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Abstract. Analog methods (AMs) use synoptic scale predictors to search in the past for similar days to a target day in order to

infer the predictand of interest, such as daily precipitation. They can rely on outputs of numerical weather prediction (NWP)

models in the context of operational forecasting or outputs of climate models in the context of climate impact studies. AMs

require low computing capacity and have demonstrated a useful potential for application in several contexts.

AtmoSwing is an open source software written in C++ that implements AMs in a flexible way so that different variants can5

be handled dynamically. It comprises four tools: a Forecaster for use in operational forecasting, a Viewer to display the results,

a Downscaler for climate studies, and an Optimizer to establish the relationship between predictands and predictors.

The Forecaster handles every required processing internally, such as NWP outputs downloading (when possible) and reading,

grid interpolation, etc., without external scripts or file conversion. The processing of a forecast requires low computing efforts

and can even run on a Raspberry Pi computer. It provides valuable results, as revealed by a three-year-long operational forecast10

in the Swiss Alps.

The Viewer displays the forecasts in an interactive GIS environment with several levels of syntheses and details. This allows

providing a quick overview of the potential critical situations in the upcoming days, as well as the possibility for the user to

delve into the details of the forecasted predictand and criteria distributions.

The Downscaler allows using AMs in a climatic context, either for climate reconstruction or for climate change impact15

studies. When used for future climate studies, it is necessary to pay close attention to the selected predictors, so that they

contain the climate change signal.

The Optimizer implements different optimization techniques, such as a semi-automatic sequential approach, Monte–Carlo

simulations, and a global optimization technique using genetic algorithms. Establishing a statistical relationship between pre-

dictors and predictands is computationally intensive because it requires numerous assessments over decades. To this end, the20

code was highly optimized for computing efficiency, is parallelized (using multiple threads) and scales well on a Linux cluster.

This procedure is only required to establish the statistical relationship, which can then be used for forecasting or downscaling

at a low computing cost.
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1 Introduction

Approaches based on the concept of analogy are widespread in different domains of science and engineering. In hydromete-

orology, it entails retrieving data on atmospheric conditions from the past that can be considered as similar to the situation

at hand, with consequences that may be expected to be similar. The consequences can be local variables of interest such as

the occurrence of fog, favourable conditions for avalanches, wind intensity, or the precipitation amount. The approach relies5

on the idea expressed by Lorenz (1956, 1969), that similar situations in terms of atmospheric circulation are likely to lead to

similar local weather. AMs require at least two concurrent archives: one that provides the value of the local variable of interest

called the predictand, and another one describing the past atmospheric situations through different variables called predictors,

to which the situation at hand will be compared.

Usually, the predictand values could be derived by modelling the chain of processes linking the predictors to the predictand.10

The processes involved range from large-scale dynamical states of the atmosphere down to very small-scale microphysical

processes. These require models that are extremely complex, data-intensive, and time-consuming. Conversely, given an ap-

propriate set of predictor archives, a sufficient number of situations analogous to a target situation can be identified so that

reasonable values can be obtained for the predictand, with low computing effort. This is particularly true for a specific pre-

dictand that is critical in hydrometeorological applications, namely, the precipitation amount over a given domain and time15

duration. The forecast provided by AMs is issued as a statistical distribution based on the observed predictand values from the

selected analogs, unless only the single best analog is considered, which usually results in a lower skill (Bontron and Obled,

2005).

Analog methods (AMs) are used in two different types of approaches (Rummukainen, 1997): perfect prognosis, for which

the statistical relationship is calibrated using observed predictors, and model output statistics (MOS), for which the relationship20

is calibrated using outputs of a specific climate or numerical weather prediction (NWP) model. AMs are often used to predict

daily precipitation, either in an operational forecasting context (e.g. Guilbaud, 1997; Bontron and Obled, 2005; Hamill and

Whitaker, 2006; Bliefernicht, 2010; Marty et al., 2012; Horton et al., 2012; Hamill et al., 2015; Ben Daoud et al., 2016) or a

climate downscaling context (e.g. Zorita and von Storch, 1999; Wetterhall, 2005; Wetterhall et al., 2007; Matulla et al., 2007;

Radanovics et al., 2013; Chardon et al., 2014; Dayon et al., 2015; Raynaud et al., 2016). Other predictands are also considered,25

such as precipitation radar images (Panziera et al., 2011; Foresti et al., 2015), temperature (Radinovic, 1975; Woodcock, 1980;

Kruizinga and Murphy, 1983; Delle Monache et al., 2013; Caillouet et al., 2016; Raynaud et al., 2016), wind (Gordon, 1987;

Delle Monache et al., 2013, 2011; Vanvyve et al., 2015; Alessandrini et al., 2015b; Junk et al., 2015b, a), solar radiation or

power production (Alessandrini et al., 2015a; Bessa et al., 2015; Raynaud et al., 2016), snow avalanches (Obled and Good,

1980; Bolognesi, 1993), and the trajectory of tropical cyclones (Keenan and Woodcock, 1981; Sievers et al., 2000; Fraedrich30

et al., 2003). AMs are also used for seasonal forecast (Barnston et al., 1994; Xavier and Goswami, 2007; Charles et al., 2012;

Wu et al., 2012; Shao and Li, 2013).

An AM was evaluated during the project STARDEX (STAtistical and Regional dynamical Downscaling of EXtremes for

European regions, see Goodess, 2003; STARDEX, 2005). One of the goals of the project was to compare various downscaling
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methods to determine weather extremes, and the AM was selected as being among the most useful techniques for daily precip-

itation (Maheras et al., 2005; Schmidli et al., 2007). Bliefernicht (2010) obtained superior results with AMs than downscaling

methods based on weather typing.

The use of AMs for operational forecasting of daily precipitation originates in the work of Duband (1970, 1974, 1981).

They were then designed for operational forecasting at EDF (Electricité de France) in order to better manage water resources5

and flood risks. They are used mainly by practitioners, notably hydropower companies (Desaint et al., 2008; Ben Daoud et al.,

2009; Obled, 2014) or flood forecasting services in France and Switzerland (Marty, 2010; García Hernández et al., 2009;

Horton et al., 2012). When comparing the results from AMs to an ensemble forecast, Marty (2010) found AMs to be better

than the considered ensemble, particularly for strong precipitation. However, AMs should not be considered as a substitute for

NWP models, but as a complement in order to obtain a fast statistical adaptation that is known to be accurate several days in10

advance. Therefore, they contribute to the analysis of potentially critical situations in flood forecasting, for example, and are

very useful in early warning.

Hamill and Whitaker (2006) used an analogy-based approach on the GFS reforecasts in order to correct systematic errors in

the ensemble forecasts of temperature and precipitation. These biases could be corrected by taking into account the intrinsic

local climatology provided by the AM. Moreover, the under-dispersion of the ensemble forecast from the numerical model has15

also been corrected using analogs (Hamill and Whitaker, 2006). Correction of ensemble forecast under-dispersion using AMs

is also used operationally at EDF (Électricité de France).

The present work does not introduce a new method, but a software named AtmoSwing that implements AMs in a versatile

and efficient way. It is versatile in that it facilitates the building of AM structures in a dynamic way, and because the code

is written with an object-oriented architecture. It is efficient because it is written in C++ and leverages parallel computing.20

AtmoSwing is made up of different modules targeted either for operational forecasting (the Forecaster and the Viewer) or

for climate impact studies (the Downscaler). Additionally, a module (the Optimizer) is available for calibrating the different

parameters of the method. AtmoSwing is continuously evolving and has been used in Horton et al. (2012, 2017a, b, 2018) and

Horton and Brönnimann (2018).

Some existing AMs designed for daily precipitation will first be described along with the required data (Sect. 2) and the25

software will then be presented (Sect. 3) together with the details of the modules: the Forecaster (Sect. 3.3), the Viewer (Sect.

3.4), the Downscaler (Sect. 3.5), and the Optimizer (Sect. 3.6). Section 4 discusses the parameters space of AMs through

different calibration techniques and Sect. 5 provides a feedback from operational precipitation forecasting in the Swiss Alps.

