the lower and upper threshold bounds. A double air temperature 17 
threshold approach has been shown to be more accurate than a single temperature threshold 18 
(Harder and Pomeroy, 2014; Harpold et al., 2017a, 2017b). In this case study, 𝑇𝐿 and 𝑇𝐻 are 19 

set to -1 C and +1 C. The evolution of the snow water equivalent (SWE) in the snowpack (ℎ𝑠) 20 
is computed as: 21 
 22 
𝑑ℎ𝑠(𝑡)

𝑑𝑡
= 𝑃𝑠(𝑡) − 𝑀𝑠(𝑡), 15 23 

 24 
where 𝑀𝑠 is the magnitude of snowmelt, computed using a degree-day approach as proposed 25 
by Schaefli et al., (2014): 26 
 27 

𝑀𝑠 = {
𝑎𝑠(𝑇(𝑡) − 𝑇𝑚),     if 𝑇(𝑡) > 𝑇𝑚

          0                 otherwise
, 16 28 

 29 

where 𝑎𝑠 is the degree-day factor (set here to 2.5 mm/C/day) and 𝑇𝑚 is the threshold 30 

temperature at which snow starts to melt (set to 0 C). Rain-on-snow events are not explicitly 31 
considered as this lies beyond the scope of this paper. The snowpack is assumed to be fully 32 
mixed, and the isotopic ratio of snowpack is computed as: 33 
 34 
𝑑(ℎ𝑠(𝑡)𝐶𝑠(𝑡))

𝑑𝑡
= 𝐶𝑝(𝑡)𝑃𝑠(𝑡) − 𝐶𝑠(𝑡)𝑀𝑠(𝑡), 17 35 

 36 
where 𝐶𝑠 is the isotopic ratio of snowpack and 𝐶𝑝 is the isotopic ratio of precipitation. The 37 

amount of groundwater recharge (𝑅) is the sum of groundwater recharged from rainfall and 38 
snowmelt: 39 
 40 
𝑅(𝑡) = 𝑅𝑟𝑃𝑟(𝑡) + 𝑅𝑠𝑀𝑠(𝑡), 18 41 
 42 
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where 𝑅𝑟 and 𝑅𝑠 are the rainfall and snowmelt recharge efficiencies. Recharge efficiency is 1 
defined as the fraction of rainfall or snowmelt that reaches groundwater and is assumed to be 2 
a constant value. The groundwater storage is assumed to be fully mixed, and the isotopic ratio 3 
of groundwater is computed as: 4 
 5 
𝑑(𝐺(𝑡)𝐶𝑔(𝑡))

𝑑𝑡
= 𝑅𝑟𝐶𝑝(𝑡)𝑃𝑟(𝑡) + 𝑅𝑠𝐶𝑠(𝑡)𝑀𝑠(𝑡) − 𝐶𝑔(𝑡)𝑄(𝑡), 19 6 

 7 
where 𝐶𝑔 is the isotopic ratio in groundwater, 𝐺 is the volume of groundwater and 𝑄 is the 8 

amount of groundwater outflow to the stream defined as: 9 
 10 
𝑄(𝑡) = 𝑘(𝐺(𝑡) − 𝐺𝐶), 20 11 
 12 
where 𝑘 is the recession coefficient and 𝐺𝐶  is a constant groundwater storage that does not 13 
interact with the stream (added here to avoid zero flow). This formulation follows the linear 14 
groundwater reservoir assumption used in numerous hydrological modeling frameworks 15 
(Beven, 2011). The volume of the groundwater storage is computed as: 16 
 17 
𝑑𝐺(𝑡)

𝑑𝑡
= 𝑅(𝑡) − 𝑄(𝑡). 21 18 

 19 
The model is run for a period of 100 years, allowing the system to reach a long term steady 20 
state. The parameters used to generate daily precipitation, air temperature and precipitation 21 
isotopic ratios are shown in Table 4. The number of yearly precipitation events is set to 30. 22 
The snow accumulation and the degree-day snowmelt models are then used to compute the 23 
number of snowfall days and of snowmelt events The static volume of groundwater that does 24 
not interact directly with the stream, GC, is set to 1000 mm. 25 
 26 
Only the last 2 years of the model runs are used to obtain the time series of isotopic ratios in 27 
rainfall, snowmelt and groundwater. These years are then used to estimate the mixing ratio 28 
of snowmelt in groundwater, which is the fraction of groundwater recharged from snowmelt. 29 
Rainfall and snowmelt samples are the two sources and groundwater samples represent the 30 
mixture. For the HydroMix application, all the rainfall and snowmelt samples are used, 31 
whereas for groundwater, only one isotopic ratio per month is used (randomly sampled). The 32 
mixing ratios inferred using HydroMix are compared to the actual recharge ratio obtained 33 
from the hydrologic model as: 34 
 35 

