
We want to thank all 3 reviewers for their helpful comments that helped to improve our
paper.  We have now prepared a new version of our manuscript that takes full account of
these comments. Specifically, it includes more tests with the neural network setup, and a
test on coarse-grained reanalysis data. Additionally, we clarified numerous passages of the
text based on the reviewer comments.

Below we list point-by-point responses (in red) to all issues raised by the reviewers. A draft
of  our  new  manuscript  and  a  version  with  track-changes  (compared  to  the  original
submission) is added at the end of this document.

Reviewer #1

This is a very interesting paper that provides an honest presentation of new results on the
use of neural networks to learn the equations of motion of the atmosphere. The paper is
relevant for GMD and should be published. However, a minor revision that is addressing
the comments below could improve the paper.

•  As we argue in Dueben and Bauer 2018, I am very surprised that you get away with 1-
day timesteps. I would guess that a T21 model with a 1-day timestep would be unstable
when using explicit time-stepping schemes (maybe I am wrong?) and it is hard to believe
that a neural network is learning something like an implicit scheme that would allow for
larger timesteps. Can you provide the timestep that is used in Plasim for comparison? If
this is much smaller, can you comment why you think that the neural network model may
get away with this, in particular towards the pole? (I assume that you are using a regular
Gaussian grid where grid-spacing will become smaller towards the pole).

We would also expect that a T21 model with a 1-day timestep would be unstable with an
explicit time-stepping scheme. However, we do not think that it is appropriate to see a
neural network as an explicit time-stepping scheme. Rather, it should be seen as a general
mapping function (mapping model states to model states some time later).
Regarding the timestep in the models: we used the standard configuration, which is 30 min
for plasimT42, 20min for plasimT21, and 60 min for pumaT21 and pumaT42. We mention
this in the new manuscript (p3 L7-8).  Regarding the time-step question please see our
response to you 2nd point below.
Also, note that we are not using a regular Gaussian grid, but regular lat-lon grids. We now
explicitly mention this in the method section.

•  I am also (positively) surprised that you are having no problems with loss of stability
when  using  neural  networks  while  other  papers  report  problems  when  using  neural
networks to represent physical systems.  Can you speculate why this is? Maybe due to the
convolutional  layers?  Can  you  diagnose  the  change  of  global  energy  in  climate
simulations?

The reason for not losing stability might indeed be caused by the convolution layers. The
reason might be that we use stacked convolution layers, whereas Dueben and Bauer use
a local deep network. At a first thought these approaches are very similar, but there are



important  differences  that  might  explain  why  the  convolution  network  works  also  with
longer  timesteps.  In  the  simplest  setup  (1  single  convolution  layer  with  stride  S  and
convolution-depth N), the convolution approach is identical to a local network with stride S
with 1 single hidden layer with size N. However, as soon as the networks get deeper the
differences begin. In the case of adding mode hidden layers to the local  network, the
additional  layers  still  only  get  information  from  stride  S.  However,  when  stacking
convolution layers, the 2nd convolution layer has more information than from stride S. If
S=3, then the second layer already has information from 5 gridpoints, and a 3rd layer from
7 and so on. So what could happen in principle is the following: if 1 single convolution layer
can learn let’s  say a 1 hour  forecast,  then maybe 24 could learn a 24 hour forecast,
whereas each convolution layers in the 24-layer network has exactly the same weights as
the  single  layer  network  trained  on  1  hours.  However,  we  have  to  note  that  this  a
theoretical consideration. We added discussion on this topic in the discussion section (p15
L11-12). Regarding diagnosing the change of global energy in the climate simulations: this
would unfortunately be quite difficult to do with our data. Our neural networks are trained
on pressure-level data, and therefore also the network-climate simulations are on pressure
levels. To our knowledge, computing global atmospheric energy is usually done on model
levels, and is very tricky to do on pressure levels. We agree that analyzing global energy
would  be interesting,  but  it  would  require  nothing  short  of  an  entirely  new study with
different training for the networks, and we would prefer not to address it here.

•  When using convolutional networks, will the stencil of gridpoints around a grid-point in
the neural network have exactly the same weights for all gridpoints? Or will the weights be
changing for each gridpoint? If  they are the same, how can you justify  that  gridpoints
towards the poles (that will have a very different resolution for the stencil of surrounding
points) use the same weights as for points at the equator?

In convolution networks the stencil of gridpoints around a grid-point in the neural network
has exactly the same weights for all gridpoints (one way to see it is as a moving filter with
fixed weights). It is true that the architecture does not take into account that gridpoints
towards the poles have different resolution than close to the equator. One way to solve this
is to use a spherical formulation of convolution, which has also been proposed on regular
grids. We mention this in the new manuscript in the section on potential improvements of
the neural network architecture (p.14 L13).

•  The paper would benefit if you would provide more discussion how to improve neural
network configurations in future studies at the end of the conclusion (speculations are
welcome).

We included a new subsection on this at the end of the conclusion section. In this section,
we discuss potential network configurations for future studies.

•  Figure 4: Why are the PUMA results not symmetric in zonal direction?

The results for PUMA are nearly symmetric when looking at 1-day forecasts (which we
didn’t show (see fig. R1), but for longer forecasts they are not symmetric any longer. We
think this is caused by problems induced at the border of the domain since we did not use
any circular wrapping in the convolution. We now mention this in the manuscript (p.9 L1-4).



Fig.  R1:  RMSE  of  network  forecasts  with  leadtime  1  day,  for  networks  trained  on
PUMAT21(left) and PUMAT42(right).

Really minor:

Figure 2: The figure should be made bigger to improve visibility.

We increased the size of the figure.

Page 2: A "local  model" as suggested in Dueben and Bauer 2018 would increase the
amount of training data significantly since you would train for 40 (or 100) years of data for
N grid points. Maybe worth mentioning? But only if you think this would fit.

This is in fact also happening with the convolution layers. A convolution layer is a filter of
fixed size that is moved across the domain, and the weights are always the same.

Page 2: "...ambition has shifted from..." not really. This is rather a different application.

We changed the sentence to “Recently, in addition to using machine-learning to enhance
numerical models, there have been ambitions to use it for weather forecasting itself.”

Page 4: "(...see Scher(2018)." add ")"

We made the suggested change

Page 6: Why zg500 (ta800) and not z500 (t800)?

We use this notation because it is the notation used in PUMA and PLASIM. In order to
avoid programming errors, we make use of automatic plot-labelling directly form the data.

Page 6:  "has higher error at longer lead times" At long lead times and close to zero
correlation a bias in the model can cause interesting behaviours in rmse plots.  It can also
reduce the error.

We added “Here we have to note that at long lead-times and close to zero-correlation,
RMSE can  be  hard  to  interpret  since  it  can  be  strongly  influenced  by  biases  in  the
forecasts.” (p.7 L24-26)



Page 8: Can you comment how important it was to include the day of year as input?

We have not analyzed the error of multi-day forecasts of the networks that include day of
year as input,  but the 1-day forecast error is very similar to  the error  of  the standard
networks (trained without day of year as input).

Figure 5: I do not see the shading in my printout.

The shading is very narrow (since the spread is so small).

Page 11: "to to"
we removed the double “to”.

Page 12: Personally, I am very sceptical that the use for different networks for different
months would produce reasonable results.

We agree that it is hard to tell a-priori whether this would work. However, considering the
often un-intuitiveness of machine-learning, we prefer to keep this speculative suggestion
for further research.



Reviewer #2

This  paper  is  a  substantial  contribution  to  modelling  science  within  the  scope  of  this
journal,  containing new concept  of  producing  statistical  model  for  weather  forecast  by
emulating a simplified GCM model, using neural networks. I  recommend this paper for
publication  after  minor  revision.  Two major  points  have to  be  clarified,  otherwise  it  is
difficult to understand the method and results presented in the paper.

“1.  Naming models.  In the paper the same name is used for the GCM and NN emulation
of  this  GCM  (e.g.,  PLASIMT21).   This  kind  of  naming  create  confusion  and  makes
understanding the method and results difficult.”
We agree that the naming convention we used was not ideal. In the revised text, we now
always speak of “the network for PLASIMT21” or “the PLASIMT21 networks” etc.) when
we refer to the neural networks and their forecasts. We hope that this makes the text
clearer to the reader.

“2.What is used as "truth" in Section 2.4 and in Section 3. Are statistics shown in Section3
represent  the  accuracy  of  NN  emulations  of  different  models  (e.g.,  NN
emulatingPLASIMT21 vs.  PLASIMT21) or the accuracy of NN emulations vs. reanalysis
(e.g., NN emulating PLASIMT21 vs. ERA or NCEP/NCAR reanalysis”.

