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Abstract. Analog methods (AMs) allow for the prediction of local meteorological variables of interest (predictand) such as the

daily precipitation, on the basis of synoptic variables (predictors). They can rely on outputs of numerical weather prediction

models in the context of operational forecasting or outputs of climate models in the context of climate impact studies. AMs

require low computing capacity and have demonstrated a useful potential for application in several contexts.

AtmoSwing is an open source software written in C++ that implements AMs in a flexible manner so that different variants5

can be handled dynamically. It comprises four tools: a Forecaster that performs operational forecasts, a Viewer for displaying

the results, a Downscaler for climate studies, and an Optimizer for inferring the relationship between the predictand and

predictors.

The Forecaster handles every required processing internally, such as operational predictor downloading (when possible)

and reading, grid interpolation, etc., without external scripts or file conversion. The processing of a forecast is extremely low-10

intensive in terms of computing infrastructure and can even run on a Raspberry Pi computer. It provides valuable results, as

revealed by a three-year-long operational forecast in the Swiss Alps.

The Viewer displays the forecasts in an interactive GIS environment. It contains several layers of syntheses and details in

order to provide a quick overview of the potential critical events in the upcoming days, as well as the possibility for the user to

delve into the details of the forecasted predictand and criteria distributions.15

The Downscaler allows the use of AMs in a climatic context, either for climate reconstruction or for climate change impact

studies. When used for future climate studies, it is necessary to pay close attention to the selected predictors, so that they

contain the climate change signal.

The Optimizer implements different optimization techniques, such as a sequential approach, Monte–Carlo simulation, and

a global optimization technique using genetic algorithms. The process of inferring a statistical relationship between predictors20

and predictand is quite intensive in terms of processing because it requires numerous assessments over decades. To this end,

the Optimizer was highly optimized in terms of computing efficiency, is parallelized over multiple threads and scales well on

a Linux cluster. This procedure is only required to infer the statistical relationship, which can then be used in forecasting or

downscaling at a low computing cost.
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1 Introduction

Approaches based on the concept of analogy are widespread in different domains of science and engineering. In hydromete-

orology, it entails retrieving data on atmospheric conditions from the past that can be considered as similar to the situation at

hand, with consequences that may be expected to be similar. The consequences can be local variables of interest such as the

occurrence of fog, favourable conditions for avalanches, wind intensity, or the precipitation amount. The approach relies on the5

idea expressed by Lorenz (1956, 1969), that similar situations in terms of atmospheric circulation are likely to lead to similar

local weather. The approach requires at least two concurrent archives: one describing the situation through different variables

called predictors, and another one that provides the value of the local variable of interest called the predictand.

Usually, the predictand values could be derived by modelling the chain of processes linking the predictors to the predictand.

The processes involved range from large-scale dynamical states of the atmosphere down to very small-scale microphysical10

processes. These require models that are extremely complex, data-intensive, and time-consuming. Conversely, given an ap-

propriate set of predictor archives, a sufficient number of situations analogous to a target situation could be identified so that

reasonable values will be obtained for the predictand, at a reasonable coding and computing-time cost. This is particularly

true for a specific predictand that is critical in hydrometeorological applications, namely, the precipitation amount over a given

domain and time duration. Incidentally, the forecast is proposed as a statistical distribution based on the values assumed by the15

predictand in the set of analogs selected, unless only the single best analog is considered, which may not prove to be the most

efficient (Bontron and Obled, 2005).

Analog methods (AMs) are used in two different types of approaches (Rummukainen, 1997): perfect prognosis, for which the

statistical relationship is calibrated based on observed predictors, and model output statistics (MOS), for which the relationship

is calibrated against the outputs of a specific climate or numerical weather prediction (NWP) model. AMs are often used to20

predict daily precipitation, either in an operational forecasting context (e.g. Guilbaud, 1997; Bontron and Obled, 2005; Hamill

and Whitaker, 2006; Bliefernicht, 2010; Marty et al., 2012; Horton et al., 2012; Hamill et al., 2015; Ben Daoud et al., 2016) or

a climate downscaling context (e.g. Zorita and von Storch, 1999; Wetterhall, 2005; Wetterhall et al., 2007; Matulla et al., 2007;

Radanovics et al., 2013; Chardon et al., 2014; Dayon et al., 2015; Raynaud et al., 2016). Other predictands are also considered,

such as precipitation radar images (Panziera et al., 2011; Foresti et al., 2015), temperature (Radinovic, 1975; Woodcock, 1980;25

Kruizinga and Murphy, 1983; Delle Monache et al., 2013; Caillouet et al., 2016; Raynaud et al., 2016), wind (Gordon, 1987;

Delle Monache et al., 2013, 2011; Vanvyve et al., 2015; Alessandrini et al., 2015b; Junk et al., 2015b, a), solar radiation or

power production (Alessandrini et al., 2015a; Bessa et al., 2015; Raynaud et al., 2016), snow avalanches (Obled and Good,

1980; Bolognesi, 1993), and the trajectory of tropical cyclones (Keenan and Woodcock, 1981; Sievers et al., 2000; Fraedrich

et al., 2003). Guilbaud (1997) performed a literature review on the use of the AM in long-term forecasting and identified30

operational applications for monthly forecasts in many countries, including Canada (Shabbar and Knox, 1986), Hungary (Toth,

1989), the Netherlands (Nap et al., 1981), and England (Murray, 1974), as well as seasonal forecasts: Barnett and Preisendorfer

(1978), Bergen and Harnack (1982) and Livezey and Barnston (1988).
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An AM was evaluated during the project STARDEX (STAtistical and Regional dynamical Downscaling of EXtremes for

European regions, see Goodess, 2003; STARDEX, 2005). One of the goals of the project was to compare various downscaling

methods to determine weather extremes, and the AM was selected as being among the most useful based on several techniques

(Maheras et al., 2005; Schmidli et al., 2007). Bliefernicht (2010) obtained superior results with the AM than downscaling

methods based on weather typing.5

The use of the AMs for operational forecasting of daily precipitation originates in the work of Duband (1970, 1974, 1981).

They were then designed for operational forecasting at EDF (Electricité de France) in order to better manage water resources

and flood risks. They have been used mainly by practitioners, notably hydropower companies (Desaint et al., 2008; Ben Daoud

et al., 2009; Obled, 2014) or flood forecasting services in France and Switzerland (Marty, 2010; García Hernández et al., 2009;

Horton et al., 2012). When comparing the results from AMs to an ensemble forecast, Marty (2010) found AMs to be better10

than the considered ensemble, particularly in the case of strong precipitation. However, AMs should not be considered as a

substitute for NWP models, but as a complement in order to obtain a fast and partially independent forecast that is known to be

accurate several days in advance. Therefore, they contribute to the analysis of potentially critical situations in flood forecasting,

for example, and are very useful in early warning.

Hamill and Whitaker (2006) used an analogy-based approach on the GFS reforecasts in order to correct systematic errors in15

the ensemble forecasts of temperature and precipitation. These biases could be corrected by taking into account the intrinsic

local climatology from the AM. Moreover, the under-dispersion of the ensemble forecast from the numerical model has also

been corrected using analogs (Hamill and Whitaker, 2006). Correction of ensemble forecast under-dispersion using AMs is

also utilized operationally at EDF (Électricité de France).

The present work does not introduce a new method, but instead, a software called AtmoSwing that implements AMs in a20

versatile and efficient way. It is versatile in that it facilitates the building of AM structures in a dynamic way with XML files,

and because the code is written with an object-oriented architecture. It is efficient because it is written in C++ and leverages

parallel computing. AtmoSwing is made up of different modules targeted either for operational forecasting (the Forecaster and

the Viewer) or for climate impact studies (the Downscaler). Additionally, a module is available for calibrating the different

parameters required for the method, namely the Optimizer. AtmoSwing is continuously evolving and has been used in Horton25

et al. (2012, 2017a, b, 2018) and Horton and Brönnimann (2018).

Some existing AMs designed for daily precipitation will first be described along with the required data (Sect. 2) and the

software will then be presented (Sect. 3) together with the details of the modules: the Forecaster (Sect. 3.3), the Viewer (Sect.

