
We would like to thank the reviewers for their helpful and supportive comments on
our discussion article ‘Bayesian spatiotemporal inference of trace gas emissions using an
integrated nested Laplacian approximation and Gaussian Markov random fields’ (gmd-
2019-66). The revised manuscript, along with new supplementary figures, are attached
with revised sections indicated in red. Below we address each reviewer’s comments in
turn, where the comment has been italicised.

Reviewer 1

Page 3: In Section 2.1 the linear model for the spatial field is briefly described and

derived. This section can be improved without loss of generality by starting from equa-

tion 3 that contains all relevant quantities of interest expressed as deviations from prior

mean values. In addition, the physics behind factor x or some interpretation about its

connection with the measurements could be added in this section to help the reader better

understand the model.

We have addressed this comment by reworking most of section 2.1 (P3 L4-23). A
physical interpretation of x has been added and the linear model starts from the previ-
ous equation 3 (now equation 1), which removes the need for the tilde notation in the
remainder of the manuscript. The main additions are:
(L6-8) ‘The a priori emissions at given location are generally informed by spatially re-
solved bottom-up inventories (as in section 3.1.3) or extrapolation from some reported
emissions value. The value x is a multiplicative scaling of this a priori value for emissions,
most generally expressed as a quantity of gas per unit time per unit area.’
(L13-23) ‘This is in an e↵ort to fit the physical model to the imposed statistical model that
fast computation requires. Taking the approach that, for many regional inverse problems
involving longer-lived trace gases, there is a linear relationship between emissions which
are constant in time and observed atmospheric concentration, the relationship between
measurements and emissions is,

y = Hx+Ku+ ✏, (1)

where y is a vector of the residual between the measured and a priori predicted mea-
surement, H is a Jacobian (or sensitivity) matrix, which maps the surface emissions to
the measurements, u is a vector of independent and identically distributed variables con-
taining the contribution to the measurement of mole fractions at the boundary of the
domain minus the prior mean contribution, with an associated sensitivity matrix K, and
✏ is some stochastic error. The variable x has a Gaussian prior probability with zero
expectation and a covariance described by a Gaussian random field. This will be solved
using a hierarchical framework (section2.4).’

Page 4, Line 2: The solution to the stochastic di↵erential is a stationary Gaussian

Field with Matern covariance structure. The fact that the process is stationary should be

mentioned. Moreover, if the covariance function does not depend on the direction but just

on the Euclidean distances between s i and s j, then it should also be mentioned that the

process is isotropic.
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The stationarity has been mentioned (P3 L28) as well as elaboration of the process
being isotropic, with further reference to information on non-stationary and anisotropic
process (P4 L3-4) ‘. . . noting that that the dependence is only on the Euclidean distance
and so the process is isotropic. For an example of non-stationary and anisotropic fields
see e.g. Marques et al. (2019).’

Page 5, equation 6: The indices and ranges should be explained. For instance, i=1,..,n.

Does n represent the number of nodes in the mesh? Also, index j goes from 1 to 4. Does

this represent the sides of the rectangular region?

This notation has now been clarified (P5 L6) ‘i represents each of the total n nodes
and j represents the edge of the domain at each of the four cardinal directions’.

Page 7, Line 15: Is there any advantage regarding the computational cost or conver-

gence for using penalized complexity priors instead of a vague prior?

Penalised priors do not increase the computational speed for the given case and are
chosen instead for their intuitiveness. This has been added to the manuscript (P7 L 19).

Pages 10-13, Section 3.2: More information about the simulation study should be in-

cluded in the main text or supplementary materials. Would be nice to see the relationship

between the true parameters from the simulated data and the estimated values along with

their corresponding uncertainty.

We have added a discussion on the estimated hyperparameters for the simulated data
(P14 L4-9), ‘Hyperparameter estimation is less accurate than for the latent field. The
estimation of the noise �y generally captures the imposed noise well, which had a mean
value of 5.5 ppm, with an estimated value of 6.6 [6.5, 6.8] ppm. The correlation struc-
tures are less well captured. The temporal correlation � was estimated with a mean
value 0.7 [0.6, 0.8], the range ⇢ has value 1.7 [1.3, 2.1] and the marginal standard devi-
ation of the latent field � with the value 0.8 [0.7,0.9]. It is promising that the posterior
mean estimates of all hyperparameters show an improvement on their prior mean or base-
line values, although only the true value for ⇢ falls within the estimated 95% uncertainty.’

Also, would be interesting to complement the posterior mean estimate plots as function

of time with analogous plots showing some measure of the uncertainty on the estimates

(e.g. SE or credible set).

These plots, showing the 95% uncertainty, have been added as supplementary plots.

Last, the value of this manuscript would be greatly improved if the R code used for the

numerical experiment could be shared. However, if the complexity and scale of the prob-

lem makes this option not feasible, then at least a toy example to illustrate the concept

would be useful.

We have made the code and data for the simulated data example freely available via
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the Open Science Foundation (osf.io/53w96, DOI 10.17605/OSF.IO/53W96), which has
been noted in the Code and data availability section of the manuscript.

Pages 15-16: The discussion section could mention some limitations of the method.

First, the stationarity assumption may not be suitable when modelling some environmen-

tal phenomena. Particularly in atmospheric phenomena it may inappropriate to assume

that the spatial correlation is the same throughout the domain as topographical variables

(e.g. mountains, lakes, etc.) might have an influence on the spatial dependence. Second,

INLA method relies on the assumption of approximate multivariate normality of the pos-

terior linear predictors.