𝑅𝑠
𝑎 =

∑ 𝑅𝑠𝑀𝑠(𝑡)𝑡

∑ 𝑅(𝑡)𝑡
, 22 36 

 37 
where 𝑅𝑠

𝑎 represents the proportion of groundwater recharge derived from snowmelt, 38 
summed over all the time steps. The numerical implementation of the evolution of isotopic 39 
ratio in snowpack and groundwater are given in the Appendix. 40 
 41 

3.3 Weighting mixing ratios in the hydrologic model 42 

 43 
In Section 3.2, rainfall and snowmelt samples are not weighted by the magnitude of their 44 
fluxes while computing the mixing ratios with HydroMix. As all rainfall and snowmelt samples 45 
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are used, the weights are implicitly determined by the number of rainfall and snowmelt 1 
events, instead of their magnitudes. This is a general problem in all mixing approaches and 2 
has not been adequately acknowledged in the literature. Ignoring the weights may lead to 3 
biased mixing estimates if the proportional contribution of one of the components (e.g.: 4 
rainfall or snowmelt) is low, but the number of samples obtained to represent that component 5 
is proportionally much higher (Varin et al., 2011). For example, in a given catchment, the 6 
amount of total snowfall maybe a small proportion of the annual precipitation, but the 7 
number of days when snowmelt occurs maybe comparable to the total number of rainfall days 8 
in a year. If this is not specified a priori, HydroMix may overestimate the proportion of 9 
groundwater being recharged from snowmelt. To account for this, we introduce a weighting 10 
factor in the likelihood function originally formulated in Eq. (8), to make a new composite 11 
likelihood (Varin et al., 2011): 12 
 13 

𝐿𝑗(�̃�𝑜𝑏𝑠|𝑆1, 𝑆2, 𝜽) =  ∏ ∏ ∏ [(2𝜋𝜎2)−0.5 exp (−
1

2
 

(�̃�𝑜𝑏𝑠
𝑘 − �̂�𝑖𝑗)2

𝜎2
)]

𝑤𝑖𝑤𝑗
𝑛
𝑖=1

𝑚
𝑗=1

𝑞
𝑘=1 , 23 14 

 15 
where i and j correspond to snowmelt and rainfall samples, and the weights wi and wj reflect 16 
the proportion of snowmelt and rainfall contributing to groundwater recharge (Vasdekis et 17 
al., 2014), where wi is expressed as: 18 
 19 

𝑤𝑖 =  
𝑅𝑖𝑆𝑖

∑ 𝑅𝑖𝑆𝑖
𝑛
𝑖=1

 , 24 20 

 21 
where Ri is the magnitude and Si is the isotopic ratio of the ith snowmelt event. Rain weights 22 
(wj) are also expressed similarly to Eq. (24). The obtained mixing ratio estimates are then 23 
compared with the unweighted estimates (in Section 3.2) to see if weighting by magnitude 24 
makes a significant difference. 25 
 26 

3.4 Real case study: Snow ratio in groundwater in Vallon de Nant 27 
 28 
The objective of this case study is to infer the proportional contributions of snow versus 29 
rainfall to the groundwater of an Alpine headwater catchment, Vallon de Nant (Switzerland), 30 
using stable water isotopes. 31 
 32 

3.4.1 Catchment description 33 
 34 
Vallon de Nant is a 13.4km2 catchment located in the Vaud Alps in South-West of Switzerland 35 
(Figure 1), with elevation ranging from 1253 m to 3051 m asl. Steep slopes form a major part 36 
of the catchment with a mean catchment slope of around 36° (Thornton et al., 2018). At lower 37 
elevations, a dense forest dominated by Picea abies covers 14% of the catchment area. At 38 
around 1500 m asl., there is an active pasture area with scattered trees and an open forest 39 
dominated by Larix decidua. Additional species scattered throughout the catchment include 40 
Pinus sp., Alnus sp. and Acer pseudoplatanus. Alpine meadows cover most of the higher 41 
elevation land surfaces. Despite the relatively low elevation, there is a small glacier on its 42 
South-western tip, which covers around 4.4% of the catchment area, below which an 43 
extended moraine occupies 10.1% of the catchment area. A large part (28% of catchment 44 
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area) of the hillslopes are composed of steep rock walls. At lower to mid-elevations, talus 1 
slopes account for about 6% of the catchment area. 2 
 3 
Vallon de Nant has a typical Alpine climate, with around 1900 mm of annual precipitation and 4 

