Manuscript under review for journal Geosci. Model Dev.

Discussion started: 7 March 2019 © Author(s) 2019. CC BY 4.0 License.

- Revised treatment of wet scavenging processes dramatically improves GEOS-Chem
- 2 12.0.0 simulations of nitric acid, nitrate, and ammonium over the United States

3

- 4 Gan Luo, Fangqun Yu, and James Schwab
- 5 Atmospheric Sciences Research Center, University at Albany

6 7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

2425

26

27

Abstract

The widely used community model GEOS-Chem 12.0.0 and previous versions have been recognized to significantly overestimate the concentrations of gaseous nitric acid, aerosol nitrate, and aerosol ammonium over the United States. The concentrations of nitric acid are also significantly over-predicted in most global models participating a recent model inter-comparison study. In this study, we show that most or all of this overestimation issue appears to be associated with wet scavenging processes. Replacement of constant in-cloud condensation water (ICCW) assumed in GEOS-Chem standard versions with one varying with location and time from the assimilated meteorology significantly reduces mass loadings of nitrate and ammonium during the wintertime, while the employment of an empirical washout rate for nitric acid significantly decreases mass concentrations of nitric acid and ammonium during the summertime. Compared to the standard version, GEOS-Chem with updated ICCW and washout rate significantly reduces the simulated annual mean mass concentrations of nitric acid, nitrate, and ammonium at surface mentoring network sites in US, from 2.04 to 1.03 µg m⁻³, 1.89 to 0.88 µg m⁻³, 1.09 to 0.68 µg m⁻³, respectively, in much better agreement with corresponding observed values of 0.83, 0.70, and 0.60 µg m⁻³, respectively. In addition, the agreement of model simulated seasonal variations of corresponding species with measurements is also improved. The updated wet scavenging scheme improves the skill of the model in predicting nitric acid, nitrate, and ammonium concentrations which are important species for air quality and climate.

Manuscript under review for journal Geosci. Model Dev.

Discussion started: 7 March 2019 © Author(s) 2019. CC BY 4.0 License.

1. Introduction

Nitrate and ammonium are important secondary inorganic aerosols in the 2 3 atmosphere, contributing significantly to total aerosol mass over most polluted regions (Bian et al., 2017) and to aerosol direct radiative forcing over urban and agriculture 4 regions (Bauer et al., 2007; Myhre et al., 2013). The amount of nitrate and ammonium 5 also regulates the concentration of gaseous ammonia which often plays an important role 6 in the formation of new particles (Kirkby et al., 2011; Yu et al., 2018). In addition, nitrate 7 and ammonium help newly formed particles grow to larger sizes suitable for cloud 8 condensation nuclei (Yu and Luo, 2009) and thus can impact aerosol indirect radiative 9 10 forcing (Twomey, 1977). Nitric acid, nitrate, and ammonium concentrations are often overestimated by 11 atmospheric models (Pye et al., 2009; Walker et al., 2012; Bian et al., 2017; Zakoura and 12 Pandis, 2018), including the widely used community model GEOS-Chem (e.g., Zhang et 13 al., 2012; Heald et al., 2012). Zhang et al. (2012) studied nitrogen deposition over the US 14 with GEOS-Chem and found both nitric acid and nitrate concentrations are overestimated. 15 especially in wintertime. They suggested that this is the result of excessive nitric acid 16 formation via night time chemistry of heterogeneous N₂O₅ hydrolysis. However, Heald et 17 al. (2012) found the overestimate of heterogeneous N₂O₅ hydrolysis does not fully 18 account for the nitrate bias and suggested the positive nitrate bias is likely linked with an 19 overestimate of nitric acid concentrations. Heald et al. (2012) investigated other possible 20 causes for the overestimation of nitric acid concentrations arising from uncertainties in 21 22 daytime formation and dry deposition, and concluded that none of these uncertainties could fully account for the reduction in nitric acid required to correct the nitrate bias. 23 Based on comparisons of simulated nitrate and ammonium aerosol from nine 24 25 AEROCOM models with ground station and aircraft measurements, Bian et al. (2017) concluded that most models overestimate surface nitric acid volume mixing ratio by a 26 factor of up to 3.9 over North America and the overestimation cannot be simply attributed 27

Manuscript under review for journal Geosci. Model Dev.

Discussion started: 7 March 2019

© Author(s) 2019. CC BY 4.0 License.

to model uncertainties. Backes et al. (2016) suggested that uncertainties in the temporal

2 profiles of ammonia emissions could also contribute significantly to the bias of nitrate

3 concentrations. However, the impact of ammonia mostly happened during summer time.

4 Zakoura and Pandis (2018) found significant decrease in nitrate concentration when they

enhanced their model resolution from 36 km \times 36 km to 4 km \times 4 km in the PMCAMx

6 model. However, similar results are not found in global models with much coarser grids

7 than regional models. All these studies indicate that the overestimation of nitric acid,

8 nitrate, and ammonium mass concentrations in current atmospheric chemistry models

9 remains to be resolved.

