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Abstract. We present a method to infer spatially and spatiotemporally correlated emissions of greenhouse gases from at-

mospheric measurements and a chemical transport model. The method allows fast computation of spatial emissions using a

hierarchical Bayesian framework as an alternative to Markov chain Monte Carlo algorithms. The spatial emissions follow a

Gaussian process with a Matérn correlation structure which can be represented by a Gaussian Markov random field through

a stochastic partial differential equation approach. The inference is based on an integrated nested Laplacian approximation5

(INLA) for hierarchical models with Gaussian latent fields. Combining an autoregressive temporal correlation and the Matérn

field provides a full spatiotemporal correlation structure. We first demonstrate the method on a synthetic data example and fol-

low this using a well-studied test case of inferring UK methane emissions from tall tower measurements of atmospheric mole

fraction. Results from these two test cases show that this method can accurately estimate regional greenhouse gas emissions,

accounting for spatiotemporal uncertainties that have traditionally been neglected in atmospheric inverse modelling.10

1 Introduction

Emissions of greenhouse gases, ozone depleting substances and air pollutants are increasingly inferred indirectly from atmo-

spheric trace gas concentration observations and chemical transport models. These “top-down” or “inverse” methods comple-

ment inventory- or process-model-based “bottom-up” techniques that are used, for example, in national reporting of greenhouse

gas emissions to the United Nations Framework Convention on Climate Change (UNFCCC, e.g. Leip et al., 2018).15

Top-down methods rely on some form of statistical inference, or inverse theory, to infer emissions at global (e.g. Saunois

et al., 2016) to regional (e.g. Brunner et al., 2017) scales. They also require a chemical transport model to provide the relation-

ship between atmospheric mole fraction and emissions. The most common type of inverse method uses Bayesian inference.

Bayesian inference relies on the information about the uncertainties in the measurement, transport model and prior probability

on the parameters to inform the emissions estimate. Inverse methods often assume that uncertainties in the likelihood and prior20

probabilities are known exactly and Gaussian (e.g. Stohl et al., 2009; Brioude et al., 2013). These assumptions allow large
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inverse problems to be solved efficiently. However, when uncertainties are poorly understood, Bayesian methods have been

shown to lead posterior solutions that are highly dependent on these assumptions (e.g. Ganesan et al., 2014).

Recently, hierarchical Bayesian schemes have been developed to infer unknown uncertainties in the inversion framework

(e.g. Ganesan et al., 2014; Jeong et al., 2016; Lunt et al., 2016). These hierarchical Bayesian inference schemes use Markov

chain Monte Carlo (MCMC) methods that are well-suited to small-dimensional problems. However, they can suffer from issues5

with convergence, especially as the dimension of the problem increases (Cowles and Carlin, 1996). Hierarchical inference of

spatially and spatiotemporally correlated emissions is computationally difficult and currently relies on methods such as Kalman

filters with assumed covariance structures (e.g. Brunner et al., 2012) or an empirical hierarchical framework, where unknown

hyperparameters are not integrated out during inference (e.g. Michalak et al., 2005; Berchet et al., 2015). Previous work shows,

however, that including spatial correlation improves the fit between modelled and observed data (Zammit-Mangion et al., 2016),10

while temporal correlation is important to represent the dependence of emissions between time periods. The size and spatial

coverage of measurement networks available for inferring gas emissions is growing, particularly through satellite observations

(e.g. Bergamaschi et al., 2007; Veefkind et al., 2012; Wecht et al., 2014; Ganesan et al., 2017). Therefore, there is a need to

develop methods that can utilise these big data sets, whilst maintaining the benefits of uncertainty quantification in hierarchical

methods, ideally extending to spatiotemporal inference.15

This work presents a computationally efficient hierarchical Bayesian framework for inferring spatiotemporally correlated

trace gas emissions in a widely-used regional atmospheric chemical transport modelling framework. It uses an integrated nested