a mean air temperature of 1.8 C (Michelon, 2017). For this paper, long term climate statistics 5 
are computed using MeteoSwiss gridded precipitation and air temperature dataset from 6 
1961-2015 (Isotta et al., 2013; MeteoSwiss, 2016, 2017). Applying a simple temperature 7 

threshold (0 and 1 C) to observed precipitation indicates that on average, 40-45% of the total 8 
precipitation falls as snow in the catchment. There is a small degree of seasonality in 9 
precipitation, with higher precipitation between June to August, and lower precipitation in the 10 
months of September and October. 11 

 12 
 13 
Figure 1. Map showing Vallon de Nant along with the locations of meteorologic and hydrologic 14 
observations and the frequent sampling sites. Composite samples of precipitation were 15 
collected at the weather stations. Groundwater samples were collected at the groundwater 16 
monitoring points and the installed piezometers. The groundwater piezometers were installed 17 
by James Thornton from University of Neuchâtel (Thornton et al., 2018). 18 
 19 

3.4.2 Data collection 20 
 21 
Vallon de Nant has been extensively monitored since February 2016. Water samples are 22 
collected from streamflow, rain, snowpacks and groundwater at different elevations, which 23 
are then analyzed for the isotopic ratios in deuterium (δ2H) and oxygen-18 (δ18O). Vallon de 24 
Nant is remotely located with very limited winter access, frequently experiencing winter 25 
avalanches. Due to these logistical constraints, snowmelt lysimeters or passive capillary 26 
samplers could not be setup to sample snowmelt water; accordingly, grab snowpack samples 27 
are used here as a proxy for snowmelt. A summary of the isotopic data is shown in Table 1. 28 
 29 
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Table 1. Summary of the isotopic data (δ2H and δ18O) collected in Vallon de Nant between 1 
February 2016 to July 2017 2 
 3 

Sample name Number of samples Lowest elevation Highest elevation 

Rainfall 32 1253 1773 

Top snowpack layer 80 1241 2455 
Groundwater 22 1253 1779 

 4 

3.4.3 Model implementation 5 
 6 
HydroMix is used to estimate the proportion of snow recharging groundwater (subsequently 7 
referred to as ‘snow recharge coefficient’). In order to obtain a pdf of the snow recharge 8 
coefficient, isotopic ratios in all the water samples from rain, snowpack and groundwater are 9 
used. A uniform prior distribution is assigned to the snow recharge coefficient, which varies 10 
between 0 and 1, representing the entire range of possible values. Groundwater isotopic ratio 11 
is estimated using Eq. (12). 12 
 13 

3.5 Introduction of an additional model parameter 14 
 15 
In any mixing analysis, it may be useful or desirable for users to specify an additional model 16 
parameter that is able to modify the tracer concentrations based on their process 17 
understanding of the system. In the case of Alpine catchments with large elevation gradients, 18 
stable isotopes in precipitation often exhibit a systematic trend with elevation, becoming 19 
more depleted in heavier isotopes with increasing elevation. This is also known as the ‘isotopic 20 
lapse rate’ (Beria et al., 2018). In typical field campaigns, because of logistical challenges, 21 
precipitation samples are collected only at a few points in a catchment, with often fewer 22 
precipitation samples at high elevations. This leads to oversampling at lower elevations, and 23 
under sampling at higher elevations, which can bias mixing estimates. This has been found 24 
specially relevant for hydrograph separation in forested catchments (Cayuela et al., 2019). To 25 
allow a process compensation for this, an additional lapse rate factor is introduced in which 26 
each observed point scale sample (observed at a given elevation) is corrected to a reference 27 
elevation as follows: 28 
 29 