Some limitations of the AM are discussed in Sect. 6. The conclusions (Sect. 7) provide some additional perspectives for future

developments of AtmoSwing.30
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2 Data and methods

2.1 Required data

AMs generally require three datasets: the historical predictand values, the historical predictor values for the same period and

the predictors describing the target situation.

The predictand is often a daily or 6-hrly time series. One of the most used predictand is the daily precipitation, which is5

usually averaged over subregions in order to smooth local effects (Obled et al., 2002; Marty et al., 2012). These time series

can be normalized by the precipitation value for a certain return period (for example 10 years, Djerboua, 2001) to allow for an

easier comparison between subregions subject to different precipitation regimes.

In the early days of AMs in operational forecasting, the predictors were based on radio sounding data. Nowadays, the

predictors’ archive is often a global atmospheric reanalysis dataset, which provides gridded large-scale variables at any location10

in the world. Reanalyses are produced using a single version of a data assimilation system coupled with a forecast model

constrained to follow observations over a long period. They provide multivariate outputs that are physically consistent, which

contain information on the locations where few or no observations are available, including variables that are not directly

observed (Gelaro et al., 2017). Even though reanalyses are considered as very accurate in a data-rich region such as Europe,

they can have a non-negligible impact on the skill of the AMs, that can be even higher than the choice of the predictor variables15

(Dayon et al., 2015; Horton and Brönnimann, 2018). AtmoSwing can read eleven different reanalyses (Table 1), and others can

be easily added thanks to the encapsulation of the dataset characteristics in the objects. Recommendations for the selection of

a reanalysis can be found in Horton and Brönnimann (2018). Other predictor archives can also be used such as Sea Surface

Temperature (SST, Reynolds et al., 2007). Bontron (2004) proposed that the minimum length of the archive should be 30 years

for the prediction of daily precipitation under usual conditions, and 40 years or more for heavy rainfall. For smaller time-steps,20

shorter archives can be used (Horton et al., 2017b).

The predictors’ dataset that describes the target situation varies according to the application of the AM. For operational

forecasting (Sect. 3.3) they are outputs of NWP models such as the European Centre for Medium–Range Weather Forecasts

(ECMWF) Integrated Forecasting System (IFS) or the National Centers for Environmental Prediction’s (NCEP) Global Fore-

cast System (GFS, Kanamitsu et al., 1991; Kanamitsu, 1989). For climate impact studies (Sect. 3.5), they are outputs of general25

circulation models (GCMs) or regional climate models (RCMs), such as the Coupled Model Intercomparison Project Phase 5

(CMIP5, Taylor et al., 2012) and EURO-CORDEX (Jacob et al., 2014).

2.2 Analog methods for daily precipitation

AtmoSwing does not rely on a single structure of the AM, but can implement different variants. A non-exhaustive selection of

methods developed for different regions will be presented hereafter, focusing on the prediction of daily precipitation.30
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2.2.1 Characteristics of the AM

Definition of the analogy – The AM is based on the principle that two similar synoptic situations may produce similar local

effects (Lorenz, 1956, 1969). The perfect analogy does not exist, but sufficiently similar situations leading to similar effects

can be identified. To be relevant, this analogy must be selected by optimizing the following elements:

– The meteorological variables (predictors) must contain synoptic scale information with a direct or indirect dependency5

with the target predictand.

– The pressure (or isentropic) levels at which the predictors are selected.

– The spatial windows are the domains over which predictors are compared.

– The temporal windows are the hours of the day at which the predictors are considered when the time step of the predictors

is smaller than the one of the predictand.10

– The analogy criteria are distance measures used to rank past situations according to their degree of similarity with the

target situation.

– Possible weights between the predictors (e.g., Horton et al., 2017b; Junk et al., 2015b).

– The number of analog situations Ni to retain for the analogy level i.

Seasonal preselection – Lorenz (1969) restricted the search for analog situations to the same period of the year to cope with15

seasonal effects. This preselection is now often implemented as a moving selection of ±60 days centred around the target

date, for every year of the archive (Table 2, Bontron, 2004; Marty et al., 2012; Horton et al., 2012; Ben Daoud et al., 2016).

Alternatively, the candidate dates can be selected based on similar air temperature at the nearest grid point (Table 2, Ben Daoud

et al., 2016).

Analogy of atmospheric circulation – A conditioning by variables describing the atmospheric circulation is present in a vast20

majority of AMs. The geopotential field (Z) is often used as a predictor since Lorenz (1969), who based the analogy on the

levels 200, 500, and 850 hPa. Several pressure levels were later assessed by means of various criteria for the analogy based

on the geopotential field (Duband, 1970, 1974, 1981; Guilbaud, 1997). It was found to be important to calculate the analogy

for multiple pressure levels and different temporal windows (reference time of the predictors as they are usually available at

a 6-hrly temporal resolution or higher) instead of a unique selection (Guilbaud and Obled, 1998; Obled et al., 2002). Bontron25

(2004) showed that the choice of the temporal window can be more important than the choice of the atmospheric level for daily

precipitation (usually measured between 6 h UTC and 6 h UTC the following day). He concluded that the coupled geopotential

heights at 1000 hPa (Z1000) at 12 h UTC and 500 hPa (Z500) at 24 h UTC provided the best performance (for a subset of

the NCEP/NCAR Reanalysis I – NR-1; Kalnay et al., 1996; Kistler et al., 2001) for the investigated regions in France (Table

2). The analogy of the atmospheric circulation proposed by Bontron (2004) is still used operationally at the time of writing.30

Marty (2010) tested other temporal windows for intraday application on the basis of a more comprehensive reanalysis dataset
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and proposed to change the hours of observation to 06 h UTC and 18 h UTC. Horton et al. (2018) showed that a selection of

four combinations of pressure levels and temporal windows instead of two for the geopotential height improves the skill of the

method (4Z, Table 2). The pressure levels and temporal windows were automatically selected by genetic algorithms for the

upper Rhône catchment in Switzerland.

Additional levels of analogy – Additional levels of analogy are subsequent steps that subsample a lower number of analog5

situations from the antecedent level of analogy, based on other variables. A second level of analogy was first introduced by

Mandon (1985) and Vallée (1986) based on wind, moisture variables, or temperature. Gibergans-Báguena and Llasat (2007)

used the same kind of variables along with stability indexes. After a systematic assessment of the variables provided by NR-1,

Bontron (2004) noted that a moisture index (MI) based on the product of the relative humidity at 850 hPa (RH850) and the total

precipitable water (TPW) provided the best skill (Table 2). Marty (2010) selected the MI at 925 hPa instead of 850 hPa and also10

considered the moisture flux (MF) at 700 or 925 hPa (Table 2). The MF is the product of the MI with the wind intensity. Horton

et al. (2018) determined that the MI at 600 and 700 hPa were more useful than MF after the circulation analogy was applied to

the four atmospheric levels (Table 2). Ben Daoud et al. (2016) also reconsidered the parameters of the MI and ended up with

both 925 hPa and 700 hPa levels (Table 2). Subsequently, they added an additional level of analogy between the circulation and

the moisture analogy (Table 2) based on the vertical velocity at 850 hPa (W850). This AM, termed "SANDHY" for Stepwise15

Analogue Downscaling method for Hydrology (Ben Daoud et al., 2016; Caillouet et al., 2016), was primarily developed for

large and relatively flat/lowland catchments in France (Saône, Seine).

Analogy criteria – In early applications of AMs, the geopotential height was condensed using principal component analysis

(PCA) and the selection of analog situations was performed according to a Euclidean distance in the space of the PCA. Guilbaud

(1997) stopped using PCA to work directly with the raw data interpolated on grids, which resulted in an improvement. In the20

case of variables that describe atmospheric circulation, the Teweles–Wobus (S1) criterion (Eq. (1), Teweles and Wobus, 1954;

Drosdowsky and Zhang, 2003) was identified as the most suited criteria based on different studies (Wilson and Yacowar, 1980;

Woodcock, 1980; Guilbaud and Obled, 1998; Bontron, 2004). S1 allows for a comparison of the gradients and thus an analogy

of the atmospheric circulation instead of considering the actual values at the grid points. For other predictors, classic criteria

representing Euclidean distances between grid point values are used: Mean Absolute Error (MAE) and Root Mean Squared25

Error (RMSE), the latter being used most often.

