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Abstract. The NO2 annual air quality limit value is sys-
tematically exceeded in many European cities. In this con-
text, understanding human exposure, improving policy and
planning, and providing forecasts requires the development
of accurate air quality models at the urban (street level)5

scale. We describe CALIOPE-Urban, a system coupling
CALIOPE – an operational mesoscale air quality forecast
system based on the HERMES (emissions), WRF (meteorol-
ogy) and CMAQ (chemistry) models – with the urban road-
way dispersion model R-LINE. Our developments have fo-10

cused on Barcelona city (Spain), but the methodology may
be replicated for other cities in the future. WRF drives pol-
lutant dispersion and CMAQ provides background concen-
trations to R-LINE. Key features of our system include the
adaptation of R-LINE to street canyons, the use of a new15

methodology that considers upwind grid cells in CMAQ to
avoid double counting traffic emissions, a new method to es-
timate local surface roughness within street canyons, and a
vertical mixing parameterisation that considers urban geom-
etry and atmospheric stability to calculate surface level back-20

ground concentrations. We show that the latter is critical to
correct the night-time overestimations in our system. Both
CALIOPE and CALIOPE-Urban are evaluated using two
sets of observations. The temporal variability is evaluated
against measurements from five traffic sites and one urban25

background site for April–May 2013. While both systems
show a fairly good agreement at the urban background site,
CALIOPE-Urban shows a better agreement at traffic sites.
The spatial variability is evaluated using 182 passive dosime-

ters that were distributed across Barcelona during 2 weeks 30

for February–March 2017. In this case, the coupled system
also shows a more realistic distribution than the mesoscale
system, which systematically underpredicts NO2 close to
traffic emission sources. Overall CALIOPE-Urban improves
mesoscale model results, demonstrating that the combination 35

of both scales provides a more realistic representation of NO2
spatio-temporal variability in Barcelona.

1 Introduction

Persistent exposure to high NO2 atmospheric concentrations
in cities causes detrimental health effects (e.g. Sunyer et al., 40

2015; Barone-Adesi et al., 2015). In 2016, 19 out of the 28
European Union (EU) countries reported NO2 exceedances
of the annual air quality limit value (40 µgm−3) mostly at
urban traffic monitoring stations (EEA, 2018). In this con-
text there is a need for NO2 data at the street level in ur- 45

ban areas that enable individuals and communities to miti-
gate the problem by, for example, walking in less polluted
streets or reducing traffic in school areas. However, both the
poor density of air quality monitoring stations and the reso-
lution of mesoscale air quality modelling systems (on the or- 50

der of 1 km grid resolution) do not adequately represent the
NO2 concentration gradients that typically occur near heav-
ily trafficked streets (Duyzer et al., 2015; Borge et al., 2014).
Urban dispersion models can estimate these gradients but

Published by Copernicus Publications on behalf of the European Geosciences Union.



2 J. Benavides et al.: CALIOPE-Urban v1.0

their use has been typically limited to historic periods, partly
because the needed background concentrations and meteo-
rological input have been approximated using observations
(Vardoulakis et al., 2003).

In order to overcome these limitations, coupling the re-5

gional and urban scales offline by downscaling the regional
model using a dispersion kernel has been successfully ap-
plied in some cities (Beevers et al., 2012; Moussafir et al.,
2014; Isakov et al., 2014; Jensen et al., 2017; Maiheu et al.,
2017; Kim et al., 2018; Hood et al., 2018; Fagerli et al.,10

2019). For instance, Hood et al. (2018) coupled a regional
climate–chemistry model with 5 km horizontal resolution
(EMEP4UK) with the fine-scale model ADMS-URBAN to
simulate air quality over London in 2012. They compared
the coupled system results with the regional model and the15

fine-scale model run separately. Authors found that both the
fine-scale model and the coupled system performed better
than the regional for NO2 at both annual mean and hourly
concentration levels due to the explicit treatment of traffic
emissions within the city. In addition, Jensen et al. (2017) es-20

timated annual NO2 concentrations at 2.4 million addresses
in Denmark using the street canyon Operational Street Pollu-
tion Model (OSPM) coupled with the Danish Eulerian Hemi-
spheric Model (DEHM) for regional background concen-
trations and the Urban Background Model (UBM) for ur-25

ban background obtaining a good correlation in Copenhagen
(r2
= 0.70) against 98 measurement sites for NO2 in the year

2012CE1 . Maiheu et al. (2017) covered a broader spatial con-
text, estimating EU-wide NO2 annual average levels at 100 m
resolution with a regional model coupled with a dispersion30

kernel-based method. The approach does not produce hourly
concentration levels and approximates road-link level traffic
emissions by distributing the regional grid cell traffic emis-
sions to each road-link based on road capacity. Hence, it pro-
vides more spatial detail than previous EU-scale NO2 assess-35

ment studies, but more specific methods are required to re-
solve air quality in cities. In this sense, there is a lack of
air quality urban forecasting methodologies that can be ap-
plied to a diverse range of cities and that consistently resolve
at least some of the major challenges already identified by40

the community, i.e. (1) downscaling regional meteorology to
the street level as required to drive pollutant dispersion and
(2) obtaining background concentrations from the mesoscale
system avoiding the double counting of traffic emissions. Ad-
ditionally, we consider vertical mixing with background air45

a key process to be resolved when coupling the regional and
urban scales.

Different approaches to downscale mesoscale meteorol-
ogy are found in the research literature. Brousse et al. (2016)
applied the Weather Research and Forecasting meteorolog-50

ical model (WRF) using the building effect parameterisa-
tion (Martilli et al., 2002) over Madrid considering WU-
DAPT Local Climate Zone data (Bechtel et al., 2015). This
approach increases the mesoscale model’s ability to resolve
urban processes but does not reproduce the specific meteo-55

rological conditions in each street as required by dispersion
models. Kochanski et al. (2015) used a simplified computa-
tional fluid dynamics model in combination with WRF to es-
timate wind conditions at the street level. Hood et al. (2018)
estimate an urban canopy flow field at the same resolution of 60

the regional model. This calculation is based on the variation
in surface roughness within the city. This approach includes
the variation in some atmospheric stability parameters (e.g.
friction velocity), but it neglects the variation in vertical mix-
ing with background air depending on atmospheric stability 65

and urban geometry. Conversely, Jensen et al. (2017) do not
consider atmospheric stability within the street canyon model
OSPM and within the vertical mixing with background air.
The approach presented here to downscale mesoscale mete-
orology to the street scale describing wind conditions and at- 70

mospheric stability in each street can be a promising solution
to drive dispersion models and vertical mixing.

Background concentrations can be obtained from obser-
vations or mesoscale models, which are commonly used in
forecasting applications. However, coupling mesoscale and 75

urban dispersion models can lead to a double counting of
traffic emissions. To avoid double counting, Arunachalam
et al. (2014) multiply urban background site observations
by an estimated ratio between two mesoscale air quality
simulations. The first run contains all the emission sources 80

and the second neglects traffic emissions. Lefebvre et al.
(2011) and Stocker et al. (2014) run first the urban disper-
sion model at mesoscale grid resolution with only traffic
emissions and subtract its result from the mesoscale model
simulation, which includes all the emission sources. Then, 85

street-scale model outputs are added to the result from the
prior computation at finer resolution. Although these meth-
ods avoid double counting emissions they do not explicitly
account for vertical mixing, a process that occurs at the inter-
section of regional and street scales. Urban air quality models 90

such as SIRANE (Soulhac et al., 2011) have already imple-
mented vertical mixing depending on local meteorology. In
this study, we will show that this process may be relevant and
explain some systematic errors found in the literature: night-
time NO2 concentration values tend to be overestimated and 95

afternoon values tend to be underestimated in traffic areas
(e.g. Hood et al., 2018). Further efforts are necessary to ex-
plicitly resolve processes happening among scales and to cor-
rect these biases in the mentioned periods of the day.

This work describes a methodology to couple the 100

mesoscale air quality forecasting system CALIOPE (Bal-
dasano et al., 2011) with the Research LINE source disper-
sion model (RLINE; Snyder et al., 2013) and its evaluation
over the city of Barcelona, Spain. In Barcelona, chronic NO2
exceedances have been recorded since the year 2000, and 105

according to the local public health agency about 68 % of
citizens were exposed to NO2 levels above the annual air
quality limit value in 2016 (ASPB, 2017). Barcelona has a
very high vehicle density (approx. 5500 vehicles km−2) and
the majority of passenger cars are diesel (65 %) (Barcelona 110
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City Council, 2017). Located in the northeast of the Iberian
Peninsula, Barcelona is surrounded by the Mediterranean
Sea, two rivers and a mountain range. Due to its coastal
emplacement, during the warm season, transport and disper-
sion of air pollutants within the city are dominated by the5

breeze blowing in from the sea during daytime and from the
land during night-time. This pattern persists under the pres-
ence of high-pressure systems accompanied by clear skies
and warm temperatures in the summer season. In contrast,
the winter season is dominated by northwestern advection,10

typically cleaning the atmosphere of the city (Jorba et al.,
2011). Our aim is to produce more accurate NO2 concentra-
tions with CALIOPE-Urban, the coupled system, than with
the mesoscale system alone and give a more realistic repre-
sentation of NO2 spatial distribution and temporal variabil-15

ity across the city. To achieve these objectives a set of sys-
tem enhancements has been implemented: an adaptation of
R-LINE to dense urban areas (e.g. street canyons), a back-
ground model to estimate background concentrations at roof
level, a parameterisation of the vertical mixing to estimate20

background concentrations within the street that considers at-
mospheric stability and urban geometry, and a local surface
roughness parameterisation to estimate turbulent parameters
within a street canyon. The mesoscale system has been exe-
cuted using the operational forecast configuration. We com-25

pare the estimated temporal variability of NO2 concentra-
tions from the coupled modelling system with those derived
from CALIOPE and with ambient street level measurements
(i.e. five traffic sites and one urban background site) in April
and May 2013. Its spatial variability is evaluated using a 2-30

week measurement campaign that deployed 182 NO2 passive
dosimeters across Barcelona in February and March 2017.

