
Answer to Reviewer 1 

We thank Reviewer 1 for his positive comments 

This paper is well written and presents the data assimilation of in-situ observations of 3D lake 
models. The authors use EnKF based methods to assimilate the data so as to account for both model 
and data uncertainties. The results are presented well. I have the following minor comments to 
make 1) Although authors talk about Model errors, they do not describe literature relevant to model 
errors 2) Also, a paragraph about variational data assimilation should be mentioned Relevant 
citations: 1) Model Error in Data Assimilation 2) Accounting for Model Errors in Ensemble Data 
Assimilation 3) A Posteriori Error Estimates for the Solution of Variational Inverse Problems 4 )A 
review of operational methods of variational and ensemble variational data assimulation 

 

We have described assimilation methods in Appendix B but we propose to move parts of this section 
up to section 3, the Data assimilation section. We will also add more citations (also asked by 
Reviewer 2) regarding model errors: 

Santha Akella and I.M. Navon:Different approaches to model error formulation in 4DVar: a study 
with high resolution advection schemes . , Tellus A . , Vol 61A, 112–128 (2009) 

 Daescu D.N. and Navon I.M.:Sensitivity Analysis in Nonlinear Variational Data Assimilation: 
Theoretical Aspects and Applications. Chapter in book : Advanced Numerical Methods for Complex 
Environmental Models: Needs and Availability. Istvan Farago and Zahari Zlatev (Editors), Bentham 
Science Publishers, Published December 2013,ISBN: 978-1-60805-777-1 (2013)  

Yet, a study of model errors was not the goal of the paper and we prefer not to deviate too much 
from our main message: describe and implement an integrated observation-model-DA forecasting 
system for physical processes in lakes. We believe that model error was adequately described in 
multiple figures and plots in the manuscript (Tables 2 and 3; Figures 2, 4, 5 , 6, 7, 8) with various 
statistics and diagrams. Those statistics and figures showed the error between observational data, 
model free runs and DA runs, and demonstrated the value and improvement of DA. We will add the 
above-mentioned references to the manuscript. 

We have cited some references regarding data assimilations in freshwater system (Kourzeneva, 
2014; Stroud et al., 2009, 2010; Yeates et al., 2008; Zhang et al., 2007). We propose to add the 
following more general reference together with the one already cited (Bannister 2017): 

Carrassi, A., Bocquet, M., Bertino, L., & Evensen, G. (2018). Data assimilation in the geosciences: An 
overview of methods, issues, and perspectives. Wiley Interdisciplinary Reviews: Climate 
Change, 9(5), e535. 

 

  

 

 



Answer to Reviewer 2 

We thanks Reviewer 2 for his positive comments 

The ms is well-written and presented , reinforcing the expectation that satellite data providing 
additional data coverage improve the data assimilation results assimilated along with in-situ 
observations of 3D lake models. The DA method used was EnKF .  

The authors should briefly address data assimilation using variational method i.e.4DVAR method, 
along with displaying relative sensitivity of model to the type of observations being assimilated.  

Model error should also be briefly discussed. See for instance:  

Santha Akella and I.M. Navon:Different approaches to model error formulation in 4DVar: a study 
with high resolution advection schemes . , Tellus A . , Vol 61A, 112–128 (2009) 

 Daescu D.N. and Navon I.M.:Sensitivity Analysis in Nonlinear Variational Data Assimilation: 
Theoretical Aspects and Applications. Chapter in book : Advanced Numerical Methods for Complex 
Environmental Models: Needs and Availability. Istvan Farago and Zahari Zlatev (Editors), Bentham 
Science Publishers, Published December 2013,ISBN: 978-1-60805-777-1 (2013)   

 

We agree that 4DVAR is an efficient data assimilation approach. Yet, we used EnKF and as it we do 
not see the benefit for this article to describe 4DVar further. Other DA methods were adequately 
described in the Assimilation approaches in Appendix B. We propose to move parts of this section up 
to section 3, the Data assimilation section, to explain our approach more clearly.  The reason for 
choosing a suitable DA method for this application is based on 1) computational efficiency, 2) 
operational consideration, 3) model independence and 4) code availability (openDA). For those 
reasons, EnKF was selected for this particular observation-model-DA system application.  Developing 
or evaluating different DA techniques was not the goal of this paper and out of the scope of this 
project and publication.  

We believe that model error was adequately described in multiple figures and plots in the 
manuscript (Tables 2 and 3; Figures 2, 4, 5 , 6, 7, 8) with various statistics and diagrams. Those 
statistics and figures showed the error between observational data, model free runs and DA runs, 
and demonstrated the value and improvement of DA. Again, it is not the goal of the paper to 
evaluate different DA methods and we prefer not to deviate too much from our main message: 
describe and implement an integrated observation-model-DA forecasting system for physical 
processes in lakes. 

 

Another issue to address is the question of existence of an upper limit to the amount of information 
that can be assimilated and the improvement in model error. 

Our approach aimed at being operational and the upper limit is so far constrained by operational 
computational resources with the goal to provide output in < 6h. Hence, we arbitrarily limited the 
amount of information being assimilated and simply tested the absence of assimilation shocks but 
did not investigate the existence of an upper limit to the amount of information that can be 
assimilated. This question is very relevant but we believe that this is not needed for this study aiming 
at developing an operational assimilation framework for lakes. We have however added the 
following text in the manuscript (P20L23):  The existence of an upper limit to the amount of 



information assimilated was not investigated here, as the aim of this work is to provide an 
operational system with data assimilation in lakes. 