S1 = 100

∑
i

|∆ẑi−∆zi|∑
i

max{|∆ẑi|, |∆zi|}
(1)

where ∆ẑi is the gradient between the ith pair of adjacent points from the geopotential field of the forecasted target situation,

and ∆zi is the corresponding observed geopotential gradient in the candidate situation. The differences are processed separately

in both directions. The smaller the S1 values, the more similar the pressure fields. AtmoSwing allows processing real gradients30

by taking into account the actual distance between points, or simple height differences by ignoring the horizontal distance.
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Under the latitudes of central Europe, the impact of neglecting the horizontal distance is small (not shown), but it can become

more important at higher latitudes.

Other parameters – The predictors are compared on a defined spatial window, which must be optimized to maximize the

useful information and minimize noise. The spatial window is usually considered unique for all predictors of a level of anal-

ogy. Using genetic algorithms, Horton et al. (2018) introduced different spatial windows between the pressure levels, which5

increased the skill. Additionally, a weighting between the predictors was also successfully added instead of a simple equal-

weights averaging. The number of analogs to select at each level of analogy should be optimized to be the best trade-off

between taking into account local variability and maximizing useful synoptic information. It depends on the predictor dataset,

the size of the spatial window and the length of the archive (Ruosteenoja, 1988; Van Den Dool, 1994).

Probabilistic forecast – After the last level of analogy, the observed values of the predictand of interest (here daily pre-10

cipitation amounts) of the Ni resulting dates provide the empirical conditional distribution considered as the probabilistic

forecast for the target day. The empirical frequencies are processed for every predictand value after classification, based on the

Gringorten parameters (for a Gumbel or exponential law; see Gringorten, 1963) and a probabilistic model can eventually be

fitted (e.g. Gamma function, Obled et al., 2002). The forecast is finally often synthesized according to percentiles 20, 60 and

90 % (Guilbaud, 1997; Guilbaud and Obled, 1998).15

Use in operational forecasting – In one of the very first uses in operational forecasting, radiosonde observations were used as

predictors to predict precipitation for the next two days. However, because of the chaotic nature of the atmosphere, two analog

situations quickly diverge over time (Lorenz, 1969). Thus, the AM has strong limitations regarding the analogy of temporal

trajectories (Bontron, 2004). Given the superior capability of numerical models for simulating the dynamic evolution of the

atmosphere, their outputs are now used as predictors for the coming days. The search for analogy thus aims to connect the20

forecasted synoptic situation with a local predictand, especially precipitation, which is more difficult to simulate for numerical

models. When using AMs in operational forecasting, it should be noted that some variables such as moisture or vertical

velocity might not be accurately predicted after a lead time of a few days due to higher uncertainties. Predictors describing the

atmospheric circulation are generally considered to be more reliable.

2.2.2 Regional characteristics25

The optimal predictors vary from one region to another, along with the leading atmospheric processes. Thus, the method needs

to be adapted to the local conditions, available data, and to the size of the region of interest. Even for two locations that are

close to each other but subject to different critical atmospheric conditions, the selection of the best predictors can vary. This is

illustrated in Fig. 1 for two subregions of the Rhône catchment in Switzerland. For both subregions, all variables of NR-1 were

assessed by optimizing the spatial window and the number of analogs for each one of them using the sequential calibration30

tool implemented in AtmoSwing (Sect. 3.6.4). The main similarities in the selection of the best predictor from NR-1 at both

locations are: (1) the variables describing the atmospheric circulation (pressure fields or geopotential heights) perform best,

and (2) they are better when compared with the S1 criteria (asterisk in Fig. 1) instead of the RMSE. The main difference is that

the pressure fields better explain the precipitation when they are considered close to the ground for the Chablais region, and at
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a higher altitude for the South-east crests. This is driven by the elevation of the stations and by the main atmospheric drivers

related to the precipitation at these locations.

The choice of the best predictors is likely to vary from one reanalysis dataset to another. This comprehensive comparison was

not repeated with other datasets, because a selection of the best predictors using genetic algorithms would be less cumbersome

(Sect. 3.6.5).5

2.2.3 Method nomenclature

Variants of the AMs are numerous and it is not always easy to reference them in a short and descriptive way. In AtmoSwing,

a basic nomenclature is used (Fig. 2) in order to express the structure into a simple identifier. This cannot describe all the

parameters of the AM, but quickly illustrates the structure of the method. This is particularly useful when working with a

global optimization method, where nothing is fixed but the structure of the AM. This nomenclature has been used in Horton10

et al. (2017a, b, 2018) and Horton and Brönnimann (2018).

The naming contains different blocs (separated by a hyphen) for the various levels of analogy. It starts with the specification

of the preselection (P; can be omitted when comparing AMs with the same preselection approaches), which can be one of two

types:

– PC: calendar period (±60 days around the target date)15

– PT: based on air temperature (Ben Daoud, 2010)

Then, the following levels of analogy are listed, which may start with an optional A (for analogy). For every level of analogy,

the number of variables used (combination of atmospheric levels and time of observation) is first provided, and then the short

name of the variable is given (according e.g. to ECMWF conventions; in upper case), for example:

– Z: geopotential (circulation)20

– TPW: total precipitable water

– RH: relative humidity

– V: wind velocity

– W: vertical velocity

– MI: moisture index (TPW * RH)25

– MF: moisture flux (V * TPW * RH)

In order to keep the identifier simple, no value of atmospheric level or time of observation is specified. Moreover, the

analogy criterion is not specified and is supposed to be S1 for Z and RMSE for the other variables. If anything changes from

these conventions, it can be noted as a flag. The flag (lower case) can also provide other information, such as the optimization

method:30
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– sc : sequential calibration (can be omitted as considered as default, see Sect. 3.6)

– go (or just ”o”): global optimization (by means of genetic algorithms for example)

This nomenclature can be adapted to specific needs or simplified for better readability (e.g. by removing the specification of

the preselection). Examples can be found in Table 2.

3 AtmoSwing5

AtmoSwing is made of 4 main modules that are standalone, but do share a common code basis: the Forecaster for operational

forecasting, the Viewer for displaying the forecast in a GIS environment, the Downscaler for climate applications, and the

Optimizer that is used to establish the statistical relationship that defines the analogy for a given predictand. Separating the

Forecaster and the Viewer allows for automation of the forecast on a server and the local display of the results. The Forecaster,

the Downscaler and the Optimiser can be used either with a graphical user interface or a command-line interface.10

3.1 Technical aspects

The code is written in object-oriented C++ and relies on the wxWidgets (Smart et al., 2006) library to provide a cross-platform

native experience to users. CMake is used to build AtmoSwing under Windows, Linux, or Mac OSX. Developments have

been partly performed using a test-driven development (TDD) approach. Continuous integration has been set up (on Travis

CI and AppVeyor) so that a collection of more than 600 tests can be evaluated on the three operating systems every time15

new code is pushed to the server, to prevent regressions. Every analogy criterion, performance score, searching and sorting

functions, data manipulation, etc., are tested. Some tests specific to the AM rely on the results of another analog sorting

software developed at the Université Grenoble Alpes. They ensure that the results of AtmoSwing are exactly equivalent to this

model, given the same parameters and data. The source code is under version control (Git) and is open source (on GitHub,

www.atmoswing.org, Horton, 2018a). The GitHub organization page (https://github.com/atmoswing) also contains toolboxes20

to work with the outputs of AtmoSwing in R (Horton and Burkart, 2018) or Python (Horton, 2018b).