2 Methods

CALIOPE-Urban estimates hourly NO2 concentrations by
coupling the CALIOPE mesoscale air quality forecasting35

system, providing background concentrations, meteorolog-
ical data and road-link traffic emissions, with the R-LINE
dispersion model adapted to street canyons. Here we intro-
duce and describe the components of the coupled model as
depicted in Fig. 1.40

2.1 Mesoscale air quality forecasting system CALIOPE

CALIOPE (Baldasano et al., 2011) integrates the Weather
Research and Forecasting model version 3 (WRF; Ska-
marock and Klemp, 2008), the High-Elective-Resolution
Modelling Emission System (HERMES v2.0; Guevara et al.,45

2013), the Community Multiscale Air Quality Modeling
System version 5.0.2 (CMAQ; Byun and Schere, 2006)
and the mineral Dust REgional Atmospheric Model (BSC-
DREAM8b; Basart et al., 2012). The mesoscale system is run
over Europe at a 12 km×12km horizontal resolution, Iberian50

Figure 1. CALIOPE-Urban workflow. Models are represented by
circles and data by rectangular shapes. CALIOPE is left untouched.
Meteorology and background from WRF and CMAQ are combined
with urban geometry to create inputs for R-LINE. R-LINE dis-
persion is left untouched, after adjusting meteorology and surface
roughness for local urban geometry.

Peninsula at 4km×4km and the Catalonian domain, includ-
ing Barcelona, at 1km× 1km. CALIOPE results have been
evaluated in detail elsewhere (e.g. Pay et al., 2014).

In our system, WRF uses the Global Forecasting System
(GFS) model initial/boundary conditions from the National 55

Centers for Environmental Prediction (NCEP) to forecast the
mesoscale meteorological conditions. Three nested domains
are designed to provide a final high-resolution run over the
Catalonian domain. In the vertical, WRF is configured with
38 sigma layers up to 50 hPa, where 11 cover the plane- 60

tary boundary layer (PBL). Our WRF setup utilises the rapid
radiation transfer model for long-wave radiation and Dud-
hia for short-wave radiation, the Kain–Fritsch cumulus pa-
rameterisation, the single-moment three-class microphysics
scheme, the Yonsei University PBL scheme, and the Noah 65

land-surface model based on the CORINE land-use data from
the year 2006.

For the mesoscale model, pollutant emissions are obtained
from the high-resolution emission model HERMES v2.0
gridded up to 1km× 1km and temporal (1 h) resolution. 70

HERMES v2.0 estimates atmospheric emissions for Europe
and Spain according to the Selected Nomenclature for Air
Pollution (SNAP) and taking the year 2009 as the reference
period. Emissions are estimated for nitrogen oxides (NOx),
non-methane volatile organic compounds (NMVOCs), sulfur 75

dioxide, carbon monoxide, ammonia, total suspended parti-
cles, PM10 and PM2.5 fractions. The final model output con-
sists of hourly, gridded and speciated emissions according to
the CB05 chemical mechanism used by the chemical trans-
port model CMAQ. For Europe, HERMES v2.0 implements 80

a SNAP sector-dependent spatial, temporal and speciation
treatment of the original annual EMEP gridded emissions
(Ferreira et al., 2013). For Spain, the model uses a bottom-
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up approach for pollutant sources including point (e.g. power
plants, industries), maritime (e.g. ports), air traffic (e.g. air-
ports), agricultural machinery (e.g. tractors and harvesters)
and road transport. For the rest of pollutant sources a com-
bination of top-down approaches (i.e. residential/commercial5

combustion, energy consumption statistics combined with a
population map) and downscaling methodologies (i.e. use of
solvents, extraction and distribution of fossil fuels; specific
spatial proxies and temporal profiles assigned to the Spanish
National Emission Inventory by categories at third level of10

SNAP) is adopted. The results of the HERMES v2.0 model
have been used to support several air quality evaluation and
planning studies (e.g. Baldasano et al., 2014; Soret et al.,
2014) as well as emission inventory intercomparison exer-
cises (Guevara et al., 2017).15

The chemical transport model used in the CALIOPE sys-
tem is CMAQ v5.0.2. It uses the CB05 gas-phase chemical
mechanism, the AERO5 aerosol scheme and an in-line pho-
tolysis calculation. CMAQ vertical levels are collapsed from
the 38 WRF levels to 15 layers up to 50 hPa with six lay-20

ers falling within the PBL. We use MOZART-4 as boundary
conditions for the European domain.

2.2 Street-scale dispersion model: R-LINE

R-LINE is a near-road Gaussian dispersion model (Snyder
et al., 2013) that incorporates state-of-the-art Gaussian dis-25

persion curves (Venkatram et al., 2013) to simulate disper-
sion of road source emissions. The model resolves either
numerically or analytically the integration of the contribu-
tions of point sources along a street segment (Snyder and
Heist, 2013). The first option is more accurate and the lat-30

ter spends less time computing dispersion. The analytical
version is best suited for near-ground-level sources and re-
ceptors. In order to estimate NO2 concentrations, R-LINE
incorporates a chemistry module to resolve simple NO to
NO2 chemistry with the generic reaction set (GRS; Valen-35

cia et al., 2018) considering the chemical reactions in Ta-
ble 1. The GRS chemistry mechanism solves the photochem-
istry of NO2 assuming clear-sky conditions. Thus, it does
not consider cloud effects on the NO2 photolysis rate, one
of its major limitations. R-LINE has been applied to esti-40

mate exposure to traffic-related air pollutants in a large-scale
study in Detroit, United States (Isakov et al., 2014). How-
ever, to our knowledge it has not been applied to European
cities, where street canyon morphology dominates. Hence,
in order to apply R-LINE over Barcelona its meteorology has45

been adapted to street canyons as described in Sect. 2.3.1 and
the background concentrations are obtained from the CMAQ
model considering local meteorology and urban geometry as
described in Sect. 2.3.3.

Table 1. Chemical reactions in the generic reaction set (GRS). ROC
represents reactive organic compounds, RP represents radical pool,
SGN represents stable gaseous nitrogen products and SNGN repre-
sents stable non-gaseous nitrogen products.

ROC +hν→ RP + ROC
RP + NO→ NO2
NO2 +hν→ NO + O3
NO + O3→ NO2
RP + RP→ RP
RP + NO2→ SGN
RP + NO2→ SNGN

2.3 Coupling CALIOPE with R-LINE 50

CALIOPE and R-LINE are coupled offline: first CALIOPE
is run over Europe, the Iberian Peninsula and Catalonia and
then R-LINE is executed for Barcelona city. This approach
addresses two main challenges that have already been high-
lighted in the research literature: (1) downscaling regional 55

meteorology to the street scale to drive pollutant disper-
sion and (2) obtaining background concentrations from the
mesoscale model without double counting traffic emissions
in regional- and street-scale models. In addition to these chal-
lenges, we consider it relevant to couple meteorology and 60

background concentrations in a consistent way, taking into
account atmospheric stability and urban geometry when es-
timating background contribution within urban streets. Here
we describe our methodology when coupling the models to
mitigate these challenges. 65

2.3.1 Meteorology

Most buildings in Barcelona have lower heights than the
WRF bottom layer (40.6 m depth). WRF results are assumed
to represent over-roof wind and stability conditions because
its midpoint height (20.3 m) is similar to the average build- 70

ing height (bh) in a typical neighbourhood of Barcelona (e.g.
Eixample district, 20.7 m). WRF is executed consistently
with the forecasting air quality system CALIOPE, giving a
constant surface roughness (z0) equal to 1 m over the urban
area. In order to apply R-LINE over Barcelona, its meteorol- 75

ogy has been adapted to street canyons. We have developed
a methodology to estimate specific z0 based on urban geom-
etry (e.g. building height, street width). Once z0 is adjusted,
the displacement height (dispht), friction velocity (u∗), con-
vective velocity scale (w∗), PBL height and Monin–Obukhov 80

length (L) are recalculated (Cimorelli et al., 2005). The in-
crease in z0 generally leads to a larger dispht, u∗,w∗ and PBL
height. Therefore,L is less stable and atmospheric conditions
are more convective. Ultimately, these adjustments have an
effect on the way the winds are profiled and on the rate of 85

dispersion of the roadway emissions within the urban area.
The geometrical parameters used for z0 calculation are

divided into two categories: (1) averaged over an area of
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250m× 250m (planar building density, bd; average build-
ing height, bh; and building height standard deviation, bhdev)
and (2) specific aspect ratio (ar) for each street segment con-
sisting of street-averaged building height divided by street
width. The geometrical parameters are calculated from a5

Barcelona City Council dataset containing 2-D geometries
and number of floors for each building (Barcelona City
Council, 2016), assuming 3 m height for each floor.