�̅� =  
∑ [𝛼(𝑒𝑗−𝑒)+𝑟]𝑎𝑗

𝑘
𝑗=1

∑ 𝑎𝑗
𝑘
𝑗=1

, 25 30 

 31 
where 𝑟 is the isotopic ratio in precipitation collected at elevation 𝑒, �̅� is the catchment 32 
averaged isotopic ratio in precipitation, 𝛼 is the isotopic lapse rate factor, and ej is the 33 
elevation of the j-th elevation band where the catchment is divided into k elevation bands. 34 
These bands are obtained by constructing a hypsometric curve of the catchment (Strahler, 35 
1952). 36 
 37 
The lapse rate factor is allowed to modify both rainfall and snowpack isotopic ratios to obtain 38 
a catchment averaged isotopic ratio, which is then used in the mixing model. Using this 39 
formulation of an isotopic lapse rate makes the following implicit assumptions: (1) 40 
precipitation storms on aggregate move from the lower part of the catchment to the upper 41 
part of the catchment thus creating a lapse rate effect, and (2) precipitation falls uniformly 42 
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over the catchment. It is important to note that the isotopic lapse rate is different from the 1 
precipitation lapse rate, i.e., the rate of change of precipitation with elevation is different from 2 
the rate of change of precipitation isotopic ratio with elevation. 3 
 4 
It is important to note that precipitation isotopic ratio is not only a function of elevation, but 5 
also depends on other factors such as the source of moisture origin, cloud condensation 6 
temperature, secondary evaporation, etc. Similarly, a strong spatial variability exists in the 7 
isotopic ratio of snowmelt water, depending on catchment aspect, snow metamorphism, wind 8 
distribution, etc. This case study is a mere demonstration that HydroMix allows inference of 9 
additional parameters that can account for various physical processes that may modify 10 
isotopic ratios. 11 
 12 
The prior distribution of the isotopic lapse rate is specified based on isotopic data collected 13 
across Switzerland under the Global Network of Isotopes in Precipitation (GNIP) program 14 
(IAEA/WMO, 2018). Using the monthly isotopic values collected in between 1966 and 2014, 15 
average lapse rate values are obtained for both δ2H and δ18O. These were (-)1.94 ‰/100m for 16 
δ2H, and (-)0.27 ‰/100m for δ18O (Beria et al., 2018). 17 
 18 
A uniform prior distribution is assigned to the isotopic lapse rate parameter, with the lower 19 
bound specified as three times the Swiss lapse rate for both δ2H and δ18O. The observed 20 
isotopic lapse rate data from Switzerland suggests average lapse rates are weakly negative; 21 
however, positive lapse rates can a priori not be excluded for the case study catchment. 22 
Accordingly, we do not specify an upper lapse rate bound of zero but set it as three times the 23 
Swiss lapse rate (Table 2). In the case of Vallon de Nant, the elevation ranges from 1253 m to 24 
3051 m asl. For computing the Swiss lapse rate, the elevation range over which the monthly 25 
precipitation samples were collected was 300 m to 2000 m asl. 26 
 27 
Table 2. Prior distribution of the different model parameters as specified to HydroMix 28 
 29 

Variable Prior distribution Lower bound Upper bound 

Snow recharge coefficient Uniform 0 1 

Isotopic lapse rate in δ2H Uniform (-)5.82 ‰/100m (+)5.82 ‰/100m 

Isotopic lapse rate in δ18O Uniform (-)0.81 ‰/100m (+)0.81 ‰/100m 

4 Results 30 

 31 
The results for the different case studies are discussed in the sections below. 32 
 33 

4.1 Mixing with normal distributions 34 
 35 
The mean and standard deviations used to generate the low and high variance source 36 
distributions for the synthetic case studies are summarized in Table 3. We randomly generated 37 
100 samples from each of the two source distributions and from the target distribution, and 38 
varied the mixing ratios between 0.05 and 0.95 in 0.05 increments. However, it should be 39 
noted that HydroMix permits using different number of samples for the sources and the 40 
mixture. 41 
 42 
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For the low variance case, the mixing ratio inferred with HydroMix with 1000 Monte Carlo 1 
(MC) simulations reproduce closely the theoretical mean of the mixing ratios used to generate 2 
the synthetic data (Figure 2a). However, for the high variance case, the inferred mixing ratios 3 
do not match the true underlying mixing ratios, especially for low and high mixing ratios. This 4 
is partly due to the poor identifiability of the sources (given that their distributions are highly 5 
overlapping), and partly due to the relatively small sample size of 100. The inferred mean 6 
should reproduce the theoretical mean with increasing sample size and we clearly see this in 7 
Figure 2b, where the model performance markedly improves with increasing number of 8 
samples. The performance is measured here in terms of the absolute error between the 9 
posterior mixing ratio mean and the true mean, summed over all tested ratios from 0.05 to 10 
0.95. We did not perform inferences for sample sizes larger than 100 as the computational 11 
requirement increases exponentially with increasing sample sizes. 12 
 13 
The model converges fairly quickly for the low variance case after ~100 runs as shown in Figure 14 
3(a). The obtained model residuals have zero mean and are approximatively normally 15 
distributed as revealed by quantile-quantile plots (not shown), in line with the assumption of 16 
an unbiased normally distributed error model, as stated in Eq. 7. 17 
 18 
Table 3. Mean and variance of the two sources S1 and S2 drawn from Normal distribution 19 