Throughout the whole paper, the NN emulations are evaluated against the model they
were trained on (e.g., the NN trained on PLASIMT21 is evaluated on PLASIMT21). For the
“weather  forecasting”  problem  in  sections  3.1  and  3.2,  the  networks  are  tested  on
forecasting the model a couple of timesteps ahead. This testing is done on the test-set of
the model runs, so the data not used for the training. For the climate statistics in section
3.3, the statistics of the NN climate emulations are compared to the statistics of the model
the network has been trained on (e.g. the statistics of the NN trained on PLASIMT21 are
compared to the statistics of PLASIMT21).
We  added  “All  network  forecasts  will  be  validated  against  the  underlying  model  the
network was trained on (e.g. for the forecasts of the network trained on PLASIMT21 the
``truth'' is the evolution of the PLASIMT21 run)” at the beginning of section 2.4 to make this
clearer in the new manuscript (p.6 L20-21).

Anonymous Referee #3

The authors build on a previous paper in which one of the authors applied a convolutional
neural net with an encoder-decoder architecture to the problem of weather forecasting and
climate simulation in a simplified atmospheric GCM. Here the approach is extended to a
more  comprehensive  atmospheric  GCM  and  to  different  horizontal  resolutions  in  the
GCMs.  Inclusion  of  a  seasonal  cycle  proves to  be  an important  issue when trying  to
reproduce  the  climate  with  the  neural  net.  The  research  question  is  exciting  and  the
presentation and approach is generally good. However, changes are needed to properly
describe the approach that has been taken and to quantify how well  the neural net is
doing.



“1. As far as I can tell, the same network as was applied to the simple GCM PUMA is
applied to the more comprehensive GCM PLASIM. In particular, the variables used are
horizontal winds, geopotential height and temperature. This is surprising since PLASIM
presumably has a hydrological cycle,  and specific humidity is presumably a prognostic
variable.  Therefore,  the  state  of  the  atmosphere  in  PLASIM  at  a  given  time  is  not
described with the 4 variables used.  The choice to not include humidity in the network
should be justified.  Presumably a network with humidity included would do better (?)”

The  reviewer  is  correct  in  noting  that  we  used  the  same  architecture  for  PUMA and
PLASIM, thus not including moisture, which is indeed part of PLASIM. This choice was
made to keep the architecture the same across all models. However, we agree that adding
moisture as variable might improve the neural network forecasts trained on PLASIM. In the
revised version, we have included a test where we include moisture in one of the PLASIM
trainings in section 3.5. As you will  see, including the 3 hydrological state variables of
PLASIM (relative humidity, cloud liquid water content and cloud cover) did not improve the
forecasts, but in fact slightly made them worse. This might indicate that our architecture
does not – at least not without any changes – work for hydrological variables, which might
be related to their very different distributions both in time and space compared to the other
variables we use.
Additionally,  we  now  also  explicitly  mention  in  the  method  section  that  for  the  main
simulations  we  do  not  consider  the  moisture  variables  in  PLASIM  in  order  to  avoid
confusion (p.6 L6-7).

“2. It is difficult to assess how well the networks are doing in their forecasts in figure 3
because they are not compared to anything else. In the preceding work, comparison was
made to ’persistence’. But a more informative choice would be to plot RMSE and ACC for
a ’perfect model’ forecast in which the same GCM is used to make the forecast with a
small perturbation in the initial conditions (or alternatively in the tuned constants in the
model physics).  Comparing to a perfect model forecast would allow the reader to assess
the skill of the neural net forecast - it can’t be expected to do better than a perfect model
prediction (given any error and the chaotic nature of the atmosphere). This was also help
the paper have more impact  since the neural  net  will  ultimately have to compete with
traditional NWP, albeit in terms of both accuracy and speed and not just accuracy.”

We agree that a baseline forecast would help to aid the reader. In the revised version, we
have included the skill of persistence forecasts in fig. 3, and discuss it in the text both in
the results and in the conclusion section (p.7, p.15 L1-2).
We  also  considered  making  perfect-model  forecasts  with  PUMA  and  PLASIM  as
suggested.  Unfortunately,  this  functionality  is  not  implemented  per  default  in
PUMA/PLASIM,  and to  our  best  knowledge,  related software has not  been published.
Doing perfect model forecasts would require both changes to the restart-routines of the
model, and the implementation of an initial perturbation scheme. Especially the latter is not
trivial to do. We have therefore chosen to take another approach to put the skill of our
network forecasts in a broader context and make them comparable to alternative methods
(in addition to including the skill of persistence forecasts). Namely, we included tests on
coarse-grained reanalysis data (as in Dueben and Bauer 2018), which is presented in
section 3.5 in the new manuscript.  For  this we used the same subset  of  ERA5 as in
Dueben and Bauer.  Dueben and Bauer have made forecasts on their dataset with the
NWP model  IFS with T21 resolution.  This  served as baseline for  their  neural  network
forecasts, and can thus also be used to compare our forecasts with via comparing our new
Fig. 8 with their Fig. 3a.



3. “Another possibility to consider for why the climate prediction with a seasonal cycle does
not work well is that you are forecasting over a short time frame (1 day) in which diabatic
effects that vary seasonally such as changes in insolation are not very important compared
to the dynamical initial condition. Perhaps training using a longer forecast lead time (e.g.  5
days) would work better for the climate simulations with a seasonal cycle”

We added a test that makes a climate run with a network trained on 5-day forecasts.
Unfortunately, this did not resolve the problems with seasonality.
Specifically, we added fig S19 and Video S9, and the following text to the manuscript:

“All our networks were trained to make 1-day forecasts. The influence of the seasonal
cycle on atmospheric dynamics - and especially the influence of diabatic effects - may be
very small  for  1-day predictions.  This  could make it  hard for  the network to  learn the
influence of seasonality. To test this, we repeated the training of the climate network for
PLASIMT21  using  5-day  forecasts.  This  made  the  seasonality  of  ta800  at  a  single
gridpoint at 76 $^{\circ}$N better (fig. S19 in the supplement), but the fields of the climate
run still become unrealistic (video S9 in the supplement).” (p.11 16-20).

Minor comments

1. “The neural net architecture is described as an autoencoder.  My understanding of the
nomenclature is that it is an encoder-decoder but not an autoencoder (since the output is
not the same as the input).”

You are right, our architecture is indeed more correctly described as an encoder-decoder.
Thanks for pointing this out, we have changed the naming accordingly in the manuscript.

2. “A few more lines description is needed for each GCM in section 2.1.  How is the dry
dynamical core of PUMA forced?  (e.g.  is it a Held-Suarez setup?)  What makes PLASIM
an ’intermediate complexity’ GCM? (e.g.   how exactly does it differ from a standard GCM
aside from the lack of a dynamical ocean)?”

PUMA uses Newtonian cooling for diabatic heating/cooling. The main difference between
PLASIM and standard GCMs is that all included sub-systems of the Earth system except
for  the  atmosphere  (like  the  ocean,  sea-ice  and  soil)  are  reduced  to  systems of  low
complexity.

We now mention these details in the method section (section 2.1)

“3.  Figure 2 is helpful but not fully described in the caption.  In particular the caption
should say what the numbers are - does None, 64,128,40 refers to?, lat, lon, channels.
What does ’None’ refer to here?”

None, 64,128,40 is the typical notation in Keras and refers to time (or samples), lat, lon,
channels.  We now explain this in the caption.



“4. Appendix A1: do you use all times t1 before and after t in the calculation”

Yes, exactly. For computing the local dimension at time t, the distances of the field at t with
the fields at all other timesteps are computed.

We added “(i.e. all times before and after t)” in the manuscript to make this clearer (p. 16
L6-7).
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Abstract. Recently, there has been growing interest in the possibility of using neural networks for both weather forecasting

and the generation of climate datasets. We use a bottom-up approach for assessing whether it should, in principle, be possible

to do this. We use the relatively simple General Circulation Models (GCMs) PUMA and PLASIM as a simplified reality on

which we train deep neural networks, which we then use for predicting the model weather at lead times of a few days. We

specifically assess how the complexity of the climate model affects the neural network’s forecast skill, and how dependent the5

skill is on the length of the provided training period. Additionally, we show that using the neural networks to reproduce the

climate of general circulation models including a seasonal cycle remains challenging -
:
–
:
in contrast to earlier promising results

on a model without seasonal cycle.

Copyright statement. TEXT

1 Introduction10

Synoptic weather forecasting (forecasting the weather at lead times of a few days up to 2 weeks), has for decades been

dominated by computer models based on physical equations -
:
–
:
the so called Numerical Weather Predictions (NWP) models.