To estimate specific z0 for each street segment we propose
a new morphometric method inspired by previous studies10

in the literature. z0 is composed by the WRF’s background
roughness (z0bg) and the one estimated locally (Eq. 1), which
incorporates building height influence through the range pa-
rameter scaled by two parabolic ratios based on aspect ratio
(arr) and building density (bdr). The range parameter (Eq. 2)15

and z0 increase with bh following most morphometric meth-
ods (e.g. Macdonald et al., 1998). In addition, range and z0
increase with an increasing bhdev. This assumption is based
on Kent et al. (2017), who compared nine methods to es-
timate z0, concluding that methods considering height vari-20

ability through bhdev (i.e. a higher bhdev brings an increase
in z0) provide better results (e.g. Kanda et al., 2013). The pa-
rameter C multiplying the equation for range calculation is
an empirical constant set to 1/20 after calibrating the system
with the NO2 measurements used in this work for CALIOPE-25

Urban evaluation. The displacement height is calculated fol-
lowing R-LINE methodology given a factor of displacement
height (facdispht) equal to 5 (Eq. 3) as suggested by Snyder
and Heist (2013).

z0 = arr · bdr · range+ z0bg (1)30

range= C ·
(
bh+ bhdev

)
(2)

dispht= facdispht · z0 (3)

To model the influence of building density and aspect ra-
tio, we use the findings of Oke (1988) based on wind tun-
nel and experimental studies. Oke concluded that over-roof35

air roughness and satisfactory dispersion within the street
canyon are maximum under similar geometrical conditions.
Specifically, showing that ar equals 0.65 and bd equals 0.25
gives maximum roughness for overlying air and optimal dis-
persion conditions in the street canyon.40

In practice, z0 increases with an increasing ar to a maxi-
mum of ar = 0.65 and decreases for ar > 0.65 (Eq. 4). Addi-
tionally, an increasing bd produces higher z0 until a max-
imum at bd= 0.25 and decreases for higher bd (Eq. 5).
We model these ratios using parabolic shapes ranging from45

0 to 1. Both urban characteristics are modelled using one
parabola to the left of the maximum and another to the right
due to the unsymmetrical distribution of the parameter val-
ues within Barcelona city (see Fig. A1 in Appendix A). The
parabolic ratios will be maximum (i.e. equal to 1) if the50

roughness effect is maximum. The ratios are prevented from

having negative values by setting a minimum of 0.

arr =


1.0− 2.3 · (ar− 0.65)2

if ar is≤ 0.65
max

(
0,1.0− 1.38 · (ar− 0.65)2

)
if ar is> 0.65

(4)

bdr =


1.0− 16.0 · (bd− 0.25)2

if bd is≤ 0.25
max

(
0,1.0− 8.1 · (bd− 0.25)2

)
if bd is> 0.25

(5)

In addition to the z0 adjustment, we adjust the wind speed 55

and direction to more closely represent the winds blowing
down the street as constrained by the buildings, which is
called “channelling” (similarly to Fisher et al., 2006). We
have adapted R-LINE to incorporate the orientation of road-
ways (and thus the buildings) where the wind direction fol- 60

lows the street direction. This leads to a recalculation of the
wind direction and speed for each roadway before emissions
are dispersed within a city. Wind speed channelling is pa-
rameterised following Soulhac et al. (2008), who showed
that mean velocity along a canyon for any wind direction 65

is directly proportional to the cosine of the angle between
street direction and over-roof wind direction (i.e. angle of in-
cidence).

wsch = wsbh ·max(0.1, abs(cos(θ))) , (6)

where wsch means channelled wind speed at roof level; the 70

wind speed at roof level (wsbh) is taken from the WRF bot-
tom layer in metres per second and θ is the angle of inci-
dence. The minimum value of the right component is set
to avoid an unrealistic zero value for wind speed. Its value
of 0.1 is defined in line with Kastner-Klein et al. (2001), 75

who showed that the minimum longitudinal mean flow ve-
locity component at canyon top is equivalent to 0.12 times
the above-canyon wind speed for perpendicular over-roof
winds according to their wind tunnel experiments. Then, to
estimate wind speed at street level a logarithmic profile in- 80

corporated within R-LINE that is based on similarity theory
(Monin and Obukhov, 1954) is used. In this work, we assume
that recirculation flows within street canyons are negligible
because R-LINE computes concentrations averaged over an
hour, when recirculation and vehicle-induced turbulence are 85

assumed to contribute to a well mixed, more homogeneous
air mass driven by variable wind conditions. Additionally,
evaluation of the potential impact of including recirculating
flows across the canyon is not possible without multiple si-
multaneous meteorological and pollutant measurements at 90

a fine temporal scale, which are currently not available for
Barcelona city.

2.3.2 Emissions

HERMES v2.0 provides hourly NOx and NMVOC road
transport emissions at the road link level, which are used 95
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6 J. Benavides et al.: CALIOPE-Urban v1.0

Figure 2. NOx emissions in grammes per metre per hour in Barcelona city at 07:00 UTC on 11 April 2013 and location of the two fixed
monitoring stations used to estimate the NO2/NOx ratio. White circles with letters inside represent the stations: tr is Eixample traffic station
and bg is Ciutadella Park urban background station.

by the R-LINE model algorithms to account for NO2 near-
road chemistry (Valencia et al., 2018). Road transport emis-
sions (i.e. exhaust, evaporative, wear and resuspension)
are estimated combining the tier 3 method described in
the EMEP/EEA air pollutant emission inventory guidebook5

(fully incorporated in version 5.1 of the COPERT IV soft-
ware) with a digitised traffic network that contains specific
information by road stretch for daily average traffic, mean
speed circulation, temporal profiles and vehicular park pro-
files. We note that HERMES v2.0 uses COPERT IV, which10

does not incorporate revised emission factors of NOx re-
lated to diesel gate. Hence, NOx emissions from traffic
may be underestimated. Input activity data are obtained by
combining different datasets, including traffic data from the
Barcelona Automatic Traffic Counting Equipment and vehi-15

cle composition profiles derived from a remote-sensing cam-
paign performed in different areas of Barcelona during 2010
(Barcelona City Council, 2010). In Barcelona, higher levels
of traffic emissions are found in the city centre and in the
highways surrounding the city (Fig. 2). In order to produce20

emissions in grammes per metre per second for straight street
segments as required by R-LINE, we converted the digi-
tised road network curved segments in HERMES to straight
segments with no intermediate vertices using the Douglas–

Peucker algorithm in the QGIS simplify geometries tool 25

(QGIS Development Team, 2017).
We have estimated the NO2/NOx ratio following Carslaw

and Beevers (2004), which produces an approximation to
the NO2 primary contribution. This method relates total Ox
(NO2 +O3) to total NOx (NO2 +NO) at a traffic monitoring 30

station subtracting Ox and NOx from a background site in or-
der to remove the effect of background and to only calculate
the contribution at the traffic site. As the traffic station we
used the Eixample site and as the urban background station
we used Ciutadella Park (see Fig. 2), which is located up- 35

wind of the dominant wind direction. Figure 3 compares Ox
to NOx in Eixample after subtracting the background repre-
sented by Ciutadella from the beginning of October to end
of February for the years 2012 to 2016. The photochemical
season (April–September) is not used to avoid greater scatter 40

than it is found in the winter months as shown by Clapp and
Jenkin (2001). The Ox slope value of 18.9 % is considered
an estimate of the potential primary NO2 contribution from
vehicles at the Eixample traffic station. This value is consis-
tent with studies conducted in other cities with a large diesel 45

vehicle fleet (e.g. Carslaw et al., 2016; Wild et al., 2017) and
is assumed to represent the NO2/NOx ratio in Barcelona in
the present work.

Geosci. Model Dev., 12, 1–25, 2019 www.geosci-model-dev.net/12/1/2019/



J. Benavides et al.: CALIOPE-Urban v1.0 7

Figure 3. Scatter plot showing daylight mean Ox and NOx relation
of the difference between Eixample and Ciutadella stations from the
beginning of October to the end of February for the years 2012 to
2016.