We believe the true issue is to find the optimal amount of information that could yield the best 
simulation results under the operational consideration, and not seeking the upper limit. Finding out 
the upper limit is useless if there is no practical application, which can not be applied in an 
operational environment.  This is why the authors ran multiple configuration and numerical 
experiment to test and evaluate the best configuration (number of AVHRR images, data assimilation 
insertion frequency and number of ensemble members).  
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Abstract. The understanding of lakes physical dynamics is crucial to provide scientifically credible information foron lakes  

ecosystem management. We show how the combination of in-situ dataobservations, remote sensing observationsdata and three-15 

dimensional hydrodynamic (3D) numerical simulations is capable of deliveringresolving various spatio-temporal scales 

involved in lakes dynamics. This combination is achieved through data assimilation (DA) and uncertainty quantification. In 

this study, we presentdevelop a flexible framework forby incorporating DA into lakes three-dimensional3D hydrodynamic lake 

models. Using an Ensemble Kalman Filter, our approach accounts for model and observational uncertainties. We demonstrate 

the framework by assimilating in-situ and satellite remote sensing temperature data into a three-dimensional3Dl hydrodynamic 20 

model of Lake Geneva. Results show that DA effectively improves model performance over a broad range of spatio-temporal 

scales and physical processes. Overall, temperature errors have been reduced by 54 %. With a localization scheme, an ensemble 

size of 20 members is found to be sufficient to derive covariance matrices leading to satisfactory results. The entire framework 

has been developed for the constraintswith a goal of near real-time operational systems and near real-time operations (e.g. 

integration into meteolakes.ch). 25 

1 Introduction 

The management of aquatic systems is a complex challenge including many stakeholders pursuing sometimes contradictory 

objectives. This becomes even more complexcomplicated in view of climate change, affecting both heat andwatershed 

hydrology in the watershed of and lakes physics. There is thereby an urgent need to provide accurate information of the lake 

hydrodynamics. 30 
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Traditionally, perhaps due to the misleading definition of lakes as lentic systems, hydrodynamics studies focused on the one-

dimensional vertical structure of lakes using in-situ measurements with limited spatial and temporal coverage (Kiefer et al., 

2015). Yet, the lentic definition of lakes is misleading at short time scale. Dynamical processes such as wind-induced 

upwellings, rivers intrusiondischarges and gyres strongly disrupt the spatial homogeneity and quiet nature of the systems and 

ultimately affect lakes biogeochemistry (MacIntyre and Melack, 1995). Remote sensing observations, as well as one- and 5 

three-dimensional hydrodynamic models, addressed some of the spatial and temporal coverage limitations. 

While three-dimensional (3D) hydrodynamic models are the only source of informationimportant tools capable of simulating 

the multi-scale temporal and spatial 3D lake dynamics, measurements remained essential to properly calibrate and validate 

models andto improve their representativenessaccuracy. Indeed, model deviations are unavoidable, due to uncertainties in 

processes, forcing and observations (Lahoz et al., 2010), which have to be taken into account. Remotely sensed observations 10 

provide another essential source of information with continuously improvingimproved spatial and temporal resolution. 

YetHowever, this information remains fundamentally 2D. Ultimately, only the combination of remote sensing, numerical 

simulations and in-situ measurements can overcome the large varietyvariations of spatio-temporal scales involved in lakes 

dynamics and hence provide an adequate understanding of the system. This combination is achieved by data assimilation (DA). 

DA is an effective approach to blend observational data into model simulations (Bannister, 2017; Li et al., 2008). Defined as 15 

the process by which the model of an evolving system is corrected by incorporating observations of the real system, DA 

improves both short-term forecasts and past model reanalysis (Hawley et al., 2006). A fundamental property of DA is to take 

observation (e.g. instrument accuracy, representativeness) and model (e.g. in processes, forcing, initial conditions) errors into 

account (Lahoz et al., 2010) and to provide the analysis with corrected errors (Kourzeneva, 2014). Those are crucial elements 

for parameter inference, monitoring and forecast reliability. 20 

Multiple methods have been proposeddeveloped for DA, among those, the Ensemble Kalman Filter (EnKF, Evensen, 2003). 

The EnKF has been successfully applied to numerous applications in oceanography and atmospheric sciences (Eknes and 

Evensen, 2002; Evensen, 1994; Mao et al., 2009; Natvik and Evensen, 2003). It was found to be an efficient tool for non-linear 

problems with high dimensionality (Crow, 2003; Reichle et al., 2002b, 2002a), computing system error statistics based on 

system dynamics. But those methods have rarely been applied to lakes and DA for inland waters is still in its infancy. The 25 

different scales involved, and therefore observations available, with the large heterogeneity found in lake dynamics limited the 

direct application of experiments designed for oceans. For instance, Zhang et al. (2007) assimilated current measurements into 

a two-dimensional circulation model of Lake Michigan, where current updates are calculated by kriging interpolation. Yeates 

et al. (2008) used a pycnocline filter that assimilated thermistor data into a three-dimensional3D model of a stratified lake, to 

negate numerical diffusion driving model predictions off-course. Stroud et al. (2009) assimilated satellite images into a two-30 

dimensional sediment transport model of Lake Michigan, using direct insertion and a kriging-based approach, effectively 

reducing model forecast errors. Later on they used an EnKF and Smoother (Stroud et al., 2010) usingwith similar data and 

model when a large sediment plume was observed after a major storm event. Results obtained were better relative to standard 

approaches (a static model, and a reduced rank square-root Kalman filter). Finally, Kourzeneva (2014) used an Extended 
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Kalman Filter (EKF) to assimilate lake surface water temperature into a one-dimensional two-layers freshwater lake model, 

leading to massivesignificant improvements over the free model run. Overall, to our knowledge, this is the first DA experiment 

that blends massive datasets of both in-situ observations and remote sensing observationsdata into a three-dimensional 

hydrodynamic model with high dimensionality. 