We have added additional discussion on these topics in section 4, in particular P18,
L16-20. ‘The problem of non-stationary covariances may also be present for inference of
on other spatial scales. For example natural features, such as lakes, may cause abrupt
changes in correlation structures. Emissions of anthropogenic greenhouse gases may ex-
hibit no spatial correlation structure (e.g. Mühle et al., 2019; Rigby et al., 2019). In
this case a Matérn field would be inappropriate, but an autoregressive model may still
be applicable for time-varying emissions.’

Page 4, Line 19: provided instead of providing.

This has been changed.
Page 6, Line 12: consider rephrasing: ‘. . . which means that the spatiotemporal pre-

cision matrix can be expressed using a Kronecker product as follows...’, and delete Line

15.

This has been changed.
Page 6, Line 17: burden instead of size.

This has been changed.
Page 6, Line 19: consider rephrasing: ‘. . . constant over a three-month period . . . ’

This has been changed.
Page 6, Line 19-20: Later in the text you use four three-month periods, not three.

This has been changed to three-month
Page 7, Line 10: consider rephrasing ‘. . . or the spatial precision matrix Q(✓)�1

, are . . . ’

This has been changed.
Page 16, Line 13: rephrase to ‘. . . correlation structure may vary in space.

This has been changed.

Reviewer 2

P3, L9: ‘. . . which maps the surface emissions (x) to the measurements . . . ’. The

variable x was not defined here.

This is now defined in section 2.1, L7-8. ‘The value x is a multiplicative scaling of
this a priori value for emissions, most generally expressed as a quantity of gas per unit
time per unit area.’

P3, L16: I do not understand the discussion about the change of variable in x (which
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is simply a shift in the distribution), and in particular how this relates to the positive-

ness of the fluxes. It seems one issue here could be that a log-normal distribution may be

more suitable than a Gaussian one (if positiveness needs to be enforced). Apart from a

re-centering of the prior pdf around zero, I do not see what the transformation achieves.

Please clarify.

The use of GMRFs are a requirement for the computational e�ciency of the method.
Therefore, we have attempted to fit a statistic model to the physical model. We have
clarified this point in the reworked section 2.1, in particular P3 L13. ‘This is in an e↵ort
to fit the physical model to the imposed statistical model that fast computation requires.’

P6, L1: ‘. . .measurements made at a given time are independent . . . ’. Would it be

easy to generalize the approach for spatially correlated observations at a given time? This,

for instance, would be useful for inversions based on satellite measurements.

This could be generalised but this correlation would have to result in a sparse covari-
ance matrix (e.g. AR1, Matern GMRF) to keep the computational gains. We have noted
this on P6 L1-2. ‘This can be generalised to include correlated measurements, where the
covariance function should result in a sparse matrix to retain computational e�ciency. ’

P6, L6-9: Do you mean ‘emissions’ instead of ‘measurements’ here? You mention

measurements (y) but then refer to emissions (x) in the equation. Please clarify.

Thank you for noticing this. The sentence has now been reworded to ‘The time
varying structure of Htand x applies also to Kt , and ut.’ We have elaborated on the
use of an autoregressive model and the parameter � on P6 L11-14. ‘We have chosen
an autoregressive model of order one as we believe that emissions are generally similar
to those at previous time step. In the given model, � is the correlation between the
previous time step and the current time step. This means that the emissions at time t
have a similarity of � to emissions at t�1 plus some spatially correlated random e↵ect �t.’

Section 2.5: This section should be entirely rewritten and much more details have to

be provided. For instance, please explain the posterior sampling approach adopted here as

well as the principle of the integrated nested Laplacian approximation used. This seems

to be the core of the methodological contribution of this paper.

The section 2.5, P6, has been entirely rewritten with much more detail about the
posterior sampling approach, outlining the principles of INLA.
An integrated nested Laplacian approximation (Rue et al., 2009) provides a fast and e�-
cient framework to infer the latent variable x and hyperparameters ✓ from measurements
y. The calculation of the INLA is possible using the R-INLA package (Lindgren & Rue,
2015). In this work we use R-INLA version 17.06.20. The speed in this approach comes
from solving the marginal posteriors for xi through the numerical integration

p(✓j | y) =
Z

p(✓ | y)d✓�j, (2)
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p(xi | y) =
Z

p(xi | y,✓) p(✓ | y)d✓. (3)

Equations 2 and 2 make use of a Laplace approximation, by approximating p(✓ | y) by

p(✓ | y) / p(x,✓,y)

pG(x | ✓,y)

����
x=x⇤(✓)

, (4)

where pG(x | ✓,y) is a Gaussian approximation to the full conditional of x and x
⇤(✓) is the

modal probability of x for a given ✓. This approximation is exact if p(✓ | y) is Gaussian,
and gives a good approximation for log concave problems (Tierney and Kadane, 1986).
Then, it is possible to approximate p(xi | y,✓) using another Laplace approximation

pLA(xi | ✓,y) /
p(x,✓,y)

pG(x�i | xi,✓,y)

����
x�i=x⇤

�i(xi,✓)

, (5)

where pG(x�i | xi,✓,y) is the Gaussian approximation to x�i | xi,✓,y evaluated at the
mode x

⇤
�i(xi,✓). See Rue et al. (2009) and Martins et al. (2013) for a more in depth

description.
While this method relies on calculating only the marginal posterior distributions of xi,

it is still possible to predict a linear combination of the field to provide regional emissions
totals (e.g. country totals). We define a linear predictor of emissions for a given region
⌘⇤, defined using the basis function representation of the mesh where each node contains
information on the spatial area represented by that node and its connecting vertices and
zeros for all nodes that are not in the region of interest. Then we can approximate the
linear combination of the parameters of interest, giving a combined emissions total ⌘⇤,
using equations 12 and 13 and transforming the predicted latent field by the weightings
containing the area information.