2.3.3 Background concentrations

We use the upwind urban background scheme (UBS) to avoid
the double counting of traffic emissions when coupling the
mesoscale with the street-scale model. The UBS makes a se-
lective choice of CMAQ cells as sketched in Fig. 4 to esti-5

mate over roof background concentrations. For each hour, a
polygon covering upwind air masses (white) is created. In
the figure, the average distance traversed by air masses dur-
ing an hour (10.8 km) is estimated for WRF’s bottom layer
wind speed (3 m s−1 in the image). Squares falling within10

the scheme polygon represent CMAQ cells and their colour
refers to cell pollutant values (e.g. NO2 at peak traffic hours
may be higher within the city than over the Mediterranean
Sea). Grid cell values falling over the scheme polygon are
inverse-distance averaged to produce the background esti-15

mate of the scheme. Under calm conditions, only the upwind
cell is chosen. This method is inspired by Berkowicz (2000),
who apply a similar concept based on air mass trajectory to
develop a background model.

Background concentrations are required at each receptor20

in CALIOPE-Urban. Urban dispersion models are typically
run at a very high spatial resolution (e.g. 20m× 20m). Run-
ning the UBS every 20 m would have a high computational
cost due to its spatial computations, and background concen-
tration values are not expected to vary substantially over tens25

of metres because CMAQ produces results with 1km×1km
spatial resolution. Hence, we first run the UBS to produce
background concentration values at CMAQ grid cell cen-

Figure 4. Upwind urban background scheme concept. Esri (2019).

troids; then we apply a bilinear interpolation method to pro-
vide background at very high spatial resolution. 30

In addition to the UBS we implement a background de-
cay method to calculate the surface level background con-
centrations assuming that the UBS provides the concentra-
tion at rooftop level. To calculate street level NO2 concen-
trations, the vertical distribution of pollutants is solved first 35

using the background decay method, applied uniformly to all
pollutants, and then the GRS chemical mechanism is solved.
The relationship between rooftop and surface level concen-
trations is assumed to depend on atmospheric stability, lo-
calised surface roughness and urban geometry (see Fig. 5 40

as an illustration of the background decay concept). In the
research literature, the influence of atmospheric stability on
vertical mixing within a street canyon has been demonstrated
using experimental measurements (Rotach, 1995) and wind
tunnel experiments (Salizzoni et al., 2009), and it has been 45

implemented in some dispersion models (e.g. Soulhac et al.,
2011; Kim et al., 2018). The ratio of wind speeds at surface
and rooftop levels (wssfc/wsbh) estimated by R-LINE using
similarity theory (Monin and Obukhov, 1954) is used as a
proxy for the vertical mixing. Using this ratio, we calculate 50

facbg that represents the adimensional vertical mixing vari-
able that is multiplied to rooftop background concentration
to obtain surface level background concentration at a given
height. Wind channelling does not affect the ratio wssfc/wsbh
because we assume that channelling equally affects winds at 55

surface and rooftop levels.
In order to diminish the effect of afternoon underestima-

tions from the regional system near traffic, background lev-
els under convective situations are enhanced. We consider
the upward heat flux at the surface (hflux) as representing 60

convective conditions for values higher than 0.30. This value

www.geosci-model-dev.net/12/1/2019/ Geosci. Model Dev., 12, 1–25, 2019
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Figure 5. Illustration of the background decay method concept.
Building height is approximately 20 m.

is set to exclude slightly stable night hours with low posi-
tive hflux values mainly caused by the urban heat island (i.e.
Barcelona city has been found to be 2.9 ◦C warmer than its
periphery by Moreno-Garcia, 1994). The following parame-
terisation is used for cases with bd higher than 0.1,5

facbg =

{
1−F +wssfc/wsbh ·F if hflux is> 0.30
wssfc/wsbh if hflux is≤ 0.30 , (7)

where F =m+ abs(0.25− bd), with m being an empirical
parameter set to 0.35 after system calibration with NO2 mea-
surements; hflux is upward heat flux at the surface (W m−2).
Surface background concentrations for convective situations10

are maximum for bd equal to 0.25 consistent with the z0 es-
timation in Sect. 2.3.1. Conversely, we assume that for bd
close to zero, surface background concentrations tend lin-
early to rooftop level background concentrations. The thresh-
old bd= 0.1 is based on Grimmond and Oke (1999), who set15

it as an inferior limit for real cities and show that below this
value an isolated flow regime governs. Within this regime,
street level and over-roof air is well mixed due to the low
building density. Hence, for cases with bd equal to or lower
than 0.1, facbg tends linearly to 1 following20

facbg =


1− 5 · bd+wssfc/wsbh · (5 · bd)
if hflux is> 0.30
1− 10 · bd+wssfc/wsbh · (10 · bd)
if hflux is≤ 0.30

. (8)

Equation (8) shows linear variations between the point at
bd= 0 and facbg = 1 and the point at bd= 0.1 with the corre-
sponding facbg value from Eq. (7).

2.4 Execution setup25

We have run CALIOPE-Urban for receptors as far as
250 m from roads with sufficient annual average daily traffic

(AADT) (i.e. 2000 vehicles per day following Jensen et al.,
2017) and receptors further away directly receive CMAQ val-
ues interpolated. The 250 m limit is chosen as similar but less 30

restrictive (i.e. to allow longer distances under stable hours)
than the one used in Beevers et al. (2012), who used 225 m
for London. To smooth out the variation between system out-
puts, we define a transition area (i.e. 140 to 250 m) where re-
ceptors are given concentration values weighted by distance. 35

For temporal and spatial evaluation runs, we locate receptors
at the specific coordinates of the measurement sites.

To obtain high-resolution concentration maps for the en-
tire city, we set the spatial context as the minimum rectangle
where Barcelona municipality is contained and extended it 40

by 250 m buffers that include the highways surrounding the
city. The context is covered by a regular receptor grid of 10 m
resolution. R-LINE execution loops over each hour, road and
receptor to estimate the contribution from each source to each
receptor. 45

Aiming to understand the impact on accuracy of the lo-
cal parameterisation for background and meteorology and
the impact of using the analytical approach for dispersion,
we have run CALIOPE-Urban with different configurations.
In Table 2, we describe the different scenarios that have 50

been run. As seen in the table, the CALIOPE-Urban and the
CALIOPE-Urban analytical configurations make use of the
developed local parameterisations for background and me-
teorology. In contrast, the CALIOPE-Urban-nl (non-local)
configuration does not apply the local parameterisations for 55

background and meteorology. Instead, it uses as background
the UBS output without vertical mixing and it omits the use
of wind channelling and specific stability parameters for each
street segment based on local z0. We show this configura-
tion’s results in order to understand if the new implementa- 60

tions in this work contribute substantially to improve the sys-
tem’s ability to simulate NO2 concentrations in Barcelona.
R-LINE dispersion algorithm options (i.e. analytical and nu-
merical) are described in Sect. 2.2. For meteorological op-
tions, we refer to Sect. 2.3.1. The background method is de- 65

scribed in Sect. 2.3.3.

3 Observational datasets

We use three datasets of observations to evaluate the perfor-
mance of CALIOPE-Urban to reproduce the temporal and
spatial variation in NO2 concentrations within Barcelona 70

city. Figure 6 shows the locations of measurements used in
this study, which are described below.

3.1 NO2 temporal variability: street canyon campaign
and permanent XVPCA network

To evaluate the NO2 temporal variability we use hourly NO2 75

concentrations reported by the official monitoring network
in Catalonia (XVPCA) and from an experimental campaign
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Table 2. Description of the execution setup. Execution time is for the entire city of Barcelona during 1 h running CALIOPE-Urban (i.e. only
the urban system, after CALIOPE run completion) over 11 251 street segments and 965 458 receptors at 10m× 10m spatial resolution.

Configuration name Dispersion algorithm Meteorology Background Execution time

CALIOPE-Urban Numerical Local Local 88 min
CALIOPE-Urban-nl Numerical Non-local Non-local 56 min
CALIOPE-Urban analytical Analytical Local Local 44 min

Figure 6. Passive dosimeter and monitoring site locations used in the evaluation of CALIOPE-Urban in this work. Red dots with a yellow
border represent passive dosimeters (spatial performance) and white numbered dots depict monitoring site emplacements (temporal variabil-
ity). White dots numbered 1 (Palau Reial), 2 (Eixample) and 3 (Gràcia-Sant Gervasi) are air quality monitoring sites and 4 (213 Industria
Street), 5 (445 Valencia Street) and 6 (309 Industria Street) correspond to mobile units. Esri (2019).

conducted using mobile units in April and May 2013 in
Barcelona (Amato et al., 2014). The official monitoring net-
work has 10 stations in Barcelona and only two of them (i.e.
Gràcia-Sant Gervasi and Eixample) are considered represen-
tative of near-traffic conditions and provide NO2 hourly lev-5

els. Measured data from three sites of the official network are
used in this study: Eixample and Gràcia-Sant Gervasi (traf-
fic) and Palau Reial (background). Both traffic sites are lo-
cated in complex wide areas where several streets intersect
(see sites 2 and 3 in Fig. 6 and in the description of Ta-10

ble 3). Palau Reial station (i.e. site 1 in Fig. 6) is located in a
medium bd area of the city, 300 m away from a heavily traf-
ficked street. This dataset is complemented with observations
from an experimental campaign where mobile units placed
at the parking lane of several street segments measured air15

quality parameters at 3 m height. For this study, we used
data gathered every 30 min and aggregated to hourly levels
for homogeneity at 213 Industria Street, 309 Industria Street
and 445 Valencia Street. These streets present a marked

canyon pattern (see sites 4, 5 and 6 in Fig. 6 and descrip- 20

tion Table 3) where the aspect ratio is approximately 1. In
Barcelona, different street geometrical patterns cohabit. For
example, the Eixample district, which has the highest num-
ber of inhabitants and the greatest population density (33 000
inhabitants km−2), is characterised by a marked street canyon 25

pattern. Most of its canyons are about 20 to 25 m high and
20 m wide (i.e. ar = 1 and higher than 1). CE2Experimental
campaign sites are considered traffic sites in this work be-
cause they are exposed to similar AADT and vehicles per
square kilometre compared to official traffic sites as shown 30

in the table below. We apply Eq. (9) to obtain vehicles per
square kilometre, a variable that describes traffic density in
an area of 1 km2.