Dataset S1 mean (standard deviation) S2 mean (standard deviation) 
Low variance 10 (0.5) 20 (0.5) 

High variance 10 (5.0) 20 (5.0) 

 20 
Figure 2. (a) Scatterplot showing the mixing ratio (𝝆) values inferred using HydroMix for the 21 
low and high variance synthetic case of Table 3. The number of source and target samples are 22 
100. (b) Performance of HydroMix in terms of the absolute error between the posterior mixing 23 
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ratio mean and the true mean for the low variance dataset, summed over all tested ratios 1 
plotted as a function of the number of samples drawn for the two sources. 2 

 3 
Figure 3. Diagnostic plots showing the convergence characteristics of MCMC chains for five 4 
different mixing ratios for the low variance dataset (shown in Table 3). Subplots (a) and (b) 5 
show variations in the inferred mixing ratio and the error mean with increasing MCMC runs. 6 
 7 

4.2 Contribution of rain and snow to groundwater recharge using a hydrologic model 8 
 9 
Figure 4 shows the variation in the isotopic ratio of groundwater over the entire 100 year 10 
period, showing the system achieves a steady state condition after ~15 years of simulation. 11 
The mixing ratio is estimated with HydroMix using: (1) samples of the isotopic ratio in snowfall, 12 
and (2) samples of the isotopic ratio in snowmelt. The two sample distributions differ, as 13 
shown in Figure 5, where the variability of the isotopic ratio is lower in snowmelt when 14 
compared to snowfall. In the model at hand, this reduction is obtained because of mixing 15 
occurring within the snowpack, leading to homogenization, thus reducing the variability in the 16 
isotopic ratio of snowmelt. In field data, such a reduction in variability is also generally 17 
observed (Beria et al., 2018), as a result of the homogenization as modelled here and from 18 
more complex snow physical processes, which lie beyond the scope of this study. 19 
 20 
Table 4. Parameters used to generate time series of precipitation, air temperature and 21 

isotopic ratios in precipitation.  represents the mean, A is the amplitude and  the time lag 22 

of the underlying sine function. For the precipitation process,  is the mean intensity on days 23 
with precipitation. The resulting mean winter length (air temp. below 0°C) is 119.5 days. 24 

Variable Parameter values 

Precipitation # events/year = 30,  = 33.45 mm/day 

Air temperature  = 4 C, A = 8 C,  = -π/2 



 16 

Precipitation isotopic ratio  = (-80) ‰, A = 40 ‰,  = -π/2 

 1 

 2 
Figure 4. Evolution of the modeled isotopic ratio in groundwater over a 100-year period with 3 
𝑹𝒓= 0.3 and 𝑹𝒔=0.6. 4 
 5 

 6 
Figure 5. Boxplot showing the variability in the isotopic ratio of snowfall and snowmelt as 7 
simulated by the hydrologic model. The boxplot extends from 25th to 75th percentile value, 8 
with the median value depicted by the orange line. The whiskers extend up to 1.5 times of the 9 
interquartile range. The black circles are the outliers. 10 
 11 
The mixing ratios inferred with HydroMix are very similar regardless of whether snowfall or 12 
snowmelt is used across the entire range of recharge efficiencies (Figure 6). This provides 13 
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confidence in the use of snowfall samples as a proxy for snowmelt when estimating mixing 1 
ratios. However, it is clear from Figure 6 that an important bias emerges between the 2 
estimated mixing ratio from HydroMix and the actual mixing ratio known from the hydrologic 3 
model, especially for high and low mixing ratios. 4 
 5 
This bias can be expected to emerge where the source contributions are not weighted 6 
according to their fluxes, which to our knowledge has not been explicitly addressed in the 7 
hydrological literature. As already discussed in Section 3.3, the absence of sample weighting 8 
typically induces a bias when there is a large divergence between the amount of samples taken 9 
over a certain period (e.g. one year) to characterize a source, and the magnitude of source 10 
flux over that period (e.g. 40 snow and 10 rain samples taken to characterize the two sources, 11 
where snow only accounts for a very small portion (e.g. 10%) of the annual precipitation). 12 
 13 