The quality of NWP forecasts has been steadily increasing since their inception (Bauer et al., 2015), and these models remain

the backbone of virtually all weather forecasts. However, the fundamental nature of the weather forecasting problem can be

summarized as: "starting from today’s state of the atmosphere
:
,
:
we want to predict the state of the atmosphere x days in the15

future". Thus posed, the problem is a good candidate for supervised machine learning. While long thought unfeasible, the recent

success of machine learning techniques in highly complex fields such as image and speech recognition warrants a review of this

possibility. Machine learning techniques have already been used to improve certain components of NWP and climate models

– mainly parameterization schemes (Krasnopolsky and Fox-Rabinovitz (2006); Rasp et al. (2018); Krasnopolsky et al. (2013);

O’Gorman and Dwyer (2018)), to aid real-time decision making McGovern et al. (2017), to exploit observations and targeted20

high-resolution simulations to enhance earth system models (Schneider et al., 2017), for El-Niño predictions (Nooteboom
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et al., 2018) and to predict weather forecast uncertainty (Scher and Messori, 2018).

Recently, the ambition has shifted from

:::::::
Recently,

:::
in

:::::::
addition

::
to using machine-learning to enhance numerical modelsto using ,

:::::
there

::::
have

::::
been

:::::::::
ambitions

::
to

:::
use

:
it

to tackle weather forecasting itself. The holy grail is to use machine-learning, and especially “deep learning”, to completely

replacing
::::::
replace NWP models, although opinions may diverge on if and when this will happen. Additionally, it is an appealing5

idea to use neural networks/deep learning to emulate very expensive General Circulation Models (GCMs) for climate research.

Both these ideas have been tested with some success for simplified realities (Dueben and Bauer, 2018; Scher, 2018). In Scher

(2018), a neural network approach was used to skillfully forecast the “weather” of a simplified climate model, as well as emu-

late its climate. Dueben and Bauer
:::::::::::::::::::::
Dueben and Bauer (2018), based on their success in forecasting reanalysis data regridded to

very low resolution, concluded that it is “fundamentally” possible to produce deep-learning based weather forecasts.10

Here, we build upon the approach from Scher and apply it to a range of climate models with different complexity. We do this

in order to assess: 1) how the skill of the neural network weather forecasts depends on the available amount of training data;

2) how this skill depends on the complexity of the climate models; and 3) under which conditions it may be possible to make

stable climate simulations with the trained networks, and how this depends on the amount of available training data. (1) is of15

special interest for the idea of using historical observations in order to train a neural network for weather forecasting. As the

length of historical observations is strongly constrained (~ 100 years for long renalyses assimilating only surface observations,

and ~40 years for reanalyses assimilating satellite data), it is crucial to assess how many years of past data one would need

to produce meaningful forecasts.
:::
The

:::::
value

::
of

:
(2) Is of interest because it evaluates

:::
lies

::
in

:::::::::
evaluating

:
the feasibility of using

climate models as a “simplified reality” for studying weather forecasting with neural networks. Finally, (3) is of interest when20

one wants to use neural networks not only for weather forecasting, but for the distinct yet related problem of seasonal and

longer forecasts, up to climate projections.

To avoid confusion, we use the following naming conventions throughout the paper: “model” always refers to physical

models (i.e. the climate models used in this study), and will never refer to a “machine learning model”. The neural networks25

are referred to as
::
by

:::
the

::::
term

:
“network”.

2 Methods

2.1 Climate models

To create long climate model runs of different complexity, we used the Planet Simulator (PLASIM) intermediate complexity

GCM, and its dry dynamical core: the Portable University Model of the Atmosphere (PUMA) (Fraedrich et al., 2005). Each30

model was run for 830 years with two different horizontal resolutions (T21 and T42, corresponding to ~5.65 and ~2.8 de-

grees latitude, respectively) and 10 vertical levels. The first 30 years of each run were discarded as spinup
::::::
spin-up, leaving

800 years of daily data for each model. The runs will from now on be referred to as PLASIMT21, PLASIMT42, PUMAT21
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and PUMAT42. All the model runs produce a stable climate without drift (fig. S1-S10 in the Supplement). Additionally,

we regridded PLASIMT42 and PUMAT42 (with bi-linear interpolation) to a resolution of T21. These will be referred to as

PLASIMT42_regridT21 and PUMAT42_regridT21.

The PUMA runs do not include ocean and orography
:::
and

:::
use

:::::::::
Newtonian

::::::
cooling

:::
for

:::::::
diabatic

:::::::::::::
heating/cooling. The PLASIM5

runs include orography, but no ocean-model.
:::
The

::::
main

:::::::::
difference

:::::::
between

::::::::
PLASIM

::::
and

:::::::
standard

::::::
GCMs

::
is

:::
that

:::::::::::
sub-systems

::
of

:::
the

:::::
Earth

::::::
system

::::
other

::::
than

:::
the

::::::::::
atmosphere

::::
(e.g.

:::
the

::::::
ocean,

::::::
sea-ice

:::
and

::::
soil)

:::
are

:::::::
reduced

::
to

:::::::
systems

::
of

::::
low

::::::::::
complexity.

:::
We

::::
used

:::
the

::::::
default

:::::::::
integration

:::::::
timestep

:::
for

:::
all

::::
four

:::::
model

::::::
setups,

:::::::
namely

::
30

::::
min

:::
for

:::::::::::
PLASIMT42,

::::::
20min

:::
for

:::::::::::
PLASIMT21,

::::
and

::
60

::::
min

::
for

::::::::::
PUMAT21

:::
and

::::::::::
PUMAT42.

:::
We

:::::
regrid

::
all

:::::
fields

::
to

::::::
regular

::::::
lat-lon

:::::
grids

::
on

:::::::
pressure

:::::
levels

:::
for

:::::::
analysis.

:
An additional

run was made with PUMA at resolution T21, but with the seasonal cycle switched off (eternal boreal winter). This is the same10

configuration as used in Scher (2018) and will be referred to as PUMAT21_noseas.

::
In

::::
order

::
to

:::::::::::
contextualise

:::
our

::::::
results

::::::
relative

::
to

:::::::
previous

:::::::
studies,

::
we

::::
also

:::
run

:
a
::::
brief

::::
trial

::
of

:::
our

::::::::
networks

::
on

::::::
ERA5

::::::::::
(C3S, 2017)

::::::::
reanalysis

::::
data

:::::::
(Section

:::
3.5

:
,
::::::
similar

::
to

:::::::::::::::::::::
Dueben and Bauer (2018)

:
.

2.2 Complexity15

Ranking climate models according to their “complexity” is a non-trivial task, as it is very hard to define what complexity

actually means in this context. We note that here we use the term loosely, and do not refer to any of the very precise definitions

of “complexity” that exists in various scientific fields (e.g. Johnson (2009)). Intuitively, one might simply rank the models

according to their horizontal and vertical resolutions and the number of physical processes they include. However, it is not

clear which effects would be more important (e.g. is a model with higher resolution but less components/processes more or20

less complex than a low-resolution model with a larger number of processes?). Additionally, more physical processes do not

necessarily imply a more complex output. For example, very simple models like the Lorenz63 model (Lorenz, 1963) display

chaotic behaviour, yet it is certainly possible to design a model with more parameters and a deterministic behaviour.

To circumvent this conundrum, we adopt a very pragmatic approach based solely on the output of the models, and grounded25

in dynamical systems theory. We quantify model complexity in terms of the the local dimension d: a measure of the number of

degrees of freedom needed to describe the dynamics of a system linearized
:::::
active

::::::
locally

:
around a given instantaneous state.

In our case, this means that we can compute a value of d for every timestep in a given model simulation. While not a measure

of complexity in the strict mathematical or computational senses of the term, d provides an objective indication of a system’s

dynamics around a given state and, when averaged over a long timeseries, of the system’s average attractor dimension. An30

example of how d may be computed for climate fields is provided in Faranda et al. (2017), while for a more formal discussion

and derivation of d we point the reader to Appendix A in Faranda et al. (2019). The approach is very flexible, and may be

applied to individual variables of a system (which represent projections of the full phase-space dynamics onto specific sub-
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Figure 1. Local
:::::::
Averages

::
of

:::
the

::::
local dimension d (here used as a data-based measure of “complexity”) for the 500hPa geopotential height

of the models used in this study and of the ERA-Interim reanalysis.

spaces, called Poincaré sections), multiple variables or, with adequate computational resources, to the whole available dataset.

The exact algorithm used here is outlined in Appendix A1.