In this study, we proposed an improved treatment of wet scavenging in GEOS-Chem

by considering cloud condensation water variability and empirical washout rate, which

together significantly improve the estimates of nitric acid, nitrate, and ammonium over

the US. The improved wet scavenging in GEOS-Chem is described in section 2. The

comparison of model results with in-site observations and the changes of the three

species over the US are presented in section 3. Section 4 is the summary and discussion.

16 17

14

2. Improved scheme for wet scavenging

Wet scavenging is the main removal pathway for many atmospheric air pollutants.

19 Two mechanisms are involved in wet scavenging: rainout (in-cloud scavenging) and

20 washout (below-cloud scavenging). GEOS-Chem treats wet scavenging associated with

21 stratiform and convective precipitation separately.

22 23

2.1 Impact of in cloud condensed water (ICCW)

For stratiform precipitation, in the most recently released GEOS-Chem version

25 12.0.0 (GC12), rainout is parameterized according to Jacob et al. (2000) as

$$F = \frac{P_r}{k \cdot ICCW} \left(1 - e^{-k \cdot \Delta t} \right) \tag{1}$$

where F is the fraction of a soluble tracer in the grid-box scavenged by rainout, Δt is the

Manuscript under review for journal Geosci. Model Dev.

Discussion started: 7 March 2019

- model integration time step. k is the first-order rainout loss rate which represents the
- 2 conversion of cloud water to precipitation water. ICCW represents the condensed water
- content (liquid) within the precipitating cloud (i.e., in cloud) and P_r is the rate of new
- 4 precipitation formation in the corresponding grid-box.
- The rainout loss rate (k) represents how fast cloud condensation water can be
- 6 removed from the atmosphere and thus is critical for rainout scavenging. k is defined in
- Jacob et al. (2000) and coded in GC12 (called k_{GC12} thereafter) as

$$k_{GC12} = k_{min} + \frac{P_r}{ICCW}$$
 (2)

- 9 where k_{min} is the minimum value of rainout loss rate derived from the stochastic
- 10 collection equation which indicates that in one hour at least ~ 0.36 of cloud droplets are
- lost to autoconversion/accretion (Beheng and Doms 1986). In GC12, k_{min} is set to be 0.36
- 12 $hr^{-1} = 1 \times 10^{-4} s^{-1}$.
- It should be noted that P_r in Eq. (2) is a grid-box mean value, while ICCW is an in
- cloud value. To be physically consistent, we suggest a new expression of k (k_{new}) that
- replaces grid-box mean P_r with the corresponding in cloud value P_r/f_c .

$$k_{new} = k_{min} + \frac{P_r}{f_c \cdot ICCW}$$
 (3)

- where f_c is the grid-box mean cloud fraction. As we will show later, Eq. (3) gives k values
- 18 in much better agreement with those derived from cloud model simulations and
- 19 observations.
- To calculate F, GC12 uses P_r from the Modern-Era Retrospective analysis for
- 21 Research and Applications Version 2 (MERRA2) meteorological fields. For *ICCW* in Eqs.
- 1-3, Jacob et al. (2000) used a constant value of 1.5 g m⁻³ and Wang et al. (2011) changed
- 23 it to 1 g m⁻³. In GC12, the default value of *ICCW* is 1 g m⁻³. However, *ICCW* in the
- 24 atmosphere varies with time and location. Here we suggest to use time and location
- dependent ICCW (named $ICCW_t$) which can be derived from MERRA2 meteorological
- 26 fields as

Manuscript under review for journal Geosci. Model Dev.

Discussion started: 7 March 2019

© Author(s) 2019. CC BY 4.0 License.

$$1 ICCW_t = \frac{CW + P_r \cdot \Delta t}{f_c} (4)$$

where CW is grid-box mean cloud water content, while $P_r \cdot \Delta t$ represents rain water

3 content produced during the time step Δt .

Figure 1a shows seasonal variations of $ICCW_t$ (Eq. 4) averaged throughout the lower

troposphere (0–3 km) of the whole globe ($ICCW_{t}$ $_{G}$), over all land surface ($ICCW_{t}$ $_{L}$),

6 over the oceans $(ICCW_t|_O)$, and over the continental US $(ICCW_t|_{US})$. For comparisons, the

7 constant values of ICCW assumed in Jacob et al. (2000) (ICCW_{J2000}) and GC12

8 ($ICCW_{GC12}$) are also shown. The monthly mean values of $ICCW_{\underline{t}_G}$, $ICCW_{\underline{t}_L}$, $ICCW_{\underline{t}_O}$,

9 and $ICCW_{t_{LUS}}$ vary within the ranges of 0.90–1.03 g m⁻³, 0.30–0.45 g m⁻³, 1.15–1.26 g

10 m⁻³, and 0.21–0.53 g m⁻³, respectively. This figure shows that $ICCW_{t_{\underline{G}}}$ is close to the

assumed *ICCW* value of 1 g m⁻³ used in GC12. As can be seen from Fig.1a, *ICCW*_{t O} is

greater than 1 g m⁻³, but $ICCW_{t L}$ is much less than the constant value of 1 g m⁻³ assumed

in GC12. The mean *ICCW* over the continental US (bright green line) is close to $ICCW_{tL}$

(olive line), and is \sim 5 times less than the assumed value in GC12 during the wintertime

and ~ 2 times less during the summertime. As we will show later, the constant *ICCW* of 1

16 g m⁻³ assumed in GC12 leads to significant underestimation of rainout over the

17 continental US, especially during the wintertime.