Laplacian approximation (INLA) for the Bayesian inference, while forming a spatial correlation structure with spatial Markov

properties using a stochastic partial differential equation approach. Kronecker product algebra allows efficient extension to

spatiotemporal correlation. Section 2 presents the construction of the hierarchical problem, describes the formation of the20

correlation structure and introduces INLA. Section 3 contains two case studies as a proof-of-concept for the method with

a discussion of their implementation. The first is an example using four consecutive periods of pseudo-data observations of

methane from four UK monitoring stations. This then extends to using real observations from the four measurement stations

to infer UK emissions for 2014, split into four three monthly periods. Section 4 discusses the results and computational

performance of the method and section 5 presents the conclusions of the study.25

2 Methods

This section details an efficient approach to forming spatial and spatiotemporal correlation functions and outlines how this

applies to the inference of regional trace gas emissions from measurements using fast inference for hierarchical models. We

limit the scope of this paper to the well-established problem of regional inference of long-lived trace gas emissions using

a backward-running Lagrangian particle dispersion model (Stohl et al., 2009; Manning et al., 2011; Henne et al., 2016).30

In this framework, the model directly calculates the sensitivity of the measurements to emissions from each grid cell in the

domain. Extension to other systems (e.g. global models) would require modification to provide sensitivity on a global scale with

substantially different temporal and spatial emissions. We begin by introducing the model and the inferred latent parameter,
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followed by an introduction to Gaussian Markov random fields and how they are useful for efficient calculation of spatial and

spatiotemporal correlation structures. All together, this forms a Bayesian hierarchical model, from which emissions can be

inferred.

2.1 Model framework

The aim is to infer some parameters of interest, here a spatial field of a priori emissions scaled by some factor, x, from some5

measurement, y. For many regional inverse problems involving longer-lived trace gases, there is a linear relationship between

the emissions that are constant in time and measurements,

y = Hx + Ku + ε, (1)

where H is a Jacobian (or sensitivity) matrix, which maps the surface emissions to the measurements, u is the contribution

to the measurement of mole fractions at the boundary of the domain, with an associated sensitivity matrix K, and ε is some10

stochastic error. The approach taken in this work uses a Gaussian Markov random field for fast and efficient calculation of

spatial correlation. This means that the emissions field is required to be a latent Gaussian field, which will be discussed further

in section 2.2. Net surface fluxes of many greenhouse gases are positive, at the scales resolved by the model. In this work, due

to the usage of a latent Gaussian field, which must be defined over both positive and negative values, we choose to look at the

deviations of emissions from the prior mean emissions field. The latent variable and observation then become15

x̃ = x−µx, (2a)

ỹ = y−Hµx−Kµu, (2b)

where µx is the vector of the prior mean scaling of emissions and µu is the vector of prior mean contribution at the boundary,

which means that the latent variable x̃ has Gaussian prior probability with zero expectation and a covariance described by a20

Gaussian random field. The vector ỹ becomes a vector of the residual between the measured and a priori predicted measure-

ment. We assume throughout that ũ = u−µu is a vector of independent and identically distributed variables. The forward

model now becomes

ỹ = Hx̃ + Kũ + ε, (3)

which will be solved using a hierarchical framework.25

2.2 Gaussian Markov random fields

The emissions scaling from its a priori value x̃ is spatially continuous over the domain of interest. We assume that it exhibits

a spatial correlation structure, because emissions at one location are generally not independent from all other locations in the
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same field. We choose to model the covariance in this field using a Matérn covariance function, which Stein (1999) shows

is well suited to natural systems. A Gaussian random field with a Matérn covariance is the solution to a particular stochastic

partial differential equation (Whittle, 1954, 1963), given by

(κ2−∆)α/2(τ x̃(s)) =W(s), s ∈ Ω, (4)

where κ is the spatial scale parameter, τ influences the variance, ∆ is the Laplacian operator, Ω is the spatial domain andW(s)5

is a stochastic process for locations s. The smoothness parameter α gives a continuous domain Markov field for integer values

and is set to α= 2 (see Whittle, 1954). Smaller values will give more short-scale variability and can be difficult to differentiate

from noise. Lindgren et al. (2011) show that if the field is represented using a Gaussian Markov random field (see Rue and