Vehicles · km−2
=

st∑
n=1

vehicles s−1
· length (9)

To obtain the number of vehicles per second, AADT is di- 35

vided by 3600 · 24 and multiplied by a temporal factor (i.e.
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1.47) representing a typical factor for morning traffic peak in
Barcelona. Length is street length in metres. St is the num-
ber of streets over the circular area of 1 km2 centred on the
measurement site.

3.2 NO2 spatial variability: passive dosimeter5

campaign across the city

With the objective of representing the NO2 spatial variabil-
ity, 212 passive dosimeters were located in Barcelona from
28 February to 15 March 2017 as depicted by red dots with a
yellow border in Fig. 6. In every square kilometre of surface10

there were at least two dosimeters, representing the back-
ground and traffic conditions at 2.2–2.5 m height. The 100
background dosimeters were placed more than 10 m away
from the road and the 112 traffic dosimeters were located less
than 3 m away from the road and at least 25 m away from15

intersections. To ensure the equivalence of measurements
to standard conditions, these were corrected through com-
parison with reference equipment from several sites of the
XVPQA network. After a preliminary inspection of the loca-
tion of the dosimeters, we discarded data from 30 dosimeters20

to avoid results that could not be interpreted for several rea-
sons (e.g. dosimeter and simulated road at different heights,
highway covered by a tunnel near dosimeter location that is
not considered in the emission inventory, lack of emission
sources near dosimeter).25

4 Results and discussion

Section 4.1 presents the temporal variability of NO2 concen-
trations estimated by CALIOPE and CALIOPE-Urban com-
pared to observations at the six sites described in Sect. 3.1.
Section 4.2 describes the results in terms of the spatial vari-30

ation during the 2-week passive dosimeter campaign de-
scribed in Sect. 3.2. Model performance is quantified using
performance measures as described by Chang and Hanna
(2004) and using assessment target plots (defined in the
FAIRMODE initiative; Janssen et al., 2017). The perfor-35

mance statistics used here are the geometric mean bias (Ge-
oMean), the fraction of model results within a factor of 2
of observations (FAC2), the geometric standard deviation
(GeoSD), the correlation coefficient (R), the mean bias (MB)
and the root-mean-square error (RMSE). The mathemati-40

cal expressions of these statistics can be found in the Ap-
pendix C.

4.1 Temporal variation in NO2 concentrations within
urban streets

The scatter plots of Fig. 7 compare CALIOPE and45

CALIOPE-Urban outputs with observations based on hourly,
daily mean and maximum modelled concentrations at the six
sites described in Sect. 3.1 for April and May 2013. In gen-
eral, CALIOPE-Urban shows a greater agreement for hourly,

daily means and maximum concentrations but tends to under- 50

predict daily peak concentrations at sites not exposed to very
high traffic intensity (i.e. sites where urban background con-
tribution predominates like Gràcia-Sant Gervasi). During the
study period most daily maxima (i.e. 56 %) occur at morn-
ing or evening traffic peak times (i.e. 06:00–07:00 or 18:00– 55

20:00 UTC) when atmospheric conditions are typically sta-
ble and traffic intensity is high.

Table 4 shows the model performance statistics com-
puted with hourly data, including the CALIOPE-Urban-nl
run. We compare CALIOPE-Urban and CALIOPE-Urban- 60

nl to assess the difference in performance derived by the
use of the local developments described in Sect. 2.3. All
systems perform well at urban background sites and only
CALIOPE-Urban gives good agreement with observations
in traffic sites. The greatest difference between CALIOPE 65

and CALIOPE-Urban system performance is produced at the
445 Valencia Street site due to its street canyon morphology
(ar = 0.86). At this site, the mean transport is well resolved
by the channelled winds, and its high AADT produces a
high increase in traffic emissions within R-LINE. CALIOPE- 70

Urban-nl largely overestimates NO2 concentrations at this
site for several reasons: it directly uses the output of UBS for
background, instead of applying the vertical mixing that re-
duces background at street level especially under stable con-
ditions; z0 is given the WRF value (z0 = 1.0), which is much 75

lower than its locally estimated value (i.e. z0 = 2.2; see Ta-
ble 3), that enhances dispersion decreasing concentration lev-
els; lastly pollutant dispersion is not channelled within the
street, so higher contributions of nearby streets may be ex-
pected. 80

Conversely, CALIOPE-Urban underestimations at 213
and 309 Industria Street and Gràcia-Sant Gervasi may be due
to an unrealistically low AADT level on the street segment
close to the site. We work with AADT data that are based
on the outputs of the traffic model used by Barcelona City 85

Council that may be underestimating traffic. Another expla-
nation may be an underestimation of local background levels
within the area mostly during the afternoon. The afternoon
underestimations in the mesoscale system could be caused
by an overestimation of the mixing that produces a too low 90

background NO2 concentration level. This issue is difficult to
correct because background concentrations used in the sys-
tem are dependent on mesoscale concentrations, which are
underestimated during daytime. In Table B1 in Appendix B,
same statistics are computed for daily mean results, finding 95

results similar to in the hourly analysis. In addition, the an-
alytical version of CALIOPE-Urban is shown to produce re-
sults for hourly concentrations similar to the numerical ver-
sion in Table B2 in Appendix B. This result may be interest-
ing for forecasting applications at the urban scale that require 100

high resolution because the analytical dispersion algorithm
spends approximately half the time computing in comparison
to the numerical dispersion algorithm as shown in Table 2.

Geosci. Model Dev., 12, 1–25, 2019 www.geosci-model-dev.net/12/1/2019/
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Table 3. Morphometric and traffic description of measurement sites used in CALIOPE-Urban evaluation. The measurement height of the
official network sites and the mobile sites is 3 m. AADT from the nearest street is considered. The traffic density (td) is estimated following
Eq. (9). The Palau Reial td is not included because it is an urban background site not directly exposed to high traffic.

Site ar bh bd bhdev z0 AADT td CE3

1. Palau Reial 0.12 14.6 0.12 6.4 1.27 3900 –
2. Eixample 0.00 21.1 0.40 8.4 1.03 41 000 5666
3. Gràcia-Sant Gervasi 0.38 17.2 0.45 7.1 1.68 12 700 3884
4. 213 Industria Street 1.00 18.1 0.38 8.3 1.94 15 200 3003
5. 445 Valencia Street 0.86 19.5 0.32 7.2 2.20 32 500 5978
6. 309 Industria Street 1.03 17.0 0.31 8.1 1.97 12 900 3320

Figure 7. Scatter plot of hourly (a, b), daily mean (c, d) and daily maximum (e, f) modelled concentrations against observed concentrations
with colours representing monitoring sites for CALIOPE (a, c, e) and CALIOPE-Urban (b, d, f). Purple represents Palau Reial, the urban
background site. The other colours represent traffic sites as described in Sect. 3.1.

www.geosci-model-dev.net/12/1/2019/ Geosci. Model Dev., 12, 1–25, 2019
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Table 4. NO2 model evaluation statistics calculated at six sites (described in Sect. 3) for hourly concentrations during April and May 2013
for CALIOPE, CALIOPE-Urban and CALIOPE-Urban without local developments (CALIOPE-Urban-nl). Bold numbers represent model
results with better performance for each statistic and site.