Figure 1b shows seasonal variations of mean k_{GC12} , k_{new} , and k_{new_ICCWt} in the lower

troposphere (0-3 km) of the continental US. Referring to Eq. (2), the figure shows that

20 k_{GC12} is dominated by k_{min} (which is physically unsound) and thus shows negligible

seasonal variation. Conversely, k_{new} is low in the wintertime and high in the

summertime. $k_{new\ ICCWt}$ is 2.3 times higher than k_{new} during January and 1.6 times higher

than k_{new} during July. Both k_{new} and k_{new} are within the range of rainout loss rates

24 (10⁻⁴–10⁻³ s⁻¹) indicated by cloud model simulations and estimates based on observations

25 (Giorgi and Chameides, 1986).

Manuscript under review for journal Geosci. Model Dev.

Discussion started: 7 March 2019

© Author(s) 2019. CC BY 4.0 License.

- From Eqs. (1), (3), and (4), we can get the updated parameterization for rainout loss
- 2 fraction at each location and time step

$$F = \frac{f_c \cdot P_r}{k_{new_ICCW_r} (CW + P_r \cdot \Delta t)} \left(1 - e^{-k_{new_ICCW_r} \cdot \Delta t} \right)$$
 (5)

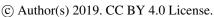
4 5

2.2 Impact of empirical washout rate on nitric acid wet scavenging

- 6 Still considering the case of stratiform precipitation in GOES-Chem, the fraction of
- 7 aerosols and HNO₃ within a grid-box that is scavenged by washout over a time step is
- 8 parameterized as (Wang et al., 2011; Liu et al., 2001; Jacob et al., 2000)

9
$$F_{wash} = f_r (1 - exp(-k_{wash}\Delta t))$$
 (6)

$$f_r = \max(\frac{P_r}{k \cdot ICCW}, f_{top}) \quad (7)$$


$$k_{wash} = \Lambda \left(\frac{P_r}{f_r}\right)^b \quad (8)$$

- where f_r is the horizontal areal fraction of the grid-box experiencing precipitation and f_{top}
- is the value of f_r in the layer overhead ($f_{top} = 0$ at the top of the precipitating column).
- 14 k_{wash} is washout rate, Λ is washout scavenging coefficient, and b is an exponential
- 15 coefficient. In the original GEOS-Chem, $\Lambda = 1 \text{ cm}^{-1}$ and b = 1 for both aerosols and nitric
- acid (Liu et al., 2001; Jacob et al., 2000).
- 17 It has been well recognized that, for aerosols, Λ and b depend on particle size (Wang
- 18 et al., 2010; Feng, 2007; Andronache et al., 2006; Henzing et al., 2006; Laakso et al.,
- 19 2003). Feng (2007) suggested values of b = 0.62, 0.61, and 0.8 for particles in nucleation
- 20 (diameter 1 nm 40 nm), accumulation (40 nm 2.5 μ m), and coarse mode (>2.5 μ m),
- 21 respectively. Many studies indicate that there are large difference between existing
- theoretical and observed size-resolved washout rates (Wang et al., 2010; Andronache et
- al., 2006; Henzing et al., 2006; Laakso et al., 2003). For particles within the diameter
- range of 0.01–2 μm, size-resolved washout rates derived from analytical formulas are one
- 25 to two orders of magnitude smaller than those derived from field measurements (e.g.,

Manuscript under review for journal Geosci. Model Dev.

Discussion started: 7 March 2019

7

Wang et al., 2010). This large difference could result from turbulent flow fluctuations

2 (Andronache et al. 2006; Khain and Pinsky, 1997), vertical diffusion process (Zhang et al.,

3 2004), and droplet-particle collection mechanisms (Park et al., 2005).

In GC12, Λ and b for aerosols are parameterized as a function of particle size modes

5 (Wang et al., 2011), following Feng (2007). For nitric acid, GC12 keeps $\Lambda = 1 \text{ cm}^{-1}$ and b

6 = 1, unchanged from the original CEOS-Chem parameters. In this study, we employ the

size-dependent aerosol washout parameterization derived from six years of field

8 measurements over forests in southern Finland (Laakso et al., 2003; Wang et al., 2010).

9 We further estimate nitric acid washout scavenging coefficients by referring to field

measurements for particles of 10 nm (Laakso et al., 2003) and the theoretical dependence

of scavenging coefficients on particle sizes for particles < 10 nm (Henzing et al., 2006).