3.4), the Downscaler (Sect. 3.5), and the Optimizer (Sect. 3.6). The conclusion (Sect. 7) includes some additional perspectives

for future developments of AtmoSwing.30
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2 Data and methods

2.1 Required data

AMs generally require three datasets: the historical predictand values, the historical predictor values for the same period and

the predictors describing the target situation.

The predictand is often a daily time series. It can have a higher temporal resolution such as 6 hours, but not higher than5

the time step of the predictors. The most used predictand is the daily precipitation, which is usually averaged over subregions

in order to smooth local effects (Obled et al., 2002; Marty et al., 2012). These time series are frequently normalized by

the precipitation value for a return period of 10 years (Djerboua, 2001). This normalization allows for an easier comparison

between subregions subject to different precipitation regimes, and thus to better identify the most important contributions.

In the early days when the method was first used, the predictors were based on radio sounding data. Currently, the predictors’10

archive is often a global atmospheric reanalysis dataset, which provides gridded large-scale variables at any location in the

world. Reanalyses are produced using a single version of a data assimilation system coupled with a forecast model constrained

to follow observations over a long period. They provide multivariate outputs that are physically consistent, which contain

information on the locations where few or no observations are available, including variables that are not directly observed

(Gelaro et al., 2017). Even though reanalyses are considered as very accurate in a data-rich region such as Europe, they can15

have a non-negligible impact on the skill of the prediction, that can be even higher than the choice of the predictor variables

Dayon et al. (2015); Horton and Brönnimann (2018). AtmoSwing can read ten different reanalyses (Table 1), and others can

be easily added due to the encapsulation of the dataset characteristics in the objects. Users can find recommendations for the

selection of a reanalysis in Horton and Brönnimann (2018). Other predictor archives can also be used such as Sea Surface

Temperature (SST, Reynolds et al., 2007). Bontron (2004) proposed that the minimum length of the archive should be 30 years20

for the prediction of usual conditions, and 40 years or more for intense events.

The predictors’ dataset that describes the target situation varies according to the application of the AM. For operational

forecasting (Sect. 3.3) they are outputs of NWP models such as the European Centre for Medium–Range Weather Forecasts

(ECMWF) Integrated Forecasting System (IFS) or the National Centers for Environmental Prediction’s (NCEP) Global Fore-

cast System (GFS, Kanamitsu et al., 1991; Kanamitsu, 1989). For climate impact studies (Sect. 3.5), they are outputs of general25

circulation models (GCMs) or regional climate models (RCMs), such as the Coupled Model Intercomparison Project Phase 5

(CMIP5, Taylor et al., 2012) and EURO-CORDEX (Jacob et al., 2014).

2.2 Analog methods for daily precipitation

AtmoSwing does not rely on a single variant of the AM, but instead can implement different variants. A non-exhaustive

selection will be presented hereafter, focusing on the prediction of daily precipitation. Some of these are more specific for a30

certain region and may not be relevant to others. In addition, some perform better depending on the lead time.
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2.2.1 Characteristics of the AM

Definition of the analogy – The AM is based on the principle that two similar synoptic situations may produce similar local

effects (Lorenz, 1956). The perfect analogy does not exist, but sufficiently similar situations leading to similar effects can be

identified. Thus, two states of the atmosphere that are alike are called analogs (Lorenz, 1969). To be relevant, this analogy must

be selected by optimizing the following elements:5

– The meteorological variables (predictors) must contain synoptic scale information with a direct or indirect dependency

with the target predictand.

– The pressure level, or height, at which the predictor is selected.

– The spatial window is the domain over which predictors are compared. The ideal size of this area is that which maximizes

the useful information and minimizes noise.10

– The temporal window is the hour(s) of the day for which the predictors are considered.

– The analogy criterion required to compare the variables on the chosen spatial and temporal windows is a distance measure

used to rank observed situations according to their degree of similarity with the target situation.

– Eventual weights between the predictors (e.g., Horton et al., 2017b; Junk et al., 2015b).

– The optimal number of analog situations Ni for the level i which is the best compromise to take into account local15

variability and maximize useful synoptic information.

Seasonal preselection – Lorenz (1969) restricted the search for analog situations to the same period of the year to cope with

seasonal effects. This preselection is now often implemented as a moving selection of±60 days centred around the target date,

for every year of the archive (Table 2). Alternatively, the candidate dates can be selected based on similar air temperature at the

nearest grid point (Table 2 Ben Daoud et al., 2016).20

Analogy of atmospheric circulation – A conditioning by variables describing the atmospheric circulation is present in a vast

majority of AMs. The geopotential field (Z) is often used as a predictor since Lorenz (1969), who based the analogy on the

levels 200, 500, and 850 hPa. Several pressure levels were later assessed by means of various criteria for the analogy based on

the geopotential field (Duband, 1970, 1974, 1981; Guilbaud, 1997). It was determined to be important to calculate the analogy

for multiple pressure levels and different temporal windows (time of observation) instead of a unique selection (Guilbaud and25

Obled, 1998; Obled et al., 2002). Bontron (2004) showed that the choice of the temporal window plays a greater significance

compared to the choice of the atmospheric level for the performance of the AM for daily precipitations. He concluded that the

coupled geopotential heights at 1000 hPa (Z1000) at 12 h UTC and 500 hPa (Z500) at 24 h UTC provided the best performance

(for a subset of the NCEP/NCAR Reanalysis I; Kalnay et al., 1996; Kistler et al., 2001) for the investigated regions in France

(Table 2). The analogy for the atmospheric circulation proposed by Bontron (2004) is still used operationally at the time of30

writing. Marty (2010) tested other temporal windows for intraday application on the basis of a more comprehensive reanalysis
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dataset and proposed to change the hours of observation to 06 h and 18 h. Horton et al. (2018) showed that a selection of four

combinations of pressure levels and temporal windows instead of two for the geopotential height improves the prediction skill

(PC-4Z, Table 2). The pressure levels and temporal windows were automatically selected by genetic algorithms for the upper

Rhone catchment in Switzerland.

Additional levels of analogy – Additional levels of analogy are subsequent steps that subsample a lower number of analog5

situations from the antecedent level of analogy, based on other variables. A second level of analogy was first introduced by

Mandon (1985), Vallée (1986), and Gibergans-Báguena and Llasat (2007), based on wind, moisture variables, stability indexes,

or temperature. After a systematic assessment, Bontron (2004) noted that a moisture index (MI) based on the product of the

relative humidity at 850 hPa (RH850) and the total precipitable water (TPW) gave the best performance (Table 2). This index

does not represent an actual physical quantity, but expresses the water content of the air column and its degree of saturation.10

Marty (2010) selected the MI at 925 hPa instead of 850 hPa and also considered the moisture flux (MF) at 700 or 925 hPa

(Table 2). The MF is the product of the MI with the wind intensity. Horton et al. (2018) determined that MI at 600 and 700 hPa

were more useful than MF after the circulation analogy was applied to the four atmospheric levels (Table 2). Ben Daoud et al.

(2016) also reconsidered the parameters of MI and ended up with both 925 hPa and 700 hPa levels (Table 2). Subsequently,

they added an additional level of analogy between the circulation and the moisture analogy (Table 2) based on the vertical15

velocity at 850 hPa (W850). This AM, termed "SANDHY" for Stepwise Analogue Downscaling method for Hydrology (Ben

Daoud et al., 2016; Caillouet et al., 2016), was primarily developed for large and relatively flat/lowland catchments in France

(Saône, Seine).

Analogy criteria – In early applications of AMs, the geopotential height was condensed using principal component analysis

(PCA) and the selection of analog situations was performed according to a Euclidean distance in the space of the PCA, which20

was eventually combined with a correlation criterion in order to remove days that are close in distance but too dissimilar in

pattern. Guilbaud (1997) stopped using PCA to work directly with the raw data interpolated on grids, which resulted in an

improvement. In the case of the variables that describe atmospheric circulation, the Teweles–Wobus (S1) criterion (Eq. (1),

Teweles and Wobus, 1954; Drosdowsky and Zhang, 2003) was identified as the most suited criteria based on different studies

(Wilson and Yacowar, 1980; Woodcock, 1980; Guilbaud and Obled, 1998; Bontron, 2004). S1 allows for a comparison of the25

gradients and thus an analogy of the atmospheric circulation instead of a Euclidean distance. For other predictors, the classic

criteria representing absolute distances are used: Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE), the

latter being used most often.