The aim of this study is to providedevelop a flexible framework, in a Bayesian inference setting, capable of updating and 5 

improving model states while taking into account the uncertainty of both the modelled system and observational data. Here, 

we present a novel DA experiment with EnKF tailored to lakes and observations using an open-source hydrodynamic model 

and assimilation platform. This approach uses a new file-based coupling recently developed for OpenDA and Delft3D-FLOW 

with z-layer support (Baracchini et al., 20192019a). Delft3D-FLOW is an open-source multithree-dimensional hydrodynamic 

simulation software with numerous successful applications in coastal, river, estuarine and lake domains. OpenDA is an open-10 

source generic DA environment (El Serafy et al., 2007), used in various calibration and DA experiments (El Serafy et al., 

2007; Weerts et al., 2010; Kurniawan et al., 2011), but not yet to 3D lakes hydrodynamic modelling with DA. Our methodology 

is tested on athe large French-Swiss lake (Lake Geneva) with in-situ temperature measurements and Lake Water Surface 

Temperaturelake surface water temperature (LSWT) retrieved from satellite data (AVHRR). The choice of testing a first DA 

of surface temperature on Lake Geneva was motivated by recent studies concluding that data from space-borne medium 15 

resolution radiometers specifically tailored to Lake Geneva (Oesch et al., 2005) could potentially be assimilated to numerical 

models (Oesch et al., 2008). Furthermore, Baracchini et al. (20192019b) proposed a calibrated model and framework for Lake 

Geneva. This first step being an absolute requirement for DA. Here, LSWT and in-situ data are blended into such model, to 

expand its monitoring capabilities of physical phenomena. The latter is achieved by considering the stochasticity of the system 

and an EnKF algorithm to update model results. This procedure is expected to benefit both environmental research and 20 

operational monitoring and forecasting of mid-size and large lakes, with impacts on a broad diversity of societally important 

issues.  

The study is articulated according to the followingorganized as follow: Section 2, data and methods, describes the study site, 

model, tools and data used. This includes measurements retrieval and processing chain as well as the quantification of their 

uncertainty. Although part of the methods, the data assimilation algorithm and its configuration are provided in a different 25 

section (Section 3) due to their central role in the study. Noise generation, number of ensembles, and localization scheme are 

discussed in this section. Section 4 and 5 consist of respectively the presentation and discussion of results, repectively. Finally, 

perspectives and conclusion are given in the final Section. 

2 Data and methods 

In this sectionHere we describe the various components used in the DA experiment, the challenges associated with high 30 

frequency and resolution measurements, modelling datasets, and their errors definition, which previously hampered the 

application of such systems.  
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2.1 Study site 

Lake Geneva (locally known as Le Léman) is a perialpine lake located between Switzerland and France (46.458 °N, 6.528 °E) 

at an altitude of 372 m (Fig. 1). It is the largest freshwater lake in Western Europe (surface area and volume of respectively 

580 km2 and 89 km3, respectively) with a retention time of 11.4 years. Due to relatively mild winter temperatures and its large 

depth of 309 m, complete deep convective mixing only occurs only every 5 to 10 winters (Schwefel et al., 2016). The lake is 5 

composed of two parts: the large eastern basin (Grand Lac), with maximum depth of 309 m, mean depth of 160 m, mean width 

of 10 km in which gyres are frequently observed, and the Petit Lac, the narrow and shallow western basin (maximum depth of 

70 m, mean width of 4.5 km). The centres of the two basins are some 30 km apart, which defines the cut-off distance of the 

EnKF (more details in Section 3). The surrounding topography is mountainous, mainly in the Southeast, hence affecting the 

wind circulation above the basin. Lake Geneva is mesotrophic, with strong variation in turbidity and light penetration depth 10 

over the year (ranging from 3.6 to 14 m).  

 
Figure 1: Lake Geneva locationlocations, computational grid and bathymetry. Circles are in-situ measurementsmeasurement sites. 
The triangle indicates the AVHRR validation station. Squares are selected sampling locations used to generate the wind fields of the 
COSMO-E products. 15 



5 
 

2.2 Model setup 

The primary purpose of a three-dimensional3D hydrodynamic model is to solve various timethetime-dependent, non-linear 

differential equations related toof the hydrostatic free-surface flows in a computational grid. Various modelling suites have 

been developed to solve those equations accounting for momentum (Reynolds-averaged Navier-Stokes (, RANS)),), and fluid 

mass (continuity), as well as heat and mass transfer. The open source Delft3D-FLOW software is used in this study. 5 

Delft3D-FLOW Numerical model - Delft3D-FLOW is an open-source hydrodynamic modelling suite developed by Deltares, 

Netherlands. Initially designed for coastal regions and estuaries, it has been expanded to rivers and lakes. A detailed model 

description of the equations and numerical schemes (conjugate gradient solver) can be found in the manual (Deltares, 2015).  

We stress again that a fundamental prerequisite to any DA experiment is a well calibrated model. Improper physical parameters 

could lead to strong discontinuities followed by waves (assimilation shocks) leading to spurious behaviours (Anderson et al., 10 

2000). Assimilated variables could then, for example, go back to their pre-assimilated value. Lake Geneva’s model has been 

extensively studied and calibrated (explicit optimization method by residuals minimization) in a previous study (Baracchini et 

al., 20192019a). This model consists of 100 unevenly distributed vertical layers, with thinner layers at the top (from 20 cm at 

the surface to several meters in the hypolimnion). Due to the steep bathymetry of Lake Geneva, we use the z-coordinate system 

(layers are horizontal) to avoid strong numerical diffusion and excessive artificial mixing. A computational time-step of 2 15 

minutes is specified for the 450 m horizontal grid size to maintain model stability with the κ-ϵ turbulence closure model 

(Goudsmit et al., 2002).. This turbulence closure model accounts for unresolved mixing at sub-grid scales. As initial conditions, 

the model is initialized (uniformly horizontally) from an in-situ temperature profile taken at the deepest location of the lake in 

January, when the lake is partially mixed. We consider a simulation period of one year, thereby covering the entire range of 

seasonal stratification dynamics. 20 

The dynamics of a lake is mainly driven by interactions with the atmosphere and dissipation at the bed. As boundary forcing, 

we use MeteoSwiss COSMO-1 reanalysis products from their atmospheric model tailored to the Alpine region. They consist 

of various meteorological variables on a regular 1.1 km grid with hourly resolution. Seven of those variables are used in this 

study: solar radiation, wind direction and intensity, relative humidity, cloud cover, pressure, and air temperature.  

Lake Geneva is subject to strong variations in turbidity which affect the stratification mainly in early summer. Monthly time-25 

series of Secchi depth observations have therefore been used in the forcing. 

On computation requirementsFinally, a single deterministic one-year model run for Lake Geneva without DA, requires up to 

3 days of wall clock computing time on a single Intel Xeon Broadwell core processor.  

2.3 Assimilation platform 

OpenDA is an open interface standard. It provides access to a set of open-source tools allowing the integration of arbitrary 30 

numerical models and observations through calibration and data assimilation algorithms. Its goal is to minimize algorithmic 
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development by promoting the exchange of software solutions among researchers and users (Deltares, 2019, 

www.openda.org).  