Held, 2005) then it is very efficient to directly construct the precision, or inverse covariance, matrix using a basis function

representation10

x(s) =
∑

k

ψk(s)xk, (5)

where ψk(·) are weightings derived through a finite-element mesh construction of the spatial domain. This mesh uses con-

strained refined Delaunay triangulation (Shewchuk, 2002), placing nodes at the main points of interests and infilling the rest of

the space using some condition of minimum and maximum length of the vertices. In this work we choose to represent the UK

and Ireland with an evenly spaced denser mesh with a coarser mesh outside of this region. A mesh could be further refined, for15

example by creating an even denser mesh close to the measurement site where sensitivity is higher. It is important to extend

the mesh beyond the region where the measurements are sensitive to emissions as the mesh is constructed using Neumann

boundary conditions, which trigger reflection and therefore overestimation close to the boundaries. This has no effect on the

inferred emissions, providing that the mesh is extended far enough around the domain of interest. Figure 1 shows the mesh

used in this work, excluding the extended outer mesh region.20
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Figure 1. A mesh constructed using constrained refined Delaunay triangulation, where the distribution of nodes is denser around the United

Kingdom and Ireland.

2.3 Extension to spatiotemporal correlation

A spatiotemporal extension to the forward model 3 is possible by including the spatial correlation structure introduced in section

2.2 in a temporal framework (Cameletti et al., 2013). Similar to equation 3, the deviation from the prior mean measurement at

site l made at time t in its simplest form is

ỹtl =
n∑

i=1

hitlx̃it +
4∑

j=1

kjtlujt + εtl. (6)5
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We make the assumption that measurements made at a given time are independent, giving a vectorised observation vector ỹt
at each time. Following this, the matrix H from (1) becomes the sparse block diagonal matrix

H =




H1 0 0 . . . 0

0 H2 0 . . . 0
...

...
...

. . .

0 0 0 Hm



, (7)

which operates on the vectorised spatiotemporal scaling of the emissions field x̃ = [x̃1, x̃2, . . . x̃m] to model the observations

ỹ = [ỹ1, ỹ2, . . . ỹm]. The time varying structure of ỹt and Ht applies also to Kt, and to ũt as x̃t. We impose the temporal5

correlation structure between measurements to be an autoregressive model of order one, where

x̃t = φx̃t−1 + δt; δt ∼N
(
0,Q−1

S

)
t= 1 . . .m, (8a)

and

x̃1 ∼N
(

0,
(

QS

1−φ2

)−1
)
, (8b)

where φ is the temporal correlation and Q−1
S is the spatial correlation structure described by a Matérn field using the stochastic10

partial differential equation approach for a Gaussian Markov random field. The vectorisation of x̃ allows a separable covariance

structure for the temporal and spatial covariances, which means that it is simple to combine these into spatiotemporal precision

matrix using a Kronecker product (Mardia et al., 1979),

Q = QT ⊗QS , (9)

the combined spatiotemporal precision matrix.15

Estimating hourly emissions at each time t soon makes inference prohibitive due to size. Instead we make the assumption

that emissions are constant over predefined time periods to reduce the computational size. We continue with the assumption

that measurements within a single time period are independent, although this can be generalised if required. In this experiment

we make the assumption that emissions are constant over a three monthly period and that the correlation between these three

monthly periods is autoregressive of order one.20

2.4 Hierarchical model

Inferring the emissions and the related uncertainties requires a hierarchical model to infer the quantities of interest from

measurements, while estimating some unknown parameters which are necessary for inference. The main focus of this work is

to estimate the posterior distribution of the emissions field x̃, based on observations ỹ. We follow a typical Bayesian hierarchical

framework25

p(x̃, ũ,θ | ỹ)∝ p(ỹ | x̃, ũ,θ)p(x̃ | ũ,θ)p(ũ | θ)p(θ) (10)
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where θ is vector of hyperparameters describing the variances and covariances in x̃, ũ and ỹ, noting that x̃⊥⊥ ỹ | θ. We assume

ỹ | x̃, ũ,θ ∼N (Hx̃ + Kũ,Qỹ(θ)−1),

x̃ | ũ,θ ∼N (0,Q(θ)−1),

ũ | θ ∼N (0,Iσ2
BC),5

θ ∼ p(θ).

where the precision matrix of the model-measurement uncertainty Qỹ contains the hyperparameter for the standard devia-

tion of the model-measurement standard deviation σy , σBC is the standard deviation of the prior for ũ and I is the identity

matrix. Together the hyperparameters make the vector θ = (ρ,σ,φ,σBC,σy), which have independent prior distributions. The

hyperparameters for the spatial precision matrix are transformations of the variables in (4),10

ρ=
√

8
κ
, (12a)

σ =
(

1√
4πκτ

)− 1
2

, (12b)

where ρ is the range parameter and σ is the marginal standard deviation of the latent field (Lindgren et al., 2011). We use

penalised complexity priors to define the prior probabilities for these parameters (Simpson et al., 2017; Fuglstad et al., 2018).