S1 = 100

∑

i

|∆ẑi−∆zi|
∑

i

max{|∆ẑi|, |∆zi|}
(1)

where ∆ẑi is the gradient between the ith pair of adjacent points from the geopotential field of the forecasted target situation,30

and ∆zi is the corresponding observed geopotential gradient in the candidate situation. The differences are processed separately

in both directions. The smaller the S1 values, the more similar the pressure fields. AtmoSwing allows processing real gradients
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by taking into account the horizontal distance between points, or simple height differences by ignoring the horizontal distance.

Under the latitudes of central Europe, the impact of neglecting the horizontal distance is small (not shown), but it can become

more important at higher latitudes.

Other parameters – The predictors are compared for a defined spatial window, which must be optimized to maximize

the useful information and minimize noise. The spatial window is usually considered unique for all predictors of a level of5

analogy. Using genetic algorithms, Horton et al. (2018) introduced different spatial windows between the pressure levels, which

increased performance. Additionally, a weighting between the predictors was also successfully added instead of a simple equal-

weights averaging. The number of analogs to select at each level of analogy should be optimized. It depends on the predictor

dataset, the size of the spatial window and the length of the archive Ruosteenoja (1988); Van Den Dool (1994).

Probabilistic forecast – After the last level of analogy, the observed predictand of interest (for example, daily precipitation10

amount) of the Ni resulting dates provide the empirical conditional distribution considered as the probabilistic forecast for

the target day. The empirical frequencies are processed for every value of the predictand after classification, based on the

Gringorten parameters (for a Gumbel or exponential law; see Gringorten, 1963) and a probabilistic model can eventually be

fitted (e.g. Gamma function, Obled et al., 2002). The forecast is finally often synthesized according to percentiles 20, 60 and

90 % (Guilbaud, 1997; Guilbaud and Obled, 1998).15

Use in operational forecasting – In one of the very first uses in operational forecasting, the forecast was performed based

only on radiosonde observations and was temporally extrapolated to the two following days. However, because of the chaotic

nature of the atmosphere, two analog situations quickly diverge over time (Lorenz, 1969). Thus, the AM has strong limitations

regarding the temporal extrapolation in operational forecasting (Bontron, 2004). Given the superior capability of numerical

models for simulating the dynamic evolution of the atmosphere, their outputs are now used as temporal extrapolation of the20

synoptic variables. The search for analogy thus aims to connect the forecasted synoptic situation with a local predictand

(temperature, precipitation, etc.), which is more difficult to simulate for numerical models. When using AMs in operational

forecasting, it should be noted that some variables such as moisture or vertical velocity might not be accurately predicted after

a lead time of a few days due to higher uncertainties. Predictors describing the atmospheric circulation are generally considered

to be more reliable.25

2.2.2 Regional characteristics

The optimal predictors vary from one region to another, along with the leading atmospheric processes. Thus a unique version

of the AM valid for any place on earth cannot be obtained. However, the method needs to be adapted to the local conditions,

available data, and to the size of the catchment of interest. Thus, there will always be local adaptations to be made for use in

a new region. Even for two locations that are close to each other but subject to different critical atmospheric conditions, the30

selection of the best predictors can vary. This is illustrated in Fig. 1 for two subregions of the Rhône catchment in Switzerland.

For both regions, all variables of NR-1 were assessed by optimizing the spatial window and the number of analogs for each one

of them using the sequential calibration tool implemented in AtmoSwing (Sect. 3.6.4). The main similarities in the selection

of the best predictor from the NCEP/NCAR reanalysis I at both locations are: (1) the variables describing the atmospheric
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circulation (pressure fields or geopotential heights) perform best, and (2) they are better when compared with the S1 criteria

(asterisk in Fig. 1) instead of the RMSE. The main difference is that the pressure fields better explain the precipitation when

they are considered close to the ground for the Chablais region, and at a higher altitude for the South-east crests. This is driven

by the elevation of the stations and by the main atmospheric influences related to precipitation events at these locations.

The choice of the best predictors is likely to vary from one reanalysis dataset to another. This comprehensive comparison was5

not repeated with other datasets, because a selection of the best predictors using genetic algorithms would be less cumbersome

(Sect. 3.6.5).

2.2.3 Method nomenclature

Variants of the AMs are numerous and it is not always easy to reference them in a short and descriptive way. In AtmoSwing,

a basic nomenclature is used (Fig. 2) in order to express the structure into a simple identifier. This cannot describe all the10

parameters of the AM, but quickly illustrates the structure of the implementation. This is particularly useful when working

with a global optimization method, where nothing is fixed but the structure of the AM. This nomenclature has been used in

Horton et al. (2017a, b, 2018) and Horton and Brönnimann (2018).

The naming contains different blocs (separated by a hyphen) for the various levels of analogy. It starts with the specification

of the preselection (P; can be omitted when comparing AMs with the same preselection approaches), which can be one of two15

types:

– PC: calendar period (±60 days around the target date)

– PT: based on air temperature (Ben Daoud, 2010)

Then, the following levels of analogy are listed, which may start with an optional A (for analogy). For every level of analogy,

the number of variables used (combination of atmospheric levels and time of observation) is first provided, and then the short20

name of the variable is given (according e.g. to ECMWF conventions; in upper case), for example:

– Z: geopotential (circulation)

– TPW: total precipitable water

– RH: relative humidity

– V: wind velocity25

– W: vertical velocity

– MI: moisture index (TPW * RH)

– MF: moisture flux (V * TPW * RH)

8
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In order to keep the identifier simple, no value of atmospheric level or time of observation is specified. Moreover, the

analogy criterion is not specified and is supposed to be S1 for Z and RMSE for the other variables. If anything changes from

these conventions, it can be noted as a flag. The flag (lower case) can also provide other information, such as the optimization

method:

– sc : sequential calibration (can be omitted as considered as default, see Sect. 3.6)5

– go (or just ”o”): global optimization (by means of genetic algorithms for example)

This nomenclature can be adapted to specific needs or simplified for better readability (e.g. by removing the specification of

the preselection). Examples can be found in Table 2.

3 AtmoSwing

AtmoSwing is made of 4 main modules that are standalone, but do share a common code basis: the Forecaster for operational10

forecasting, the Viewer for displaying the forecast in a GIS environment, the Downscaler for climate applications, and the

Optimizer that is used to infer the statistical relationship that defines the analogy for a given predictand time series. Separating

the Forecaster and the Viewer allows for automation of the forecast on a server and the local display of the results. The

Forecaster, the Downscaler and the Optimiser can be used either with a graphical user interface or a command-line interface.

3.1 Technical aspects15

The code is written in object-oriented C++ and relies on the wxWidgets (Smart et al., 2006) library to provide a cross-platform

native experience to users. CMake is used to build AtmoSwing in MS Windows, Linux / Unix, or Mac (macOS). Developments

have been partly performed using a test-driven development (TDD) approach. Continuous integration has been set up so that a

collection of more than 600 tests can be evaluated every time new code is pushed to the server, to prevent regressions. Every

analogy criterion, prediction score, searching and sorting functions, data manipulation, etc., were tested. Some tests specific to20

the AM rely on the results of another analog sorting software developed at the Université Grenoble Alpes. They ensure that

the results of AtmoSwing are exactly equivalent to this model, given the same parameters and data. The source code is under

version control (Git) and is open source (on GitHub, www.atmoswing.org, Horton, 2018a). The GitHub organization page

(https://github.com/atmoswing) also contains toolboxes to work with the outputs of AtmoSwing in R (Horton and Burkart,

2018) or Python (Horton, 2018b).25

Although processing an analog prediction for a given target date is fast, hindcasts over periods of several decades must be

performed for calibration, which may become very time-consuming. Thus, great effort has been focused on minimizing the

processing time using profiling tools. Firstly, all identified redundancies in the processing are removed. Then, when searching

for a certain date or data, the search initially occurs in the region where it is likely to be found instead of exploring an entire

array. Similar data are not loaded twice, but instead shared pointers are used. Several other improvements allow reducing the30

computing time, for example the use of the quicksort method (Hoare, 1962) to sort the date vectors according to the analogy
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criterion. Different implementation variants were tested in order to select the most efficient approach: for example, when storing

analog dates according to their criterion value, it is faster to insert them in a fixed-size array instead of storing them all and

subsequently sorting the array. When using the S1 criteria, the gradients are pre-processed on the predictor data, so that they

are only processed once. AtmoSwing also uses the linear algebra library Eigen 3 (Guennebaud et al., 2010) for calculations on

vectors and matrices, which result in time-saving. Multi-threading is also implemented so that the search for analog situations5

in the archive is distributed among the available threads.