Although processing an analog adaptation for a given target date is fast, numerous hindcasts over periods of several decades

must be performed for calibration, which may become very time-consuming. Thus, great effort has been focused on minimizing

the processing time using profiling tools. Firstly, all identified redundancies in the processing were removed. Then, when

searching for a certain date or data, the search starts in the region where it is likely to be found instead of exploring an entire25

array. Similar data are not loaded twice, but instead shared pointers are used. Several other improvements allow reducing the

computing time, for example the use of the quicksort method (Hoare, 1962) to sort the date vectors according to the analogy

criterion. Different implementation variants were tested in order to select the most efficient approach: for example, when storing

analog dates according to their criterion value, it is faster to insert them in a fixed-size array instead of storing them all and

subsequently sorting the array. When using the S1 criteria, the gradients are pre-processed on the predictor data, so that they30

are only processed once. AtmoSwing also uses the linear algebra library Eigen 3 (Guennebaud et al., 2010) for calculations on
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vectors and matrices, which result in time-saving. Multi-threading is also implemented so that the search for analog situations

in the archive is distributed among the available threads.

A user interface allows for the creation of the predictand database in the NetCDF format from text files. During the process,

Gumbel adjustments are automatically calculated for precipitation data to determine the values corresponding to different

return periods. The time series are normalized using a selected return period (default 10 years) and their square root can be5

processed. The final database file contains both the raw and the normalized series, as well as characteristics of the gauging

stations and some metadata.

3.2 Modular approach and implementation

AtmoSwing’s great strength is that it is designed to process the analog method in a modular fashion. The structure of the AM

(number of analogy levels, number of predictors) is built dynamically (Fig. 3), and nothing is fixed a priori. The software then10

successively performs as many analogy levels as the user specifies, using all the predictors indicated. Each level of analogy

results in an object containing target dates, analog dates, values of the analogy criteria, values of the predictand (at the final

stage), and other data. This object can be saved as a NetCDF file and/or can be injected into a new analogy level. The whole

structure of the AM is defined through an XML file. Even the time step of the method (6 or 24 hours for example) is a dynamic

parameter.15

Each implementation of the AM (see Sect. 2.2) may enter this scheme, even if it consists of pre-processed variables (e.g.

moisture index). Various pre-processing functions are implemented as the calculation of the moisture index or flux, multiplica-

tion operations, or calculation of the gradients. The user can dynamically specify the pre-processing method and the predictors

to use in the XML file.

This modular approach is implemented through object-oriented programming, as a direct consequence of polymorphism.20

This allows, for example, processing of a predictor object as a single interface to entities representing any reanalysis dataset.

Similarly, the criterion can be of different types, as well as the score for calibrating. The different types of objects that are

instantiated are defined in the XML parameters file. Thus, there is a single implementation of the analog method capable of

interacting with different types of objects in various contexts (calibration, forecasting, downscaling).

3.3 AtmoSwing Forecaster25

The Forecaster module allows processing of operational forecasts. The software can be compiled with a graphical user interface

(GUI), or without it to be used on a headless server through a command line interface (CLI). Processing a forecast requires

very low computing capabilities and can be performed on a low-end computer. It successfully runs on a Raspberry Pi 3 (Model

B).

To this day, the software can use the outputs of IFS or GFS (see Sect. 2.1). When possible, it first downloads the relevant30

model outputs and interpolates the gridded data to match the resolution of the archive. The analogs dates are next extracted

according to the selected AM variant and the predictand data are associated with the corresponding dates. The results are finally

saved in auto-describing NetCDF files. If requested, a synthetic XML file is generated for easier integration on a web platform,
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for example. Every step of the forecast, from predictor downloading (when possible) to the final results, is performed in the

software (and controlled through configuration), without the use of external scripts (e.g. for data conversion).

Both the GUI and the CLI facilitate the processing of a forecast based on the most recent NWP outputs, or for a given date or

period. When there is no new predictor data available, the forecast is not processed and computing resources are not consumed.

The recommended use is thus to set up an automatic task on a server to trigger the forecast every 30 minutes. This would for5

example provide four forecasts a day.

Before being used in operational forecasting, the AMs were calibrated in a perfect prognosis framework, usually using a

reanalysis dataset (Sect. 3.6). However, this does not take into account the uncertainty related to the forecast of the target

situation by NWP models. One might be willing to take into account this uncertainty, which increases with the lead time. A

solution is to increase the number of analog situations with the lead time, which should be optimized for every lead time on a10

forecast archive or a reforecast dataset (Thevenot, 2004). This technique is available in AtmoSwing, as the number of analogs

can be specified for every lead time.

A meteorological variable that was proven as a good predictor in the perfect prognosis framework may eventually be poorly

predicted by the selected NWP beyond a certain lead time. It should then be dropped after this lead time. For example, when

using moisture variables for the second level of analogy, Thevenot (2004) showed that beyond a lead time of three days the15

AM with two levels did not perform better than the one with a single level of analogy. Datasets of reforecast from the selected

NWP models allow assessing these aspects for different lead times.

3.4 AtmoSwing Viewer

AtmoSwing Viewer allows for the display of the files produced by the Forecaster in an interactive GIS environment (Fig. 4)

with several levels of synthesis. It first provides an overview of possible alerts using colour codes on the lead time switcher20

(upper right in the GUI, see Fig. 4) that represent the worst case scenarios, or in the alarm panel (on the left side of the GUI).

The alarm panel allows for a synthesis of the highest forecasted values for the different AMs and the different lead times. By

default, the colours are expressed relative to the 10 year return period, for the 90th percentile (which can be changed in the

preferences). This highest level of synthesis allows for quick identification of potentially critical situations in the days ahead.

Then, the user can explore the forecasts in more details, starting from the provided map (Fig. 4). The map displays the25

forecast of the selected AM variant (selected in the upper left panel) and the selected lead time (upper right). During the

forecast, one AM might have parameters that differ by subregions, such as the number of analogs or the spatial windows. The

Viewer automatically gathers the similar AM types and provides a composite view of the optimal forecasts per subregion. The

user can, however, choose to display the results associated with a single parameter set for the entire region (by opening the tree

view and selecting a child element), which provides a homogeneous set of analog dates. A display of all lead times on a single30

map is possible based on a symbolic representation on a circular band with a box for every lead time (Fig. 5). The number

of boxes is adjusted to the number of lead times. This representation offers a global spatiotemporal visualization for a chosen

AM.
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Colour scales in the map can be adjusted by choosing (on the left part of the GUI) the predictand reference (raw value or ratio

to different return periods) and the quantile of the distribution. Using a ratio to a certain return period eases the interpretation

of the expected precipitation given that reference values can drastically differ from one location to another, particularly in

mountainous regions. All information relative to a rain gauge station (or catchment), such as its location, its name, or the

values of different return periods, are stored in the forecast files to be displayed for end users who do not have the predictand5

database.

By clicking on a station on the map (or by selection from a dropdown list on the left), a new window appears with a plot of

the forecasted time series (Fig. 6). By default, the plot contains the usual three considered percentiles (90th, 60th, and 20th),

along with the 10 best analogs (crosses) with a colour code from yellow (tenth) to red (first). The 10-year return period value is

also displayed as a red line. The user can choose to hide any data or to display supplementary information (all analogs, all 10th10

percentiles, or all return periods) in the left panel. Traces of previous forecasts are also automatically loaded and displayed to

provide information on the consistency of the forecasts.

The user can then delve into further details and display the predictand cumulative distribution for a given lead time (Fig.

7). This can inform if there is a shift between the distribution of all analogs versus the 10 best. Such a shift warns of a risk of

under/overestimation when considering the full distribution, particularly for high precipitation amounts. Indeed, the number15

of extreme precipitation events in the archive is limited and they are thus likely to be underrepresented in the selected analog

dates. Different authors have shown that if the 60th percentile is best to forecast the occurrence and the amount of precipitation

for common situations, the 90th percentile is a better indicator for strong to extreme events (Djerboua, 2001; Bontron, 2004;

Marty, 2010). It is, therefore, necessary to pay close attention when the 90th percentile reaches high values, as this may be

indicative of possible extreme precipitations due the presence of several analog dates with high precipitation amounts in the20

distribution (Djerboua, 2001).

The distribution of the analogy criteria (not shown) can also be displayed to identify eventual discontinuities in the crite-

ria values. Finally, one can display the analog dates with the corresponding predictand and criteria values in an interactive

spreadsheet (not shown).