12 The collection efficiency of particles smaller than 10 nm by rain droplets is dominated by

Brownian diffusion, and in this regard we can treat nitric acid as a single molecule (or

particle) with diameter of 0.5 nm. Through this approach, we derive an empirical Λ value

for nitric acid of 2 cm⁻¹. In addition, we adopt the b value of 0.62 for nucleation mode

particles (diameter 1 nm - 40 nm) (Feng. 2007) for nitric acid. When in cloud

precipitation intensity is 1 mm h⁻¹, this empirical washout loss rate equals 3×10^{-3} s⁻¹

which is about two orders of magnitude larger than the corresponding washout loss rate

19 $(0.1 \text{ hr}^{-1} = 2.8 \times 10^{-5} \text{ s}^{-1})$ currently in GC12.

For convective precipitation, MERRA2 meteorological fields do not provide

21 convective cloud fraction and water content. Therefore, the updated wet scavenging

22 method discussed above for stratiform precipitation cannot be directly applied to

convective precipitation rainout scavenging in GEOS-Chem. However, the empirical

value for nitric acid washout is also applied to convective washout in the present study as

25 Case 4.

26

27

23

3. Model simulations and results

Manuscript under review for journal Geosci. Model Dev.

Discussion started: 7 March 2019 © Author(s) 2019. CC BY 4.0 License.

To study the impacts of various updates to the wet scavenging as described in 1 Section 2 on model simulated nitric acid, nitrate, and ammonium mass concentrations, we 2 3 run GEOS-Chem for 4 cases: (1) standard GC12 parameterizations for rainout and washout (Keller et al., 2014; Fontoukis and Nenes, 2007; Martin et al., 2003; Bey et al., 4 2001), called GC12; (2) same as the Case GC12 except k_{new} in Eq. 3 is used, called Knew; 5 (3) same as the Case Knew except ICCW_t from MERRA2 (Eq. 4) is used, called ICCW_t; 6 7 (4) same as the Case ICCW_t except empirical washout rates for nitric acid and aerosols are used, called ICCWt EW. For each case, we carry out simulations from December 8 2010 to December 2011, with the first month as spin-up. The model horizontal resolution 9 is 2°×2.5° and vertically there are 47 layers. The present analysis focuses on the 10 continental United States. We compared simulated nitric acid with in-situ observations at 11 Clean Air Status and Trends Network (CASTNET) sites, simulated nitrate and 12 ammonium with in-situ observations at Interagency Monitoring of Protected Visual 13 Environments (IMPROVE) and Chemical Speciation Network (CSN) sites. For 2011, 14 there were 74 sites with available nitric acid observations from CASTNET. For the same 15 year, IMPROVE had 120 sites with available nitrate and ammonium observations, while 16 CSN had 94 sites with available nitrate observations and 63 sites with available 17 ammonium observations. 18 The effects of different modifications to the GC12 wet scavenging parameterization 19 on model simulated nitric acid, nitrate, and ammonium mass concentrations are shown in 20 Figures 2-3 and Table 1. Most of the changes of mass concentrations of the 3 species over 21 22 the US are caused by the changes of cloud condensation variability and/or empirical washout rate. The impact of new rainout loss rate (k_{new}) is relatively small because of the 23 cancelling effect of k in the denominator and also in the exponent in Eq. 1. As shown in 24 25 Figs. 2a-2b and Table 1, all cases except ICCW_t EW overestimate nitric acid at CASTNET sites by a factor 2-3 in both wintertime and summertime. Consideration of 26 cloud condensation water variability slightly reduces nitric acid in January and December 27

Manuscript under review for journal Geosci. Model Dev.

Discussion started: 7 March 2019 © Author(s) 2019. CC BY 4.0 License.

but has negligible effect during other months. The inclusion of the empirical washout rate 1 reduces the normalized mean bias (NMB) of nitric acid from ~150 % to 24 % (Table 1). 2 3 Figures 2c and 2d show the impacts of improved wet scavenging on nitrate. It is clear that GC12 significantly overestimates nitrate concentration at most sites especially during the 4 wintertime, in agreement with previous studies (Heald et al., 2012; Walker et al., 2012). 5 6 Replacing constant ICCW with variable ICCW_t reduces the NMB of nitrate from 170 % to 84 %. ICCW has significant impact on reducing nitrate mass concentration during the 7 8 wintertime and a smaller impact during the summertime. Wintertime bias of nitrate was reduced from 2 µg m⁻³ to 0.7 µg m⁻³. The change of washout rate from theoretical value 9 to empirical formula results in an additional 59 % reduction of NMB for nitrate and 10 11 impacts nitrate mass concentration significantly both in the winter and in the summer. For ammonium, NMB is reduced from 85 % to 43 % after considering rainout with variable 12 cloud condensation water. Similar to nitrate, the impact of CCW is large during the 13 wintertime and smaller during the summer time. After considering empirical washout, the 14 NMB of ammonium is reduced to 13 %. While the update in the wet scavenging 15 parameterization significantly improves agreement of the model simulated mass 16 concentrations nitric acid, nitrate, and ammonium over the US with those observed, it 17 does not affect the correlation coefficients of annual mean values (Table 1) which are 18 dominated by spatial distributions (Fig. 3). 19 Figure 3 shown the horizontal distributions of surface layer nitric acid, nitrate, and 20 ammonium mass concentrations over the US for case GC12 (a-c) and case ICCWt_EW 21 (d-f). For comparison, annual mean mass concentrations observed at CASTNET, 22 IMPROVE, and CSN sites are shown in filled cycles. The spatial pattern of the simulated 23 concentrations of the three species for the ICCW EW case is close to those for the GC12 24 case. High concentrations of nitric acid are mainly located at northeastern, southern, and 25 western US with the values up to 2-4 µg m⁻³ based on GC12 (Fig. 3a) and 1-2 µg m⁻³ 26 based on ICCW_t EW (Fig. 3d). Horizontal distribution of nitrate is different from that of 27

Manuscript under review for journal Geosci. Model Dev.