A user interface allows for the creation of the predictand database in the NetCDF format from text files. During the process,

Gumbel adjustments are automatically calculated for precipitation data to determine the values corresponding to different

return periods. The time series are normalized using a selected return period (default 10 years) and their square root can be

processed. The final database file contains both the raw and the normalized series, as well as characteristics of the gauging10

stations and some metadata.

3.2 Modular approach and implementation

AtmoSwing’s great strength is that it is designed to process the analog method in a modular fashion. The structure of the AM

(number of analogy levels, number of predictors) is built dynamically (Fig. 3), and nothing is fixed a priori. The software then

successively performs as many analogy levels as the user specifies, using all the predictors indicated. Each level of analogy15

results in an object containing target dates, analog dates, values of the analogy criteria, values of the predictand (at the final

stage), and other data. This object can be saved as a NetCDF file and/or can be injected into a new analogy level. The whole

structure of the AM is defined through an XML file. Even the time step of the method (6 or 24 hours for example) is a dynamic

parameter.

Each implementation of the AM (see Sect. 2.2) may enter this scheme, even if it consists of pre-processed variables (e.g.20

moisture index). Various pre-processing functions are implemented as the calculation of the moisture index or flux, multiplica-

tion operations, or calculation of the gradients. The user can dynamically specify the pre-processing method and the predictors

to use in the XML file.

This modular approach is implemented through object-oriented programming, as a direct consequence of polymorphism.

This allows, for example, processing of a predictor object as a single interface to entities representing any reanalysis dataset.25

Similarly, the criterion can be of different types, as well as the score for calibrating. Figure 4 illustrates the main classes or

objects involved in the core of the analog method processing in AtmoSwing in a simplified way. The different types of objects

that are instantiated are defined in the XML parameters file. Thus, there is a single implementation of the analog method

capable of interacting with different object types in various contexts (calibration, forecasting, downscaling).

3.3 AtmoSwing Forecaster30

The Forecaster module allows processing of operational forecasts. The software can be compiled with a graphical user interface

(GUI), or without it to be used on a headless server through a command line interface (CLI). Processing a forecast requires
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very low computing capabilities and can be performed on a low-end computer. It successfully runs on a Raspberry Pi 3 (Model

B).

To this day, the software can use the outputs of IFS or GFS (see Sect. 2.1). When using GFS, it first downloads the predictor

describing the target situation. It then linearly interpolates the gridded data to match the resolution of the archive. The analogs

dates are next extracted according to the selected AM variant and the predictand data are associated with the corresponding5

dates. The results are finally saved in auto-describing NetCDF files. If requested, a synthetic XML file is generated for easier

integration on a web platform, for example. Every step of the forecast, from predictor downloading (when possible) to the final

results, is performed in the software (and controlled through configuration), without the use of external scripts (e.g. for data

conversion).

Both the GUI and the CLI facilitate a forecast based on the most recent NWP outputs, or for a given date or period.10

When there is no new predictor data available, the forecast is not processed and computing resources are not utilized. The

recommended use is thus to set up an automatic task on a server to trigger the forecast every 30 minutes. This would for

example provide four forecasts a day.

Before being used in operational forecasting, the AMs were calibrated in a perfect prognosis framework, usually using a

reanalysis dataset (Sect. 3.6). However, this does not take into account the uncertainty related to the forecast of the target15

situation by Numerical Weather Prediction models. One might be willing to take into account this uncertainty, which increases

with the lead time. A solution is to increase the number of analog situations with the lead time, which should be optimized for

every lead time on a forecast archive or a reforecast dataset (Thevenot, 2004). This technique is available in AtmoSwing, as

the number of analogs can be specified for every lead time.

A meteorological variable that was proven as a good predictor in the perfect prognosis framework may eventually be poorly20

predicted by the selected NWP beyond a certain lead time. It should then be dropped after this lead time. For example, when

using moisture variables for the second level of analogy, Thevenot (2004) showed that beyond a lead time of three days the

AM with two levels did not perform better than the one with a single level of analogy. Datasets of reforecast from the selected

NWP models allow assessing these aspects for different lead times.

3.4 AtmoSwing Viewer25

AtmoSwing Viewer allows for the display of the files produced by the Forecaster in an interactive GIS environment (Fig. 5). It

provides several levels of synthesis of the forecasts. It first provides an overview of possible alerts using colour codes on the

lead time switcher (upper right in the GUI, see Fig. 5) that represent the worst case scenarios, or in the alarm panel (on the left

side of the GUI). The alarm panel allows for a synthesis of the highest forecasted values for the different AMs and the different

lead times. By default, the colours are expressed relative to the 10 year return period, for the 90th percentile (which can be30

changed in the preferences). This highest level of synthesis allows for quick identification of potentially critical situations in

the days ahead.

Then, the user can explore the forecasts in more details, starting from the provided map (Fig. 5). The map displays the

forecast of the selected AM variant (selected in the upper left panel) and the selected lead time (upper right). During the

11
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forecast, one AM might have parameters that differ by subregions, such as the number of analogs or the spatial windows. The

Viewer automatically gathers the similar AM types and provides a composite view of the optimal forecasts per subregion. The

user can, however, choose to display the results associated with a single parameter set for the entire region (by opening the tree

view and selecting a child element), which provides a homogeneous set of analog dates. A display of all lead times on a single

map is possible based on a symbolic representation on a circular band with a box for every lead time (Fig. 6). The number5

of boxes is adjusted to the number of lead times. This representation offers a global spatiotemporal visualization for a chosen

AM.

Colour scales in the map can be adjusted by choosing (on the left part of the GUI) the predictand reference (raw value or ratio

to different return periods) and the quantile of the distribution. Using a ratio to a certain return period eases the interpretation

of the expected precipitation given that reference volumes can drastically differ from one location to another, particularly in10

mountainous regions. All information relative to a rain gauge station (or catchment), such as its location, its name, or the values

of different return periods, are stored in the forecast files to be displayed for end users who do not have the predictand database.

By clicking on a station on the map (or by selection from a dropdown list on the left), a new window appears with a plot of

the forecasted time series (Fig. 7). By default, the plot contains the usual three considered percentiles (90th, 60th, and 20th),

along with the 10 best analogs with a colour code from yellow (tenth) to red (first). The 10-year return period value is also15

displayed to set the perspective of the forecast. The user can choose to hide any data or to display supplementary information

(all analogs, all 10th percentiles, or all return periods) in the left panel. Traces of previous forecasts are also automatically

loaded and displayed to provide information on the consistency of the forecasts.

The user can then delve into further details and display the predictand cumulative distribution for a given lead time (Fig.

8). This can inform if there is a shift between the distribution of all analogs versus the 10 best. Such a shift warns of a risk of20

under/overestimation when considering the full distribution, particularly for high precipitation amounts. Indeed, the number

of extreme precipitation events in the archive is limited and they are thus likely to be underrepresented in the selected analog

dates. Different authors have shown that if the 60th percentile is best to forecast the occurrence and the amount of precipitation

for common situations, the 90th percentile is a better indicator for strong to extreme events (Djerboua, 2001; Bontron, 2004;

Marty, 2010). It is, therefore, necessary to pay close attention when the 90th percentile reaches high values, as this may be25

indicative of possible extreme precipitations due the presence of several analog dates with high precipitation amounts in the

distribution (Djerboua, 2001).