 14 
 15 
Figure 6. Ratios of snow in groundwater estimated with HydroMix plotted against ratios 16 
obtained from the hydrologic model for the last two years of simulation. Also shown are the 17 
separate results obtained by using samples of either snowmelt or snowfall. The full range of 18 
ratios is obtained by varying rainfall and snowmelt recharge efficiencies from 0.05 to 0.95. The 19 
number of rainfall, snowfall and snowmelt days are 39, 24 and 107 in the last two years of 20 
simulation. 21 
 22 

4.3 Effect of weights on estimates of mixing ratios using a hydrologic model 23 
 24 
After taking into account the magnitude of rainfall and snowmelt events in the composite 25 
likelihood function of Eq. (23), it is clear that much of the un-weighted biases can be removed 26 
(Figure 7). The most significant improvement is seen at very low mixing ratios where the 27 
divergence between the conceptual model and the mixing model estimates error reduces by 28 
almost 50%. In this study, we have used a relatively simple normalization based weighting 29 
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function (Eq. (24)). Testing other weighting functions which have been proposed in the past 1 
(Vasdekis et al., 2014) and is left for future research. 2 
 3 

 4 
 5 
Figure 7. Ratios of snow in groundwater estimated using HydroMix plotted against ratios 6 
obtained from the hydrologic model, for both weighted and unweighted mixing scenarios. The 7 
full range of ratios is obtained by varying rainfall and snowmelt recharge efficiencies from 0.05 8 
to 0.95. The number of rainfall, snowfall and snowmelt days are 39, 24 and 107 in the last two 9 
years of simulation. 10 
 11 

4.4 Inferring fraction of snow recharging groundwater in a small Alpine catchment 12 

along with an additional model parameter 13 
 14 
Using the dataset from an Alpine catchment (Vallon de Nant, Switzerland), HydroMix 15 
estimates that 60-62% of the groundwater is recharged from snowmelt (using unweighted 16 
approach), with the full posterior distributions shown in Figure 8a. This estimate is consistent 17 
for both the isotopic tracers (δ2H and δ18O), which are often used interchangeably in the 18 
hydrologic literature (Gat, 1996). Comparing this recharge estimate to the proportion of total 19 
precipitation that falls as snow (around 40-45%, see Section 3.4.1), suggests that snowmelt is 20 
more effective at reaching the aquifer than an equivalent amount of rainfall falling at a 21 
different period of the year. Similar results have been obtained in a number of previous 22 
studies across the temperate and mountainous regions of the world (see Table 1 in the work 23 
of Beria et al., (2018) for a summary). 24 
 25 
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 1 
Figure 8. Histogram showing the fraction of snow recharging groundwater in Vallon de Nant 2 
using the isotopic ratios in δ2H and δ18O (a) without correcting for lapse rate and (b) after 3 
correcting for lapse rate. 4 
 5 
As can be seen from Figure 8a, the estimated distribution of snow ratio in groundwater is very 6 
narrow. This can be explained by the fact that we assume that the collected precipitation 7 
samples represent the variability actually occurring in the catchment. To overcome this 8 
limitation, we infer an additional parameter called the isotopic lapse rate that accounts for 9 
the spatial heterogeneity in terms of catchment elevation. As shown in Figure 9, the posterior 10 
distributions of the isotopic lapse rate (for both δ2H and δ18O) largely overlap with the spatially 11 
averaged isotopic lapse rate as estimated from precipitation isotopes across Switzerland. The 12 
overlap with the average Swiss isotope lapse rate suggests our inferred lapse rates are 13 
reasonable, with the spread in the estimates likely reflecting the temporal variation in the 14 
catchment specific isotope lapse rate that can develop from a wide range of moderating 15 
factors (e.g. air masses contributing precipitation without traversing the full elevation range 16 
of the catchment due to varying trajectories). The Swiss lapse rate is constructed as a long 17 
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term spatial average, whereas the inferred isotopic lapse rate in Vallon de Nant is constructed 1 
from the temporal variations in the isotopic ratios. This makes the comparison more 2 
informative than definitive. In any case, these results demonstrate that it is relatively 3 
straightforward to jointly infer multiple parameters within the HydroMix modeling framework 4 
provided users have a mechanistic basis for their interpretation. 5 
 6 
However, an important consequence of additional parameter inference without providing 7 
additional data or constraints is an increase in the degree of freedom, which can then increase 8 
the uncertainty on source contributions. This effect is seen in Figure 8b, especially in contrast 9 
with the previous result in Figure 8a, where the median mixing ratios of the posterior 10 
distributions remain similar (~0.6), but the spread increase drastically, from 0.005 to 0.2. 11 
 12 