AtmoSwing Viewer relies on workspaces defined in XML files to specify the path to the forecast directories and the GIS25

layers. It is thus easy to switch from a forecast for a region to another. Many GIS formats are supported thanks to GDAL

(Geospatial Data Abstraction Library, GDAL Development Team, 2014). A user can have as many layers as desired and can

control their display properties (colour, transparency).

3.5 AtmoSwing Downscaler

The Downscaler module is the last addition to AtmoSwing. Its purpose is to downscale either climate model outputs for climate30

impact studies or reanalyses for climate reconstruction of the past.

The Downscaler is able to read outputs of general circulation models (GCMs) or regional climate models (RCMs), such as

the Coupled Model Intercomparison Project Phase 5 (CMIP5, Taylor et al., 2012) and EURO-CORDEX (Jacob et al., 2014),

and can be extended to other datasets. CMIP5 and EURO-CORDEX are distributed in the NetCDF format, but present a great
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variety of time steps, temporal references, spatial resolution, and file structures. A complete redesign of the management of the

predictor data was necessary to provide the flexibility required to account for this variety. The Downscaler is thus able to parse

these datasets original files by exploiting the self-descriptive capacity of NetCDF files.

The use of AMs in the context of future climate is rather new. Not all AMs can be used for this purpose, because some

predictors might not capture the climate change signal well and the preservation of the relationship between predictors and5

predictands must prevail. However, several authors have demonstrated the transferability of some AMs for future climate

(Dayon et al., 2015, 2018; Raynaud, 2016; Turco et al., 2017). The transferability of an AM must be assessed before it is used

in such a context.

AMs have also been used to perform climate reconstruction of the past (Caillouet et al., 2016, 2017; Bonnet et al., 2017).

Such applications allow, for example, hydrological modelling of flood events in periods where no meteorological data are10

available, or analysis of past severe droughts.

3.6 AtmoSwing Optimizer

AtmoSwing Optimizer is a single tool that integrates different optimization methods, presented in Sect. 3.6.3 to 3.6.5. Its

purpose is to establish the statistical relationship between the predictors and a predictand. The calibration framework is detailed

in Sect. 3.6.1 and the implemented skill scores are listed in Sect. 3.6.2.15

3.6.1 Calibration framework

The calibration of the AM is usually performed in a perfect prognosis (Klein et al., 1959) framework (Bontron, 2004; Ben

Daoud, 2010). Perfect prognosis uses observed or reanalyzed data to calibrate the relationship between predictors and predic-

tands, as opposed to the MOS approach that establishes the relationship based on model outputs. As a result, perfect prognosis

yields relationships that are as close as possible to the natural links between predictors and predictands. However, there are no20

perfect models and even reanalysis data may contain biases that cannot be ignored (Dayon et al., 2015; Horton and Brönni-

mann, 2018). Thus, the considered predictors should be as robust as possible, i.e., they should have minimal dependency on

the model. With MOS approaches, reforecasts can be used to establish the relationship between predictors and predictands,

provided that the archive is long enough. However, the calibration procedure must be performed every time a new version is

available in order to reduce the bias (Wilson and Vallée, 2002).25

A statistical relationship is established with a trial and error approach by processing a forecast for every day of a calibration

period. A certain number of days close to the target date are excluded to consider only independent candidate days. Validating

the parameters of AMs on an independent validation period is very important to avoid over-parametrization and to ensure that

the statistical relationship is valid for another period. In order to account for climate change and the evolution of measuring

techniques, it is recommended that a noncontinuous period for validation should be used, distributed over the entire archive30

(Ben Daoud, 2010; Horton and Brönnimann, 2018). AtmoSwing’s users can thus specify a list of the years to set apart for the

validation that are removed from possible candidate situations. At the end of the optimization, the validation score is processed

automatically.
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3.6.2 Implemented performance scores

Multiple scores are implemented in AtmoSwing Optimizer and are listed hereafter. Details are only provided for the CRPS

(Continuous Ranked Probability Score, Brown, 1974; Matheson and Winkler, 1976; Hersbach, 2000), which is most often

used.

Discrete deterministic predictions - These are, for example, deterministic predictions of threshold exceedances. The con-5

tinuous probabilistic nature of an ensemble of analogs can be transformed into a discrete prediction by considering a fixed

percentile from the distribution, which is compared to a threshold exceedance of the predictand. On the basis of a contingency

table (Wilks, 2006), multiple scores can be processed with AtmoSwing:

– Proportion correct (Finley, 1884)

– Threat Score (Gilbert, 1884)10

– Bias

– False Alarm Ratio

– Hit Rate or Probability of Detection

– False Alarm Rate

– Heidke Skill Score (Heidke, 1926)15

– Peirce Skill Score (Peirce, 1884)

– Gilbert Skill Score or Equitable Threat Score (Gilbert, 1884)

Continuous deterministic predictions - These types of predictions must be evaluated using distance measures. For AMs, the

provided distribution is summarized by a chosen percentile, which is compared to the predictand value. Available scores are as

follows:20

– Mean Absolute Error

– Root Mean Squared Error

Discrete probabilistic predictions – Here, the probability of occurrence or the probability of belonging to a certain category

is considered. The implemented scores are as follows:

– Brier Score (Brier, 1950)25

– ROC diagram (Relative Operating Characteristic or Receiver Operating Characteristic, Mason, 1982)

– RPS (Ranked Probability Score, Epstein, 1969)
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– SEEPS (Stable Equitable Error in Probability Space, Rodwell et al., 2010, 2011)

Continuous probabilistic predictions - These types of predictions are issued in the form of the expected statistical distribution

for a variable, which needs to be compared to an observed value. This is the situation encountered when using multiple analogs

from AMs.

Most assessment of AMs performance use the CRPS (Continuous Ranked Probability Score, Brown, 1974; Matheson and5

Winkler, 1976; Hersbach, 2000). It allows for evaluation of the predicted cumulative distribution functions F (y), for example,

the precipitation values y associated with the analog situations, compared to the single observed value y0 for a day i:

CRPSi =

+∞∫
0

[
Fi(y)−H(y− y0i )

]2
dy (2)

where H(y−y0i ) is the Heaviside function that is null when y−y0i < 0, and has the value 1 otherwise; the better the prediction,

the lower the score. This score is now commonly used for the evaluation of continuous variable prediction systems (Casati10

et al., 2008; Marty, 2010). It can be decomposed into several indicators also implemented into AtmoSwing Optimizer, such as:

reliability – resolution / uncertainty (Hersbach, 2000), or sharpness – accuracy (Bontron, 2004).

Its skill score expression is often used, with the climatological distribution of precipitation as the reference. The CRPSS

(Continuous Ranked Probability Skill Score) is thus defined as follows (Bradley and Schwartz, 2011):

CRPSS = 1− CRPS

CRPSclim

(3)15

where CRPSclim is the CRPS value for the climatological distribution. A better prediction is characterized by an increase in

CRPSS.

Finally, the rank diagram (Talagrand et al., 1997) and its accuracy as defined by Candille and Talagrand (2005) are also

available.

3.6.3 The sequential calibration20

The calibration procedure that we call ”sequential” or ”classic” was elaborated upon by Bontron (2004) (see also Radanovics

et al., 2013; Ben Daoud et al., 2016). It is a semi-automatic procedure that optimizes the spatial windows in which the pre-

dictors are compared and the number of analogs for every level of analogy. The different analogy levels (e.g. the atmospheric

circulation or moisture index) are calibrated sequentially. The procedure consists of the following steps (Bontron, 2004):

1. Manual selection of the following parameters:25

(a) Meteorological variable

(b) Pressure level
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(c) Temporal window (hour of the day)

(d) Number of analogs

2. For every level of analogy:

(a) Identification of the most skilled unitary cell (four points for the geopotential height when using the S1 criteria and

one point otherwise) of the predictor data over a large domain. Every point or cell of the full domain is assessed5

based on the predictors of the current level of analogy.

(b) From this most skilled cell, the spatial window is expanded by successive iterations in the direction of the largest

performance gain until no further improvement is possible.