The distribution of the analogy criteria (not shown) can also be displayed to identify eventual discontinuities in the criteria

values. Finally, one can display a grid containing the analog dates with the corresponding predictand and criteria values in an

interactive spreadsheet (not shown).30

AtmoSwing Viewer relies on workspaces defined in XML files to specify the path to the forecast directories and the GIS

layers. It is thus easy to switch from a forecast for a region to another. Many GIS formats are supported thanks to GDAL

(Geospatial Data Abstraction Library, GDAL Development Team, 2014). A user can have as many layers as desired and can

control their display properties (colour, transparency).
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3.5 AtmoSwing Downscaler

The Downscaler module is the last addition to AtmoSwing. Its purpose is to downscale either climate model outputs for climate

impact studies or reanalyses for climate reconstruction of the past.

The Downscaler is able to read outputs of general circulation models (GCMs) or regional climate models (RCMs), such as

the Coupled Model Intercomparison Project Phase 5 (CMIP5, Taylor et al., 2012) and EURO-CORDEX (Jacob et al., 2014),5

and can be extended to other datasets. CMIP5 and EURO-CORDEX are distributed in the NetCDF format, but present a great

variety of time steps, temporal references, spatial resolution, and file structures. A complete redesign of the management of the

predictor data was necessary to provide the flexibility required to account for this variety. The Downscaler is thus able to parse

these datasets original files by exploiting the self-descriptive capacity of NetCDF files.

The use of AMs in the context of future climate is new. Not all AMs can be used for this purpose, because some predictors10

might not capture the climate change signal well and the preservation of the relationship between predictors and predictands

must prevail. However, several authors have demonstrated the transferability of some AMs for future climate (Dayon et al.,

2015, 2018; Raynaud, 2016; Turco et al., 2017). The transferability of an AM must be assessed before it is used in such a

context.

AMs have also been used to perform climate reconstruction of the past (Caillouet et al., 2016, 2017; Bonnet et al., 2017).15

Such applications allow, for example, hydrological modelling of flood events in periods where no meteorological data are

available, or analysis of past severe droughts.

3.6 AtmoSwing Optimizer

AtmoSwing Optimizer is a single tool that integrates different optimization methods, presented in Sect. 3.6.3 to 3.6.5. Its

purpose is to infer the statistical relationship between the predictors and a predictand. The calibration framework is detailed in20

Sect. 3.6.1 and the implemented skill scores are listed in Sect. 3.6.2.

3.6.1 Calibration framework

The calibration of the AM is usually performed in a perfect prognosis (Klein et al., 1959) framework (Bontron, 2004; Ben

Daoud, 2010). Perfect prognosis uses observed or reanalyzed data to calibrate the relationship between predictors and predic-

tands, as opposed to the MOS approach that establishes the relationship based on model outputs. As a result, perfect prognosis25

yields relationships that are as close as possible to the natural links between predictors and predictands. However, there are no

perfect models and even reanalysis data may contain bias that cannot be ignored (Dayon et al., 2015; Horton and Brönnimann,

2018). Thus, the considered predictors should be as robust as possible, i.e., they should have minimal dependence on the model.

With MOS approaches, reforecasts can be used to establish the relationship between predictors and predictands, provided that

the archive is long enough. However, the calibration procedure must be performed every time a new version is available in30

order to reduce the bias (Wilson and Vallée, 2002).
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A statistical relationship is inferred with a trial and error approach by processing a forecast for every day of a calibration

period. A certain number of days close to the target date are excluded to consider only independent candidate days. Validating

the parameters of AMs on an independent validation period is very important to avoid over-parametrization and to ensure that

the statistical relationship is valid for another period. In order to account for climate change and the evolution of measuring

techniques, it is recommended that a noncontinuous period for validation should be used, distributed over the entire archive5

(Ben Daoud, 2010; Horton and Brönnimann, 2018). AtmoSwing’s users can thus specify a list of the years to set apart for the

validation that are removed from possible candidate situations. At the end of the optimization, the validation score is processed

automatically.

3.6.2 Implemented performance scores

Multiple scores are implemented in AtmoSwing Optimizer and are listed hereafter. Details are only provided for the CRPS10

(Continuous Ranked Probability Score, Brown, 1974; Matheson and Winkler, 1976; Hersbach, 2000), which is most often

used.

Discrete deterministic predictions - These are, for example, deterministic predictions of threshold exceedances. The con-

tinuous probabilistic nature of an ensemble of analogs can be transformed into a discrete prediction by considering a fixed

percentile from the distribution, which is compared to a threshold exceedance of the predictand. On the basis of a contingency15

table (Wilks, 2006), multiple scores can be processed with AtmoSwing:

– Proportion correct (Finley, 1884)

– Threat Score (Gilbert, 1884)

– Bias

– False Alarm Ratio20

– Hit Rate or Probability of Detection

– False Alarm Rate

– Heidke Skill Score (Heidke, 1926)

– Peirce Skill Score (Peirce, 1884)

– Gilbert Skill Score or Equitable Threat Score (Gilbert, 1884)25

Continuous deterministic predictions - These types of predictions must be evaluated using distance measures. For AMs, the

provided distribution is summarized by a chosen percentile, which is compared to the predictand value. Available scores are as

follows:

– Mean Absolute Error
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– Root Mean Squared Error

Discrete probabilistic predictions – In this instance, the probability of occurrence or the probability of belonging to a certain

category is considered. The implemented scores are as follows:

– Brier Score (Brier, 1950)

– ROC diagram (Relative Operating Characteristic or Receiver Operating Characteristic, Mason, 1982)5

– RPS (Ranked Probability Score, Epstein, 1969)

– SEEPS (Stable Equitable Error in Probability Space, Rodwell et al., 2010, 2011)

Continuous probabilistic predictions - These types of predictions are issued in the form of the expected statistical distribution

for a variable, which needs to be compared to an observed value. This is the situation encountered when using multiple analogs

from AMs.10

Most assessment of AMs performance use the CRPS (Continuous Ranked Probability Score, Brown, 1974; Matheson and

Winkler, 1976; Hersbach, 2000). It allows for evaluation of the predicted cumulative distribution functions F (y), for example,

the precipitation values y associated with the analog situations, compared to the single observed value y0 for a day i:

CRPSi =

+∞∫

0

[
Fi(y)−Hi(y− y0

i )
]2

dy (2)

where H(y−y0
i ) is the Heaviside function that is null when y−y0

i < 0, and has the value 1 otherwise; the better the prediction,15

the lower the score. This score is now commonly used for the evaluation of continuous variable prediction systems (Casati

et al., 2008; Marty, 2010). It can be decomposed into several indicators also implemented into AtmoSwing Optimizer, such as:

reliability – resolution / uncertainty (Hersbach, 2000), or sharpness – accuracy (Bontron, 2004).

Its skill score expression is often used, with the climatological distribution of precipitation as the reference. The CRPSS

(Continuous Ranked Probability Skill Score) is thus defined as follows (Bradley and Schwartz, 2011):20

CRPSS = 1− CRPS

CRPSclim

(3)

where CRPSclim is the CRPS value for the climatological distribution. A better prediction is characterized by an increase in

CRPSS.

Finally, the rank diagram (Talagrand et al., 1997) and its accuracy as defined by Candille and Talagrand (2005) are also

available.25
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3.6.3 The sequential calibration

The calibration procedure that we call ”sequential” or ”classic” was elaborated upon by Bontron (2004) (see also Radanovics

et al., 2013; Ben Daoud et al., 2016). It is a semi-automatic procedure that optimizes the spatial windows in which the pre-

dictors are compared and the number of analogs for every level of analogy. The different analogy levels (e.g. the atmospheric

circulation or moisture index) are calibrated sequentially. The procedure consists of the following steps (Bontron, 2004):5

1. Manual selection of the following parameters:

(a) Meteorological variable

(b) Pressure level

(c) Temporal window (hour of the day)

(d) Number of analogs10

2. For every level of analogy:

(a) Identification of the most skilled unitary cell (1 point for moisture variables and 4 for the geopotential height when

using the S1 criteria) of the predictor data over a large domain. Every point or cell of the full domain is jointly

assessed based on the predictors of the current level of analogy.

(b) From this most skilled cell, the spatial window is expanded by successive iterations in the direction of the largest15

performance gain until no further improvement is possible.

(c) The number of analog situations N1, which was initially set to an arbitrary value, is then reconsidered and optimized

for the current level of analogy.