The local dimension was computed for 38 years of each model run
:
, as well as for the ERA-Interim reanalysis on a 1x1 degree

grid over 1979-2016 (Dee et al., 2011). The choice of 38 years was made because this is the amount of available years in ERA-

Interim, and the length of the dataseries can affect the estimate of d (Buschow and Friederichs, 2018). Figure 1 shows the5

results for 500hPa geopotential height. The complexity of PUMA increases with increasing resolution, whereas both the low

and the high resolution PLASIM model have a complexity approaching that of ERA-Interim. Thus -
:
– at least by this measure

-
:
–
:
they are comparable to the real atmosphere. The high resolution runs regridded to T21 have nearly the same complexity as

the original high resolution runs. The ranking is the same for nearly all variables and levels (fig. S11 in Supplement). For the

rest of the paper, the term “complexity” or “complex” always refers to the local dimension
:
d.10

2.3 Neural networks

Neural networks are in principle a series of non-linear functions with weights determined through training on data. Before the

training, one has to decide the architecture of the network. Here, we use the architecture proposed by (Scher, 2018)
:::::::::::
Scher (2018)

, which is a convolutional autoencoder
:::::::::::::
decoder-encoder, taking as input 3d model fields and outputting 3d model fields of

exactly the same dimension. It was designed and tuned in order to work well on PUMAT21 without seasonality (for details15

see Scher (2018)
:
). In order to keep the method comparable, for

:::
ease

::::::::::
comparison

::::
with

::::::::
previous

::::::
results,

::
in

:
the main part of this

study , no further tuning is done here, and we use the same network layout and hyperparameters as in (Scher, 2018), except for

the number of epochs (iterations over the training set) the network is trained
::::
over. In the original configuration only 10 epochs

were used. It turned out that, especially for the more complex models, the training was not saturated after 10 epochs. Therefore,

4



here we train until the skill on the validation data has not increased for 5 epochs, with a maximum of 100 epochs. The layout

is depicted in fig. 2. The implications of retuning the network
::::::::
possibility

::
of

::::::::
re-tuning

::::
the

:::::::
network

:::
and

:::
its

:::::::::::
implications are

discussed in section 3.4Architecture of the neural network for the models with resolution T21 (left) and T42 (right). Figure

based on Fig. S1 from (Scher, 2018)

:
. For the networks targeted not to forecast the weather, but to create climate simulations (hereafter called climate-networks)5

we deviate from this setup: here, we include the day of year as additional input to the network, in the form of a separate input

channel. To remain consistent with the auto-encoder
::::::::::::::
encoder-decoder setup, the output also contains the layer with the day of

year. However, when producing the network climate runs, the predicted day of the year is discarded.

The last 10% samples of the training data are used for validation. This allows to monitor the training progress, control over-10

fitting (the situation where the network works very well on the training data, but very poorly on the test data), and potentially

limit the maximum number of training epochs. As input to the neural networks
::
we

::::
use 4 variables (u, v, t and z) at 10 pres-

sure levelsare used, whereas
:
; each variable at each level is represented as a separate input layer (channel).

::::
These

::
4
::::::::
variables

:::::::
represent

:::
the

::::
full

::::
state

::
of

:::
the

::::::
PUMA

::::::
model.

::::::::
PLASIM

:::
has

::
3
::::::::
additional

:::::::::::
atmospheric

:::::::
variables

::::::
related

::
to
:::
the

:::::::::::
hydrological

:::::
cycle

:::::::
(relative

::::::::
humidity,

::::
cloud

::::::
liquid

::::
water

:::::::
content

:::
and

:::::
cloud

::::::
cover).

::
In

::::
order

::
to
:::::
keep

::
the

::::::::::
architecture

:::
the

:::::
same,

:::::
these

::
are

:::
not

::::::::
included15

::
in

:::
the

::::::::
standard

:::::::
training,

:::
and

::::
only

:::::
used

::
for

::
a
:::
test

::
in

::::::
section

::::
3.5.

All networks are trained to make 1-day forecasts. Longer forecasts are made by iteratively feeding back the forecast into the

network. We did not train the network directly on longer lead-times, based on the finding of Dueben and Bauer (2018) that it

is easier to make multiple short forecasts compared to a single long one. Due to the availability of model data and in keeping20

with Scher (2018)
:
, we chose 1-day forecasts as opposed to the shorter forecast step (1 hour) in Dueben and Bauer (2018).

For each model, the network was trained with a set of 1, 2, 5, 10, 20, 50, 100, 200, 400 and 800 years. Since with little

training data the network is less constrained, and the training success might strongly depend on exactly which short period

out of the model run is chosen, the training
::
for

::::::
periods

:
up to and including 20 years were repeated 4 times, shifting the start

of the training data by 10, 20, 30 and 40 years. The impact of the exact choice of training period will be
:
is

:
discussed where25

appropriate.

All the analyses shown in this paper are performed on the forecasts made on the first 30 years of the model run, which were

never used during training and therefore provide objective scores (the ’test’ dataset).

2.4 Metrics

As validation for the network forecasts, we use two commonly
::
All

:::::::
network

::::::::
forecasts

:::
are

:::::::
validated

::::::
against

:::
the

:::::::::
underlying

::::::
model30

::
the

::::::::
network

:::
was

:::::::
trained

::
on

::::
(e.g.

:::
for

:::
the

::::::::
forecasts

:::
of

:::
the

:::::::
network

::::::
trained

:::
on

:::::::::::
PLASIMT21

:::
the

::::::
“truth”

::
is

:::
the

::::::::
evolution

:::
of

:::
the

5



Figure 2.
:::::::::
Architecture

::
of
:::
the

:::::
neural

::::::
network

:::
for

:::
the

:::::
models

::::
with

::::::::
resolution

:::
T21

::::
(left)

:::
and

::::
T42

:::::
(right).

::::
Each

:::
box

::::::::
describes

:
a
::::::
network

:::::
layer,

:::
with

:::
the

::::::
numbers

::::::::
indicating

:::
the

::::::::
dimension

::
of

:::::
(None,

:::
lat,

:::
lon,

:::::
level).

::::::
"None"

::::
refers

::
to

:::
the

:::::::::::
time-dimension

::::
that

:
is
:::
not

::::::
relevant

::::
here,

:::
but

:::::
which

::
we

::::::
include

::
in

::
the

::::::::
schematic

::::
since

::
it

:
is
:::
part

::
of
:::
the

::::
basic

:::::::
notation

::
of

::
the

::::
used

:::::::
software

:::::
library.

:::::
Figure

:::::
based

::
on

:::
Fig.

:::
S1

::::
from

::::::::::
Scher (2018).

6



:::::::::::
PLASIMT21

::::
run).

:::
We

::::::::::
specifically

:::::
adopt

::::
two

::::::
widely used forecast verification metrics, namely the Root Mean Square Error

(RMSE) and the Anomaly Correlation Coefficient (ACC). The RMSE is defined as
:
:

RMSE =

√
(prediction− truth)

2 (1)

where the overbar denotes a mean over space and time (for global measures), or over time only (for single gridpoints).

The ACC measures the spatial correlation of the forecast anomaly fields with the true anomaly fields for a single forecast.5

The anomalies are computed with respect to a 30-day running climatology, computed on 30 years of model data (similar to how

ECMWF computes it’s
::
the

::::::::
European

::::::
Centre

:::
for

:::::::
Medium

::::::
Range

:::::::
Weather

::::::::
Forecasts

::::::::
computes

::
its

:
scores for forecast validation).

ACCt = correlation(
[truth1,1− clim1,1, ....., truthnlat,nlon− climnlat,nlon] ,

[
prediction− climprediction1,1− clim

:::::::::::::::::
1,1, .....,prediction− climpredictionnlat,nlon− clim

::::::::::::::::::::::
nlat,nlon

])
10

(2)

To compute a score over the whole period, the ACC for all individual forecasts are simply averaged:

ACC = [ACC1, ....,ACCnforecast[ (3)

The ACC ranges from -1 to 1, with 1 indicating a
:
perfect correlation of the anomaly fields, and 0 no correlation at all.

:::
For

:::
the

:::::::::
evaluation

::
of

:::
the

::::
brief

::::::::::
ERA5-test

::
in

::::::
section

::::
3.6,

:::
we

:::
use

:::
the

:::::
mean

:::::::
absolute

:::::
error

::::::
instead

::
of

::::::
RMSE

:::
to

::::
keep

::
in

::::
line15

::::
with

:::::::::::::::::::::
Dueben and Bauer (2018).

::::
The

:::::
mean

:::::::
absolute

::::
error

::
is

::::::
defined

:::
as

MAE = |prediction− truth|
::::::::::::::::::::::::

(4)

3 Results

3.1 Forecast skill in a hierarchy of models

We start by analyzing the RMSE and ACC of two of the most important variables: 500hPa gepotential height (hereafter named20

zg500) and 800hPa temperature (hereafter called ta800). The first is one of the most commonly used validation metrics in

NWP; the second is very close to temperature at 850hPa, which is another commonly used validation metric. We focus on

the networks trained with 100 years of training data, which is the same length as in Scher (2018), and is of special interest

because it is roughly the same length as is available in current century-long reanalyses like ERA-20C and the NCEP/NCAR

20CR (Compo et al., 2011; Poli et al., 2016). Figure 3 shows the global mean RMSE of network forecasts at lead times of up25
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to 14 days for all models for both zg500 and ta800.
::::::::::
Additionally,

:::
the

:::::
skill

::
of

:::::::::
persistence

::::::::
forecasts

::::::
(using

:::
the

:::::
initial

::::
state

:::
as

:::::::
forecast)

::
is

::::::
shown

::::
with

::::::
dashed

:::::
lines. As expected, the skill of the

:::::::
network

:
forecasts decreases monotonically with lead-time.