Discussion started: 7 March 2019

© Author(s) 2019. CC BY 4.0 License.

1 nitric acid. Nitrate is mainly located at the Ohio valley region and the Northeastern US

2 with values up to 4–5 μg m⁻³ based on GC12 (Fig. 3b) and 1-3 μg m⁻³ based on

3 ICCW_{t_}EW (Fig. 3e). Ammonium shows a similar horizontal distribution to that of

4 nitrate, but its value is ~50 % lower than nitrate concentration. For the whole continental

5 US domain, the annual mean nitric acid, nitrate, and ammonium concentration in the

6 model surface layer are reduced from 1.48 μg m⁻³ to 0.78 μg m⁻³, 1.03 μg m⁻³ to 0.46 μg

7 m⁻³, 0.76 μg m⁻³ to 0.47 μg m⁻³, respectively. The percentage changes for nitric acid,

8 nitrate, and ammonium concentrations averaged within the domain are -47%, -55%, and

9 -38%, respectively. The improved wet scavenging treatment had significant impacts on

10 nitric acid, nitrate, and ammonium modeling over the US. As can be seen from Figs.

3a-3f (and also Fig. 2 and Table 2), simulated nitric acid, nitrate, and ammonium mass

concentrations over the US based on the updated wet scavenging parameterization (i.e.,

13 ICCW_t EW) are in much better agreement with in-situ measurements.

14 15

16

17

18

19

20

21

22

23

24 25

26

27

4. Summary and discussions

We present an improved wet scavenging parameterization for use in in GEOS-Chem by considering cloud condensation water variability and an empirical washout rate. The updated parameterization significantly reduces the overestimation of simulated annual mean mass concentrations of nitric acid, nitrate, and ammonium at CASTNET, IMPROVE, and CSN sites in US, from 2.04 to 1.03 (observation: 0.83) μg m⁻³, 1.89 to 0.88 (observation: 0.70) μg m⁻³, 1.09 to 0.68 (observation: 0.60) μg m⁻³, respectively. In addition, the agreement of model simulated seasonal variations of corresponding species with measurements is also improved. The updated wet scavenging scheme provides a partial solution to the persistent problem of nitric acid and nitrate overestimation in the widely used community model GEOS-Chem (e.g., Heald et al., 2012) and thus improve the skill of the model in predicting nitric acid, nitrate, and ammonium concentrations. The empirical washout rate suggested in the present work will also help to resolve the

Manuscript under review for journal Geosci. Model Dev.

Discussion started: 7 March 2019 © Author(s) 2019. CC BY 4.0 License.

significant over-prediction of nitric acid by most of the 9 global models participating in 1 the Aerosol Comparisons between Observations and Models (AeroCom) phase III study 2 3 (Bian et al., 2017). Due to large difference in nitric acid washout rate based on theoretical and field studies and the importance of this rate, further research is needed to better 4 understand the underlying reasons and reduce the difference. At the time being, we 5 recommend the empirical values to be used in models. 6 While the present study focused on the US where abundant relevant measurements 7 are available, the updated wet scavenging parameterization impacts model simulated 8 nitric acid, nitrate and ammonium concentrations in other regions as well, particularly 9 over land. The changes of nitrate and ammonium mass concentrations not only impact 10 particle growth but also influence ammonia concentrations which are important for 11 aerosol nucleation (Kirkby et al., 2011; Yu et al., 2018), via the equilibrium of 12 sulfate-nitrate-ammonium. The updated scheme presented in this study has potential 13 implications to new particle formation, particle growth, aerosol size, CCN number 14 concentration and associated radiative forcing, which will be the subjects of future 15 research. 16 17 Code and data availability. The code of GEOS-Chem 12.0.0 is available through the 18 **GEOS-Chem** distribution 19 web-page http://wiki.seas.harvard.edu/geos-chem/index.php/GEOS-Chem 12. All measurement 20 data are publicly available. 21 22 Acknowledgments. This work is supported by NYSERDA under contract 100416, NASA 23 under grant NNX13AK20G, and NSF under grant 1550816. We would like to 24 25 acknowledge Interagency Monitoring of Protected Visual Environments (IMPROVE), Chemical Speciation Network (CSN), and Clean Air Status and Trends Network 26 (CASTNET) for the in-site measurement data. GEOS-Chem is a community model 27

Manuscript under review for journal Geosci. Model Dev.

Discussion started: 7 March 2019

© Author(s) 2019. CC BY 4.0 License.

1 maintained by the GEOS-Chem Support Team at Harvard University.