5



Bayesian spatiotemporal inference of trace gas emissions using an

integrated nested Laplacian approximation and Gaussian Markov

random fields

Luke M. Western1, Zhe Sha2,3, Matthew Rigby1, Anita L. Ganesan2, Alistair J. Manning4, Kieran M.
Stanley1,5, Simon J. O’Doherty1, Dickon Young1, and Jonathan Rougier3

1School of Chemistry, University of Bristol, Bristol, UK
2School of Geographical Sciences, University of Bristol, Bristol, UK
3School of Mathematics, University of Bristol, Bristol, UK
4Hadley Centre, Met Office, Exeter, UK
5Institute for Atmospheric and Environmental Science, Goethe University Frankfurt, Frankfurt am Main, Germany

Correspondence: Luke M. Western (luke.western@bristol.ac.uk)

Abstract. We present a method to infer spatially and spatiotemporally correlated emissions of greenhouse gases from at-

mospheric measurements and a chemical transport model. The method allows fast computation of spatial emissions using a

hierarchical Bayesian framework as an alternative to Markov chain Monte Carlo algorithms. The spatial emissions follow a

Gaussian process with a Matérn correlation structure which can be represented by a Gaussian Markov random field through

a stochastic partial differential equation approach. The inference is based on an integrated nested Laplacian approximation5

(INLA) for hierarchical models with Gaussian latent fields. Combining an autoregressive temporal correlation and the Matérn

field provides a full spatiotemporal correlation structure. We first demonstrate the method on a synthetic data example and fol-

low this using a well-studied test case of inferring UK methane emissions from tall tower measurements of atmospheric mole

fraction. Results from these two test cases show that this method can accurately estimate regional greenhouse gas emissions,

accounting for spatiotemporal uncertainties that have traditionally been neglected in atmospheric inverse modelling.10

1 Introduction

Emissions of greenhouse gases, ozone depleting substances and air pollutants are increasingly inferred indirectly from atmo-

spheric trace gas concentration observations and chemical transport models. These “top-down” or “inverse” methods comple-

ment inventory- or process-model-based “bottom-up” techniques that are used, for example, in national reporting of greenhouse

gas emissions to the United Nations Framework Convention on Climate Change (UNFCCC, e.g. Leip et al., 2018).15

Top-down methods rely on some form of statistical inference, or inverse theory, to infer emissions at global (e.g. Saunois

et al., 2016) to regional (e.g. Brunner et al., 2017) scales. They also require a chemical transport model to provide the relation-

ship between atmospheric mole fraction and emissions. The most common type of inverse method uses Bayesian inference.

Bayesian inference relies on the information about the uncertainties in the measurement, transport model and prior probability

on the parameters to inform the emissions estimate. Inverse methods often assume that uncertainties in the likelihood and prior20
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probabilities are known exactly and Gaussian (e.g. Stohl et al., 2009; Brioude et al., 2013). These assumptions allow large

inverse problems to be solved efficiently. However, when uncertainties are poorly understood, Bayesian methods have been

shown to lead posterior solutions that are highly dependent on these assumptions (e.g. Ganesan et al., 2014).

Recently, hierarchical Bayesian schemes have been developed to infer unknown uncertainties in the inversion framework

(e.g. Ganesan et al., 2014; Jeong et al., 2016; Lunt et al., 2016). These hierarchical Bayesian inference schemes use Markov5

chain Monte Carlo (MCMC) methods that are well-suited to small-dimensional problems. However, they can suffer from issues

with convergence, especially as the dimension of the problem increases (Cowles and Carlin, 1996). Hierarchical inference of

spatially and spatiotemporally correlated emissions is computationally difficult and currently relies on methods such as Kalman

filters with assumed covariance structures (e.g. Brunner et al., 2012) or an empirical hierarchical framework, where unknown

hyperparameters are not integrated out during inference (e.g. Michalak et al., 2005; Berchet et al., 2015). Previous work shows,10

however, that including spatial correlation improves the fit between modelled and observed data (Zammit-Mangion et al., 2016),

while temporal correlation is important to represent the dependence of emissions between time periods. The size and spatial

coverage of measurement networks available for inferring gas emissions is growing, particularly through satellite observations

(e.g. Bergamaschi et al., 2007; Veefkind et al., 2012; Wecht et al., 2014; Ganesan et al., 2017). Therefore, there is a need to

develop methods that can utilise these big data sets, whilst maintaining the benefits of uncertainty quantification in hierarchical15

methods, ideally extending to spatiotemporal inference.

This work presents a computationally efficient hierarchical Bayesian framework for inferring spatiotemporally correlated

trace gas emissions in a widely-used regional atmospheric chemical transport modelling framework. It uses an integrated nested

Laplacian approximation (INLA) for the Bayesian inference, while forming a spatial correlation structure with spatial Markov

properties using a stochastic partial differential equation approach. Kronecker product algebra allows efficient extension to20

spatiotemporal correlation. Section 2 presents the construction of the hierarchical problem, describes the formation of the

correlation structure and introduces INLA. Section 3 contains two case studies as a proof-of-concept for the method with

a discussion of their implementation. The first is an example using four consecutive periods of pseudo-data observations of

methane from four UK monitoring stations. This then extends to using real observations from the four measurement stations

to infer UK emissions for 2014, split into four three monthly periods. Section 4 discusses the results and computational25

performance of the method and section 5 presents the conclusions of the study.