3. A new level of analogy can then be added based on other variables such as the moisture index at chosen pressure levels

and hours of the day. The number of analogs for the next level of analogy, N2, is initiated at a chosen value. The procedure20

starts again from step 2 (calibration of the spatial window and the number of analogs) for the new level. The parameters

calibrated for the previous analogy levels are fixed and do not change.

4. Finally, the numbers of analogs N1 and N2 for the different levels of analogy are reassessed. This is performed iteratively

by varying the number of analogs of each level in a systematic manner.

The calibration is performed in successive steps for a limited number of parameters with the aim of minimizing/maximizing25

the chosen objective function. Except for the number of analogs, previously calibrated parameters are generally not reassessed.

The benefit of this method is that it is relatively fast, it provides acceptable results, and it has low computing requirements.

Small improvements were incorporated into this method in AtmoSwing Optimizer, then termed as ”classic+”, by allowing the

spatial windows to perform other moves, such as: (1) increase in 2 simultaneous directions, (2) decrease in 1 or 2 simultaneous

directions, (3) expansion or contraction (in every direction), (4) shift of the window (without resizing) in 8 directions (including30
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diagonals), and finally (5) all the moves described above, but with a factor of 2, 3, or more. For example, an increase by two

grid points in one (or more) direction is assessed. This allows skipping one size that may not be optimal. These supplementary

steps often result in spatial windows that are slightly different. The performance gain is rather marginal for reanalyses with a

low resolution such as NR-1, but might be more consistent for reanalyses with higher resolutions due to the presence of more

local minima.5

3.6.4 Variables exploration

The sequential calibration can also be used to explore the variables of a dataset. A list of variables, pressure levels, and temporal

windows can be provided and all combinations are assessed through the classic(+) calibration. This functionality facilitates a

comparison between the different variables of a dataset while considering the effect of the pressure level and the temporal

window. Using this approach, only one variable is assessed at a time, but multiple levels of analogy are possible. Figure 110

results from such an analysis of the NR-1 reanalysis.

3.6.5 Global optimization

The sequential calibration has strong limitations: (i) it cannot automatically choose the pressure levels and temporal windows

(hour of the day) for a given meteorological variable, (ii) it cannot handle dependencies between parameters, and (iii) it cannot

easily handle new degrees of freedom. For this reason, genetic algorithms (GAs) were implemented in AtmoSwing Optimizer15

to perform a global optimization of AMs. This allows for optimization of all parameters jointly in a fully automatic and

objective way. The method is described in Horton et al. (2017a) and an application is provided in Horton et al. (2018).

3.6.6 Monte–Carlo simulations

A Monte–Carlo analysis is also implemented in AtmoSwing. The procedure performs thousands of assessments of random

parameters within given ranges. This method is not efficient for finding the best parameters set, but facilitates a better under-20

standing of the sensitivity of the parameters. Its relevance is however limited for AMs with multiple levels of analogy and

variables. Indeed, for methods with a high number of parameters with wide authorized value ranges, the probability is too

low to obtain an acceptable configuration, and thus the resulting response surface might not be representative of the actual

distribution of optimal values (See examples in Sect. 4).

4 Parameters space of AMs25

An analysis of the parameters resulting from Monte–Carlo simulations, the sequential calibration, and GAs was performed for

the Binn station in Switzerland (Fig. 1) with ERA-INT (Table 1). Binn is characterized by high precipitation totals and heavy

rainfall in this region, and on several occasions was responsible for large damages downstream. For this reason, it is a station

of particular interest. The results for this station cannot be generalized to all stations, but similar conclusions can be drawn for
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other locations. Moreover, the parameters space at a single station is expected to be significantly more irregular than averaged

regional precipitations.

The analysis was first performed for the 2Z method (Table 2) for the period 2001–2010 for the target, and 1981–2010

as the archive. A relatively short period of 10 years was chosen to allow for 50,000 Monte–Carlo simulations. The plots

in Fig. 9 are truncated at the best 25th percentile. The Monte–Carlo simulations show that the spatial window for Z needs5

to cover a certain region, but can be larger than a critical size. The extent of the spatial window can thus be substantially

different without significantly affecting the performance score. This was also observed by Bontron (2004), who noted that

”performance slowly decreases if we consider a window that is slightly too large, while using windows that are too small results

in strong performance loss”. The dilution of the relevant synoptic information therefore does not necessarily have a significant

negative impact on performance, while ignoring some of this information leads to stronger losses of performance. The issue10

of equifinality related to the spatial windows is discussed in Radanovics et al. (2013). The station is usually contained within

the optimal spatial domain, provided the predictors are considered on the same day as the predictand. The optimal number

of analogs is relatively well defined, although the selection of more analog candidates is possible without a strong penalty in

terms of performance.

The results of the sequential calibration are also illustrated in Fig. 9 (with squares). The calibration was first performed15

for the period 1981–2000 and applied to 2001–2010 (blue squares) but also calibrated directly for the 2001–2010 period (red

squares). Here, the parameters established on a different calibration period provided slightly better results. This is due to the

limitations of the sequential calibration that can easily be trapped in a local optima. Indeed, the resulting spatial windows are

small in this case, and the algorithm stops as soon as an increase of the domain does not improve the score. This might not

be an issue with a low-resolution reanalysis such as NR-1 (2.5◦; Table 1), but this might become more of an issue with higher20

resolutions, such as ERA-INT used here (0.75◦), because local minima are more frequent. In this case, the classic+ approach

(Sect 3.6.3) might be relevant. The Monte-Carlo analysis yielded some better parameter sets than the sequential calibration,

due to the constraint on the latter to have the same spatial window for both pressure levels.

Fourteen optimizations by GAs were performed for the same setup (seven optimizations using the 2001–2010 period as

validation (blue triangles) and seven optimizations using this period as the calibration period directly (red triangles)). The25

optimization with GAs was given the same degrees of freedom as the Monte–Carlo simulations, so no weighting of the pressure

levels was considered (as in Horton et al., 2018). Thus, the parameters optimized for the 2001–2010 period (red) could have

been found randomly using the Monte–Carlo simulations. However, this did not occur due to the low probability of obtaining

this combination. GAs also result in more skilful parameters than the sequential calibration. When optimized for the 2001–

2010 period (red triangles), the parameters yielded results that outperform the optimization for the 1981–2000 period (blue30

triangles). However, the contrary is expected for the later period. Most optimizations converge to a narrow range of values,

supposedly, the global optimum for the respective period. The main difference compared to the sequential calibration is that

the spatial windows are substantially larger, mainly for Z500, and they differ between pressure levels.

Monte–Carlo simulations were also performed for 2Z-2MI (Table 2) for the same periods and for the same station. Figure

10 shows that the Monte–Carlo simulations could not properly use the moisture variables of the second level of analogy.35
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The boxplots for the second level of analogy show an indifference of the location and the size of the spatial windows, which

is demonstrated to be wrong, based on the other optimization methods. Moreover, the achieved CRPS here based on random

parameters is not better than the case without the moisture variables (Fig. 9). Additionally, the number of analogs corresponding

to the best CRPS values are similar between the two levels of analogy, which means that the second level is simply discarded.

There are too many parameters with acceptable ranges that are too narrow to obtain meaningful parameters randomly. Monte–5

Carlo simulations with uniform probability laws is not suited for even moderately complex AMs.

The sequential calibration results in small spatial windows, especially for moisture variables. The differences with the 2Z

methods for the first level of analogy are due to the different initial number of analogs, which has an influence on the choice

of the spatial windows. The optimized parameters for the 2001–2010 period perform better than the ones established based on

the other calibration period, which can be expected.10

The results of the GAs show more variability than previously, which is likely due to a higher difficulty related to the larger

number of parameters that have to be optimized, and to the presence of potentially more correlated information. The choice of

the spatial windows for the moisture index at 12 h UTC is similar between the different optimization techniques and is a small

line of zonally extended points. The chosen spatial windows by GAs for the moisture index at 24 h UTC is surprisingly large.

This is likely due to the search of the GAs for additional information at a more distant location due to highly correlated data15

between 12 h UTC and 24 h UTC at the same 850 hPa level. The lack of convergence for this second spatial window means

that the use of this variable is likely not optimal, and it would probably add more information considered at another pressure

level, which was shown in Horton et al. (2018). The analysis of the convergence of multiple GA optimizations can thus be

useful in interpreting the results and in identifying potentially suboptimal structures or variables.