2

References

- 4 Andronache, C., Grönholm, T., Laakso, L., Phillips, V., and Venäläinen, A., Scavenging
- of ultrafine particles by rainfall at a boreal site: observations and model estimations,
- 6 Atmos. Chem. Phys., 6, 4739-4754, https://doi.org/10.5194/acp-6-4739-2006, 2006.
- 7 Backes, A., Aulinger, A., Bieser, J., Matthias, V., Quante, M., Ammonia emissions in
- 8 Europe, part I: development of a dynamical ammonia emission inventory. Atmos.
- 9 Environ. 131, 55–66, 2016.
- Bauer, S. E., Koch, D., Unger, N., Metzger, S. M., Shindell, D. T., and Streets, D. G.:
- Nitrate aerosols today and in 2030: a global simulation including aerosols and
- tropospheric ozone, Atmos. Chem. Phys., 7, 5043-5059,
- 13 https://doi.org/10.5194/acp-7-5043-2007, 2007.
- Beheng, K. D. and G. Doms, A general formulation of collection rates of cloud and
- raindrops using the kinetic equation and comparison with parameterizations. Beitr.
- 16 Phys. Atmos., 59, 66–84, 1986.
- Bey, I., D. J. Jacob, R. M. Yantosca, J. A. Logan, B. Field, A. M. Fiore, O. Li, H. Liu, L. J.
- 18 Mickley, and M. Schultz, Global modeling of tropospheric chemistry with
- assimilated meteorology: Model description and evaluation, J. Geophys. Res., 106,
- 20 23,073 23,096, doi:10.1029/2001JD000807, 2001.
- Bian, H., Chin, M., Hauglustaine, D. A., Schulz, M., Myhre, G., Bauer, S. E., Lund, M. T.,
- 22 Karydis, V. A., Kucsera, T. L., Pan, X., Pozzer, A., Skeie, R. B., Steenrod, S. D.,
- Sudo, K., Tsigaridis, K., Tsimpidi, A. P., and Tsyro, S. G., Investigation of global
- particulate nitrate from the AeroCom phase III experiment, Atmos. Chem. Phys., 17,
- 25 12911-12940, https://doi.org/10.5194/acp-17-12911-2017, 2017.
- Feng, J., A 3-mode parameterization of below-cloud scavenging of aerosols for use in
- atmospheric dispersion models, Atmos. Environ., 41, 6808–6822, 2007.

Manuscript under review for journal Geosci. Model Dev.

Discussion started: 7 March 2019

- 1 Fountoukis, C., and A. Nenes, ISORROPIA II: A computationally efficient
- 2 thermodynamic equilibrium model for
- 3 K+-Ca2+-Mg2+-NH4+-Na+-SO42-NO3--Cl-H2O aerosols, Atmos. Chem. Phys.,
- 4 7(17), 4639-4659, 2007.
- 5 Giorgi, F., and W. L. Chameides, Rainout lifetimes of highly soluble aerosols and gases
- as inferred from simulations with a general circulation model, J. Geophys. Res.,
- 7 91(D13), 14367–14376, doi:10.1029/JD091iD13p14367, 1986.
- 8 Heald, C. L., Collett Jr., J. L., Lee, T., Benedict, K. B., Schwandner, F. M., Li, Y., Clarisse,
- 9 L., Hurtmans, D. R., Van Damme, M., Clerbaux, C., Coheur, P.-F., Philip, S., Martin,
- 10 R. V., and Pye, H. O. T., Atmospheric ammonia and particulate inorganic nitrogen
- over the United States, Atmos. Chem. Phys., 12, 10295–10312,
- 12 https://doi.org/10.5194/acp-12-10295-2012, 2012.
- Henzing, J. S., Olivi'e, D. J. L., and van Velthoven, P. F. J., A parameterization of size
- resolved below cloud scavenging of aerosol by rain, Atmos. Chem. Phys., 6,
- 15 3363–3375, doi:10.5194/acp-6-3363-2006, 2006.
- 16 Jacob, D. J., Liu, H., Mari, C., and Yantosca, B. M., Harvard wet deposition scheme for
- 17 GMI,
- acmg.seas.harvard.edu/geos/wiki docs/deposition/wetdep.jacob etal 2000.pdf,
- 19 2000.
- 20 Keller, C. A., M. S. Long, R. M. Yantosca, A. M. Da Silva, S. Pawson, and D. J. Jacob,
- 21 HEMCO v1.0: A versatile, ESMF-compliant component for calculating emissions in
- atmospheric models, Geosci. Model Devel., 7, 1409-1417, 2014.
- 23 Khain, A. P. and Pinsky, M. B., Turbulence effects on the collision kernel, II: Increase of
- the swept volume of colliding drops, Q. J. Roy. Meteor. Soc., 123, 1543–1560, 1997.
- 25 Kirkby, J. and co-authors, Role of sulphuric acid, ammonia and galactic cosmic rays in
- atmospheric aerosol nucleation, Nature, 476, 429–433, 2011.
- 27 Laakso, L., Gr"onholm, T., Rannik, U., Kosmale, M., Fiedler, V., Vehkam"aki, H., and

Manuscript under review for journal Geosci. Model Dev.