2 Methods

This section details an efficient approach to forming spatial and spatiotemporal correlation functions and outlines how this

applies to the inference of regional trace gas emissions from measurements using fast inference for hierarchical models. We

limit the scope of this paper to the well-established problem of regional inference of long-lived trace gas emissions using30

a backward-running Lagrangian particle dispersion model (Stohl et al., 2009; Manning et al., 2011; Henne et al., 2016).

In this framework, the model directly calculates the sensitivity of the measurements to emissions from each grid cell in the

domain. Extension to other systems (e.g. global models) would require modification to provide sensitivity on a global scale with
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substantially different temporal and spatial emissions. We begin by introducing the model and the inferred latent parameter,

followed by an introduction to Gaussian Markov random fields and how they are useful for efficient calculation of spatial and

spatiotemporal correlation structures. All together, this forms a Bayesian hierarchical model, from which emissions can be

inferred.

2.1 Model framework5

The aim is to infer some parameters of interest, here a spatial field of a priori emissions scaled by some factor, x, from some

measurement. The a priori emissions at given location are generally informed by spatially resolved bottom-up inventories (as in

section 3.1.3) or extrapolation from some reported emissions value. The value x is a multiplicative scaling of this a priori value

for emissions, most generally expressed as a quantity of gas per unit time per unit area. The approach taken in this work uses a

Gaussian Markov random field for fast and efficient calculation of spatial correlation for x. This means that the emissions field10

is required to be a latent Gaussian field, which will be discussed further in section 2.2. Net surface fluxes of many greenhouse

gases are positive, at the scales resolved by the model. In this work, due to the usage of a latent Gaussian field, which must be

defined over both positive and negative values, we choose to look at the deviations of emissions from the prior mean emissions

field. This is in an effort to fit the physical model to the imposed statistical model that fast computation requires. Taking the

approach that, for many regional inverse problems involving longer-lived trace gases, there is a linear relationship between15

emissions which are constant in time and observed atmospheric concentration, the relationship between measurements and

emissions is,

y =Hx+Ku+ ✏, (1)

where y is a vector of the residual between the measured and a priori predicted measurement, H is a Jacobian (or sensitivity)

matrix, which maps the surface emissions to the measurements, u is a vector of independent and identically distributed vari-20

ables containing the contribution to the measurement of mole fractions at the boundary of the domain minus the prior mean

contribution, with an associated sensitivity matrix K, and ✏ is some stochastic error. The variable x has a Gaussian prior prob-

ability with zero expectation and a covariance described by a Gaussian random field. This will be solved using a hierarchical

framework (section 2.4).

2.2 Gaussian Markov random fields25

The emissions scaling from its a priori value x is spatially continuous over the domain of interest. We assume that it exhibits

a spatial correlation structure, because emissions at one location are generally not independent from all other locations in the

same field. We choose to model the covariance in this field using a Matérn covariance function, which Stein (1999) shows

is well suited to natural systems. A stationary Gaussian random field with a Matérn covariance is the solution to a particular

stochastic partial differential equation (Whittle, 1954, 1963), given by30

(2 ��)
↵/2(⌧x(s)) =W(s), s 2 ⌦, (2)

3



where  is the spatial scale parameter, ⌧ influences the variance, � is the Laplacian operator, ⌦ is the spatial domain and

W(s) is a stochastic process for locations s, noting that the dependence is only on the Euclidean distance and so the process

is isotropic. For an example of non-stationary and anisotropic fields see e.g. Marques et al. (2019). The smoothness parameter

↵ gives a continuous domain Markov field for integer values and is set to ↵= 2 (see Whittle, 1954). Smaller values will give

more short-scale variability and can be difficult to differentiate from noise. Lindgren et al. (2011) show that if the field is5

represented using a Gaussian Markov random field (see Rue and Held, 2005) then it is very efficient to directly construct the

precision, or inverse covariance, matrix using a basis function representation

x(s) =
X

k

 k(s)xk, (3)

where  k(·) are weightings derived through a finite-element mesh construction of the spatial domain. This mesh uses con-

strained refined Delaunay triangulation (Shewchuk, 2002), placing nodes at the main points of interests and infilling the rest of10

the space using some condition of minimum and maximum length of the vertices. In this work we choose to represent the UK

and Ireland with an evenly spaced denser mesh with a coarser mesh outside of this region. A mesh could be further refined, for

example by creating an even denser mesh close to the measurement site where sensitivity is higher. It is important to extend

the mesh beyond the region where the measurements are sensitive to emissions as the mesh is constructed using Neumann

boundary conditions, which trigger reflection and therefore overestimation close to the boundaries. This has no effect on the15

inferred emissions, provided that the mesh is extended far enough around the domain of interest. Figure 1 shows the mesh used

in this work, excluding the extended outer mesh region.
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Figure 1. A mesh constructed using constrained refined Delaunay triangulation, where the distribution of nodes is denser around the United

Kingdom and Ireland.

2.3 Extension to spatiotemporal correlation

A spatiotemporal extension to the forward model 1 is possible by including the spatial correlation structure introduced in section

2.2 in a temporal framework (Cameletti et al., 2013). Similar to equation 1, the deviation from the prior mean measurement at

site l made at time t in its simplest form is

ytl =
nX

i=1

hitlxit +
4X

j=1

kjtlujt + ✏tl, (4)5

where i represents each of the total n nodes and j represents the edge of the domain at each of the four cardinal directions. We

make the assumption that measurements made at a given time are independent, giving a vectorised observation vector yt at
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each time. This can be generalised to include correlated measurements, where the covariance function should result in a sparse

matrix to retain computational efficiency. Following this, the matrix H from (1) becomes the sparse block diagonal matrix

H=

2

666664

H1 0 0 . . . 0

0 H2 0 . . . 0
...

...
...