An OpenDA interface has recently been developed for the z-layer Delft3D-FLOW using the black-box wrapper (file-based) 

approach (Baracchini et al., 20192019a). This interface has been further expanded for DA in this study. Additions include 

extended modifications of the Delft3D-FLOW model-definition file, model forcing files (on an equidistant grid only) for 5 

OpenDA’s noise models, and a support for localization, which allows to limit the area of influence of an observation. The 

entire source-code is available on GitHub (https://github.com/OpenDA-Association/OpenDA). 

2.4 Monitoring data 

Role of data accuracy - Key in any DA problem is the observational data and its quality (Madsen, 2003). 3D-models require 

an especially large amount of data to assess and validate their horizontal variability. Remote sensing observations are therefore 10 

considered together with vertical in-situ profiles to constrain the system over the surface and depth. Errors are present in the 

system through its initial conditions, physical processes, approximations, and forcing (Bárdossy and Singh, 2008). 

Observations of the true system also require quantifying their uncertainties, as measurements are always an imperfect and 

incomplete representation (Bertino et al., 2007). This is particularly important as it defines how reliable an observation is and 

therefore how the model states are corrected. Injecting data with incorrect measurements error distribution into a good model 15 

could depreciate its relevance to the point where assimilation estimates are worse than the non-assimilative solution or the 

observations. The opposite holds true and model forecast would still be unreliable. 

Lake in-situ data - The dataset consists of 31 temperature profiles over the water column at two locations of Lake Geneva 

(GE3 and SHL2, Fig. 1) sampled during year 2017. Profiles are collected at a monthly (GE3) to bi-monthly (SHL2) 

rhythm.(frequency?). Uncertainty of in-situ temperature profiles is defined as the maximum value of the instrument precision 20 

(0.1 °C) and temporal variability at the measurement location. Reasons for the latter are twofold: first, some in-situ profiles 

did not have their exact collection time recorded; second, this study does not focus on reproducing short-term dynamics such 

as basin-scale internal waves and thermocline oscillations. The standard deviation of preliminary modelling results is computed 

over a time window to account for this variability. The temporal variability window is defined by the period of basin-scale 

internal oscillations (48 hours). This procedure allows to limitlimiting physical discontinuities created by the EnKF updates 25 

from specific physical processes (i.e. internal waves) which are not the focus of this study. 

The Buchillon station (Fig. 1), consisting of a mast measuring various atmospheric and hydrodynamic properties in real-time, 

has been used for the validation of AVHRR data detailed below. Of relevance for this study is a thermistor located at 1 m 

water depth representing the bulk LSWT.  

AVHRR LSWT - The space-borne Advanced Very High Resolution Radiometer (AVHRR) sensor has been selected for its 30 

high temporal (up to 10 overpasses per day) and moderate spatial (1 km) resolution. We consider it to be the right trade-off for 

lakes; between the high spatial but low temporal resolution of Landsat 8 (90 m every 2 weeks) and the low spatial but high 

temporal one of SEVIRI (3 km every 15 min). The access to the AVHRR data was facilitated by a direct downlink and 

http://www.openda.org/
https://github.com/OpenDA-Association/OpenDA
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processing chain from the University of Bern. We describe below, and in the appendix, how AVHRR can be used for DA in 

lakes. 

The AVHRR LSWT retrieval process, with locally adapted Split window-Window coefficients for Lake Geneva, is described 

in Lieberherr and Wunderle (2018) and Lieberherr et al. (2017). Only pixels with quality levels higher than 3 (Lieberherr and 

Wunderle, 2018) are considered for the next sections.  5 

An extensive description of the filtering of the data is available in appendix A. Overall, out of the 3372 AVHRR images of 

Lake Geneva available for 2017, 124 satisfy the selection criteria (see appendix A). This data is relatively evenly spread from 

February to October, with a maximum frequency of 1one image per 24 hours. Very few images are available in January, 

November and December due to bad weather conditions or cloud cover. The average lake coverage of those images is of 

51about51 %. 10 

3 Data assimilation 

A short summary for popular DA approaches, their benefits and limitations is provided in appendix B. We briefly mention the 

Extended Kalman Filter (EKF) and Particle Filter, which are popular sequential algorithms for DA. The EKF is a variant of 

the Kalman Filter for non-linear dynamics and consists in a linearization of the model in the neighborhood of the current 

estimate of the state vector. For highly non-linear systems this can result in an improper estimation of the state vector or 15 

covariance matrices and can therefore lead to quick divergence and instability (Moradkhani et al., 2005; Nakamura et al., 2006). 

The Particle Filter can cope with non-linearities and obtain a full representation of the posterior distribution but its 

computational cost (i.e. high number of particles required) limited its use with three-dimensional hydrodynamic models (more 

details in appendix B). For its flexibility and affordable computational cost, we further focus on the EnKF. 

The multiple methods proposed for DA mainly fall into two categories: (i) variational (e.g. 3D-VAR, 4D-VAR) and (ii) 20 

sequential methods (e.g. Kalman Filtering, Particle Filtering). For variational methods, the optimization of the model states 

(or parameters) is based on the minimization of a cost function. Carrassi et al (2018) have proposed an extensive review of 

DA assimilation methods and uses in geophysical sciences. Variational methods are popular in meteorological forecasting 

(Rawlins et al., 2007). However, the computational burden associated with the collection and storage of data can be significant. 

Moreover, batch processing of data reduces flexibility and complicates the consideration of time-varying model parameters. 25 

Sequential methods are robust techniques for DA in a broad range of applications. For linear dynamics and measurement 

processes with Gaussian error statistics, the Kalman Filter (Kalman, 1960) is an optimal sequential DA algorithm. However, 

most processes observed in nature, such as hydrodynamics, are non-linear. The analytical solution provided by the Kalman 

Filter can therefore not be derived in order to compute the posterior distribution of simulated variables. To overcome this 

limitation variants exist, such as the EKF, which consists in a linearization of the model in the neighborhood of the current 30 

estimate of the state vector. This linearization can lead to complicated calculations for systems with high dimensionality, as 

the integration and propagation of the error covariance results in a significant computational demand (Gillijns et al., 2006). 
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Linearization is done using first-order Taylor expansion, which implies a closure at the second-order moments. For highly 

non-linear systems this can result in an improper estimation of the state vector or covariance matrices and can therefore lead 

to quick divergence and instability (Moradkhani et al., 2005; Nakamura et al., 2006).  