 13 
Figure 9. Histogram showing the posterior distribution of the isotope lapse rate parameter in 14 

δ2H and δ18O. The green region shows the confidence bounds (significant at  =0.01) of lapse 15 
rate computed over Switzerland by using inverse variance weighted regression. Limits of the 16 
prior distribution of the isotopic lapse rates correspond to limits of the x-axis. The slope of the 17 
isotopic ratio when plotted against elevation for the Swiss-wide data is shown in Figure 3 of 18 
Beria et al. (2018). 19 
 20 

5 Limitations and opportunities 21 

 22 
As with all linear mixing models, the quality of the underlying data determines the accuracy 23 
and utility of the results. If the tracer compositions of the different sources are not sufficiently 24 
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distinct, the uncertainty in the estimated mixing ratios will become very large. This means that 1 
if either the underlying data quality is poor, or the source contribution dynamics are not well 2 
conceptualized, then the uncertainty in the mixing ratios will be too high to be useful. 3 
 4 
In cases where a large number of source samples are available, the computational 5 
requirements of HydroMix outweigh the benefit from using it. These are likely cases where 6 
the statistical distribution of the source tracer composition is well understood, therefore 7 
fitting a probability density curve to the source and target samples, and then inferring the 8 
distribution of the mixing ratio using a probabilistic programming approach is more 9 
appropriate (Carpenter et al., 2017; Parnell et al., 2010; Stock et al., 2018). Also HydroMix 10 
might not be an appropriate method in instances where fitting statistical distributions to 11 
source and target compositions reflect a priori knowledge of the system. 12 
 13 
A key difference between HydroMix and other Bayesian mixing approaches is that HydroMix 14 
parameterizes the error function whereas other Bayesian approaches parameterize the 15 
statistical distribution of source and mixture compositions. Parameterizing source 16 
compositions require large sample sizes, which is seldom the case in tracer hydrology. Error 17 
parameterization offers a useful alternative and can be also verified against the posterior error 18 
distribution. In the case studies demonstrated in this paper, a normal error model was found 19 
to be appropriate. However, error models other than Gaussian can be used by formulating the 20 
respective likelihood function. 21 
 22 
HydroMix builds the model residuals by comparing all the observed source samples with all 23 
the observed samples of the target mixture, assuming that all available source and target 24 
samples are independent. Interestingly, the assumption of independence holds even if the 25 
source and target samples are taken at the same time, since the target samples result from 26 
water that has travelled for a certain amount of time in the catchment, and hence is not 27 
related to the water entering the catchment. However, if a system has instantaneous mixing, 28 
then the source and target samples taken at the same moment of time will necessarily be 29 
strongly correlated. In such cases, the assumption of independent samples would not make 30 
sense and the method might give spurious results. 31 
 32 
Finally, it is noteworthy that adding additional parameters to characterize the source tracer 33 
composition increases the degree of freedom of the model, which implies that adding such 34 
parameters leads to an increase in the uncertainty of the source contribution estimates unless 35 
new information, i.e. new observed data, is added to the model. This means that users who 36 
are interested in incorporating additional modification processes by adding parameters 37 
should ideally provide additional tracer data able to constrain this process, subject to tracer 38 
data being available. 39 
 40 
For consistency and simplicity, the case studies and synthetic hydrological examples provided 41 
here focused on the contribution of rain and snow in recharging groundwater. However, it is 42 
important to emphasize that the opportunities to implement HydroMix extend to all cases 43 
where mixing contributions are of interest, and where it is difficult to build extensive 44 
databases of source tracer compositions. Such examples include quantifying the amount of 45 
“pre-event” vs. “event water” in streamflow, where “pre-event water” refers to groundwater 46 
and “event water” refers to rainfall or snowmelt. Another interesting use case might be to 47 
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quantify the proportion of streamflow coming from the different source areas in a catchment, 1 
to capture the spatial dynamics of streamflow. Other uses include quantifying the amount of 2 
fog contributing to throughfall, the proportion of glacial melt vs. snowmelt flowing into a 3 
stream, the amount of vegetation water use from soil moisture at different depths vs 4 
groundwater, the interaction between surface water and groundwater at the hyporheic 5 
zone(Leslie et al., 2017), sediment fingerprinting to quantify the spatial origin of river 6 
sediments , etc. In all of these cases, understanding source water contributions, both spatially 7 
and temporally, will improve the physical understanding of the system. 8 
 9 