The former results present a relatively noisy signal for the different optimization methods or the Monte–Carlo simulations.20

This may be due (1) to the fact that we consider a station’s time series instead of regional ones, which could decrease some

variability from small-scale patterns in the precipitation fields, and (2) because we consider a short period for calibration.

Despite the high number of simulations, Monte–Carlo simulations with a uniform probability law are not appropriate for even

moderately complex AMs. It is likely that using a Gaussian probability law centered on the station would be more appropriate.

5 Feedback from operational forecast25

AtmoSwing Forecaster has been issuing operational forecasts since 2012 for the upper Rhône catchment in Switzerland (Fig.

1) in the context of a flood management project (García Hernández et al., 2009). First, the 2Z and 2Z-2MI methods were

implemented using NR-1 as the archive and GFS outputs to describe the target situation (Horton, 2012). Two more recent

methods that were optimized by genetic algorithms (Horton et al., 2018) were also implemented since 2016. These methods

were found to provide better results both in the perfect prognosis context and in the operational forecast. The results of the30

forecasts are provided for the Binn station (as in Sect. 4) for the 4Zo method with a lead time of three days (forecast issued

three days before the target day; Fig. 11) and the 4Zo-2MIo method with a lead time of one day (Fig. 12). For both methods and

both lead times, the forecast obtained by analogs is satisfactory with observations falling within the distribution provided by
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the analogs. Moreover, when the analog distribution reached high values, it often matched with the observed high precipitation

values. As discussed in Sect. 3.4, high precipitation events are better described by the 90th percentile than the center of the

distribution. The distributions provided by the analogs are quite large but nevertheless provide useful information.

Figure 13 shows how the most significant event (Oct./Nov. 2018) is predicted by the four implemented methods at different

lead times. The two older methods (2Z and 2Z-2MI) do not forecast the main peak as well as the optimized ones (4Zo and5

4Zo-2MIo). The forecast with a lead time of seven days show that high precipitation amounts can be expected, but the timing

is not well defined as the four daily forecasts show high variability of the timing of the occurrence of the peaks (illustrated

by the four forecasted 90th percentiles in Fig. 13). The timing and amplitude of the event are relatively well captured by the

4Zo method with a lead time of four days. For the same lead time, adding moisture data (4Zo-2MIo) is not informative as the

distributions are wider, and thus the occurrence of the peaks is more uncertain. Globally, moisture data was not very informative10

for this event. This might be related to the use of NR-1 as the archive, which has a very coarse resolution and was shown to not

perform as well as other reanalyses (Horton and Brönnimann, 2018). It is likely that another dataset would be more accurate,

and would be recommended for operational use.

6 Limitations of AMs

Although AMs were found to be relevant for several applications, they have some limitations which must be considered.15

The first is their lower performance for summer compared to winter (Bliefernicht, 2010). The relationship between synoptic

predictors and local rainfall is lower in the summer, due to convective precipitations that present higher spatial variability and

depend on other parameters. The variables that describe the synoptic circulation are indeed not able to predict the location of

thunderstorm cells. This was also observed by Ben Daoud (2010), who set up a specific model for the summer months (June

15 to September 15).20

Another limitation is the need for a long archive of the predictand variable, for example, precipitation. Without several

decades of data, AMs cannot be used. An alternative for regions without long archives of station measurements can be using

satellite-derived precipitation. Long predictor archives are also required, which is easily satisfied with reanalyses. These may

not be perfect in terms of homogeneity, but several can be considered to be of sufficient quality Horton and Brönnimann (2018).

Moreover, reanalysis data are available all around the world, which represent a great potential for AMs.25

Then, there is also the issue that extreme events may be under-represented in the considered sample of analog situations.

Indeed, in a limited weather archive, events with high return periods are not frequent, which can introduce a bias in the predic-

tion. There are however techniques to correct for this bias (see Marty, 2010). In order to produce new extremes, postprocessing

of the distribution of analogs might be necessary, for example, by using a scaling based on a predictor variable.

It is also legitimate to raise the question of the relevance of an approach based on archives of past situations in the context30

of climate change. Changes in circulation frequencies and the persistence of certain weather types (Hewitson and Crane, 1996)

can be accounted for by AMs that contain predictors that characterize atmospheric circulation. Thus, if the archive of weather

events is long enough, it is reasonable to assume that a large part of future events is already represented, even those whose
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frequency will change under different climatic conditions (Wetterhall, 2005). Changes in moisture and temperature variables

must be accounted for to correctly capture the climate change signals. Dayon et al. (2015) has demonstrated the transferability

of certain AMs to future climate conditions.

7 Conclusions

AMs are cost-effective techniques for downscaling local meteorological variables from large-scale predictors. They are used5

in the context of operational forecasting for flood management or hydropower production, or in a climatic context for climate

change impact modelling or reconstruction of past meteorological conditions.

AtmoSwing is a suite of tools that facilitate processing of multiple AM structures in a flexible and efficient way. It consists of

four software: the Forecaster for operational forecasting, the Viewer for displaying the Forecaster outputs, the Downscaler for

applying AMs in a climatic context, and the Optimizer to infer the relationship between predictors and predictands. AtmoSwing10

is written in C++, is open source and has been extensively tested.

Processing operational forecasts with AtmoSwing requires very low computing infrastructure (implementation is possible

on a Raspberry Pi 3) yet it can yield useful information, such as early warning for high precipitation events in the case of an

application to flood forecasting. Valuable results were obtained in a three-year-long operational forecast in the Swiss Alps. With

the global availability of reanalyses, it can be applied to any region with a relatively long predictand time series. The predictors15

and the structure of the method can be adapted to the local meteorological processes and controlled through xml files. The

connection with open access NWP models such as GFS is integrated into AtmoSwing and requires no prior processing. The

Forecaster can be installed on a computer or a headless server and run automatically to issue a forecast as soon as new NWP

outputs are available. The Viewer offers a user-friendly display of the forecasts, with different levels of synthesis and details. It

first provides an overview of potentially critical situations (possibility of high precipitation at a station for a certain lead time)20

but also allows plotting of the details of the distributions provided by the selected analog dates.

The Downscaler allows the AMs to be used in a climatic context, either for climate reconstruction or for climate change

impact studies. When used for future climate analysis, the user must pay close attention to the selected predictors, so that they

are able to represent the climate change signal. This is a relatively new field of application of AMs, which was proven to be of

interest.25

The Optimizer implements different optimization techniques, such as the sequential approach, a Monte–Carlo simulation,

and a global optimization technique. Inferring the statistical relationship between predictors and predictand is quite intensive

in terms of processing, as it requires numerous assessment over decades. To this end, the Optimizer has been highly optimized

in terms of computing efficiency and is parallelized over multiple threads. It scales well on a Linux cluster. This procedure is

only required to infer the statistical relationship, which can then be used in forecasting or downscaling at a low computing cost.30

One possible key improvement to AtmoSwing Forecaster is a multi-models approach that relies on outputs from multiple

global NWP models to better take into account the uncertainty of the NWP forecasts. Similarly, Thevenot (2004) demonstrated

the benefit of using ensembles from global NWP as input for the method. The implementation consists of combining the
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selected analog days associated with each of the members. The forecast on the ensemble was found to be more accurate than

the deterministic control for a lead time of four days and more (Thevenot, 2004).

AtmoSwing aims to facilitate implementation of AMs with different types of structure and various predictors while be-

ing computationally efficient with low computing requirements. It can be applied to different contexts, allowing them to be

operational forecasting or climate impact studies. It is open source and will hopefully save future users some development5

time.

Code availability. AtmoSwing is open source and the code is available at https://github.com/atmoswing/atmoswing/ (Horton, 2018a). At-

moSwing R tools is available at https://github.com/atmoswing/tools-r/ (Horton and Burkart, 2018). AtmoSwing Python tools is available at

https://github.com/atmoswing/tools-py/ (Horton, 2018b). The manual can be found https://atmoswing.readthedocs.io. The main website for

AtmoSwing is http://www.atmoswing.org.10
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Figure 1. Performance score (CRPSS) of the 30 best variables from the NCEP/NCAR reanalysis dataset, when considered separately (no

combination), for the Chablais region and the southeast ridges. The analogy criterion is S1 when there is an asterisk next to the variable

name, and RMSE otherwise. Colour illustrates the variable type: green = atmospheric circulation, blue = moisture, orange = temperature,

yellow = radiation, purple = vertical velocity, and gray = other. SLP stands for sea level pressure and Z for geopotential height. The blue

square indicates the Binn station, which is analyzed in more detail later on.
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Figure 2. Proposed structure for naming the parameterizations of the AM.