In order to cope with non-linearities and obtain a full representation of the posterior distribution, other statistical methods, such 

as Particle Filters have been developed (Carpenter et al., 1999). The Particle Filter is a solution following a Darwinian-like 5 

process of survival of the fittest. It shares properties with EnKF in the sense that the particles are the ensemble members. 

Particle Filters do not need any assumption for the state variable distribution (e.g. Gaussian) and can deal with non-linear 

observation models as well. The updates being applied on particle weights rather than the state variable, which results in less 

numerical instabilities for process-based models (van Leeuwen, 2009; Liu et al., 2012; Moradkhani et al., 2005). A major 

drawback is the particle depletion, which requires complex resampling algorithms. Moreover, it is less computationally 10 

efficient than the EnKF due to the need for a high number of particles (more particles than EnKF ensembles are often needed, 

in the order of tens of thousands). Despite its advantages, the use of the Particle Filter as an assimilation method in 

oceanography and limnology is limited due to its high computational cost. To address such issue, solutions are undergoing 

development (Šukys and Kattwinkel, 2018). For its flexibility and affordable computational cost, we further focus on the EnKF.  

3.1 Ensemble Kalman Filter (EnKF)  15 

The EnKF is an attractive alternative for non-linear dynamics and systems with high dimensionality. Reichle et al. (2002a) 

found that the EnKF is more robust than the EKF while being more flexible to obtain system covariances, a core element of 

the DA problem (Bertino et al., 2007). Indeed, whereas careful estimation of covariances often required a lot of effort (De 

Lannoy et al., 2007b), in the EnKF they are derived dynamically from a small ensemble of model trajectories (and therefore 

take into account the physics of the model), which grasps the essential parts of the error structure (Reichle et al., 2002b). The 20 

EnKF only considers a sample of the state variable to represent the processes modelled. The covariance matrix becomes a 

sampled covariance matrix and predictive probability density functions of the state vectors are approximated by Monte-Carlo 

simulations (Nakamura et al., 2006). It non-linearly propagates a finite ensemble of model trajectories instead of using a 

linearized equation for the error covariance, no computation of derivatives is required. The EnKF still considers a linear 

correction procedure, and assumes Gaussian distributions of the random variables. When this is not the case, the filter still 25 

produces a variance minimizing solution, though not being the optimal estimate (Bertino et al., 2007).  

We develop below the fundamentals behind the algorithm. We first define the true model state (corresponding to the actual 

physical state of the lake) vector x of athe system at time t as xt (in our case temperature for the entire 3D model grid), ℳ athe 

non-linear lake system operator, 𝜂𝜂 somethe  process noise, and u athe forcing vector (here meteorological forcing) for 

a time t. The state propagation equation yieldsreads: 30 

𝒙𝒙𝒕𝒕 = 𝓜𝓜𝒕𝒕(𝒙𝒙𝒕𝒕−𝟏𝟏, 𝒖𝒖𝒕𝒕−𝟏𝟏) + 𝜼𝜼𝒕𝒕−𝟏𝟏     ( 1 ) 

In this study, the noise is added in the forcing term u. The noise term is then and subsequently dropped in the notation of (2) 

as it is included in the forcing.). The state space vector, noted 𝑥𝑥�, is an approximation (done by the hydrodynamic model 
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DELFT3DDelft3D-FLOW) of the true state x. The forecast state (the input information for DA at time t) is defined by 𝑥𝑥�𝑓𝑓and 

the analysis state obtained after DA as 𝑥𝑥�𝑎𝑎. The model propagation equation now reads: 

𝒙𝒙�𝒕𝒕
𝒇𝒇 = 𝓜𝓜𝒕𝒕(𝒙𝒙�𝒕𝒕−𝟏𝟏

𝒂𝒂 , 𝒖𝒖𝒕𝒕−𝟏𝟏)      ( 2 ) 

As we do not measure the true state of the system (x), the observation (y) equation is defined by the following, with H an 

operator relating the system state to the observation and ε is some measurement noise: 5 

𝒚𝒚𝒕𝒕 = 𝑯𝑯𝒕𝒕(𝒙𝒙𝒕𝒕) +  𝜺𝜺𝒕𝒕      ( 3 ) 

With the observation prediction given by: 

𝒚𝒚�𝒕𝒕 = 𝑯𝑯𝒕𝒕(𝒙𝒙�𝒕𝒕
𝒇𝒇)       ( 4 ) 

Note that in our case, we directly observe what we compute (i.e. surface temperature and profiles at computed grid points), 

thereby in this study H is an identity matrix. The resulting data assimilation estimate of the state vector (𝑥𝑥�𝑎𝑎), which will be 10 

used in the next cycle as restart condition, is given by: 

𝒙𝒙�𝒕𝒕
𝒂𝒂 =   𝒙𝒙�𝒕𝒕

𝒇𝒇 + 𝑲𝑲𝒕𝒕(𝒚𝒚𝒕𝒕 − 𝒚𝒚�𝒕𝒕)       ( 5 ) 

That last equation (5) is a central concept of DA, it introduces the weighting factor K, also referred to as Kalman gain. The 

Kalman gain can be viewed as a balance of the model and observation uncertainties, together with the error correlation of all 

the elements of the state vector. It aims at minimizing the error covariance of the state estimate during the analysis time (eq. 15 

(5). It is defined as: 