. . .

0 0 0 Hm

3

777775
, (5)

which operates on the vectorised spatiotemporal scaling of the emissions field x= [x1,x2, . . .xm] to model the observations

y = [y1,y2, . . .ym]. The time varying structure of Ht and x applies also to Kt, and ut. We impose the temporal correlation5

structure between measurements to be an autoregressive model of order one, where

xt = �xt�1 + �t; �t ⇠N
�
0,Q�1

S

�
t= 1 . . .m, (6a)

and

x1 ⇠N
 
0,

✓
QS

1��2

◆�1
!
, (6b)

where � is the temporal correlation and Q
�1
S is the spatial correlation structure described by a Matérn field using the stochastic10

partial differential equation approach for a Gaussian Markov random field. We have chosen an autoregressive model of order

one as we believe that emissions are generally similar to those at previous time step. In the given model, � is the correlation

between the previous time step and the current time step. This means that the emissions at time t have a similarity of �

to emissions at t� 1 plus some spatially correlated random effect �t. The vectorisation of x allows a separable covariance

structure for the temporal and spatial covariances, which means that the spatiotemporal precision matrix can be expressed15

using a Kronecker product as follows (Mardia et al., 1979),

Q=QT ⌦QS . (7)

Estimating hourly emissions at each time t soon makes inference prohibitive due to burden. Instead we make the assumption

that emissions are constant over a three-month period to reduce the computational size. We continue with the assumption that

measurements within a single time period are independent, although this can be generalised if required. In this experiment20

we make the assumption that emissions are constant over a three-month period and that the correlation between these three

monthly periods is autoregressive of order one.

2.4 Hierarchical model

Inferring the emissions and the related uncertainties requires a hierarchical model to infer the quantities of interest from

measurements, while estimating some unknown parameters which are necessary for inference. The main focus of this work is25

to estimate the posterior distribution of the emissions field x, based on observations y. We follow a typical Bayesian hierarchical
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framework

p(x,u,✓ | y)/ p(y | x,u,✓)p(x | u,✓)p(u | ✓)p(✓) (8)

where ✓ is vector of hyperparameters describing the variances and covariances in x, u and y, noting that x??y | ✓. We assume

y | x,u,✓ ⇠N (Hx+Ku,Qy(✓)
�1),5

x | u,✓ ⇠N (0,Q(✓)�1),

u | ✓ ⇠N (0,I�2
BC),

✓ ⇠ p(✓).

where the precision matrix of the model-measurement uncertainty Qy contains the hyperparameter for the standard devia-

tion of the model-measurement standard deviation �y , �BC is the standard deviation of the prior for u and I is the identity10

matrix. Together the hyperparameters make the vector ✓ = (⇢,�,�,�BC,�y), which have independent prior distributions. The

hyperparameters for the spatial precision matrix Q(✓) are transformations of the variables in (2),

⇢=

p
8


, (10a)

� =

✓
1p
4⇡⌧

◆� 1
2

, (10b)

where ⇢ is the range parameter and � is the marginal standard deviation of the latent field (Lindgren et al., 2011). We use15

penalised complexity priors to define the prior probabilities for these parameters (Simpson et al., 2017; Fuglstad et al., 2018).

Penalised complexity priors allow the formation of priors when there is only a vague understanding of their true values, while

enforcing more constraint than using a broad uniform or a Jeffreys prior. This uses the information loss of deviating from some

baseline estimate of the parameter. Penalised priors do not increase the computational speed for the given case and are chosen

instead for their intuitiveness. Penalised complexity priors are specified by the probability of the parameters being less than or20

greater than some baseline value,

p(⇢> ⇢0) = p⇢,

p(� < �0) = p�,

where ⇢0 and �0 are the baseline values and p⇢ and p� are the associated probabilities defined by the user. The hyperparameter

� controls the temporal correlation between latent variables and its prior probability is defined on a beta distribution scaled25

between minus one and one as

�⇠ Beta(a,b),
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where a and b are assumed coefficients. The matrix Qy is the precision matrix for the combined measurement and model errors.

The diagonal of Qy contains the square of the hyperparameter �y , where the prior probability follows defined on log 1
�2
y

, is

log
1

�2
y

⇠N (µ�y ,�
2
�y
)

The marginal standard deviation of the a priori boundary conditions �BC are also constructed this way, giving

log
1

�2
BC

⇠N (µ�BC ,�
2
�BC

).5

2.5 Inference using an integrated nested Laplacian approximation

An integrated nested Laplacian approximation (Rue et al., 2009) provides a fast and efficient framework to infer the latent

variable x and hyperparameters ✓ from measurements y. The calculation of the INLA is possible using the R-INLA package

(Lindgren and Rue, 2015). In this work we use R-INLA version 17.06.20. The speed in this approach comes from solving the

marginal posteriors for xi through the numerical integration10

p(✓j | y) =
Z

p(✓ | y)d✓�j , (12)

p(xi | y) =
Z

p(xi | y,✓)p(✓ | y)d✓. (13)

Equations 12 and 12 make use of a Laplace approximation, by approximating p(✓ | y) by

p(✓ | y)/ p(x,✓,y)

pG(x | ✓,y)

����
x=x⇤(✓)

, (14)15

where pG(x | ✓,y) is a Gaussian approximation to the full conditional of x and x
⇤(✓) is the modal probability of x for a given

✓. This approximation is exact if p(✓ | y) is Gaussian, and gives a good approximation for log concave problems (Tierney and

Kadane, 1986). Then, it is possible to approximate p(xi | y,✓) using another Laplace approximation

pLA(xi | ✓,y)/
p(x,✓,y)

pG(x�i | xi,✓,y)

����
x�i=x⇤

�i(xi,✓)

, (15)

where pG(x�i | xi,✓,y) is the Gaussian approximation to x�i | xi,✓,y evaluated at the mode x⇤
�i(xi,✓). See Rue et al. (2009)20

and Martins et al. (2013) for a more in depth description.