Discussion started: 7 March 2019

- Kulmala, M., Ultrafine particle scavenging coefficients calculated from 6 years field
- 2 measurements, Atmos. Environ., 37, 3605–3613, 2003.
- 3 Liu, H. Y., Jacob, D. J., Bey, I., and Yantosca, R. M., Constraints from Pb-210 and Be-7
- 4 on wet deposition and transport in a global three-dimensional chemical tracer model
- 5 driven by assimilated meteorological fields, J. Geophys. Res.-Atmos., 106,
- 6 12109–12128, 2001.
- 7 Martin, R. V., Jacob, D. J., Yantosca, R. M., Chin, M., and Ginoux, P., Global and
- 8 regional decreases in tropospheric oxidants from photochemical effects of aerosols, J.
- 9 Geophys. Res., 108, 4097, doi:10.1029/2002JD002622, 2003.
- Myhre, G., Samset, B. H., Schulz, M., Balkanski, Y., Bauer, S., Berntsen, T. K., Bian, H.,
- Bellouin, N., Chin, M., Diehl, T., Easter, R. C., Feichter, J., Ghan, S. J.,
- Hauglustaine, D., Iversen, T., Kinne, S., Kirkevåg, A., Lamarque, J.-F., Lin, G., Liu,
- 13 X., Lund, M. T., Luo, G., Ma, X., van Noije, T., Penner, J. E., Rasch, P. J., Ruiz, A.,
- Seland, Ø., Skeie, R. B., Stier, P., Takemura, T., Tsigaridis, K., Wang, P., Wang, Z.,
- Xu, L., Yu, H., Yu, F., Yoon, J.-H., Zhang, K., Zhang, H., and Zhou, C., Radiative
- forcing of the direct aerosol effect from AeroCom Phase II simulations, Atmos.
- 17 Chem. Phys., 13, 1853-1877, https://doi.org/10.5194/acp-13-1853-2013, 2013.
- 18 Park, S. H., Jung, C. H., Jung, K. R., Lee, B. K., and Lee, K. W., Wet scrubbing of
- polydisperse aerosols by freely falling droplets, Aerosol Sci., 36, 1444–1458, 2005.
- 20 Pye, H. O. T., H. Liao, S. Wu, L. J. Mickley, D. J. Jacob, D. K. Henze, and J. H. Seinfeld,
- 21 Effect of changes in climate and emissions on future sulfate nitrate ammonium
- aerosol levels in the United States, J. Geophys. Res., 114, D01205, doi:
- 23 10.1029/2008JD010701, 2009.
- Twomey, S., The influence of pollution on the shortwave albedo of clouds, J. Atmos. Sci.,
- 25 34, 1149–1152, 1977.
- Walker, J., M., Philip, S., Martin, R. V., and Seinfeld, J. H., Simulation of nitrate, sulfate,
- and ammonium aerosols over the United States, Atmos. Chem. Phys., 12,

Manuscript under review for journal Geosci. Model Dev.

Discussion started: 7 March 2019

© Author(s) 2019. CC BY 4.0 License.

- 1 11213–11227, https://doi.org/10.5194/acp-12-11213-2012, 2012.
- Wang, Q., D.J. Jacob, J.A. Fisher, J. Mao, E.M. Leibensperger, C.C. Carouge, P. Le Sager,
- 3 Y. Kondo, J.L. Jimenez, M.J. Cubison, and S.J. Doherty, Sources of carbonaceous
- 4 aerosols and deposited black carbon in the Arctic in winter-spring: implications for
- 5 radiative forcing, Atmos. Chem. Phys., 11, 12,453-12,473, 2011.
- 6 Wang, X., Zhang, L., and Moran, M. D., Uncertainty assessment of current size-resolved
- 7 parameterizations for below-cloud particle scavenging by rain, Atmos. Chem. Phys.,
- 8 10, 5685-5705, https://doi.org/10.5194/acp-10-5685-2010, 2010.
- 9 Yu, F., Nadykto, A. B., Herb, J., Luo, G., Nazarenko, K. M., and Uvarova, L. A.,
- 10 H2SO4-H2O-NH3 ternary ion-mediated nucleation (TIMN): kinetic-based model
- and comparison with CLOUD measurements, Atmos. Chem. Phys., 18,
- 17451-17474, https://doi.org/10.5194/acp-18-17451-2018, 2018.
- Yu, F. and Luo, G., Simulation of particle size distribution with a global aerosol model:
- contribution of nucleation to aerosol and CCN number concentrations, Atmos. Chem.
- Phys., 9, 7691-7710, https://doi.org/10.5194/acp-9-7691-2009, 2009.
- 16 Zakoura M. and S.N. Pandis, Overprediction of aerosol nitrate by chemical transport
- models: The role of grid resolution. Atmos. Environ. 187, 390-400, 2018.
- 18 Zhang, L., Jacob, D.J., Knipping, E.M., Kumar, N., Munger, J.W., Carouge, C.C., Van
- Donkelaar, A., Wang, Y.X., Chen, D., Nitrogen deposition to the United States:
- distribution, sources, and processes. Atmos. Chem. Phys. 12, 4539–4554, 2012.
- 21 Zhang, L., Michelangeli, D. V., and Taylor, P. A., Numerical studies of aerosol
- scavenging in low-level, warm stratiform clouds and precipitation, Atmos. Environ.,
- 23 38, 4653–4665, 2004.