𝑲𝑲𝒕𝒕 = 𝑷𝑷𝒕𝒕
𝒇𝒇𝑯𝑯𝒕𝒕

𝑻𝑻�𝑯𝑯𝒕𝒕𝑷𝑷𝒕𝒕
𝒇𝒇𝑯𝑯𝒕𝒕

𝑻𝑻 + 𝑹𝑹𝒕𝒕�
−𝟏𝟏

      ( 6 ) 

with Rt the measurement error covariance matrix (in this study we assume no cross correlation between observation errors, 

hence Rt is diagonal and determined from the uncertainty of the measurements (Section 2.4)) and Pf the a priori state error 

covariance matrix. Error covariance is a key component of DA. The EnKF is able to compute a time-varying covariance error 20 

based on the dynamics of the system. This is a critical property when considering variables with short decorrelation spatio-

temporal scales (Kuragano and Kamachi, 2000). In addition to the probability density function of the state (when in the 

presence of process noise), covariances estimation is achieved considering ensembles members. For an ensemble of forecasts 

(j = 1, …, N), each subject to a disturbance (e.g. in model processes, forcing or initial conditions), P is obtained from: 

𝑷𝑷𝒕𝒕
𝒇𝒇 = 𝟏𝟏

𝑵𝑵−𝟏𝟏
� (𝒙𝒙𝒕𝒕,𝒋𝒋

𝒇𝒇  − 𝒙𝒙�𝒕𝒕
𝒇𝒇)

𝑵𝑵

𝒋𝒋=𝟏𝟏
(𝒙𝒙𝒕𝒕,𝒋𝒋

𝒇𝒇  − 𝒙𝒙�𝒕𝒕
𝒇𝒇)𝑻𝑻    ( 7 ) 25 

From (7) we can conclude that the error spreading pattern across the domain is indeed derived from the ensemble members in 

a systematic way. This is not the case for some variational methods such as 3D-VAR, where the statistics are considered 

isotropic with little variation over time. In the EnKF each ensemble member is then updated individually (based on (5)). The 

state average over the ensemble provides the a posteriori state estimate. Additionally, in contrary to the Extended (or 

traditional) Kalman Filter, there is no need to propagate the state covariance, nor to estimate the initial state covariance and 30 

model error covariance matrices. The EnKF only uses the first and second moments to construct the probability density 

functions, it cannot assure higher order statistics by opposition to the Particle Filter (Nakamura et al., 2006). 
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The EnKF is widely used for large systems with uncertain initial states and variants are still being developed to leverage its 

limitations (Hoel et al., 2016). Several authors (Bertino et al., 2007; Evensen, 1994; Verlaan and Heemink, 2001) found better 

performance for highly non-linear systems in comparison to the EKF. This approach can accommodate massivelarge datasets, 

or missing observations, can incorporate correlated non-linear and error measurement models. Moreover, the ensembles are 

computationally easily parallelizable. easy to implement in parallel fashion.. Models with high-dimensionality are well suited 5 

for this type of assimilation, which requires a relatively low number of ensemble members to produce stable and accurate 

results (detailed in the results and discussion sections). We used this algorithm for the results presented in this study. 

3.2 System setup 

The aim of this section is to detail the various properties of the EnKF and DA setup, that are specific to this study. 

Stochasticity and noise - The performance of a DA experiment strongly depends on the characterization of uncertainties (van 10 

Velzen and Verlaan, 2007). The hydrodynamics are modelled with deterministic equations. Their initial conditions, in the case 

of Lake Geneva, play only play a limited role on basin-scale dynamics over long periods of time (months, years). Yet, boundary 

conditions, especially, the air-water heat and momentum budgetbudgets, still contain a large uncertaintyuncertainties that 

decrease the performance of any theoretically perfectly calibrated model. To overcome this issue, we added stochasticity to 

the system through its forcing. More specificallyvia including noise in the the East (u-direction) and North (v-direction) 15 

components of the wind velocity. These variables, coming from MeteoSwiss COSMO-1 reanalysis products with DA, are 

known to be the most inaccurate and influential boundary forcing over lakes.  

The addition of stochasticity to the deterministic model is done with OpenDA’s noise model, which adds spatio-temporally 

correlated noise to the wind fields. This noise model, distributing the noise based on correlation scales derived from a distance- 

dependent function decaying to 0, requires three quantities (for both the u- and v-directions): (i) the wind standard deviation, 20 

(ii) the wind spatial correlation scale, and (iii) the temporal correlation scale. They are obtained from an analysis of the 

COSMO-E (ensemble) products over the entire year 2017. COSMO-E probabilistic products are derived from a 21-ensemble 

forecastforecasts on a 2.2 km grid and contain information on the variability of the computed atmospheric variables. The wind 

standard deviation is hence obtained by taking the mean COSMO-E standard deviation of every pixel over the lake for the 

studied period. The spatio-temporal correlation scales are obtained from computing the cross-correlations of six (fictive?) 25 

stations around the lake, as shown by Fig. 1. The cross-correlation of a station with itself provides the temporal correlation 

scale, while the cross-correlation among stations allows to determinedetermining the spatial correlation scale. Table 1 

summarizes the noise-model parameters aforementioned. 

 

 30 
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Table 1: Summary of the noise model parameters. 

Parameter Description Value 
(u-direction, v-direction) 

𝜎𝜎 [𝑚𝑚 ⋅ 𝑠𝑠−1] Wind standard deviation 1.11, 1.10 
𝜌𝜌𝐿𝐿 [𝑚𝑚] Wind spatial correlation 20’000, 30’000 
𝜌𝜌𝑡𝑡 [ℎ] Wind temporal correlation 5.67, 6.67 

 

State variables - OpenDA has recently been updated to support three Delft3D-FLOW state variables (Baracchini et al., 

20192019a), namely water levels, temperatures, and flow velocities. In this study, only temperatures are updated by the EnKF. 
Ensembles - The EnKF operates using a statistical sample of the state of the system. The ensemble size (N) is often determined 5 

heuristically and must be a balance between a good representation of the state space and acceptable computation time. The 

errors in the solution pdf will approach zero at the rate N-1/sqrt(N)2 (Evensen, 2003). A preliminary study showed that a 

satisfying compromise is obtained with 20 ensemble members. The choice for a small number of ensembles is further motivated 

by future use for operational purposes. More details and an ensemble size assessment are presented itin the results section. 