Penalised complexity priors allow the formation of priors when there is only a vague understanding of their true values, while15

enforcing more constraint than using a broad uniform or a Jeffreys prior. This uses the information loss of deviating from some

baseline estimate of the parameter. Penalised complexity priors are specified by the probability of the parameters being less

than or greater than some baseline value,

p(ρ > ρ0) = pρ,

p(σ < σ0) = pσ,20

where ρ0 and σ0 are the baseline values and pρ and pσ are the associated probabilities defined by the user. The hyperparameter

φ controls the temporal correlation between latent variables and its prior probability is defined on a beta distribution scaled

between minus one and one as

φ∼ Beta(a,b),

where a and b are assumed coefficients. The matrix Qỹ is the precision matrix for the combined measurement and model errors.25

The diagonal of Qỹ contains the square of the hyperparameter σy , where the prior probability follows defined on log 1
σ2
y

, is

log
1
σ2
y

∼N (µσy ,σ
2
σy )

The marginal standard deviation of the a priori boundary conditions σBC are also constructed this way, giving

log
1
σ2

BC
∼N (µσBC ,σ

2
σBC

).
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2.5 Inference using an integrated nested Laplacian approximation

An integrated nested Laplacian approximation (Rue et al., 2009) provides a fast and efficient framework to infer the latent

variable x̃, ũ and hyperparameters θ from measurements ỹ. The INLA calculation is possible using the R-INLA package

(Lindgren and Rue, 2015). In this work we use R-INLA version 17.06.20. The speed in this approach comes from approximating

the marginal posteriors for x̃i using a Laplacian approximation and nested within a numerical integration. While this method5

relies on calculating only the marginal posterior distributions of x̃i, it is still possible to predict a linear combination of the

field to provide regional emissions totals, e.g. country total, defined using the basis function representation of the mesh. See

Rue et al. (2009) and Martins et al. (2013) for a more in depth description.

3 Case studies

This section presents two case studies to demonstrate how the method applies to inferring trace gas emissions. The first uses10

simulated methane observations from four tall tower measurement sites to infer simulated spatiotemporal emissions from the

UK. The second case study extends on the first case study by using real observations from the four tall towers to infer emissions

of methane from the UK over four three monthly periods in 2014. While the size of this problem is not particularly large, we

demonstrate the method using UK methane emissions as a proof of concept as it is a well studied test case (Manning et al.,

2011; Ganesan et al., 2015; Lunt et al., 2015), which should exhibit a spatiotemporal correlation structure. The method can be15

extended to larger spatial domains or dataset sizes as required.

3.1 Transport model and data

3.1.1 Measurement data

The case studies observations from four measurement sites, three in the UK and one in Ireland, which are part of the UK

Deriving Emissions related to Climate Change (DECC) network (Stanley et al., 2018). Figure 2 shows the location of these20

four measurement stations: Ridge Hill in the West of England, Angus on the East coast of Scotland, Tacolneston on the East

coast of England and Mace Head on the West coast of Ireland. Measurements are made quasi-continuously throughout this

network, but are averaged into hourly values here, consistent with the time step of the meteorology that drives the atmospheric

transport model (section 3.1.2). The data set contains ∼10 000 measurements to demonstrate the capabilities of the method at

handling moderate data volumes. We consider the scalability of this method in the discussion (section 4).25

3.1.2 Transport model

An atmospheric transport model calculates the sensitivity of hourly measurements to the emissions or boundary conditions,

from which the matrices H and K can be formed. This work uses the NAME III (Numerical Atmospheric dispersion Modelling

Environment) version 7.2 Lagrangian particle dispersion model (Jones et al., 2006) to simulate the transport of methane in the

atmosphere. For each measurement, NAME tracks 20 000 gas particles, released over a one hour period, backward in time for30
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Figure 2. The case studies use the four UK DECC network measurement stations located on this map. RGL is Ridge Hill; TAC is Tacolneston,

TTA is Angus and MHD is Mace Head station.