Unsurprisingly,
::
the

::::::::
network

::
for

:
PUMAT21_noseas -

:
–
:
the least complex model -

:
–
:
has the highest skill (lowest error) for all

lead-times for both variables, followed by
::
the

:::::::
network

:::
for

:
PUMAT21.

:::
The

:::::::
network

:::
for

:
PUMAT42, which is more complex

than PUMAT21, but less complex than the two PLASIM runs, lies as expected in between. Interestingly, at
::
At

:
a lead time5

of 1 day,
::
the

::::::::
networks

:::
for

:
both PLASIM runs have very similar skill, but PLASIM42

::
the

:::::::::::
PLASIMT42

::::::::
network has higher

errors at longer lead-times, despite their very similar complexity.
::::
Here

:::
we

::::
have

::
to
::::
note

::::
that

::
at

::::
long

:::::::::
lead-times

::::
and

::::::::
near-zero

:::::
ACC,

::::::
RMSE

:::
can

::
be

::::
hard

:::
to

:::::::
interpret

::::
since

::
it
:::
can

:::
be

:::::::
strongly

:::::::::
influenced

::
by

::::::
biases

::
in

:::
the

::::::::
forecasts.

:
When looking at the ACC

instead (higher values better), the picture is very similar, except that for zg500, PLASIMT42 has slightly lower skill than .
::::
The

:::::::
network

:::::::
forecasts

::::::::::
outperform

:::
the

:::::::::
persistence

:::::::
baseline

:::::::
(dashed

:::::
lines)

::
at

::::::
nearly

::
all

::::::::::
lead-times,

:::::
except

:::
for

:::
the

:
PLASIMT21

:::
and10

:::::::::::
PLASIMT42

:::::
cases,

:::::
where

:::
the

::::::
RMSE

:::
of

:::
the

:::::::
network

::::::::
forecasts

::
is

:::::
higher

:::::
from

::::::
around

:
9
:::::

days
::
on

::::::::::
(depending

:::
on

:::
the

::::::::
variable).

:::
The

:::::::
periodic

:::::::::
behaviour

::
of

:::
the

::::::::::
persistence

:::::::
forecast

::::
skill

:::
for

:::::::
PUMA

::
is

::::::
caused

::
by

::::::::::
east-wards

::::::::
travelling

::::::::::::
rossby-waves,

::::::
whose

:::::::
structure

::
is

::::::::
relatively

::::::
simple

::
in

:::
the

::::::
PUMA

::::::
model. For the T42 runs that were regridded to T21 before the training the results

are as follows: for PUMA, the skill of the network in predicting the regridded version of the T42 is very similar to the skill on

the original T42 run. For PLASIM the skill on the regridded T42 run is comparable to both the skill on T42 and on T21 runs,15

albeit closer to the latter. Indeed, the skills on the original PLASIM T42 and T21 runs are much closer to each other than for

PUMA. Regridding the network predictions of the two T42 runs to the T21 grid
:::
thus results in only very small changes relative

to the difference between the models, especially at longer lead-times (not shown).

We next turn our attention to the spatial characteristics of the forecast error. Figure 4 shows geographical plots of the RMSE20

for 6-day forecasts of the networks trained with 100 years of data (the same training length as in fig. 3). In agreement with the

global mean RMSE analyzed before,
:::
the

:::::::
network

:::
for PUMAT21_noseas has lowest errors everywhere (fig. S12 in Supplement),

followed by
::
the

:::::::
network

:::
for PUMAT21.

:::
The

::::::::
networks

:::
for PLASIMT21 and PLASIMT42 have a more complicated spatial error

structure, and the mid-latitude storm-tracks emerge clearly as high-error regions. The zonally non-uniform distribution is likely

caused by the influence of orography (present in the PLASIM runs but not in the PUMA runs). The smaller but sill present zonal25

non-uniformity in
::
At

::::::::
lead-time

:
1
::::
day,

:::
the

:::::
errors

::
of

:::
the

:::::::
network

::::::::
forecasts

:::
for PUMAT42

:::
are

:::::
nearly

:::::::::
symmetric

::::
(not

:::::::
shown),

:::
but

:
at
::::::
longer

:::::::::
lead-times

:
a
:::::
zonal

:::::::::
asymmetry

::::::::
emerges

:::
(fig.

::::
4b).

::::
This is probably related to the fact that the neural network used here

does not wrap around the boundaries.

3.2 Dependence
::
of

:::::::
forecast

::::
skill

:
on amount of training years

A key issue is the extent to which the above results, and more generally the skill of the network forecasts, depend on the length30

of the training period used. Fig. 5 shows the skill of the network forecasts for 500hPa geopotential height for different training

lengths, for a lead-time of 1 day (a,c) and 6 days (b,d). As mentioned in the methods section, the networks with short training

periods were trained several times with different samples from the model runs. Figure 5 displays the mean skill; the shading

:::
The

:::::::
shading

::
in

:::
the

:::::
figure represents the uncertainty of the mean

::
for

:::::
these

::::::::::
multi-sample

::::::::
networks, which is negligibly small. For

8
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Figure 3. Root Mean Square Error (RMSE) and Anomaly Correlation Coefficient (ACC) of 500hPa gepotential height (a,c) and 800hPa

temperature (b,d) for network forecasts
::::
(solid

::::
lines)

:::
and

:::::::::
persistence

:::::::
forecasts

::::::
(dashed

::::
lines)

:
for all models for different lead times (in days).

All forecasts are based on 100 years of training data.

the 1-day forecasts
:::
(fig.

:::
5a,

::
c), the results are as expected: the skill increases with an increasing number of training years, both

in terms of RMSE and ACC. This increase is strongly nonlinear and, beyond ~200
:::
100

:
years, the skill benefit of increasing the

length of the training set is limited. This suggests that the complete model-space is already encompassed by around 200
:::
100

years of daily data. More years will not provide new information to the network. However, it might also be the case that there

is in fact more information in more years, but that the network is not able to utilize this additional information
::::::::
effectively. For5

the 6-day predictions
:::::::
forecasts

::::
(fig.

:::
5b,

::
d), the PLASIMT21 networks display a counterintuitive

:::::::::::::
counter-intuitive behaviour: the

skill (in terms of RMSE) does not monotonically increase
:::::::
increase

::::::::::::
monotonically with increasing length of the training period,

but decreases from 100 years to 200 years, while for >200 years it increases again. A similar result -
:
–
:
albeit less pronounced

-
:
–
:
is also seen for the PLASIMT42_regridT21 networks, and also -

:
–
:
in a slightly different form -

:
–
:
for the skill measured

via the ACC. To interpret this, one has to remember that the networks are all trained on 1-day forecasts. For 1-day forecasts10

- as mentioned above - the skill is indeed increasing with increasing training length, and the PUMAT21 network trained on

200 years makes better forecasts than the one trained on 100 years
::::
(fig.

:::
5a,

::
c). Intuitively one would assume this to translate to

increased skill of the consecutive forecasts used to create the 6 day forecasts. The fact that this is not the case here might be

9
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Figure 4. Maps of RMSE of the 6-day network forecasts, for the networks trained with 100 years for PUMAT21 (a), PUMAT42 (b),

PLASIMT21 (c) and PLASIMT42 (d).

caused by non-linear error growth. Some networks might produce slightly lower errors at lead-day 1, but the particular errors

they have
::::
those

:::::::::
particular

:::::
errors could be faster-growing than those of a network with larger day-1 errors.

3.3 Climate runs with the networks

The trained networks are not limited to forecasting the model ”weather”, but can also be used to generate a climate run starting

from an arbitrary state of the climate model. For this, we use the climate networks that also include the day of year as input5

(see methods section). Of special interest is the question of whether the climate time-series obtained by
::::
from the network is

stable. In Scher (2018), the network climate for PUMAT21_noseas (trained on
::::
using

:
100 years of

::::::
training

:
data) was stable

and produced reasonable statistics compared to the climate model. We trained our climate networks both on
::
on

::::
both

:
30 years

and 100 years of data for all models with seasonal cycle. While the networks were all stable, they do not produce particularly

realistic representations of the model climates. After some time, the storm tracks look unrealistic, and the seasonal cycle is also10

poorly represented (e.g. in some years, some seasons are skipped – see videos S1-S8 in the supplement that show the evolution

of zg500 and zonal windspeed at 300hPa for the network climate runs). Figure 6 a) shows the evolution of ta800 at a single

gridpoint at 76 ◦N for PUMAT21 and the climate network trained on 30 years, started from the same (randomly selected) initial

state (results for different randomly selected initial states are very similar, not shown). The network is stable, but the variance

is too high and some summers are left out. Surprisingly, the network for 30 years of PLASIMT21 (panel
:::
fig.