Site Method FAC2 MB RMSE GeoMean GeoSD r

1. Palau Reial CALIOPE 0.73 −1.23 24.11 1.10 1.25 0.55
CALIOPE-Urban 0.72 −8.70 21.57 1.28 1.22 0.57
CALIOPE-Urban-nl 0.67 3.61 26.34 1.28 1.22 0.55

2. Eixample CALIOPE 0.60 −8.57 35.14 1.35 1.35 0.34
CALIOPE-Urban 0.86 9.38 26.70 0.83 1.11 0.55
CALIOPE-Urban-nl 0.61 39.53 54.92 0.57 1.38 0.45

3. Gràcia-Sant Gervasi CALIOPE 0.55 −10.95 31.95 1.38 1.39 0.47
CALIOPE-Urban 0.79 −7.39 25.11 1.07 1.19 0.52
CALIOPE-Urban-nl 0.66 6.00 35.91 0.91 1.43 0.38

4. 213 Industria Street CALIOPE 0.52 −19.13 35.13 1.79 1.54 0.44
CALIOPE-Urban 0.78 −13.62 26.55 1.30 1.17 0.57
CALIOPE-Urban-nl 0.75 1.57 31.12 1.04 1.26 0.54

5. 445 Valencia Street CALIOPE 0.50 −21.94 38.31 1.85 1.53 0.43
CALIOPE-Urban 0.92 2.92 23.26 0.94 1.07 0.56
CALIOPE-Urban-nl 0.79 23.72 42.29 0.75 1.19 0.47

6. 309 Industria Street CALIOPE 0.64 −7.41 28.49 1.36 1.33 0.53
CALIOPE-Urban 0.84 −4.60 22.72 1.05 1.13 0.53
CALIOPE-Urban-nl 0.78 11.60 31.13 0.83 1.24 0.58

Figure 8. NO2 model assessment target plots for CALIOPE (left) and CALIOPE-Urban (right). Symbols correspond to the six measurement
sites described in Sect. 3.1 and the MQI for each site is represented by the distance between the circle origin and the site symbol.

Figure 8 shows NO2 assessment target plots for CALIOPE
and CALIOPE-Urban. In the plots the centred root-mean-
square error (CRMSE) for each measurement station is plot-
ted against the normalised bias. Distance from circle origin
gives an estimate for the model quality indicator (MQI; Thu-5

nis and Cuvelier, 2016) that measures general model accu-
racy depending on measurement uncertainty. MQI values be-
low 1 (i.e. green shading area) are considered to comply with
the model quality objective. All sites in the CALIOPE-Urban

simulation fall within the green shaded area (i.e. comply- 10

ing with FAIRMODE’s model quality objective). In contrast,
four out of six in CALIOPE lie within the green shaded area,
clearly showing the positive effect of the street-scale model
in the coupled system.

Figure 9 shows averaged daily cycles for weekday and 15

weekend periods for the six sites described in Sect. 3.1
for CALIOPE, CALIOPE-Urban and CALIOPE-Urban-nl.
In general, all systems show a significant change between
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Figure 9. NO2 average daily cycle at all sites described in Sect. 3.1 during April and May 2013 for weekday and weekend. Observations
are represented as black coloured lines, red lines are CALIOPE, blue lines are CALIOPE-Urban and green lines represent CALIOPE-Urban
without local developments (CALIOPE-Urban-nl).

weekday and weekend in accordance with observations.
The overall dynamic is well reproduced by all systems but
CALIOPE tends to underestimate the afternoon levels and
overestimate night-time values. CALIOPE-Urban-nl overes-
timates night-time values and morning peaks. CALIOPE-5

Urban partly corrects CALIOPE afternoon underestimations
close to high traffic (i.e. Valencia Street and Eixample sta-
tions) but still underestimates at low traffic sites. CALIOPE’s
tendency to overestimate the evening peak and night values
may bring CALIOPE-Urban to generally overestimate for10

those hours as found in the literature near road sites (Hood
et al., 2018). However, the vertical mixing implemented in
CALIOPE-Urban decreases background concentration mix-
ing from aloft during night hours because under stable at-
mospheric conditions vertical mixing is reduced compared15

to daylight hours, which are more convective. This effect can
be noticed in the difference between CALIOPE-Urban and
CALIOPE-Urban-nl from 00:00 to 06:00 and from 18:00
to 23:00 (UTC) at traffic sites (i.e. sites 2, 3, 4, 5 and 6 in

Fig. 9), where CALIOPE-Urban concentration levels correct 20

the night overestimations seen in CALIOPE-Urban-nl. Such
a result shows the benefit of considering the vertical stability
in the coupling procedure of the mesoscale and the street-
scale dispersion model.

There is a noticeable difference between CALIOPE- 25

Urban’s accuracy at 213 Industria Street and 445 Valen-
cia Street given similar observations and CALIOPE levels
at both sites. Although both sites are located in areas with
considerable traffic activity, Valencia Street site has higher
modelled traffic emissions, resulting in higher local pollutant 30

concentrations, and a higher density of vehicles per square
kilometre as described in Table 3. Consequently, to improve
CALIOPE-Urban accuracy, an increase in local simulated
traffic at 213 Industria Street site could bring a model accu-
racy improvement. However, the lack of observational traffic 35

count data at the monitoring sites does not permit us to ex-
plore the precision of the input AADT information consid-
ered in HERMES v2.0 at those locations.
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Table 5. NO2 model evaluation statistics calculated at 182 passive dosimeter valid sites (described in Sect. 3.2) during 2 weeks from
28 February to 15 March 2017 for CALIOPE, CALIOPE-Urban and CALIOPE-Urban-nl mean concentrations. Bold numbers represent
model results with better performance for each statistic and site. Results are shown for all (including traffic and urban background), only
urban background and only traffic sites.

Sites Method FAC2 MB RMSE GeoMean GeoSD r

All CALIOPE 0.92 −14.00 21.88 1.30 1.08 0.36
CALIOPE-Urban 0.97 −7.26 17.21 1.20 1.06 0.70
CALIOPE-Urban-nl 0.98 15.24 28.30 0.81 1.06 0.69

Background CALIOPE 1.00 −2.84 8.08 1.06 1.02 0.66
CALIOPE-Urban 0.97 −7.34 12.71 1.23 1.06 0.54
CALIOPE-Urban-nl 1.00 10.09 15.03 0.82 1.04 0.72

Traffic CALIOPE 0.81 −25.57 30.74 1.60 1.63 0.22
CALIOPE-Urban 0.97 −7.17 20.62 1.17 1.06 0.53
CALIOPE-Urban-nl 0.96 20.17 36.76 0.81 1.08 0.50

4.2 Spatial variation in NO2 concentrations across the
city

We evaluate CALIOPE and CALIOPE-Urban NO2 in terms
of spatial variations across Barcelona city using measure-
ments from 182 valid passive dosimeters as described in5

Sect. 3.2. Table 5 gives statistics at the 182 sites where
passive dosimeters measured NO2 concentrations for a 2-
week period (28 February–15 March 2017) for CALIOPE,
CALIOPE-Urban and CALIOPE-Urban-nl (without local
developments).10

Considering all sites, CALIOPE-Urban shows a much bet-
ter correlation coefficient (0.70 vs. 0.36) than CALIOPE
due to its good performance at traffic sites. Compared to
CALIOPE-Urban-nl their correlation is similar. If we con-
sider only urban background sites, CALIOPE shows a greater15

correlation coefficient than CALIOPE-Urban (0.66 vs. 0.54)
and a MB closer to 0. In addition, CALIOPE-Urban-nl gives
a better correlation than both systems. A potential expla-
nation for this result is related to the error compensation
shown in the temporal evaluation (Sect. 4.1). CALIOPE and20

CALIOPE-Urban-nl may compensate for the underestima-
tion during daytime with the overestimation during night-
time. In contrast, CALIOPE-Urban may not compensate for
the daytime underestimations with overestimated night val-
ues because the background is reduced due to low verti-25

cal mixing effect during night-time (stable) hours. An en-
hanced daytime NO2 background contribution would im-
prove CALIOPE-Urban accuracy at urban background sites.

For traffic sites, CALIOPE shows a strong underestima-
tion (MB=−25.57 µgm−3) and CALIOPE-Urban gives MB30

levels closer to 0. CALIOPE-Urban underestimations may be
influenced by afternoon underestimations and a misrepresen-
tation of traffic emissions in some areas of the city. In con-
trast, CALIOPE-Urban-nl gives a high MB and the highest
RMSE among the three systems. This tendency to overesti-35

mate near traffic of CALIOPE-Urban-nl may be due to the

reasons stated in Sect. 4.1. In general, closer to intense traf-
fic CALIOPE-Urban is very sensitive to emissions and its
dispersion characterises the spatial variability for the study
period well. Reproducing spatial gradients near intense traf- 40

fic is crucial in a city like Barcelona given its high vehicle
density and NO2 concentration levels.