(c) The number of analog situations Ni, which was initially set to an arbitrary value, is then reconsidered and optimized

for the current level of analogy.10

3. A new level of analogy can then be added based on other variables such as the moisture index at chosen pressure levels

and hours of the day. The procedure starts again from step 2 (calibration of the spatial window and the number of analogs)

for the new level. The parameters calibrated for the previous analogy levels are fixed and do not change.

4. Finally, the numbers of analogs for the different levels of analogy are reassessed. This is performed iteratively by varying

the number of analogs of each level in a systematic manner.15

The calibration is performed in successive steps for a limited number of parameters with the aim of minimizing error

functions or maximizing skill scores. Except for the number of analogs, previously calibrated parameters are generally not

reassessed. The benefit of this method is that it is relatively fast, it provides acceptable results, and it has low computing

requirements.

Small improvements were incorporated into this method in AtmoSwing Optimizer, then termed as ”classic+”, by allowing the20

spatial windows to perform other moves, such as: (1) increase in 2 simultaneous directions, (2) decrease in 1 or 2 simultaneous

directions, (3) expansion or contraction (in every direction), (4) shift of the window (without resizing) in 8 directions (including

diagonals), and finally (5) all the moves described above, but with a factor of 2, 3, or more. For example, an increase by two

grid points in one (or more) direction is assessed. This allows skipping one size that may not be optimal. These supplementary

steps often result in spatial windows that are slightly different. The performance gain is rather marginal for reanalyses with a25

low resolution such as NR-1, but might be more consistent for reanalyses with higher resolutions due to the presence of more

local minima.

3.6.4 Variables exploration

The sequential calibration can also be used to explore the variables of a dataset. A list of variables, pressure levels, and temporal

windows can be provided and all combinations are assessed through the classic(+) calibration. This functionality facilitates a30

comparison between the different variables of a dataset while considering the effect of the pressure level and the temporal

16



window. Using this approach, only one variable is assessed at a time, but multiple levels of analogy are possible. Figure 1

results from such an analysis of the NR-1 reanalysis.

3.6.5 Global optimization

The sequential calibration has strong limitations: (i) it cannot automatically choose the pressure levels and temporal windows

(hour of the day) for a given meteorological variable, (ii) it cannot handle dependencies between parameters, and (iii) it cannot5

easily handle new degrees of freedom. For this reason, genetic algorithms (GAs) were implemented in AtmoSwing Optimizer

to perform a global optimization of AMs. This allows for optimization of all parameters jointly in a fully automatic and

objective way. The method is described in Horton et al. (2017a) and an application is provided in Horton et al. (2018).

3.6.6 Monte–Carlo simulations

A Monte–Carlo analysis is also implemented in AtmoSwing. The procedure performs thousands of assessments of random10

parameters within given ranges. This method is not efficient for finding the best parameters set, but facilitates a better under-

standing of the sensitivity of the parameters. Its relevance is however limited for AMs with multiple levels of analogy and

variables. Indeed, for methods with a high number of parameters with wide authorized value ranges, the probability is too

low to obtain an acceptable configuration, and thus the resulting response surface might not be representative of the actual

distribution of optimal values (See examples in Sect. 4).15

4 Parameters space of AMs

An analysis of the parameters resulting from Monte–Carlo simulations, the sequential calibration, and GAs was performed for

the Binn station in Switzerland (Fig. 1) with ERA-INT (Table 1). High precipitation in the Binn region were responsible for

large damages downstream on several occasions, making it a station of particular interest. The results for this station cannot be

generalized to all stations, but similar conclusions can be drawn for other locations. Moreover, the parameters space at a single20

station is expected to be less regular than averaged regional precipitation. For all analyses, the archive period is 1981–2010

and the results are shown for the evaluation period (EP) 2001–2010. For methods requiring a calibration, the calibration period

(CP) is 1981–2000. These periods were chosen relatively short to allow for 50,000 Monte–Carlo simulations.

The analysis was first performed for the 2Z method (Table 2). The Monte–Carlo simulations (Fig. 8) show that the spatial

window for Z needs to cover a certain region, but can be larger than a critical size. The extent of the spatial window can thus25

be substantially different without significantly affecting the skill score. This was also observed by Bontron (2004), who noted

that ”performance slowly decreases if we consider a window that is slightly too large, while using windows that are too small

results in strong performance loss”. The dilution of the relevant synoptic information therefore does not necessarily have a

significant negative impact on the skill, while ignoring some of this information leads to stronger losses of skill. The issue of

equifinality related to the spatial windows is discussed in Radanovics et al. (2013). The station is usually contained within the30

optimal spatial domain, provided the predictors are selected for the same day as the predictand. The optimal number of analogs
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is relatively well defined, although the selection of more analog candidates is possible without a strong penalty in terms of

skill.

The results of the sequential calibration are also illustrated in Fig. 8 (with squares). The calibration was first performed

for the CP and applied to EP (blue squares), but was also achieved directly on the EP (red squares). Here, the parameters

established on the CP rather than the EP provided slightly better results when assessed on the EP. This is due to the limitations5

of the sequential calibration that can easily be trapped in a local optima. Indeed, the resulting spatial windows are small in this

case, and the algorithm stops as soon as an increase of the domain does not improve the score. This might not be an issue with

a low-resolution reanalysis such as NR-1 (2.5◦; Table 1), but this might become more of an issue with higher resolutions, such

as ERA-INT used here (0.75◦), because local minima are more frequent. In this case, the classic+ approach (Sect 3.6.3) might

be relevant, but is more time consuming. The Monte-Carlo analysis yielded some better parameter sets than the sequential10

calibration, due to the constraint on the latter to have the same spatial window for both pressure levels.

Fourteen optimizations by GAs were performed for the same setup (seven optimizations using the classical CP/EP setting

(blue triangles) and seven optimizations using the EP as the calibration period directly (red triangles)). The optimization with

GAs was given the same degrees of freedom as the Monte–Carlo simulations, so no weighting of the pressure levels was

considered (as in Horton et al., 2018). Thus, the parameters optimized for the EP (red) could have been found randomly using15

the Monte–Carlo simulations. However, this did not occur due to the low probability of obtaining this combination. GAs also

result in more skilful parameters than the sequential calibration. When optimized for the EP (red triangles), the parameters

yielded results that outperform the optimization for the CP (blue triangles) when assessed on the EP, as it can be expected.

Most optimizations converge to a narrow range of values, supposedly, the global optimum for the respective period. The main

difference compared to the sequential calibration is that the spatial windows are substantially larger, mainly for Z500, and they20

differ between pressure levels.

Monte–Carlo simulations were also performed for 2Z-2MI (Table 2) for the same periods and for the same station. Fig-

ure 9 shows that the Monte–Carlo simulations could not properly use the moisture variables of the second level of analogy.

The boxplots for the second level of analogy show an indifference of the location and the size of the spatial windows, which

is demonstrated to be wrong by the sequential calibration and the GAs. Moreover, the achieved CRPS here based on ran-25

dom parameters is not better than the method without the moisture variables (Fig. 8). Additionally, the number of analogs

corresponding to the best CRPS values are similar between the two levels of analogy, which means that the second level is

simply discarded. There are too many parameters with acceptable ranges that are too narrow to obtain meaningful parameters

randomly. Monte–Carlo simulations with uniform probability laws is not suited for even moderately complex AMs.

The sequential calibration results in small spatial windows, especially for moisture variables. The differences with the 2Z30

methods for the first level of analogy are due to the different initial number of analogs, which has an influence on the choice of

the spatial windows. The parameters calibrated for the EP perform better than the ones established on the CP and assessed on

the EP, which can be expected.

The results of the GAs show more variability than previously, which is likely due to a higher difficulty related to the larger

number of parameters that have to be optimized, and to the presence of potentially more correlated information. The choice of35
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the spatial windows for the moisture index at 12 h UTC is similar between the different optimization techniques and is a small

line of zonally extended points. The chosen spatial windows by GAs for the moisture index at 24 h UTC is surprisingly large.