30 days from the measurement site. We record the times and locations that the particles drop below 40 magl and reach the

computational domain boundary, which is at 5◦ S, 74◦ N, 55◦ E and 192◦ E, to calculate the sensitivity of the data to emissions

from the surface or to the mole fraction at the domain edge. NAME was driven by the Met Office’s Unified Model UK Variable

(UKV) three hourly meteorological analysis (Cullen, 1993).

3.1.3 Prior emissions inventory5

Inventory data from the Emissions Database for Global Atmospheric Research (EDGAR) v4.3.2. provides the mean prior

emissions (Janssens-Maenhout et al., 2017) using the most recent emissions map from 2012. This database contains anthro-

pogenic emissions, which are the dominant methane sources in the UK (Manning et al., 2011), and is deemed appropriate for

the application. The EDGAR emissions inventory provides an a priori estimate of UK methane emissions of 2.46 Tg/yr. The

MOZART-4 global chemistry model (Emmons et al., 2010), driven by global fields of natural and anthropogenic emissions and10
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sink terms (Ganesan et al., 2017), provides the prior mean estimate of methane mole fraction at the boundaries of the inversion

region.

3.2 Pseudo-data experiment

We test the method by performing an inversion using pseudo-data for four consecutive time periods of one month. By creating

a known emissions field we are able to validate the method through comparing the inferred emissions to the known emissions,5

which is not possible in the real world. We form a synthetic emissions field by allowing the emissions to deviate from the prior

mean emission according to a Matérn field. We choose to simulate the data using σ = 0.5, as the uncertainty in the EDGAR

v4.3.2. inventory is around 50% for methane emissions, and ρ= 3.25, which is similar to the correlation length scale in UK

emissions in the EDGAR v4.3.2. inventory estimated using a variogram (Cressie, 2015), although the correlation length scale

in the uncertainty is unknown. We use φ= 0.8 as expert experience suggests that UK emissions of methane are generally10

highly correlated in time.

To create the synthetic emissions field, the NAME sensitivities to measurements to the measurement stations detailed in

section 3.1.1 at each grid cell is multiplied by the corresponding EDGAR inventory emissions in that grid cell, which are then

transformed into the triangulation nodes in Figure 1. This forms the matrix H. We randomly sample the full spatio-temporal

precision matrix for the latent field (section 2.3) using the GMRFLib library (Rue and Follestad, 2001) to generate the latent15

field x̃. In this experiment we treat the boundary conditions as known as in practice these are generally well constrained (or

treated as known) during an inversion. The observations are simulated using the simulated latent field and sensitivities following

section 2.1, with additive Gaussian noise with a standard deviation of 15 % of y. The synthetic observations contain a total of

11 520 measurement points, which are used to infer 646 emissions nodes for each time period, i.e. the nodes of the mesh in

Figure 1. Figure 3a-3d show the synthetic emissions field in terms of deviation from some prior emissions field. The synthetic20

total deviation in emissions from the prior mean for the UK for each period is 0.07, 1.29, 1.01 and -0.33 Tg/yr.

10
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(a) First time period. (b) Second time period.

(c) Third time period. (d) Fourth time period.

Figure 3. Time correlated deviation of emissions from the prior mean, simulated using a Matérn field.

The inference needs prior probabilities for the hyperparameters, which are known exactly here, but we set them to be

deliberately incorrect, but feasible based on true prior knowledge, to check that the inversion method can still recover the

correct emissions. For the inversion we assign a prior probability for φ using a=6.5 and b=0.1, for σ using σ0 = 0.1 and

pσ = 0.01, and ρ using ρ0 = 5 and pρ = 0.5. We base the constraint on the spatiotemporal emissions on the assumption that

methane emissions in the UK are likely to be strongly correlated between time periods, are unlikely to vary by more than 105

% of the a priori emissions from the previous time step and that there is little knowledge of the spatial correlation structure.

For the model measurement error we assign the prior probability on the log precision as log 1
σ2
y
∼N (−5,1), which represents

approximate 68 % probability that the error falls between 8 and 20 ppb, in line with previous experience.
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(a) First time period. (b) Second time period.

(c) Third time period. (d) Fourth time period.

Figure 4. The inferred mean deviation of emissions from the prior mean.