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-58 Manuscript under review for journal Geosci. Model Dev.

Discussion started: 7 March 2019

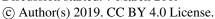


Table 1. Observed annual mean surface concentrations of HNO₃, nitrate, and ammonium at CASTNET, IMPROVE, and CSN sites. Annual mean surface concentrations (Mean), normalized mean bias (NMB), and correlation coefficient (*r*) between observed and simulated annual mean values for the 3 species by GC12, Knew, ICCW_t, and ICCW_t_EW cases.

	HNO ₃			NIT			NH4		
	Mean	NMB	r	Mean	NMB	r	Mean	NMB	r
	$(\mu g m^{-3})$	(%)		$(\mu g m^{-3})$	(%)		$(\mu g m^{-3})$	(%)	
Observation	0.83			0.70			0.60		
GC12	2.04	145.1	0.73	1.89	168.1	0.53	1.09	81.4	0.75
Knew	2.05	146.8	0.73	1.90	170.5	0.53	1.11	84.5	0.75
$ICCW_t$	1.87	125.0	0.74	1.29	83.5	0.57	0.86	42.7	0.78
ICCW _t EW	1.03	24.2	0.72	0.88	25.0	0.57	0.68	12.8	0.78

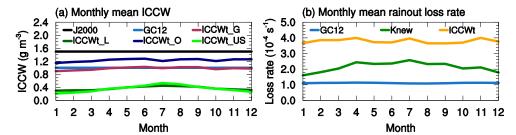


Figure 1. (a) Monthly variations of ICCW averaged over the lower troposphere layers of the whole globe (maroon), global land areas (olive), global oceans (navy), and continental US (green) from MERRA2, along with constant ICCW values assumed in J2000 (black) and GC12 (blue). (b) Monthly variations of the rainout loss rate averaged in the lower troposphere layers of the continental US based on Eq. (2) (i.e, GC12) and Eq. (3) with constant ICCW of 1 g m⁻³, and Eq. (3) with MERRA2 ICCW (Eq. 4).

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-58 Manuscript under review for journal Geosci. Model Dev.

Discussion started: 7 March 2019 © Author(s) 2019. CC BY 4.0 License.

1

2

4

5

7

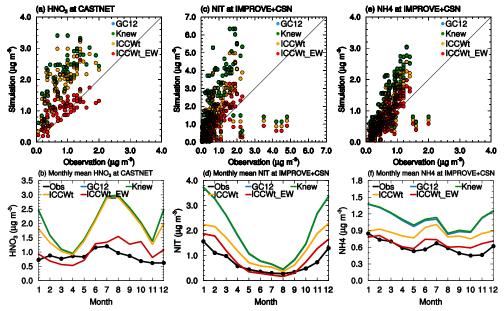


Figure 2. (a) Scatter plot of observed and simulated annual mean HNO_3 at CASTNET sites and (b) monthly variations of median showing the comparison between nitric acid mass concentrations observed at CASTNET sites (black) and simulated by GC12 (blue), Knew (green dash), $ICCW_t$ (yellow), and $ICCW_t$ EW (red) cases. (c) and (d) are the same as (a) and (b) but for nitrate at IMPROVE+CSN sites. (e) and (f) are the same as (a) and (b) but for ammonium at IMPROVE+CSN sites.

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-58 Manuscript under review for journal Geosci. Model Dev.

Discussion started: 7 March 2019

1 2

4

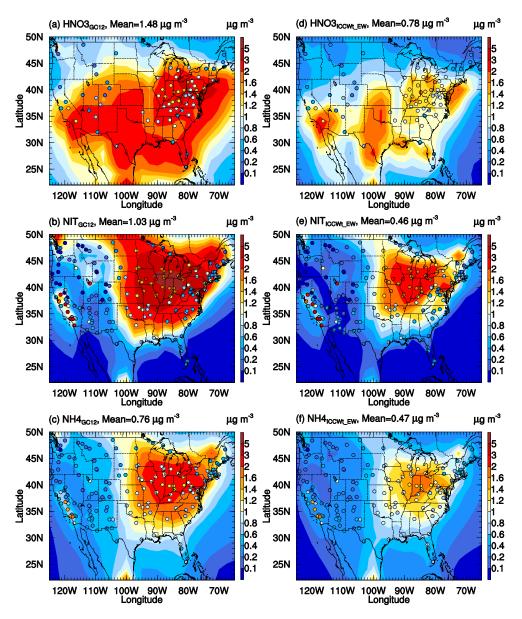


Figure 3. Horizontal distributions of surface layer nitric acid, nitrate, and ammonium simulated by the GC12 case (a-c) and the $ICCW_t_EW$ case (d-f). Filled circles are annual mean mass concentrations observed at CASTNET, IMPROVE, and CSN for corresponding species.