Localization scheme - It has beenAs mentioned beforeabove (Section 3.1) that), the covariance matrix links every domain 10 

point with each other. Covariances are derived from the ensemble members. A limitation of a small ensemble size is possible 

spurious correlations (Evensen, 2009) resulting in artefacts over long distances from the observation location. In such cases, 

when model spatial extent is large, a localization scheme has to be applied (an observation usually only influences its near 

vicinity, it has limited influence for greater spatial extensions (Stanev et al., 2011)), a localization scheme has to be applied. 

Such). Such a scheme has therefore been implemented in OpenDA, which collaterally also aims at reducing computation cost 15 

of the analysis time. This localization allows to define a cut-off distance, based on a Gaspari-Kohn function (an isotropic 

distance-based function (decaying to 0 at a defined cut-off valuedistance), to limit the area of influence of an observation. This 

function ensures a smooth transition between a full and non-update for better model stability. Effectively, this removes long-

range spurious correlations by scaling the size of the observation covariance matrix.  

In this study, a cut-off distance of 15 km is defined. This distance is based on the two in-situ stations spacing and the radius of 20 

their associated basin gyres (Petit Lac and Grand Lac; Fig 1). This is further motivated by the fact that such a distance allows 

to cover the entire interior of the basin by an update of in-situ data. Due to the significant depth of the lake, dynamics at deeper 

locations are less variable, hence their correlations at longer distances are easier to estimate. Regarding the LSWT, as it is 

partly the result of surface heat fluxes, its spatial structure is also expected to be correlated, to some extent, at relatively large 

spatial scales. Finally, as a result of the coarse vertical resolution of the in-situ profiles, we didn’tdid not define a different 25 

vertical localization scheme thanin the vertical compared to the horizontal one in the vertical direction. 
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4 Results 

In this section, we present both quantitative and qualitative results of the DA experiment. As mentioned in Section 2.4, the DA 

run consisted of the assimilation of 128 AVHRR LSWT images and 31 in-situ profiles over the entire year of 2017. Mean 

Absolute Error (MAE), Root Mean Square Error (RMSE) and a Taylor diagram (Taylor, 2001) are used as benchmark 

indicators. Direct model comparisons with satellite images and in-situ profiles are provided to visualize the benefits of the 5 

approach both for surface and deep -water dynamics. Implications of the DA for physical phenomena are presented. 

Table 2, providing MAEs and RMSEs before and after DA, indicates significant improvements over the baseline simulation. 

RMSE and MAE values are reduced by 54 and 60 %, respectively. The discrepancy between the two indicate some occasional 

large data-model mismatch, which affects the RMSE more heavily. The Taylor diagram (Fig. 2), displays large improvements 

in centered Root Mean Square Difference (RMSD), correlation and standard deviation. 10 

Table 2: Summary of the data assimilation performance (MAE and RMSE). 

 Control run DA run Improvement [%] 

MAE [°C] 1.49 0.60 60 

RMSE [°C] 2.07 0.95 54 



13 
 

 

 

 

Figure 2: Taylor diagram of Lake Geneva temperature data assimilation. The dots correspond to the observations (black), the 
control run without DA (blue), and the DA run (red). The radial distance from the observations is the centred root mean squared 5 
difference, the radial distance from the origin defines the standard deviation, and the azimuthal position is the correlation coefficient. 

Surface assimilation and physical processes – The benefit of DA is shown with four examples on Fig. 3 comparing LSWT 

from AVHRR measurements, with LSWT from the control run model and DA experiment. We first highlight (top panels) that 

DA assimilation can perform correctly even in case of missing observations over the lake surface. The state covariance matrix 

could update the model in areas where no data was presentavailable. Model accuracy is thereby improved at basin-scale rather 10 

than at observation locations. This is particularly relevant as large lakes are often partly cloudy. The second example 

demonstrates the potential of DA to correct the state variable - a cold bias in the present case - while maintaining the coherent 
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structure of the complex spatial thermal gradient (Fig. 3, second row). The third example shows gyre-like flow structures. Such 

rotating structures are difficult to observe from AVHRR LSWT data (third row of Fig. 3) partly due to its limited spatial 

resolution and its weak signature at the surface. However, a gyre created by an N/N-E wind on August 12th is better visible in 

the model results (clockwise in the western part of the main basin and counter-clock wise in the center). In that case, the DA 

updated the LSWT while keeping the physical structure and flow spatial coherence of the control run. Finally, the lowest 5 

panels in Fig. 3 show how DA improve observations and future quantification of transient upwelling. While the upwelling in 

the Petit-Lac was partially already caught by the control run, the DA allowed much better adjusting its intensity and extent. 

Another similar case is presented in appendix CB. 
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Figure 3: Surface temperature comparison of the AVHRR observations (left column), control run (central column), and DA run 
(right column) at selected analysis times (four rows) of 2017. The first row highlights the assimilation of sporadic data and the second 
row of complex surface patterns. The third row is an example for gyre phenomena, and the fourth row of an upwelling event. 
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Figure 4: Time-series of the LSWT in the centre of the lake. The red line corresponds to the mean of the ensemble, and the red 
shaded area to the ensemble spread, while the blue line marks the control run, and the black dots the AVHRR observations. 

The benefit from DA is also evident when looking at the temporal evolution of LSWT (Figs. 4 and 5). In Figs. 4 and 5, the 5 

AVHRR LSWT is again compared at two locations with the simulations with and without DA. The observed strong summer 

strong temporal variability with bi-weekly temperature variabilityvariations exceeding 5 °C is not well resolved in the control 
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run (Fig. 4). It is)  however much better reproduced in theby applying DA run. The warming phase also benefits significantly 

from the assimilation. The control run surface temperature started to increase in the second part of March, while the warming 

occurred early March in the observations and DA. Both models are in good agreement during the cooling phase fromafter 

August to the end of the year. While few observations were available during this late period, not much improvements are 

obtained for the baseline, which was already accurate. Overall, every point of the DA run is close to or at least within the ~1 5 

°C uncertainty of the AVHRR observations (see Section 2.4 for more information on data uncertainty). 

Similar conclusion arisesconclusions arise from Fig. 5, which provides a close-up on time-series of the summer period in the 

western basin (Petit-Lac). Ensemble spread is smaller during the period of strongest stratification from late July to late August. 