Predictor n

Analogue dates,
Analogy criteria values, ...

Preselection (e.g. 120 days)

Search for analogues

Preselected dates

New level of
analogy ?

yes

Predictor 2

Predictor 1

Predictors

Assignment of predictand values

Probabilistic forecast

no

Parameters of the analogy:
spatial and temporal windows, 

analogy criteria, weighting, 
number of analogues

Predictand

Figure 3. Simplified flowchart of the AM implementation in AtmoSwing.

31

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-50
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 28 March 2019
c© Author(s) 2019. CC BY 4.0 License.



Area

Regular area

Generic area

Predictor file

NetCDF file

Grib file

Parameters

Predictand

PrecipitationTemperature

Predictor

Archive

Forecasting

Climate

ERA-20C

MERRA-2

ERA-INT

20CR-2c

CFSR

JRA-55 (C)

NR-I

NR-II

CERA-20C

GFS

IFS

OISST v2

CMIP5

CORDEX

Result

Time array

Processor

Standard

Forecaster

Optimizer

Method

Downscaler

Classic

Exploration

Evaluation

Random

Genetic algo.

Calibration OptimizationDownscalingForecasting

CriterionScore

MD

RMSE

S1

SAD

Dates Values Scores Forecast

Conting. table

CRPS (S)

BS (S)

RMSE

Rank histo.

others...

XML file

NetCDF file

XML file

Figure 4. Simplified illustration of the main classes or objects involved in the core of the AM processing in AtmoSwing. The processor

class interacts with parent classes that can represent different entities, such as different reanalysis datasets, predictand, criteria, scores, and

in different contexts: calibration, forecasting, and downscaling. The items in green are only available in the Optimizer, the ones in blue, in

the Forecaster, and the ones in Orange, in the Downscaler. The area represents the spatial window and the time array a list of candidate

dates (from preselection or previous analogy levels). The links to the parameters illustrate the dynamic definition of the different types by the

parameters from the XML file.
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Figure 5. Graphical user interface of the Viewer module (Elevation data from The Shuttle Radar Topography Mission (SRTM), and hydro-

logical network from SwissTopo).
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Figure 6. Visualization of multiple lead times on the map (Elevation data from the SRTM, and hydrological network from SwissTopo).

Figure 7. Visualization of the forecasted time series for an event at the Binn station (Fig. 1) in October 2018.
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Figure 8. Visualization of the forecasted precipitation distribution for a given lead time for an event at the Binn station (Fig. 1) in October

2018.
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Figure 9. Example of parameter values for 2Z (Table 2) for the precipitation at the Binn station (Fig. 1) on the period 2001–2010. The

parameters are the extent (min/max longitude/latitude) of the spatial windows for the geopotential height at 500 and 1000 hPa, and the

number of analogs. The green vertical bar in the plots represents the location of the station. The circles represent random parameters from the

Monte–Carlo analysis. The plots are truncated at the 25th best percentiles for 50,000 realizations. Squares are the results of the sequential

calibration and triangles result from genetic algorithms. Markers in blue represent parameters optimized for the period 1981–2000 and

applied to 2001–2010. Markers in red represent parameters optimized directly for the period 2001–2010.
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Figure 10. Same as Fig. 9 but for 2Z-2MI (Table 2). Results are shown for both levels of analogy (geopotential height and moisture index).
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Figure 11. Forecasts for the Binn station (Fig. 1) over the period 2016–2018 obtained using the 4Zo method (Table 2) with a lead time of

three days. The distributions provided by the analog values are summarized by the 90th, 60th, and 30th percentiles, as well as the maximum

(crosses), all of them averaged over the four daily forecasts. Additionally, the four 90th percentiles were also plotted to show the consistency

/ variability between the four daily forecasts. The shaded areas correspond to forecasts downtime.38
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Figure 12. Same as Fig. 12 but for the 4Zo-2MIo method (Table 2) with a lead time of one day.
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Figure 13. Forecasts for the Oct./Nov. 2018 event at the Binn station (Fig. 1) for 2Z, 4Zo, 2Z-2MI and 4Zo-2MIo for lead times from seven

to zero days prior to the target day.
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Table 1. Reanalysis datasets that can be read by AtmoSwing.

Name Institution
Period Output Model Model Type of

of record resolution resolution vintage input

NR-1 NCEP, NCAR 1948 – present 2.5◦x 2.5◦ T62 (∼1.88◦), L28 1995 full

NR-2 NCEP, DOE 1979 – present 2.5◦x 2.5◦ T62 (∼1.88◦), L28 2001 full

ERA-INT ECMWF 1979 – present 0.75◦x 0.75◦ TL255 (∼0.70◦), L60 2006 full

20CR-2c NOAA-CIRES 1851 – 2014 2◦x 2◦ T62 (∼1.88◦), L28 2008 surface

CFSR NCEP 1979 – present 0.5◦x 0.5◦ T382 (∼0.31◦), L64 2009 full

JRA-55 JMA 1958 – present 1.25◦x 1.25◦ TL319 (∼0.36◦), L60 2009 full

JRA-55C JMA 1958 – 2015 1.25◦x 1.25◦ TL319 (∼0.36◦), L60 2009 conventional

ERA-20C ECMWF 1900 – 2010 1◦x 1◦ TL159 (∼1.13◦), L91 2012 surface

MERRA-2 NASA GMAO 1980 – present 0.625◦x 0.5◦ 0.625◦x 0.5◦, L72 2014 full

CERA-20C ECMWF 1901 – 2010 1◦x 1◦ T159 (∼1.13◦), L91 2016 surface
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Table 2. Some existing analog methods, listed by increasing complexity. P0 is the preselection (PC: on calendar basis, that is ±60 days

around the target date), L1, L2 and L3 are the subsequent levels of analogy. N1, N2 and N3 are the number of analogs to select at each level

of analogy. The meteorological variables are: Z – geopotential height, T – air temperature, W – vertical velocity, MI – moisture index, which

is the product of the relative humidity at the given pressure level and the total water column, MF – moisture flux, which is the product of MI

with the wind intensity. The analogy criterion is S1 for Z and RMSE for the other variables.

Type P0 L1 N1 L2 N2 L3 N3 Reference

PC-2Z PC Z1000@12h 50 Bontron 2004

Z500@24h

PC-4Z PC Z1000@06h ∼27 Horton et al. 2018

Z1000@30h

Z700@24h

Z500@12h

PC-2Z-2MI PC Z1000@12h 70 MI850@12h 30 Bontron 2004

Z500@24h MI850@24h

PC-2Z-2MI PC Z1000@06h 75 MI925@06h 30 Marty 2010

Z500@18h MI925@18h

PC-2Z-2MF PC Z1000@06h 60 MF700@06h† 25 Marty 2010

Z500@18h MF700@18h

PC-4Z-2MI PC Z1000@30h ∼63 MI700@24h ∼24 Horton et al. 2018

Z850@12h MI600@12h

Z700@24h

Z400@12h

PT-2Z-4MI T925@36h Z1000@12h 70 MI925@12h 25 Ben Daoud et al. 2016

T600@12h Z500@24h MI925@24h

MI700@12h

MI700@24h

PT-2Z-10MI T925@36h Z1000@12h 70 MI925@06-30h 25 Ben Daoud 2010

T600@12h Z500@24h MI700@06-30h

PT-2Z-4W-4MI T925@36h Z1000@12h 170 W850@06h 70 MI925@12h 25 Ben Daoud et al. 2016

T600@12h Z500@24h W850@12h MI925@24h

W850@18h MI700@12h

W850@24h MI700@24h

† or MF925@06h+18h as an alternative

42

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-50
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 28 March 2019
c© Author(s) 2019. CC BY 4.0 License.