:
6
:
b) produced a15

10
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Figure 5. Dependence of network forecast skill on the length of the training period. Shown is the Root Mean Square Error (RMSE) and

Anomaly Correlation Coefficient (ACC) of the network-forecasted 500hPa gepotential height for networks trained on different amounts of

training years. Each line represents one model. The shading on the left side of the plots represents the 5-95 uncertainty range of the mean

RMSE/ACC, estimated over networks with different training samples.)

more realistic climate. Training on 100 years instead of 30 years does not necessarily improve the quality of the climate-runs

(panels
:::
fig.

:
6
:
c,d). For PLASIMT21, in fact, the network climate trained on 100 years is even more problematic.

Evolution of daily ta800 at a single grid-point at 76◦N in the GCM (orange) and in the climate network trained on the GCM

(blue), started from the same initial state. The networks were trained on: 30 years of PUMAT21 (a), 30 years of PLASIMT21

(b), 100 years of PUMAT21 (c) and 100 years of PLASIMT21 (d)5

::
the

::::::
worse

:::::::::
performer.

:
Interestingly, the mean climate of the PLASIMT21 network is reasonably realistic

::
for

:::
the

::::::::
network

::::::
trained

::
on

::::
100

:::::
years (fig. 7),

:::
and

:::::
partly

::::
also

:::
for

:::
the

:::::::
network

::::::
trained

::
on

:::
30

:::::
years

::::
(not

::::::
shown),

:
whereas the mean climates for

::
the

:
PLASIMT42 and PUMAT42

:::::::
networks have large biases (see fig S11-17 in the Supplement).

:::
All

:::
our

::::::::
networks

::::
were

::::::
trained

::
to

:::::
make

:::::
1-day

::::::::
forecasts.

::::
The

::::::::
influence

::
of

:::
the

:::::::
seasonal

:::::
cycle

::
on

:::::::::::
atmospheric

::::::::
dynamics

:
–
::::
and10

::::::::
especially

:::
the

::::::::
influence

::
of

:::::::
diabatic

::::::
effects

:
–
::::
may

:::
be

::::
very

::::
small

:::
for

:::::
1-day

::::::::::
predictions.

::::
This

:::::
could

:::::
make

::
it

::::
hard

:::
for

:::
the

:::::::
network

11



Figure 6.
:::::::
Evolution

::
of

::::
daily

:::::
ta800

:
at
::
a

::::
single

::::::::
grid-point

::
at

::::
76◦N

::
in

::
the

:::::
GCM

::::::
(orange)

:::
and

::
in
:::
the

::::::
climate

::::::
network

:::::
trained

::
on

:::
the

:::::
GCM

:::::
(blue),

:::::
started

::::
from

:::
the

::::
same

:::::
initial

::::
state.

::::
The

:::::::
networks

::::
were

:::::
trained

:::
on:

:::
30

::::
years

::
of

:::::::::
PUMAT21

:::
(a),

::
30

:::::
years

::
of

::::::::::
PLASIMT21

:::
(b),

:::
100

:::::
years

::
of

::::::::
PUMAT21

::
(c)

:::
and

::::
100

::::
years

::
of

::::::::::
PLASIMT21

:::
(d).

Figure 7. 30 year mean of normalized 500hPa geopotential height for PLASIMT21 (a) and the network trained on 100 years of PLASIMT21

(b).
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::
to

::::
learn

:::
the

::::::::
influence

:::
of

:::::::::
seasonality.

:::
To

::::
test

::::
this,

:::
we

:::::::
repeated

:::
the

:::::::
training

::
of

:::
the

:::::::
climate

:::::::
network

:::
for

::::::::::::
PLASIMT21,

:::
but

::::
now

::::::
training

:::
on

:::::
5-day

::::::::
forecasts.

::::
This

::::::::
improved

:::
the

::::::::::
seasonality

::
of

:::::
ta800

::
at

:::
our

:::::::
example

::::::::
gridpoint

::::
(fig.

::::
S19

::
in

:::
the

:::::::::::
supplement),

:::
but

::
the

::::::
spatial

:::::
fields

::
of

:::
the

::::::
climate

::::
run

:::
still

:::::::
become

:::::::::
unrealistic

:::::
(video

:::
S9

::
in

:::
the

:::::::::::
supplement).

3.4 Impact of re-tuning

The design of this study was to use an already established neural network architecture -
:
–
:
namely one tuned on a very simple5

model -
:
– and apply it to to more complex models. However, it is of interest to know how much tuning the network architec-

ture to the more complex models might increase forecast skill. Therefore, the same tuning procedure as in Scher (2018) for

PUMAT21_noseas was repeated for PLASIMT21. Interestingly
::::::::::
Surprisingly, the resulting configuration for PLASIMT21 was

exactly the same as for for PUMAT21_noseas. Thus, even with re-tuning the results would be the same. As a caveat, we note

that tuning neural networks is an intricate process, and many arbitrary choices have to be made. Notably, one has to pre-define10

the different configurations that are tried out in the tuning (the "tuning space"). It is possible that with a different tuning space

for PLASIMT21, a different configuration would be chosen than for PUMAT21_noseas. However, at least within the tuning

space we used, we can conclude that a setup working well for a very simple model (PUMAT21_noseas) is also a good choice

for a more complex model like PLASIMT21.

3.5
::::::

Impact
::
of

::::::::
including

:::::::::::
hydrological

:::::
cycle

::
as

:::::
input15

::::::::
PLASIM,

::
in

:::::::
contrast

::
to

:::::::
PUMA,

::::::::
includes

:
a
:::::::::::
hydrological

:::::
cycle.

:::::
This

::
is

:::::::::
represented

:::
by

::
3
::::::::
additional

:::
3d

:::::
state

:::::::
variables

:::
in

:::
the

:::::
model

:::::::
(relative

::::::::
humidity,

:::::
cloud

:::::
liquid

:::::
water

::::::
content

::::
and

:::::
cloud

::::::
cover).

::
To

:::
the

::::
test

::
the

::::::
impact

::
of
:::::::::
including

::::
these

::::::::
variables

::
in

:::
the

:::::
neural

::::::::
networks,

:::
we

::::::::
retrained

::
the

:::::::
network

:::
for

::::
100

::::
years

::
of

:::::::::::
PLASIMT21

::::::::
including

:::::
these

:
3
::::::::
variables

:::
(on

::
10

::::::
levels)

::
as

:::::::::
additional

:::::::
channels

::::
both

::
in
:::
the

:::::
input

::::
and

:::::
output

:::
of

:::
the

:::::::
network.

::::
The

:::::::
network

::::
thus

::::
has

::
70

:::::::
instead

::
of

::
40

:::
in-

::::
and

::::::
output

::::::::
channels.

:::::
Quite

::::::::::
surprisingly,

::::::::
including

:::
the

:::::::::::
hydrological

::::
cycle

::::::::
variables

::::::
slightly

::::::::::
deteriorated

:::
the

::::::::
forecasts

::
of

::::::
zg500

:::
and

:::::
ta800,

:::::
both

::
in

:::::
terms

::
of20

:::::
RMSE

::::
and

:::::
ACC,

::::::
except

::
for

:::
the

:::::
ACC

::
of

:::::
ta800

::::
from

:::::::::
lead-times

::
of

::
6
::::
days

:::::::
onwards

::::
(fig.

::::
S20

::
in

:::
the

:::::::::::
supplement).

3.6
:::::::::::
Performance

::
on

:::::::::
reanalysis

::::
data

::
In

:::::
order

::
to

:::
put

:::
our

::::::
results

::
in
:::::::

context,
:::

we
::::

also
:::::::

trained
:::
our

:::::::
network

::::::::::
architecture

:::
on

::::::::::::
coarse-grained

:::::::::
(regridded

:::
to

::::
T21)

::::::
ERA5

::::::::::
(C3S, 2017)

::::::::
reanalysis

:::::
data.

:::
We

:::
use

::::::
exactly

:::
the

::::
same

::::::
dataset

::::
that

::::::::::::::::::::::
Dueben and Bauer (2018)

::::
used,

::::::
namely

::
7

::::
years

:::::::::::
(2010-2016)

::
for

::::::::
training,

:::
and

::
8
:::::::
months

:::
for

:::::::::
evaluation

:::::::
(January

::::::
2017-

::::::
August

::::::
2017).

::::::
ERA5

::
is
::::::::
available

::
in

::::::
hourly

::::::::
intervals,

::::::::
allowing

::
a25

:::::::
thorough

:::::::::::
investigation

::
of

:::::
which

:::::::
timestep

::
is
::::
best

:::
for

:::::::
training.