This is likely due to the search of the GAs for additional information at a more distant location due to highly correlated data

between 12 h UTC and 24 h UTC at the same 850 hPa level. The lack of convergence for this second spatial window means

that the use of this variable is likely not optimal, and it would probably add more information considered at another pressure5

level, which was shown in Horton et al. (2018). The analysis of the convergence of multiple GA optimizations can thus be

useful in interpreting the results and in identifying potentially suboptimal structures or variables.

The former results present a relatively noisy signal for the different optimization methods or the Monte–Carlo simulations.

This may be due (1) to the fact that we consider a station’s time series instead of regional ones (related to variability from small-

scale patterns in the precipitation fields), and (2) because we consider a short period for calibration. Despite the high number of10

simulations, Monte–Carlo simulations with a uniform probability law are not appropriate for even moderately complex AMs.

It is likely that using a Gaussian probability law centered on the station (for the spatial windows) would be more appropriate.

In terms of processing resources, all experiments were done under similar conditions, i.e. using 16 cpus on a Linux cluster.

For 2Z, the sequential calibration took 7 min (time is expressed as wall clock time), Monte Carlo took 12.9 h (50,000 evalua-

tions), and GAs took 11.6 h on average (41,000 evaluations on average). For 2Z-2MI, the sequential calibration took 12.5 min,15

Monte Carlo took 16.8 h, and GAs took 20.4 h on average (61,000 evaluations on average). The computation time should be

taken into account in the choice of a calibration strategy.

5 Feedback from operational forecast

AtmoSwing Forecaster has been issuing operational forecasts since 2012 for the upper Rhône catchment in Switzerland (Fig.

1) in the context of a flood management project (García Hernández et al., 2009). First, the 2Z and 2Z-2MI methods were20

implemented using NR-1 as the archive and GFS outputs to describe the target situation (Horton, 2012). Two more recent

methods that were optimized by genetic algorithms (Horton et al., 2018) were also implemented since 2016. These methods

were found to provide better results both in the perfect prognosis context and in the operational forecast. The results of the

forecasts are provided for the Binn station (as in Sect. 4) for the 4Zo method with a lead time of three days (forecast issued

three days before the target day; Fig. 10) and the 4Zo-2MIo method with a lead time of one day (Fig. 11). For both methods and25

both lead times, the forecast obtained by analogs is satisfactory with observations falling within the distribution provided by

the analogs. Moreover, when the analog distribution reached high values, it often matched with the observed high precipitation

values. As discussed in Sect. 3.4, high precipitation events are better described by the 90th percentile than the center of the

distribution. The distributions provided by the analogs are quite large but nevertheless provide useful information.

Figure 12 shows how the most significant event (Oct./Nov. 2018) is predicted by the four implemented methods at different30

lead times. The two older methods (2Z and 2Z-2MI) do not forecast the main peak as well as the optimized ones (4Zo and

4Zo-2MIo). The forecast with a lead time of seven days show that high precipitation amounts can be expected, but the timing

is not well defined as the four daily forecasts show high variability of the timing of the occurrence of the peaks (illustrated
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by the four forecasted 90th percentiles in Fig. 12). The timing and amplitude of the event are relatively well captured by the

4Zo method with a lead time of four days. For the same lead time, adding moisture data (4Zo-2MIo) is not informative as the

distributions are wider, and thus the occurrence of the peaks is more uncertain. Globally, moisture data was not very informative

for this event. This might be related to the use of NR-1 as the archive, which has a very coarse resolution and was shown to not

perform as well as other reanalyses (Horton and Brönnimann, 2018). It is likely that another dataset would be more accurate,5

and would be recommended for operational use.

6 Limitations of AMs

Although AMs were found to be relevant for several applications, they have some limitations which must be considered.

The first is their lower performance for summer compared to winter when using standard predictors (Bliefernicht, 2010). The

relationship between synoptic predictors and local rainfall is lower in the summer, due to convective precipitations that present10

higher spatial variability and depend on other parameters. The variables that describe the synoptic circulation are indeed not

able to predict the location of thunderstorm cells. This was also observed by Ben Daoud (2010), who set up a specific model

for the summer months (June 15 to September 15).

Another limitation is the need for a long archive of the predictand variable, for example, precipitation. An alternative for

regions without long archives of station measurements can be using satellite-derived precipitation. Long predictor archives are15

also required, which is easily satisfied with reanalyses. These may not be perfect in terms of homogeneity, but several can be

considered to be of sufficient quality (Horton and Brönnimann, 2018). Moreover, reanalysis data are available all around the

world, which represent a great potential for AMs.

Extreme events may be under-represented in the considered sample of analog situations. Indeed, in a limited weather archive,

events with high return periods are not frequent, which can introduce a bias in the prediction. There are however techniques to20

correct for this bias (see Marty, 2010). In order to produce new extremes, postprocessing of the distribution of analogs might

be necessary, for example, by using a scaling based on a predictor variable.

It is also legitimate to raise the question of the relevance of an approach based on archives of past situations in the context

of climate change. Changes in circulation frequencies and the persistence of certain weather types (Hewitson and Crane, 1996)

can be accounted for by AMs that contain predictors that characterize atmospheric circulation. Thus, if the archive of weather25

events is long enough, it is reasonable to assume that a large part of future events is already represented, even those whose

frequency will change under different climatic conditions (Wetterhall, 2005). Changes in moisture and temperature variables

must be accounted for to correctly capture the climate change signals. Dayon et al. (2015) has demonstrated the transferability

of certain AMs to future climate conditions.
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7 Conclusions

AMs are cost-effective techniques for downscaling local meteorological variables from large-scale predictors. They are used

in the context of operational forecasting for flood management or hydropower production, or in a climatic context for climate

change impact modelling or reconstruction of past meteorological conditions.

AtmoSwing is a suite of tools that facilitate processing of multiple AM structures in a flexible and efficient way. It consists5

of four software: the Forecaster for operational forecasting, the Viewer for displaying the Forecaster outputs, the Downscaler

for applying AMs in a climatic context, and the Optimizer to establish the relationship between predictors and predictands.

AtmoSwing is written in C++, is open source, and has been extensively tested.

Processing operational forecasts with AtmoSwing requires very low computing infrastructure (implementation is possible

on a Raspberry Pi 3) yet it can yield useful information, such as early warning for high precipitation events in the case of an10

application to flood forecasting. Valuable results were obtained in a three-year-long operational forecast in the Swiss Alps. With

the global availability of reanalyses, it can be applied to any region with a relatively long predictand time series. The predictors

and the structure of the method can be adapted to the local meteorological processes and controlled through xml files. The

connection with open access NWP models such as GFS is integrated into AtmoSwing and requires no prior processing. The

Forecaster can be installed on a computer or a headless server and run automatically to issue a forecast as soon as new NWP15

outputs are available. The Viewer offers a user-friendly display of the forecasts, with different levels of synthesis and details. It

first provides an overview of potentially critical situations (possibility of high precipitation at a station for a certain lead time)

but also allows plotting of the details of the distributions provided by the selected analog dates.

The Downscaler allows the AMs to be used in a climatic context, either for climate reconstruction or for climate change

impact studies. When used for future climate analysis, the user must pay close attention to the selected predictors, so that they20

are able to represent the climate change signal. This is a relatively new field of application of AMs, which was proven to be of

interest.

The Optimizer implements different optimization techniques, such as the sequential approach, a Monte–Carlo simulation,

and a global optimization technique. Establishing the statistical relationship between predictors and predictand is quite intensive

in terms of processing, as it requires numerous assessment over decades. To this end, the Optimizer has been highly optimized25

in terms of computing efficiency and is parallelized over multiple threads. It scales well on a Linux cluster. This procedure is

only required to establish the statistical relationship, which can then be used in forecasting or downscaling at a low computing

cost.