Figure 10 shows the difference between CALIOPE and
CALIOPE-Urban results and measurements (panels a, b)
and scatter plots at all sites (panels c, d) distinguished with 45

colours by site type (e.g. traffic site, urban background site).
In Fig. 10a the concentration difference map of CALIOPE

shows an overall underestimation, represented by blue dots.
This underestimation is found to be systematic at traffic sites
in the scatter of Fig. 10c (purple dots), where modelled val- 50

ues barely exceed 50 µgm−3 while most of the observed
values at traffic sites are above that value. In contrast, the
CALIOPE-Urban difference map (Fig. 10b) shows a more
mixed picture with a broader representation of white dots
(bias close to 0) but also more red ones in the city centre 55

and close to the highways. For CALIOPE-Urban’s scatter,
most of the model results at traffic sites are within the 1 : 2
and 1 : 0.5 dashed lines, showing a better agreement at traffic
sites than CALIOPE (Fig. 10d). In CALIOPE-Urban’s dif-
ference map, we see a spatial pattern with average bias close 60

to 0 in the city centre, where traffic is denser and close to
the highways surrounding the city. The appearance of red
dots may indicate that CALIOPE-Urban overestimates close
to high trafficked areas while CALIOPE underestimates in
these areas. This may be due to an overestimation of traf- 65

fic emissions or background concentrations in these areas. In
contrast, in locations where traffic is not very intense (see
Fig. 2 for NOx emissions) CALIOPE-Urban shows system-
atic underestimations. This result may be derived from the
systematic underestimation of midday NO2 concentrations 70

in low-traffic areas as shown in Sect. 4.1.
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Figure 10. (a, b) NO2 concentration difference (model – observations) for 2-week averaged values during the dosimeter campaign in 2017;
CALIOPE is left (a) and CALIOPE-Urban is right (b). (c, d) Scatter plot of modelled vs. observed concentrations with colours representing
site type (olive green for background and purple for traffic) for CALIOPE (c) and CALIOPE-Urban (d). Correlation (R) and agreement
factor of 2 (FAC2) are computed for all sites.

4.3 Major uncertainty sources

Here we discuss potential sources of error in our model by
analysing episodes when the model was skilful compared
with episodes when the model was not. Our analysis solely
considers the meteorological and background concentration5

inputs as potential sources of error. While road traffic emis-
sion estimates may introduce large errors, we lack observa-
tions of traffic counts at the measurement site locations to
properly assess them.

We calculated daily the RMSE of the hourly modelled10

NO2 concentrations versus the observed values at the six
sites described in Sect. 3.1 during the period April and May
2013. For each site we picked the 10 d with the highest

RMSE and 10 d with the lowest RMSE as potential candi-
dates. Then, we put together the candidates of all sites and we 15

chose the most frequent 5 d (i.e. from good and bad perfor-
mance candidate days) for both CALIOPE and CALIOPE-
Urban, finding that both systems share to a large extent the
days with skill (four out of five days) and without (three out
of five). This result shows that the coupled system perfor- 20

mance is highly dependent on the mesoscale model perfor-
mance. To explore errors potentially caused by R-LINE in-
puts, in Fig. 11 we compare the five days with less skill (i.e.
11, 16, 17 April and 7, 8 May) and the five days with more
skill (i.e. 7, 20 April and 18, 19, 25 May) with observations 25

for wind speed (ws), street level NO2 and background NO2.
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Figure 11. Box plots by time of the day of good (a, c, e) and bad performance days (b, d, f) for CALIOPE-Urban inputs and observations
with dots representing outliers. Panels (a, b) represent WRF and observed wind speeds at Barcelona airport (10 m height); panels (c, d) show
observed and modelled NO2 concentrations for the six sites in Sect. 3.1; panels (e, f) depict NO2 observed concentrations at the Ciutadella
urban background station and background model averaged results at the six sites. Observed values are orange and modelled results are blue.
Light green represents background model results at the surface level.

On skilful days, winds are relatively strong and well rep-
resented in WRF (Fig. 11a). Poor skills appear when the ob-
served wind speed is low. Because WRF largely underesti-
mates wind speeds (Fig. 11b) and NO2 concentrations are
underestimated under calm conditions (Fig. 11d), other pro-5

cesses (e.g. atmospheric stability) may have a greater impor-
tance in this case. In our coupling under very stable atmo-
spheric situations, dispersion is reduced and background in-
jection from the overlying atmosphere is limited. This control
mechanism adapts the system to specific street conditions, 10
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regulating dispersion and background injection. For these
days, an extended observational dataset would be needed to
better understand the model behaviour.

To analyse the background concentrations from the
mesoscale simulation as a potential error source, we com-5

pared NO2 observations from the Ciutadella urban back-
ground station with hourly modelled concentrations averaged
over the six sites. We aimed to compare the modelled back-
ground concentrations (i.e. excluding local vehicular traffic
contribution) with the most representative urban background10

observation, which in our case is the Ciutadella site. The
results shown in Fig. 11e, f represent concentrations pro-
vided by upwind CMAQ grid cells depending on wind speed
and direction (blue) as described in Sect. 2.3.3 downscaled
to surface level using the vertical decay method (green).15

As expected, observed NO2 concentrations on days with
calm conditions and therefore poor skill are higher than on
those with enhanced ventilation and better skills. The back-
ground model reproduces the variation during both types of
days well but overestimates concentrations during night-time20

(19:00–22:00 UTC), particularly during days with calm con-
ditions. This problem is partially corrected by using the back-
ground vertical decay method as seen in Fig. 11f and in
Fig. 9. In addition, NO2 concentrations are underestimated
at the beginning of the day (01:00–04:00 UTC). The fact that25

the averaged diurnal cycle in Fig. 9 shows similar error pat-
terns suggests that NO2 background concentrations greatly
influence NO2 street level concentrations in agreement with
Degraeuwe et al. (2017).

4.4 Hourly variation in street NO2 concentrations30

Hourly street NO2 concentrations are expected to vary spa-
tially and temporally with higher values close to intense traf-
fic sites during rush hour. Figure 12 shows high-resolution
(10m×10m) NO2 concentration maps at four different hours
on Thursday 11 April 2013 (i.e. 00:00, 07:00, 12:00 and35

18:00 UTC). This day is chosen because it shows a marked
diurnal cycle with maxima consistent with the morning and
evening traffic peaks (i.e. 06:00–07:00 or 18:00–20:00 UTC).
Higher concentrations are found at 07:00 and 18:00 UTC
where high traffic emissions are concentrated (i.e. highways40

surrounding the city and city centre) because traffic intensity
is higher at these hours of the day and the atmosphere tends
to be stable, making pollutant dispersion more difficult. Con-
versely, lower concentrations are found at 00:00 UTC due to
the lower traffic intensity and at 12:00 UTC. At 12:00 UTC45

traffic intensity is considerably higher than at 00:00 UTC but
the atmosphere is more convective and pollutant dispersion
is enhanced.

In agreement with Duyzer et al. (2015) our modelling re-
sults show that the Eixample and Gràcia-Sant Gervasi traf-50

fic stations do not represent the highest NO2 concentrations
in Barcelona. The highest levels are found in street canyons
exposed to very high traffic intensity and not as well ven-

tilated as the above-mentioned locations, and in open areas
near highways surrounding the city. For example, measure- 55

ments at the 445 Valencia Street site show 20 % higher con-
centrations than at Eixample and Gràcia-Sant Gervasi traffic
sites on average during the morning peak on weekdays (see
Fig. 9). Hence, additional monitoring sites located within
highly trafficked streets are clearly needed to better represent 60

the highest NO2 concentration levels in Barcelona.

5 Conclusions

This study describes the development of a coupled regional-
to street-scale modelling system, CALIOPE-Urban, which
provides high-spatial- and high-temporal-resolution (up to 65

10 m× 10 m, hourly) NO2 concentrations for Barcelona.
It couples the mesoscale air quality forecasting system
CALIOPE (WRF-HERMES-CMAQ-BSC-DREAM8b) with
the urban roadway dispersion model, R-LINE. For each re-
gional 1 km× 1 km grid cell, meteorological data from WRF 70

and background concentrations from CMAQ are used as
input combined with traffic emissions from the HERMES
emission model at road link level. R-LINE has been adapted
to Barcelona’s geometrical conditions by considering spe-
cific meteorology and background concentrations for each 75

street. CALIOPE-Urban NO2 simulations are compared with
CALIOPE and with observations for temporal evaluation, us-
ing data from five traffic sites and one urban background site
during April and May 2013, and for spatial evaluation, with
NO2 concentrations measured by 182 passive dosimeters dis- 80

tributed across the entire city during 2 weeks in February-
March 2017.

CALIOPE-Urban methodology adapts dynamically to
street conditions by coupling the meteorology and back-
ground using street-specific surface roughness based on ur- 85

ban geometry. It adapts the R-LINE dispersion model to
compact cities using channelled winds to drive dispersion
and using recalculated meteorological parameters for each
street. Regarding background concentrations, it estimates
over-roof levels using an upwind background scheme and 90

gives surface concentrations by applying a vertical mixing
parameterisation based on urban geometry and atmospheric
stability. The upwind background scheme avoids double
counting traffic emissions in regional and dispersion models
by using upwind grid cell concentrations to estimate over- 95

roof background concentrations. Doing so we omit the use
of the grid cell over the estimated area, where traffic emis-
sions are considered in the dispersion model. To estimate
background concentrations at surface level, the vertical mix-
ing parameterisation enhances background mixing from the 100

overlying atmosphere under daytime convective atmospheric
conditions and limits background air mixing during night-
time (stable) hours. For the transition from urban to subur-
ban areas, CALIOPE-Urban implements a smooth variation
for wind conditions, background and total concentrations. 105
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Figure 12. NO2 high-resolution (10m×10m) concentration maps on 11 April 2013. The resolution is for the entire concentration map. Panel
(a) represents concentrations at 00:00 UTC (2:00 LT), (b) 07:00 UTC (9:00 LT), (c) 12:00 UTC (14:00 LT) and (d) 18:00 UTC (20:00 LT).
Esri (2019).