::
As

::
in
::::::::::::::::::::::
Dueben and Bauer (2018),

:::
we

::::
only

:::
use

::::::
zg500,

:::
and

::::::::
therefore

::::::
deviate

::::
from

:::
the

:::::
setup

::::
used

::
in
:::

the
::::

rest
::
of

::::
this

:::::
study.

:::
We

:::
do

:::
this

::
in
:::::

order
::
to
:::
be

::::
able

::
to

:::::::
directly

:::::::
compare

:::
the

::::::
results

::
in

:::
the

::::
two

::::::
studies.

:::
We

::::::
trained

::::::::
networks

:::
on

:::::::::
lead-times

:::::::
ranging

::::
from

::
1

::
to

:::
240

::::::
hours,

:::
and

:::::::::
computed

:::
the

::::
skill

::
of

:::
the

::::::
zg500

::::::::
forecasts.

::::
The

:::::
results

:::
are

::::::
shown

::
in

:::
fig.

::
8.
::::

The
::::
blue

::::
line

:::::
shows

:::
the

:::::
error

::
of

::::::::::
persistence

::::::::
forecasts.

:::
The

::::::::
network

::::::
trained

::
on

:::::::::::
1h-forecasts

::
is

:::
not

:::::
stable

:::
and

:::
has

::::
very

::::
high

:::::::
forecast

::::::
errors,

::
in

::::::
contrast

::
to
:::::::
Dueben

:::
and

::::::
Bauer

::::
who

::::
only

:::::::
obtained

::::
good

::::::::
forecasts

::::
with

:::::::
training

::
on

:::
1h30

::::::::
lead-time.

::::
The

:::::::
network

::::::
trained

::::
with

:::
24h

::::::::
lead-time

:::
has

::::::::::
comparable

::::
skill

::
to

:::
the

:::::::
network

::::
used

:::
by

::::::::::::::::::::::
Dueben and Bauer (2018)

:::
(see

13



Figure 8.
:::::
Mean

::::::
absolute

::::
error

::
of

:::
500

::::
hPa

:::::::::
geopotential

::::::
height,

::
for

:::::::
networks

::::::
trained

::
on

:::::::::::
coarse-grained

:::::
(T21)

:::::
ERA5

::::
data.

:::
The

::::::
training

::::
was

:::::::
performed

:::
on

:::::::
different

::::::::
lead-times.

:::
The

:::::
x-axis

::::::
denotes

:::
the

::::::::
lead-time

::
of

::
the

:::::::
forecast

::
in

:::::
hours,

::
the

:::::
colors

:::
the

:::::::
lead-time

::::
used

:::
for

::::::
training

:::
(in

:::::
hours).

::::
Also

:::::
shown

::
is

::
the

:::::::::
persistence

::::::
forecast

:::::
(thick

:::
blue

::::
line).

::::
their

:::
fig.

:::
3a).

::::
For

:::::
longer

::::::::::
lead-times,

:::
the

:::::::
networks

:::::::
trained

::
on

::::::
longer

:::::::::
lead-times

::::
seem

::
to

:::::
work

:::::
better.

:::
In

::::::
general,

::
it
:::::
seems

::::
that

::
if

:::
one

::::::
wishes

::
to

::::
have

::::::::
forecasts

::
for

::
a

::::::
certain

::::::::
lead-time,

::
it

:
is
::::
best

::
to

::::
train

:::::::
directly

::
on

::::
that

::::::::
lead-time,

::
at

::::
least

:::
for

:::::
mean

:::::::
absolute

:::::
error.

4 Discussion and Conclusions

We have tested the use of neural networks for forecasting the ’
:
‘weather’ in a range of simple climate models with different5

complexity. For this we have used a deep convolutional auto-encoder
:::::::::::::
encoder-decoder

:
architecture that Scher (2018) developed

for a very simple general circulation model without seasonal cycle. The network is trained on the model in order to forecast

the model state 1 day ahead. This process is then iterated to obtain forecasts at longer lead times.
:::
We

::::
also

:::::::::
performed

::::::::
“climate”

::::
runs,

:::::
where

:::
the

:::::::
network

::
is
::::::
started

::::
with

:
a
:::::::
random

:::::
initial

::::
state

:::::
from

:::
the

::::::
climate

::::::
model

:::
run,

::::
and

::::
then

::::::
creates

:
a
:::
run

::
of

:::::
daily

:::::
fields

::
for

::::::
several

::::::::
decades.10

::::::::
Potential

::::::::::::
improvements

::
in

::::
the

::::::
neural

:::::::
network

:::::::::::
architecture

::
In

:::
the

::::::::::
architecture

::::
used

::
in

::::
this

:::::
paper,

::::::
lat-lon

::::
grids

:::
are

:::::
used

::
to

::::::::
represent

:::
the

:::::
fields.

::::
The

::::::::::
convolution

:::::
layers

:::::::
consists

::
of

::
a
::
set

:::
of

::::
fixed

:::::
filters

::::
that

:::
are

::::::
moved

::::::
across

:::
the

:::::::
domain.

:::::::::
Therefore,

:::
the

:::::
same

::::
filter

::
is

::::
used

:::::
close

::
to

:::
the

:::::
poles

::::
and

::::
close

:::
to

:::
the

:::::::
equator,

::::
even

::::::
though

:::
the

::::
area

::::::::::
represented

:::
by

:
a
::::::
single

::::::::
gridpoint

::
is

:::
not

:::
the

:::::
same

::::
close

:::
to

:::
the

:::::
poles

:::
and

:::::
close

::
to

:::
the

:::::::
equator

:::::
since

:::
the

::::
Earth

::
is
::

a
::::::
globe.

:::::
Using

::::::::
spherical

::::::::::
convolution

::::::
layers

::
as

::::::::
proposed

::
in

:::::::::::::::::
Coors et al. (2018)

:::::
would

:::::
tackle

::::
this

:::::::
problem

::::
and

::::
may15

:::
lead

::
to
::::::::
improved

::::::::
forecasts

::::::
and/or

::::
more

:::::::
realistic

::::::::
long-term

:::::::::::
simulations.

:::
The

::::::
tuning

::
of

:::
the

:::::::
network

::::::::::
architecture

::::
used

::::
here

:::::
tuned

::
the

::::::
depth

::
of

:::
the

::::::::::
convolution

::::::
layers,

::::
but

:::
not

:::
the

::::::
actual

::::::
number

:::
of

::::::::::
convolution

::::::
layers.

:::::::::
Therefore,

::
it
::::::
would

::
be

:::::::::
interesting

:::
to

::::::
explore

:::::::
whether

::::::
deeper

::::::::
networks

:::::
(more

::::::::::
convolution

::::::
layers)

::::::
could

:::::::
improve

:::
the

:::::::::::
performance

::
of

:::
the

::::::::
networks.

::::::
Other

:::::::
possible

:::::::::::
improvements

::::::
would

::
be

:::
to:

14



–
::::::
Include

::::
one

::
or

:::::
more

::::::
locally

::::::::
connected

::::::
layers

::
in

:::::::
addition

::
to
:::

the
:::::::::::

convolution
:::::
layers.

::::::
While

::::
they

:::
can

::::::::
increase

::::::::
problems

:::::
related

::::
with

::::::::::
overfitting,

::::::
locally

::::::::
connected

::::::
layers

:::::
could

::::
learn

:::::
"local

::::::::::
dynamics".

–
::::::
Include

::::::
spatial

::::::::::
dependence

::
in

::::::
height.

::
In

::::
our

::::::::::
architecture,

:::
all

::::::::
variables

::
at

::
all

:::::::
heights

:::
are

::::::
treated

::
as

:::::::::
individual

::::::::
channels.

:::
One

:::::
could

:::
for

:::::::
example

::::::
group

:::::::
variables

::
at

::::
one

:::::
height

:::::::
together,

:::
or

:::
use

:::::::::::::
3d-convolution.

:::
Our

::::::
results

::::::
further

::::::
support

:::
the

::::
idea

:
–
:::::::
already

::::::::
proposed

::
by

::::::::::::::::::::::
Dueben and Bauer (2018)

:::
and

:::::::::::
Scher (2018)

:
–
::
of

:::::::
training

:
a
::::::
neural5

:::::::
network

::
on

:::
the

:::::
large

:::::::
amount

::
of

:::::::
existing

:::::::
climate

:::::
model

:::::::::::
simulations,

::::::
feeding

::::
the

::::::
trained

:::::::
network

::::
with

:::::::
today’s

:::::::
analysis

::
of

::
a

::::
NWP

::::::
model

::::
and

:::::
using

:::
the

:::::::
network

::
to

:::::
make

::
a
:::::::
weather

:::::::
forecast.