Figures 4 show the resultant inferred mean change in the emissions field for each time period using INLA (section 2.5) and

the hierarchical model in section 2.4. The change in the emissions field is the inferred latent field scaling parameter multiplied

by the inventory emissions in section 3.1.3. A linear combination of the posterior latent field multiplied by the inventory

emissions field gives total emissions for the UK. The inferred posterior mean change in total emissions for the UK from the

prior mean with their associated 95 % uncertainties for the four time periods are 0.01 [-0.10, 0.12], 1.23 [1.10, 1.36], 1.07 [0.97,5

1.18] and -0.30 [-0.41, -0.18] Tg/yr, which are shown in Figure 5. The inferred emissions for the UK as a whole agree well

with the synthetic emissions, with all true synthetic emissions totals falling within the 95 % uncertainty of the inferred total

emissions. These synthetic tests cover both small and large differences between the a priori estimate of methane emissions

in the UK and its true value. The larger differences are most likely an overestimate of what would be expected in practice,
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although this provides a good test case. The posterior mean spatial distribution of emissions in figure 4 are qualitatively similar

to those in figure 3a-3d, although we avoid reading heavily into comparisons of the mean estimates plotted on spatial maps

(see Gelman and Price, 1999).

Figure 5. The inferred and true difference between UK emissions and a synthetic inventory value for each of the four time periods. The

crosses show the inferred mean difference in total emissions with their associated 95 % uncertainty. The red line indicates one to one

agreement.

3.3 Real data experiment

This section presents 2014 methane emissions estimates for the UK. The year is split into four time periods: January to March,5

April to June, July to September and October to December. We use the same prior probabilities for the hyperparameters as

the inversion using the synthetic dataset in section 3.2. The prior boundary conditions are distributed with µσBC = 3.2 and

σσBC = 0.4, based on expert judgment. The a priori value for these boundary conditions come from the MOZART-4 model

as 3.1.3. The linear mapping from the latent field to the measurements is generated using the NAME-derived sensitivities

described in section 3.1.2 multiplied by the the inventory emissions detailed in section 3.1.3.10

Figure 6 shows maps of the inferred mean difference in emission from the a priori inventory for the four time periods

using INLA as section 2.5. This result is the mean posterior scaling for the latent field multiplied by the inventory value

(see section 3.1.3). A linear combination of the posterior latent field multiplied by the inventory emissions field gives total

emissions for the UK. We estimate UK-total methane emissions in 2014, with their associated 95% uncertainty, of 2.14 [1.90,

2.38], 2.28 [2.06, 2.51], 2.62 [2.39, 2.84] and 2.09 [1.87, 2.30] Tg/yr for the periods January to March, April to June, July15
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to September and October to December, respectively. These are plotted along with the inventory estimate in Figure 7. This

emissions trend suggest that for 2014 there was an increase in methane emissions in the UK during the summer months

compared to the winter months. The uncertainties, however, are large, meaning that this increase may not be as stark as

suggested by the mean estimates. Combining these emissions into a mean annual emission for 2014 with its associated two

standard deviation uncertainty, assuming that time periods are correlated with the modal posterior value of φ, gives 2.28±0.335

Tg/yr. The emissions are similar to mean UK estimates from previous hierarchical inversions using NAME of 2.09 [1.65, 2.67]

Tg/yr by Ganesan et al. (2015) and 2.28 [2.04, 2.52] Tg/yr by Lunt et al. (2016). All of these estimates are broadly in line

with the United Kingdom’s 2014 emissions estimate of 2.13 Tg/yr reported in its national inventory (Department of Business,

Energy and Industrial Strategy, 2019).

(a) January to March (b) April to June

(c) July to September (d) October to December

Figure 6. Inferred mean difference in methane emissions for the UK in 2014 compared to the EDGAR inventory.
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Figure 7. Estimated total UK methane emissions for 2014. The prior mean comes from EDGAR v 4.32 inventory data (red dashed). For

comparison, the figure also shows the posterior means for UK methane emissions from Ganesan et al. (2015) (black dotted) and Lunt et al.

(2016) (black dash-dotted).