While this method relies on calculating only the marginal posterior distributions of xi, it is still possible to predict a linear

combination of the field to provide regional emissions totals (e.g. country totals). We define a linear predictor of emissions for

a given region ⌘⇤, defined using the basis function representation of the mesh where each node contains information on the

spatial area represented by that node and its connecting vertices and zeros for all nodes that are not in the region of interest.25

Then we can approximate the linear combination of the parameters of interest, giving a combined emissions total ⌘⇤, using

equations 12 and 13 and transforming the predicted latent field by the weightings containing the area information.
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3 Case studies

This section presents two case studies to demonstrate how the method applies to inferring trace gas emissions. The first uses

simulated methane observations from four tall tower measurement sites to infer simulated spatiotemporal emissions from the

UK. The second case study extends on the first case study by using real observations from the four tall towers to infer emissions

of methane from the UK over four three monthly periods in 2014. While the size of this problem is not particularly large, we5

demonstrate the method using UK methane emissions as a proof of concept as it is a well studied test case (Manning et al.,

2011; Ganesan et al., 2015; Lunt et al., 2015), which should exhibit a spatiotemporal correlation structure. The method can be

extended to larger spatial domains or dataset sizes as required.

3.1 Transport model and data

3.1.1 Measurement data10

The case studies observations from four measurement sites, three in the UK and one in Ireland, which are part of the UK

Deriving Emissions related to Climate Change (DECC) network (Stanley et al., 2018). Figure 2 shows the location of these

four measurement stations: Ridge Hill in the West of England, Angus on the East coast of Scotland, Tacolneston on the East

coast of England and Mace Head on the West coast of Ireland. Measurements are made quasi-continuously throughout this

network, but are averaged into hourly values here, consistent with the time step of the meteorology that drives the atmospheric15

transport model (section 3.1.2). The data set contains ⇠10 000 measurements to demonstrate the capabilities of the method at

handling moderate data volumes. We consider the scalability of this method in the discussion (section 4).

3.1.2 Transport model

An atmospheric transport model calculates the sensitivity of hourly measurements to the emissions or boundary conditions,

from which the matrices H and K can be formed. This work uses the NAME III (Numerical Atmospheric dispersion Modelling20

Environment) version 7.2 Lagrangian particle dispersion model (Jones et al., 2006) to simulate the transport of methane in the

atmosphere. For each measurement, NAME tracks 20 000 gas particles, released over a one hour period, backward in time for

30 days from the measurement site. We record the times and locations that the particles drop below 40 magl and reach the

computational domain boundary, which is at 5� S, 74� N, 55� E and 192� E, to calculate the sensitivity of the data to emissions

from the surface or to the mole fraction at the domain edge. NAME was driven by the Met Office’s Unified Model UK Variable25

(UKV) three hourly meteorological analysis (Cullen, 1993).

3.1.3 Prior emissions inventory

Inventory data from the Emissions Database for Global Atmospheric Research (EDGAR) v4.3.2. provides the mean prior

emissions (Janssens-Maenhout et al., 2017) using the most recent emissions map from 2012. This database contains anthro-

pogenic emissions, which are the dominant methane sources in the UK (Manning et al., 2011), and is deemed appropriate for30
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Figure 2. The case studies use the four UK DECC network measurement stations located on this map. RGL is Ridge Hill; TAC is Tacolneston,

TTA is Angus and MHD is Mace Head station.

the application. The EDGAR emissions inventory provides an a priori estimate of UK methane emissions of 2.46 Tg/yr. The

MOZART-4 global chemistry model (Emmons et al., 2010), driven by global fields of natural and anthropogenic emissions and

sink terms (Ganesan et al., 2017), provides the prior mean estimate of methane mole fraction at the boundaries of the inversion

region.

3.2 Pseudo-data experiment5

We test the method by performing an inversion using pseudo-data for four consecutive time periods of one month. By creating

a known emissions field we are able to validate the method through comparing the inferred emissions to the known emissions,

which is not possible in the real world. We form a synthetic emissions field by allowing the emissions to deviate from the prior

mean emission according to a Matérn field. We choose to simulate the data using � = 0.5, as the uncertainty in the EDGAR

v4.3.2. inventory is around 50% for methane emissions, and ⇢= 3.25, which is similar to the correlation length scale in UK10
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emissions in the EDGAR v4.3.2. inventory estimated using a variogram (Cressie, 2015), although the correlation length scale

in the uncertainty is unknown. We use �= 0.8 as expert experience suggests that UK emissions of methane are generally

highly correlated in time.

To create the synthetic emissions field, the NAME sensitivities to measurements to the measurement stations detailed in

section 3.1.1 at each grid cell is multiplied by the corresponding EDGAR inventory emissions in that grid cell, which are then5

transformed into the triangulation nodes in Figure 1. This forms the matrix H. We randomly sample the full spatio-temporal

precision matrix for the latent field (section 2.3) using the GMRFLib library (Rue and Follestad, 2001) to generate the latent

field x. In this experiment we treat the boundary conditions as known as in practice these are generally well constrained (or

treated as known) during an inversion. The observations are simulated using the simulated latent field and sensitivities following

section 2.1, with additive Gaussian noise with a standard deviation of 15 % of y. The synthetic observations contain a total of10

11 520 measurement points, which are used to infer 646 emissions nodes for each time period, i.e. the nodes of the mesh in

Figure 1. Figure 3a-3d show the synthetic emissions field in terms of deviation from some prior emissions field. The synthetic

total deviation in emissions from the prior mean for the UK for each period is 0.07, 1.29, 1.01 and -0.33 Tg/yr.
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(a) First time period. (b) Second time period.