One possible key improvement to AtmoSwing Forecaster is a multi-models approach that relies on outputs from multiple

global NWP models to better take into account the uncertainty of the NWP forecasts. Similarly, Thevenot (2004) demonstrated30

the benefit of using ensembles from global NWP as input for the method. The implementation consists of combining the

selected analog days associated with each of the members. The forecast on the ensemble was found to be more accurate than

the deterministic control for a lead time of four days and more (Thevenot, 2004).
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AtmoSwing aims to facilitate implementation of AMs with different types of structure and various predictors while be-

ing computationally efficient with low computing requirements. It can be applied to different contexts, such as operational

forecasting or climate impact studies. It is open source and will hopefully save future users some development time.

Code availability. AtmoSwing is open source and the code can be found in a publicly available GitHub repository (https://github.com/atmoswing/atmoswing/);

version 2.1.0 is available at https://doi.org/10.5281/zenodo.3208134. The user manual can be found at https://atmoswing.readthedocs.io. At-5

moSwing R tools is available at https://doi.org/10.5281/zenodo.1305098. AtmoSwing Python tools is available at https://doi.org/10.5281/zenodo.1495057.

The main website for AtmoSwing is http://www.atmoswing.org.
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Figure 1. Performance score (CRPSS; Eq. 3; the reference being the climatological precipitation distribution) of the 30 best variables from the

NR-1 dataset, when considered separately (no combination), for the Chablais region and the southeast ridges in the upper Rhône catchment

in Switzerland. The analogy criterion is S1 when an asterisk is present next to the variable name, and RMSE otherwise. Colour illustrates

the variable type: green = atmospheric circulation, blue = moisture, orange = temperature, yellow = radiation, purple = vertical velocity, and

gray = other. SLP stands for sea level pressure and Z for geopotential height. The blue square indicates the Binn station.
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Figure 2. Proposed nomenclature to describe the AM structure.
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Figure 3. Simplified flowchart of the AM implementation in AtmoSwing.
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Figure 4. Graphical user interface of the Viewer module (Elevation data from The Shuttle Radar Topography Mission - SRTM, and hydro-

logical network from SwissTopo). The values on the map represent the 90th percentile (as selected on the left panel) of the precipitation

values from the analog samples at the different stations and for the selected lead time. The colour is proportional to the selected return period

(10 years here).
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Figure 5. Same as Fig. 4 but for multiple lead times.

Figure 6. Visualization of the forecasted time series for an event at the Binn station (Fig. 1) in October 2018. The thick blue lines represent

the 90th, 60th, and 20th percentiles for the given lead times. The thin blue lines represent the equivalent time series but from previous

forecasts. The small grey crosses represent all analog values and the larger crosses highlight the 10 best analogs (with a colour gradient from

red for the best to yellow for the 10th).
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Figure 7. Visualization of the forecasted precipitation distribution for a given lead time for an event at the Binn station (Fig. 1) in October

2018. The blue line represent the full distribution provided by all analogs, the circles are the 90th, 60th, and 20th percentiles, and the crosses

correspond to the distribution provided by the 10 best analogs (with a colour gradient from red for the best to yellow for the 10th). The

vertical red line is here the precipitation value for a 10 year return period.
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Figure 8. Example of parameter values for 2Z (Table 2) for the precipitation at the Binn station (Fig. 1) on the EP. The parameters are the

extent (min/max longitude/latitude) of the spatial windows for the geopotential height at 500 and 1000 hPa, and the number of analogs.

The green vertical bar in the plots represents the location of the station. The circles represent random parameters from the Monte–Carlo

analysis. The plots are truncated at the 25th best percentiles for 50,000 realizations. Squares are the results of the sequential calibration

and triangles result from genetic algorithms. Markers in blue represent parameters optimized for the CP and applied to EP. Markers in red

represent parameters optimized for the EP.
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Figure 9. Same as Fig. 8 but for 2Z-2MI (Table 2). Results are shown for both levels of analogy (geopotential height and moisture index).
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Figure 10. Forecasts for the Binn station (Fig. 1) over the period 2016–2018 obtained using the 4Zo method (Table 2) with a lead time of

three days. The distributions provided by the analog values are summarized by the 90th, 60th, and 30th percentiles, as well as the maximum

(crosses), all of them averaged over the four daily forecasts. Additionally, the four 90th percentiles were also plotted to show the consistency

/ variability between the four daily forecasts. The shaded areas correspond to forecasts downtime.
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Figure 11. Same as Fig. 10 but for the 4Zo-2MIo method (Table 2) with a lead time of one day.
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Figure 12. Forecasts for the Oct./Nov. 2018 event at the Binn station (Fig. 1) for 2Z, 4Zo, 2Z-2MI and 4Zo-2MIo for lead times from seven

to zero days prior to the target day.
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Table 1. Reanalysis datasets that can be read by AtmoSwing.

Name Institution
Period Output Model Model Type of

of record resolution resolution generation input

NR-1 NCEP, NCAR 1948 – present 2.5◦x 2.5◦ T62 (∼1.88◦), L28 1995 full

NR-2 NCEP, DOE 1979 – present 2.5◦x 2.5◦ T62 (∼1.88◦), L28 2001 full

ERA-INT ECMWF 1979 – present 0.75◦x 0.75◦ TL255 (∼0.70◦), L60 2006 full

20CR-2c NOAA-CIRES 1851 – 2014 2◦x 2◦ T62 (∼1.88◦), L28 2008 surface

CFSR NCEP 1979 – present 0.5◦x 0.5◦ T382 (∼0.31◦), L64 2009 full

JRA-55 JMA 1958 – present 1.25◦x 1.25◦ TL319 (∼0.36◦), L60 2009 full

JRA-55C JMA 1958 – 2015 1.25◦x 1.25◦ TL319 (∼0.36◦), L60 2009 conventional

ERA-20C ECMWF 1900 – 2010 1◦x 1◦ TL159 (∼1.13◦), L91 2012 surface

MERRA-2 NASA GMAO 1980 – present 0.625◦x 0.5◦ 0.625◦x 0.5◦, L72 2014 full

CERA-20C ECMWF 1901 – 2010 1◦x 1◦ T159 (∼1.13◦), L91 2016 surface

ERA5 ECMWF 1979 – present 0.25◦x 0.25◦ TL639 (∼0.28◦), L137 2016 full
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Table 2. Some existing analog methods, listed by increasing complexity. P0 is the preselection (PC: on calendar basis, that is ±60 days

around the target date), L1, L2 and L3 are the subsequent levels of analogy. N1, N2 and N3 are the number of analogs to select at each level

of analogy. The meteorological variables are: Z – geopotential height, T – air temperature, W – vertical velocity, MI – moisture index, which

is the product of the relative humidity at the given pressure level and the total water column, MF – moisture flux, which is the product of MI

with the wind intensity. The analogy criterion is S1 for Z and RMSE for the other variables.

Type P0 L1 N1 L2 N2 L3 N3 Reference

2Z PC Z1000@12h 50 Bontron 2004

Z500@24h

4Z PC Z1000@06h ∼27 Horton et al. 2018

Z1000@30h

Z700@24h

Z500@12h

2Z-2MI PC Z1000@12h 70 MI850@12h 30 Bontron 2004

Z500@24h MI850@24h

2Z-2MI PC Z1000@06h 75 MI925@06h 30 Marty 2010

Z500@18h MI925@18h

2Z-2MF PC Z1000@06h 60 MF700@06h† 25 Marty 2010

Z500@18h MF700@18h

4Z-2MI PC Z1000@30h ∼63 MI700@24h ∼24 Horton et al. 2018

Z850@12h MI600@12h

Z700@24h

Z400@12h

PT-2Z-4MI T925@36h Z1000@12h 70 MI925@12h 25 Ben Daoud et al. 2016

T600@12h Z500@24h MI925@24h

MI700@12h

MI700@24h

PT-2Z-10MI T925@36h Z1000@12h 70 MI925@06-30h 25 Ben Daoud 2010

T600@12h Z500@24h MI700@06-30h

PT-2Z-4W-4MI T925@36h Z1000@12h 170 W850@06h 70 MI925@12h 25 Ben Daoud et al. 2016

T600@12h Z500@24h W850@12h MI925@24h

W850@18h MI700@12h

W850@24h MI700@24h

† or MF925@06h+18h as an alternative
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