4 Discussion

The real benefit of the presented inversion method is speed, while still maintaining the idea that, in this application, uncertainties

exist within the uncertainties that are inherent to hierarchical Bayesian inverse methods. The computation of the marginal

posterior distribution of the latent field is readily suited to run in parallel across multiple cores, making this approach scalable

to problems with a larger parameter space. This, however, requires that sufficient memory allocation is available. The inference5

for the experiment in section 3.3 took around two hours wall-clock time using a four core MacBook Pro with 8GB RAM. For

comparison, we were unable to get the problem in section 3.3 to converge using 22 million iterations of a Metropolis-adjusted

Langevin diffusion MCMC algorithm (Roberts and Rosenthal, 1998), taking on the order of days to complete and whose

convergence is difficult to diagnose (Cowles and Carlin, 1996). Reducing the problem to purely spatial inference reduces the

run time down to around 10 minutes wall-clock time for a single three month period. Inference using INLA may have smaller10

computational gains over hierarchical methods other than MCMC, for example empirical hierarchical inference (e.g. Michalak

et al., 2005). Such methods, however, would benefit from using the stochastic partial differential equation approach to GMRFs

for spatial correlation in 2.2, vastly reducing the cost of inverting dense covariance matrices.

The latent Gaussian field, crucial to this method, has the problem that it does not restrict emissions to strictly positive

values, which is a physical requirement for many gas emissions. MCMC algorithms do not suffer from this issue, as any prior15
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probability density function can be chosen. This has to be traded off, however, with the speed and ease of implementation of

the method and the scale of the problem that the user wishes to solve. If strictly positive posterior emissions is an absolute

requirement, another possible modification to the approach is to use a Taylor expansion around the nonlinear model z =

Hex+ε, where x is a multiplicative scaling of the prior mode which follows a Matérn field. This Taylor expansion could either

be around zero if the prior inventory is a good estimate of the true emissions, or around the posterior mode itself, which can5

be found through iterations of the inverse method at the posterior mode of the previous iteration. An alternative route would

be to instead use a non-Gaussian Matérn field and this will likely prove a promising future avenue for geostatistical inference

(Wallin and Bolin, 2015).

A potential extension to this work is global scale modelling, for example a global study of methane emission from global

satellite measurements. The nature of the method makes it well suited to parallel implementation and thus up-scaling. Up-10

scaling to global studies may introduce additional difficulties, which have been otherwise ignored in the regional case. For

example it may no longer be possible to assume a spatial correlation structure controlled by only two hyperparameters, i.e. the

correlation in space may vary in space. The stochastic partial differential equation approach to Gaussian Markov random fields

can handle this by allowing the hyperparameters ρ and σ to become vectors, or a non-stationary covariance (Lindgren et al.,

2011), or by subsetting the space controlled by the different covariance structures (Sha et al., 2019). This makes the problem15

much more computationally expensive and a more parsimonious approach may often suffice (Fuglstad et al., 2015).

5 Conclusions

This work presents a fast and efficient method using an integrated nested Laplacian approximation for hierarchical inference of

trace gas emissions. This method is particularly well-suited to assimilating large data sets. We show that INLA with a stochastic

partial differential equation approach for spatial correlation can reproduce synthetic emissions from pseudo-observations and20

bench-marked emissions using real data.

A real advantage over other hierarchical Bayesian inversion methods is the attractive convergence properties, which can

be difficult to obtain using methods such as Markov chain Monte Carlo algorithms. As the method computes the marginal

variance for each node, this allows for efficient parallel implementation and significant computational savings compared to

other hierarchical methods. The importance of computational speed will become increasingly important as more data from25

space-borne sensors become available, which will offer an increased number of measurements and spatial coverage.

Code and data availability. Measurements of methane from the UK DECC network sites Tacolneston, Ridge Hill and Tall Tower Angus are

available at ebas.nilu.no. Measurements of methane for the Mace Head station are available at http://agage.eas.gatech.edu/data_archive/. The

NAME III v7.2 transport model is available from the UK Met Office under licence by contacting enquiries@metoffice.gov.uk. The meteoro-

logical data used in this work from the UK Met Office operational NWP (Numerical Weather Prediction) Unified Model (UM) is available30

from the UK Centre for Environmental Data Analysis at http://data.ceda.ac.uk/badc/ukmo-nwp. The MOZART-4 global chemistry model

is available at https://www2.acom.ucar.edu/gcm/mozart-4. The R-INLA v17.06.20 library is available for download from http://www.r-
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inla.org/download, which includes the GMRFLib library. The EDGAR v.4.3.2 methane inventory can be downloaded from

https://edgar.jrc.ec.europa.eu/overview.php?v=432_GHG. Any further data or code is available from the corresponding author on request.
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