(c) Third time period. (d) Fourth time period.

Figure 3. Time correlated deviation of emissions from the prior mean, simulated using a Matérn field.

The inference needs prior probabilities for the hyperparameters, which are known exactly here, but we set them to be

deliberately incorrect, but feasible based on true prior knowledge, to check that the inversion method can still recover the

correct emissions. For the inversion we assign a prior probability for � using a=6.5 and b=0.1, for � using �0 = 0.1 and

p� = 0.01, and ⇢ using ⇢0 = 5 and p⇢ = 0.5. We base the constraint on the spatiotemporal emissions on the assumption that

methane emissions in the UK are likely to be strongly correlated between time periods, are unlikely to vary by more than 105

% of the a priori emissions from the previous time step and that there is little knowledge of the spatial correlation structure.

For the model measurement error we assign the prior probability on the log precision as log 1
�2
y
⇠N (�5,1), which represents

approximate 68 % probability that the error falls between 8 and 20 ppb, in line with previous experience.
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(a) First time period. (b) Second time period.

(c) Third time period. (d) Fourth time period.

Figure 4. The inferred mean deviation of emissions from the prior mean.

Figures 4 show the resultant inferred mean change in the emissions field for each time period using INLA (section 2.5) and

the hierarchical model in section 2.4. The change in the emissions field is the inferred latent field scaling parameter multiplied

by the inventory emissions in section 3.1.3. Figure S1 shows maps of the 95% uncertainty in the difference in emissions. A

linear combination of the posterior latent field multiplied by the inventory emissions field gives total emissions for the UK.

The inferred posterior mean change in total emissions for the UK from the prior mean with their associated 95 % uncertainties5

for the four time periods are 0.01 [-0.10, 0.12], 1.23 [1.10, 1.36], 1.07 [0.97, 1.18] and -0.30 [-0.41, -0.18] Tg/yr, which are

shown in Figure 5. The inferred emissions for the UK as a whole agree well with the synthetic emissions, with all true synthetic

emissions totals falling within the 95 % uncertainty of the inferred total emissions. These synthetic tests cover both small and

large differences between the a priori estimate of methane emissions in the UK and its true value. The larger differences are
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most likely an overestimate of what would be expected in practice, although this provides a good test case. The posterior mean

spatial distribution of emissions in figure 4 are qualitatively similar to those in figure 3a-3d, although we avoid reading heavily

into comparisons of the mean estimates plotted on spatial maps (see Gelman and Price, 1999).

Hyperparameter estimation is less accurate than for the latent field. The estimation of the noise �y generally captures the

imposed noise well, which had a mean value of 5.5 ppm, with an estimated value of 6.6 [6.5, 6.8] ppm. The correlation5

structures are less well captured. The temporal correlation � was estimated with a mean value 0.7 [0.6, 0.8], the range ⇢ has

value 1.7 [1.3, 2.1] and the marginal standard deviation of the latent field � with the value 0.8 [0.7,0.9]. It is promising that the

posterior mean estimates of all hyperparameters show an improvement on their prior mean or baseline values, although only

the true value for ⇢ falls within the estimated 95% uncertainty.

Figure 5. The inferred and true difference between UK emissions and a synthetic inventory value for each of the four time periods. The

crosses show the inferred mean difference in total emissions with their associated 95 % uncertainty. The red line indicates one to one

agreement.

3.3 Real data experiment10

This section presents 2014 methane emissions estimates for the UK. The year is split into four time periods: January to March,

April to June, July to September and October to December. We use the same prior probabilities for the hyperparameters as

the inversion using the synthetic dataset in section 3.2. The prior boundary conditions are distributed with µ�BC = 3.2 and

��BC = 0.4, based on expert judgment. The a priori value for these boundary conditions come from the MOZART-4 model
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as 3.1.3. The linear mapping from the latent field to the measurements is generated using the NAME-derived sensitivities

described in section 3.1.2 multiplied by the the inventory emissions detailed in section 3.1.3.

Figure S2 shows maps of the inferred mean difference in emissions from the a priori inventory for the four time periods using

INLA as section 2.5. This result is the mean posterior scaling for the latent field multiplied by the inventory value (see section

3.1.3). Figure S2 shows maps of the 95% uncertainty in the difference in emissions. A linear combination of the posterior latent5

field multiplied by the inventory emissions field gives total emissions for the UK. We estimate UK-total methane emissions

in 2014, with their associated 95% uncertainty, of 2.14 [1.90, 2.38], 2.28 [2.06, 2.51], 2.62 [2.39, 2.84] and 2.09 [1.87, 2.30]

Tg/yr for the periods January to March, April to June, July to September and October to December, respectively. These are

plotted along with the inventory estimate in Figure 7. This emissions trend suggest that for 2014 there was an increase in

methane emissions in the UK during the summer months compared to the winter months. The uncertainties, however, are10

large, meaning that this increase may not be as stark as suggested by the mean estimates. Combining these emissions into a

mean annual emission for 2014 with its associated two standard deviation uncertainty, assuming that time periods are correlated

with the modal posterior value of �, gives 2.28± 0.33 Tg/yr. The emissions are similar to mean UK estimates from previous

hierarchical inversions using NAME of 2.09 [1.65, 2.67] Tg/yr by Ganesan et al. (2015) and 2.28 [2.04, 2.52] Tg/yr by Lunt

et al. (2016). All of these estimates are broadly in line with the United Kingdom’s 2014 emissions estimate of 2.13 Tg/yr15

reported in its national inventory (Department of Business, Energy and Industrial Strategy, 2019).
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(a) January to March (b) April to June