Temporally, CALIOPE-Urban agrees better with observa-
tions than CALIOPE at the five traffic sites evaluated, where
the contribution of local emissions predominates. For the ur-
ban background site of Palau Reial, both systems give simi-
lar (good) results. For traffic sites, the coupled system shows5

better agreement in highly trafficked areas where local dis-
persion plays a crucial role. Regarding the diurnal average
cycle at the observation sites, both systems follow the over-
all daily cycle in the observations but CALIOPE-Urban pre-
dicts better morning peaks, and corrects the afternoon levels10

at traffic sites as well as the systematic night-time overesti-
mation produced by the regional system. The vertical mix-
ing of rooftop background concentrations to surface levels
based on atmospheric stability and urban geometry appears
to be a good method to correct the strong positive bias of the15

mesoscale model under stable atmospheric conditions during
the evening.

Spatially, CALIOPE-Urban performs better than
CALIOPE at the dosimeters located close to traffic.
This result is because R-LINE explicitly resolves road traffic 20

emission dispersion simulating the high gradients of NO2
observed levels that occur within a mesoscale system grid
cell. CALIOPE-Urban gives more overestimation close to
highly trafficked areas. This behaviour may be produced
by an overestimation of traffic emissions in these roads 25

or by underestimating dispersion. For dosimeters located
more than 10 m away from traffic both systems perform
reasonably well. The higher the traffic in the surrounding
area, the better CALIOPE-Urban performance is compared
to the regional system. 30

When exploring the main error sources, overall both sys-
tems produce results that are either accurate or inaccurate on
the same days. This fact suggests that coupled system results
are highly influenced by the regional system results. Fur-
thermore, we find that CALIOPE-Urban gives higher errors 35
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(i.e. stronger underestimations) under stable conditions with
light winds and low PBL height than under more convec-
tive conditions, with stronger winds and higher PBL heights.
Another potential source of uncertainty is the integration
within HERMES v2.0 of COPERT IV instead of COPERT5

V, which considers diesel NOx exceedances derived from
the dieselgate scandalCE4 for EURO 5 and EURO 6 diesel
cars (Brown et al., 2018). In future work, we plan to update
HERMES v2.0 with the new emission factors released by
COPERT V and examine the influence of traffic emissions in10

CALIOPE-Urban results. Finally, we consider an additional
source of uncertainty, the assumption of clear-sky conditions
in the photolysis rate calculation of the GRS chemistry mech-
anism.

For high-resolution air quality forecasts, we show that15

CALIOPE-Urban using either the numerical or the analyti-
cal dispersion algorithm gives good results. However, an en-
tire city system execution using the analytical configuration
takes approximately half the time compared to the numeri-
cal one. Hence, the analytical dispersion algorithm may be20

a suitable option for forecasting applications when sources,
such as roadways, and receptors are located near the ground.

We show that traffic monitoring stations in Barcelona do
not represent the highest NO2 concentrations in the city. We
find the highest levels in heavily trafficked street canyons that25

are not well ventilated and near highways in the city sur-
roundings. As a consequence, we consider that additional
monitoring sites located in these areas may better charac-
terise the range of NO2 concentration levels in Barcelona and
give a better representation of human exposures.30

This study has demonstrated that CALIOPE-Urban im-
proves the accuracy of model outputs estimating NO2
concentrations in Barcelona compared to CALIOPE. The
methodology is replicable in cities where a mesoscale chem-
istry transport model provides NO2 simulations if urban ge-35

ometrical data are available. The next step is to implement
CALIOPE-Urban in the operational forecasting system for
Barcelona to provide NO2 concentrations at street level, and
explore emission impacts due to improved NOx emission es-
timates.40

Code availability. Copies of the code are readily available upon re-
quest from the corresponding authors. Observational data in this
work have been provided by co-authors from the Institute of Envi-
ronmental Assessment and Water Research, IDAEA-CSIC, Spain.
Contact them if interested in these datasets.45
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Appendix A: Extended urban geometry
characterisation

Figure A1. Scatter plot showing aspect ratio and building density relation in Barcelona city.
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Appendix B: Extended performance evaluation

Table B1. NO2 model evaluation statistics calculated at six sites (described in Sect. 3) during April and May 2013 for CALIOPE and
CALIOPE-Urban daily mean concentrations. Bold numbers represent model results with better performance for each statistic and site.

Site Method FAC2 MB RMSE GeoMean GeoSD r

1. Palau Reial CALIOPE 1.00 −10.97 15.44 1.30 1.08 0.84
CALIOPE-Urban 0.95 −8.72 13.85 1.29 1.07 0.80

2. Eixample CALIOPE 0.91 −9.62 17.37 1.24 1.08 0.52
CALIOPE-Urban 1.00 9.64 15.60 0.83 1.04 0.60

3. Gràcia-Sant Gervasi CALIOPE 0.91 −10.97 15.44 1.30 1.08 0.82
CALIOPE-Urban 1.00 −7.40 15.33 1.10 1.05 0.81

4. 213 Industria Street CALIOPE 0.75 −19.15 23.51 1.62 1.20 0.68
CALIOPE-Urban 0.95 −13.79 18.90 1.29 1.07 0.68

5. 445 Valencia Street CALIOPE 0.70 −22.05 26.07 1.64 1.20 0.67
CALIOPE-Urban 1.00 3.00 11.25 0.94 1.02 0.65

6. 309 Industria Street CALIOPE 0.95 −7.13 13.33 1.22 1.07 0.78
CALIOPE-Urban 0.95 −7.12 13.32 1.30 1.07 0.68

Table B2. NO2 model evaluation statistics calculated at six sites (described in Sect. 3) during April and May 2013 for hourly concentrations
of CALIOPE-Urban, CALIOPE-Urban analytical or CALIOPE-Urban-nl (non-local) configurations. Bold numbers represent model results
with better performance for each statistic and site.

Site Method FAC2 MB RMSE GeoMean GeoSD r

1. Palau Reial CALIOPE-Urban 0.72 −8.70 21.57 1.28 1.22 0.57
CALIOPE-Urban analytical 0.69 −10.46 22.44 1.38 1.24 0.56
CALIOPE-Urban-nl 0.67 3.61 26.34 0.99 1.40 0.55

2. Eixample CALIOPE-Urban 0.86 9.38 26.70 0.83 1.12 0.55
CALIOPE-Urban analytical 0.87 7.99 26.25 0.85 1.11 0.56
CALIOPE-Urban-nl 0.61 39.53 54.92 0.57 1.38 0.45

3. Gràcia-Sant Gervasi CALIOPE-Urban 0.79 -7.39 25.11 1.07 1.19 0.52
CALIOPE-Urban analytical 0.78 −9.29 25.54 1.13 1.20 0.53
CALIOPE-Urban-nl 0.66 6.00 35.91 0.91 1.43 0.38

4. 213 Industria Street CALIOPE-Urban 0.78 −13.62 26.65 1.30 1.17 0.57
CALIOPE-Urban analytical 0.76 −14.85 27.22 1.35 1.18 0.57
CALIOPE-Urban-nl 0.75 1.57 31.12 1.05 1.26 0.54

5. 445 Valencia Street CALIOPE-Urban 0.92 2.92 23.26 0.94 1.07 0.56
CALIOPE-Urban analytical 0.93 0.87 23.17 0.97 1.07 0.57
CALIOPE-Urban-nl 0.79 23.72 42.29 0.75 1.19 0.47

6. 309 Industria Street CALIOPE-Urban 0.84 −4.60 22.72 1.05 1.13 0.53
CALIOPE-Urban analytical 0.83 −6.64 22.94 1.12 1.14 0.54
CALIOPE-Urban-nl 0.78 11.60 31.13 0.83 1.24 0.58
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Appendix C: Description of model evaluation statistics

Here we define the model evaluation statistics used to com-
pare observed measurements (obs) with modelled concentra-
tions (mod): the geometric mean bias (GeoMean), the frac-
tion of model results within a factor of 2 of observations5

(FAC2), the geometric standard deviation (GeoSD), the cor-
relation coefficient (R), the mean bias (MB) and the root-
mean-square error (RMSE).

GeoMean= exp
(

ln(obs)− ln(mod)
)

(C1)

FAC2= 0.5≤
modi
obsi

≤ 2.0 (C2)10

GeoSD= exp
(

ln(F )
√

2eri−1(AF )

)
(C3)

R =

(
obsi − obs

)(
modi −mod

)
σmodσobs

(C4)

MB=
1
n

n∑
i=1

modi − obsi (C5)

RMSE=

√∑n
i=1(modi − obsi)2

n
(C6)

Here mod is the modelled concentrations, obs is the observed15

concentrations, the overbar (d) represents the average over a
dataset d , F is considered to be 2, eri is the inverse of error
function, AF is the proportion of the ratio, σd is the stan-
dard deviation of d, n is the number of paired modelled and
observed concentrations and subscripts represent a value be-20

tween 1 and n. For further details on the evaluation statistics
we refer to Chang and Hanna (2004).
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