6 Conclusions 10 

 11 
We develop a new Bayesian modeling framework for the application of tracers in mixing 12 
models. The primary application target of this framework is hydrology, but it is by no means 13 
limited to this field. HydroMix formulates the linear mixing problem in a Bayesian inference 14 
framework that infers the model parameters using a Metropolis-Hastings based MCMC 15 
sampling algorithm, based on differences between observed and modelled tracer 16 
concentrations in the target mixture, using all possible combinations between all source and 17 
target concentration samples. For data scarce environments, this represents an advance over 18 
existing probabilistic mixing models that compute mixing ratios based on the formulation of 19 
probability distribution functions for the source and target tracer concentrations. HydroMix 20 
also makes the inclusion of additional model parameters to account for source modification 21 
processes straightforward. Examples include known spatial or temporal tracer variations (e.g. 22 
isotopic lapse rates or evaporative enrichment). 23 
 24 
An evaluation of HydroMix with data from different synthetic and field case studies leads to 25 
the following conclusions:  26 
 27 

1. HydroMix gives reliable results for mixing applications with small sample sizes (< 20-30 28 
samples). As expected, the variance in source tracer composition and the ensuing 29 
composition overlap determines the uncertainty in the mixing ratio estimates. The 30 
uncertainty in mixing ratio estimates increases with increasing variance in source 31 
tracer compositions. Mixing ratio estimates improve (in terms of lower error) with 32 
increasing number of source samples. 33 

2. As revealed by our synthetic case study with a conceptual hydrological model, at low 34 
source contributions (i.e. < 20%), a strong divergence between the actual and 35 
estimated mixing ratios emerges. This arises if HydroMix assigns equal weights to all 36 
source samples proportionally oversampling the less abundant source, which then 37 
leads to significant biases in mixing estimates. This problem is inherent to all mixing 38 
approaches, and to our knowledge has not been adequately addressed in the 39 
literature. 40 

3. The use of composite likelihoods to weight samples by their amounts can significantly 41 
reduce the bias in the mixing estimates. At low source proportions, the estimated 42 
mixing ratio improves by more than 50% after accounting for the amount of all the 43 
sources. We show this using a simple normalization based weighting function. Future 44 
studies should explore the usage of different weighting functions that have been 45 
proposed in the past (Vasdekis et al., 2014). 46 
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4. A synthetic application of HydroMix to understand the amount of snowmelt induced 1 
groundwater recharge, revealed that using snowfall isotopic ratio instead of snowmelt 2 
isotopic ratio leads to similar mixing ratio estimates. This is particularly useful in high 3 
mountainous catchments, where sampling snowmelt is logistically difficult. 4 

5. A real case application of HydroMix in a Swiss Alpine catchment (Vallon de Nant) showed 5 
a clear winter bias in groundwater recharge. About 60-62% of the groundwater is 6 
recharged from snowmelt (unweighted mixing approach), when snowfall only 7 
accounts for 40-45% of the total annual precipitation. This has also been previously 8 
suggested elsewhere in the European Alps (Cervi et al., 2015; Penna et al., 2014, 2017; 9 
Zappa et al., 2015). 10 

 11 
To conclude, HydroMix provides a Bayesian approach to mixing model problems in hydrology 12 
that takes full advantage of small sample sizes. Future work will show the full potential of this 13 
approach in hydrology as well as other environmental modelling applications. 14 
 15 

7 Appendix 16 

 17 
The equations below show the numerical implementation of the evolution of isotopic ratios 18 
in snowpack and groundwater at a daily timestep. 19 
 20 

𝐶𝑠(𝑡) =
𝐶𝑠(𝑡−1)ℎ𝑠(𝑡−1)+𝐶𝑝(𝑡)𝑃𝑠(𝑡)−𝐶𝑠(𝑡−1)𝑀𝑠(𝑡)

ℎ𝑠(𝑡−1)+𝑃𝑠(𝑡)−𝑀𝑠(𝑡)
 26 21 

 22 

𝐶𝑔(𝑡) =
𝐶𝑔(𝑡−1)𝐺(𝑡−1)+𝐶𝑝(𝑡)𝑅𝑟𝑃𝑟(𝑡)+𝐶𝑠(𝑡)𝑅𝑠𝑀𝑠(𝑡)−𝐶𝑔(𝑡−1)𝑄(𝑡)

𝐺(𝑡−1)+𝑅𝑟𝑃𝑟(𝑡)+𝑅𝑠𝑀𝑠(𝑡)−𝑄(𝑡)
 27 23 
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