(c) July to September (d) October to December

Figure 6. Inferred mean difference in methane emissions for the UK in 2014 compared to the EDGAR inventory.
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Figure 7. Estimated total UK methane emissions for 2014. The prior mean comes from EDGAR v 4.32 inventory data (red dashed). For

comparison, the figure also shows the posterior means for UK methane emissions from Ganesan et al. (2015) (black dotted) and Lunt et al.

(2016) (black dash-dotted).

4 Discussion

The real benefit of the presented inversion method is speed, while still maintaining the idea that, in this application, uncertainties

exist within the uncertainties that are inherent to hierarchical Bayesian inverse methods. The computation of the marginal

posterior distribution of the latent field is readily suited to run in parallel across multiple cores, making this approach scalable

to problems with a larger parameter space. This, however, requires that sufficient memory allocation is available. The inference5

for the experiment in section 3.3 took around two hours wall-clock time using a four core MacBook Pro with 8GB RAM. For

comparison, we were unable to get the problem in section 3.3 to converge using 22 million iterations of a Metropolis-adjusted

Langevin diffusion MCMC algorithm (Roberts and Rosenthal, 1998), taking on the order of days to complete and whose

convergence is difficult to diagnose (Cowles and Carlin, 1996). Reducing the problem to purely spatial inference reduces the

run time down to around 10 minutes wall-clock time for a single three month period. Inference using INLA may have smaller10

computational gains over hierarchical methods other than MCMC, for example empirical hierarchical inference (e.g. Michalak

et al., 2005). Such methods, however, would benefit from using the stochastic partial differential equation approach to GMRFs

for spatial correlation in 2.2, vastly reducing the cost of inverting dense covariance matrices.

The latent Gaussian field, crucial to this method, has the problem that it does not restrict emissions to strictly positive

values, which is a physical requirement for many gas emissions. In addition, the INLA method relies on the assumption of15
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approximate multivariate normality of the posterior linear predictors. MCMC algorithms do not suffer from this issue, as any

prior probability density function can be chosen and no assumption is made about the posterior linear predictors. This has to be

traded off, however, with the speed and ease of implementation of the method and the scale of the problem that the user wishes

to solve. If strictly positive posterior emissions is an absolute requirement, another possible modification to the approach is to

use a Taylor expansion around the nonlinear model z=Hex + ✏, where x is a multiplicative scaling of the prior mode which5

follows a Matérn field. This Taylor expansion could either be around zero if the prior inventory is a good estimate of the true

emissions, or around the posterior mode itself, which can be found through iterations of the inverse method at the posterior

mode of the previous iteration. An alternative route would be to instead use a non-Gaussian Matérn field and this will likely

prove a promising future avenue for geostatistical inference (Wallin and Bolin, 2015).

A potential extension to this work is global scale modelling, for example a global study of methane emission from global10

satellite measurements. The nature of the method makes it well suited to parallel implementation and thus up-scaling. Up-

scaling to global studies may introduce additional difficulties, which have been otherwise ignored in the regional case. For

example it may no longer be possible to assume a spatial correlation structure controlled by only two hyperparameters, i.e.

the correlation structure may vary in space.The stochastic partial differential equation approach to Gaussian Markov random

fields can handle this by allowing the hyperparameters ⇢ and � to become vectors, or a non-stationary covariance (Lindgren15

et al., 2011), or by subsetting the space controlled by the different covariance structures (Sha et al., 2019). The problem of

non-stationary covariances may also be present for inference of on other spatial scales. For example natural features, such as

lakes, may cause abrupt changes in correlation structures. Emissions of anthropogenic greenhouse gases may exhibit no spatial

correlation structure (e.g. Mühle et al., 2019; Rigby et al., 2019). In this case a Matérn field would be inappropriate, but an

autoregressive model may still be applicable for time-varying emissions. The inclusion of a non-stationary covariance makes20

the problem much more computationally expensive and a more parsimonious approach may often suffice (Fuglstad et al.,

2015).

5 Conclusions

This work presents a fast and efficient method using an integrated nested Laplacian approximation for hierarchical inference of

trace gas emissions. This method is particularly well-suited to assimilating large data sets. We show that INLA with a stochastic25

partial differential equation approach for spatial correlation can reproduce synthetic emissions from pseudo-observations and

bench-marked emissions using real data.

A real advantage over other hierarchical Bayesian inversion methods is the attractive convergence properties, which can

be difficult to obtain using methods such as Markov chain Monte Carlo algorithms. As the method computes the marginal

variance for each node, this allows for efficient parallel implementation and significant computational savings compared to30

other hierarchical methods. The importance of computational speed will become increasingly important as more data from

space-borne sensors become available, which will offer an increased number of measurements and spatial coverage.
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(a) First time period. (b) Second time period.

(c) Third time period. (d) Fourth time period.

Figure S1. Time correlated 95% posterior uncertainty in the deviation of emissions from the simulated prior mean, simulated using a Matérn

field.
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(a) January to March (b) April to June

(c) July to September (d) October to December

Figure S2. Time correlated 95% posterior uncertainty in the difference in methane emissions from the EDGAR inventory for the UK in

2014.
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