::::
The

::::
high

:::::::::::::
computational

::::::::
efficiency

::
of

:::::
such

::::::
neural

:::::::
network

:::::::
forecasts

::::::
would

::::
open

::
up

::::
new

:::::::::::
possibilities,

::
for

::::::::
example

::
of

:::::::
creating

::::::::
ensemble

:::::::
forecasts

::::
with

:::::
much

:::::
large

::::::::
ensemble

::::
sizes

::::
than

:::
the

::::
ones

:::::::
available

::::::
today.

:::::::::
Therefore,

:::
this

::::::::
approach

::::::
would

:::::::
provide

::
an

:::::::::
interesting

:::::::
addition

:::
to

::::::
current

:::::::
weather

:::::::::
forecasting

::::::::
practice,

:::
and

::::
also

:
a
::::
good

::::::::
example

::
of

::::::::
exploiting

:::
the

:::::
large

::::::
amount

:::
of

::::::
existing

:::::::
climate

:::::
model

::::
data

:::
for

::::
new

::::::::
purposes.10

::::::::
Networks

:::
for

::::::::
weather

::::::::
forecasts

:::
and

:::::::
climate

::::
runs

One of the major aims of this study was to assess whether it is possible to use a simplified reality -
:
– in this case the most

:
a
::::
very

simple GCM without seasonal cycle -
:
– to develop a method that also works on more complex GCMs. We showed that, for the

problem of forecasting the model ’weather’, this seems to be the case: the network architecture
::::::::
developed

::
by

::::::::::::
Scher (2018) also

worked on the more complex models
::::
used

::::
here, albeit with lower skill. The latter point is hardly surprising, as one would ex-15

pect the time-evolution of the more complex models to be harder to predict. The
:::::
neural

:::::::
network

::::::
forecast

::::::::::::
outperformed

:
a
::::::
simple

:::::::::
persistence

:::::::
forecast

:::::::
baseline

::
at

::::
most

:::::::::
lead-times

::::
also

:::
for

:::
the

::::
more

::::::::
complex

:::::::
models.

:::
The

:
fact that we can successfully forecast

the weather in a range of simple GCMs a couple of days ahead is an encouraging result for the idea of weather forecasting

with neural networks. We also tried to re-tune the network architecture from Scher (2018) to one of our more complex models.

Surprisingly, the best network configuration that came out of the tuning procedure was exactly the same as the one obtained for20

the simpler model in (Scher, 2018)
::::::::::
Scher (2018). This further supports the idea that methods developed on simpler models may

be fruitfully applied in more complex settings.
:::::::::::
Additionally,

:::
we

:::::
tested

:::
the

:::::::
network

::::::::::
architecture

:::
on

::::::::::::
coarse-grained

:::::::::
reanalysis

::::
data,

:::::
where

:::
its

::::
skill

:
is
::::::::::
comparable

::
to

:::
the

:::::::
method

::::::::
proposed

::
by

:::::::::::::::::::::
Dueben and Bauer (2018)

:
.
:::
We

::::
also

:::::
found

::::
that,

::
in

:::::::
contrast

::
to

:::
the

::::::
findings

:::
of

:::::::::::::::::::::
Dueben and Bauer (2018),

::
it

:::::
seems

:::::::
possible

::
to

:::::
make

::::
valid

::::::
neural

:::::::
network

:::::::
forecasts

:::
of

::::::::::
atmospheric

::::::::
dynamics

:::::
using

:
a
::::
wide

:::::
range

::
of

::::::::
timesteps

:::::
(also

::::
much

::::::
longer

::::
than

:
1
::::::
hour).

::::
This

::::::::::
discrepancy

:::::
might

::
be

::::::
caused

::
by

:::
our

::::
use

::
of

:::::::::::
convolutional

::::::
layers,25

::
in

::::::
contrast

:::
to

:::
the

::::
local

::::
deep

::::::
neural

:::::::
network

::::
that

:::::::::::::::
Dueben and Bauer

:::::
used.

::
A

::::
stack

:::
of

::::::::::
convolution

:::::
layers

::::
may

::
be

::::::::::
interpreted

::
as

:::::::
multiple

:::::
layers,

::::::
where

::::
each

::::
layer

:::::
could

::::::::
possibly

::::
make

::
a
:::::::::
short-term

:::::::
forecast,

:::
and

:::
the

::::::
whole

::::
stack

::
a

::::::::
long-term

:::::::
forecast.

:

The second problem we addressed was using the trained networks to create very long integrations of model weather, namely

a “climate” run. For this, the network is started with a random initial state from the climate model run, and then creates a run30

of daily fields for several decades
::::
runs. Scher (2018) found this generated a stable climate for the simplest model considered

here, which does not have a seasonal cycle. We further find that it
::::
Here,

:::
we

::::
find

::::
that

::::
this is to some extent also possible

for more complex models. However, even when training on relatively long periods (100 years), the climates produced by the

15



networks have some unrealistic properties, such as reproducing the seasonal cyclesomewhat poorly, having
:
a
::::
poor

::::::::
seasonal

:::::
cycle, significant biases in the long-term mean values and often unrealistic storm tracks. The fact that these problems don’t

occur for the simplest GCM without seasonal cycle, but do occur for the same GCM with seasonal cycle, indicates that

seasonality considerably complicates the problem. While not a solution for creating climate runs, this suggests that for the

weather forecasting problem it might be wise
::::::::
interesting

:
to train separate networks for different times of the year (e.g. one for5

each month).

Our results further strengthen the idea - already proposed by Dueben and Bauer (2018) and Scher (2018) - of training a

neural network on the large amounts of existing climate model simulations, feeding the trained network with today’s analysis

of a NWP model and using the network in order to make a weather forecast. The high computational efficiency of such neural

network forecasts would open up new possibilities, for example of creating ensemble forecasts with much large ensemble sizes10

than the ones available today. Therefore, this approach would provide an interesting addition to current weather forecasting

practice, and also a good example of exploiting the large amount of existing climate model data for new purposes.

Code and data availability. The code developed and used for this study is available in the accompanying repository at http://doi.org/10.5281/

zenodo.2572863. All external libraries used here are open source. The trained networks and the data underlying the all plots are available in

the repository. The model runs can be recreated with the control files (available in the repository) and the source code of PUMA/PLASIM,15

which is freely available at https://www.mi.uni-hamburg.de/en/arbeitsgruppen/theoretische-meteorologie/modelle/PLASIM.html ERA-Interim

data is freely avialable at https://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=pl/. ERA5-data is freely availableat https://climate.

copernicus.eu/climate-reanalysis

Appendix A

A1 Computation of
:::
the

:
local dimension20

Here, we outline very briefly how the local dimension d is computed. To foster easy reproducibility, we present the computation

in an algorithm-like fashion, as opposed to formal mathematical notation. For a more rigorous theoretical explanation the

reader is referred to Faranda et al. (2019). The code is available in the repository accompanying this paper
:::
(see

::::
Code

::::
and

::::
data

::::::::::
availability).

First, we define the distance between the 2-D atmospheric fields at times t1 and t2 as:25

distt1,t2t1,t2
:::

= sqrt
(
(xt1,1−xt2,1)

2
+(xt1,2−xt2,2)

2
+ ...+

(
xt1,Nj

−xt2,Nj

)2)
(A1)
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where j
:
j
:
is the linear gridpoint index and Nj is the total number of gridpoints. To compute dt, namely the local dimension

of a field at time t, we first take the negative natural logarithm of the distances between t and all other timesteps ti:::
(i.e.

:::
all

:::::
times

:::::
before

:::
and

:::::
after

::
t):

gt,ti =−ln(distt,ti) (A2)

and then retain only the distances that are above the 98th percentile of gt,ti :5

exceedances= gt,ti − 98thpercentile(gt,ti)∀ gt,ti > 98thpercentile(gt,ti) (A3)

These are effectively logarithmic returns in phase space, corresponding to cases where the field xt ::
xti:

is very close to

the field xti ::
xt. According to the Freitas-Freitas-Todd theorem (Freitas et al., 2010), modified in (Lucarini et al., 2012), the

probability of such logarithmic returns is a
:::
(in

:::
the

::::
limit

::
of

::
an

::::::::
infinitely

::::
long

:::::::::
timeseries)

:::::::
follows

:::
the

::::::::::
exponential

:::::::
member

::
of

:::
the

generalized Pareto distribution (Pickands III et al., 1975). The local dimension dt can then be obtained as the inverse of the10

distribution’s scale parameter, which can also be expressed as the inverse of the mean of the exceedances:

dt = 1/mean(exceedances) (A4)

The local dimension is an instantaneous metric, and Faranda et al. (2019) have shown that time-averaging of the data can

lead to counter-intuitive effects. The most robust approach is therefore to compute d on instantaneous fields. Here, in order to

use the same data as for the machine learning, we have used daily means. We have verified that, at least in ERA-Interim, this15

has a negligible effect on the average d value for all variables except for geopotential at 100hPa and 200hPa (not shown).
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