Overall, the model uncertainty arising from perturbed wind fields reaches 2 °C in the summer, when it is the highest and 1 °C 

on average. Major upwellings in June and July are caught by both model runs, although the intensity is too weak in the control 10 

run. Again, data-model discrepancies and temperature variability are largest from late May to early August. Starting in August, 

the models with and without DA exhibit similar dynamics, both close to the observations. 
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Figure 5: Zoomed time-series of LSWT in the centre of the western basin (Petit Lac). The red line corresponds to the mean of the 
ensemble, the red shaded area to the ensemble spread, the blue line to the control run, and the black dots to AVHRR observations. 

We further compared the upwelling of September 15th with river temperature data with a model surface grid point located 3 5 

km away (Fig. 6). The upwelling has indeed been observed in the lake outflow, dropping from 21 °C to 12 °C in a matter of 6 

days. The figure shows that the control run underestimated the upwelling by 5 °C, while the DA run underestimated it by ~2.5 
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°C. The AVHRR observation iswas 1.5 °C warmer than the river temperature. Fig. 6 also allows to seeconfirms that the model 

doesn’tdo snot suffer from spurious behaviour after an assimilation. Model shocks are not observed and numerical equilibrium 

is reached in a sub-daily time frameperiod. 

 
Figure 6: Close-up on the upwelling event of mid-September. River temperature from the lake outlet in Geneva is added as 5 
comparison. AVHRR data (black dots), control run (blue) and DA run (red) correspond to a surface pixel 3 km from the outflow. 

 

Deep-water assimilation – We finally investigateinvestigated how the vertical structure and sub-surface dynamics are affected 

by the DA. Fig. 7 provides a comparison of the DA performance over depth with in-situ data instead of AVHRR measurements. 

Overall, for both stations significant improvements are obtained over the entire water column and throughout the year. Major 10 

improvements are observed at the thermocline depth, correctly represented in the DA experiment. Its strong vertical gradient 

significantly benefited from the assimilation of temperature profiles. The warm bias between 5 and 25 m depth, resulting in an 

overestimation of the mixed layer depth in the control run, is effectively eliminated. 
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Figure 7: Evolution of the deep-water temperature without and with DA. The left column shows the differences of control runs 
minus in-situ observations; the right column shows the differences of DA runs minus in-situ observations. Upper row corresponds 
to the centre of the main basin (SHL2, Fig. 1), and lower row to the Petit Lac (GE3, Fig. 1). 

Ensemble member size - Finally, we evaluated the EnKF ensemble size needed by a convergence analysis. A period of 1.5 5 

month, from June to mid-July with a spin-up time of 2 weeks (without DA), is selected for assessment. This period of weak 

spring thermal stratification has been selected, as it is the time of the year with the most complex and broadest range of 

dynamics (Fig. 4).  

The results indicate that for an increasing number of ensembles (N) the analysis error decreases. Table 3. Fig. 8 provides 

RMSEs and MAEs for different ensemble sizes. Fig. 8 provides similar results while  also differentiating between assimilated 10 

data sources. We conclude that the major gains are achieved with 10 ensemble members. For in-situ data only, 20 ensembles 

seem to be the sweet-spot. Due to the much larger amount of AVHRR observations (i.e. one image provides thousands of 

observations since it covers the entire spatial extent of the computational grid), the red (AVHRR) and black (all measurements) 

lines are confounded. Finally, assessment of the ensemble spread showed that few gains in second-order moments were found 

with larger ensemble sizes. Indeed, in the scope of this study, the additional benefits for N > 20 are limited. At this stage, the 15 

1 °C uncertainty of the RS images might become a limiting factor hindering further improvements.  
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Figure 8: Data assimilation performance as a function of ensemble size. The dashed blue line corresponds to the error with respect 
to in-situ observations only, the red line the same with respect to LSWT only, and the black onesquares show the model error with 
respect to both observation sources. 

With a viewvision towards DA for operational lakes forecasting systems, and the computational constraints associated with 5 

real-time hydrodynamics, we conclude that 20 members provide a satisfactory compromise for the system considered in this 

study. 

 

Table 3: DA performance (MAE and RMSE) for various ensemble sizes. 

# ensembles Control run 5 10 20 30 

MAE [°C] 2.61 1.37 0.97 0.71 0.59 

RMSE [°C] 3.06 1.74 1.32 0.96 0.82 

5 Discussion 10 

The DA framework has brought significant improvements to the hydrodynamics of Lake Geneva. It demonstrated its 

effectiveness to improve various model-forecasted meso- to large-scale thermal features. The combination of both in-situ 

measurements and remote sensing observations allowed constraining the 3D thermal structure of the model throughout the 

water column.  

Surface time-series (Fig. 4) indicated that spring / early summer observations play a key role in improving the model 15 

performance during the warming period (Kourzeneva, 2014). This allows for an adequate modelling of the lake warming, with 

significant implications expected for water quality models and the typical spring phytoplankton blooms. Later in the year, late-
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spring and summer, the AVHRR data revealed high variability temperature dynamics (e.g. upwellings) which are not 

reproduced by the control run. It is the time when the largest ensemble spread is observed, which indicates that the summer 

LSWT is sensitive to changes in wind patterns. Additionally, ensemble spread stemming from spatio-temporally correlated 

noise applied to the wind fields indicate that the model is sensitive to the changes in this forcing function. The effects on model 

outputs are correctly described and the uncertainty arising from this perturbation ranged from 1 °C on average with peak values 5 

at 2 °C. 

Similar conclusion can be drawn for sub-surface thermal dynamics. Fig. 7 indicates that data-model mismatches in the mixed 

layer appeared as the lake started to warm and the thermocline formed. Compared to the control run, the DA run exhibited 

both, a more accurate warming phase and vertical temperature gradient during the stratified period. 

Overall, the performance of the EnKF has been notable in a broad range of scenarios. Fig. 3 showed that even with complex 10 

observational patterns, filter updates were performed with different amplitudes at each spatial location. Those spatially varying 

updates are often are in agreement with the physical processes governing the hydrodynamics of the lake. Also, in the case of 

incomplete andor sporadic data, the EnKF updates behaved well and good combinations of data and system dynamics were 

found. Some authors (De Lannoy et al., 2007b) found that when the update is performed through the covariance propagation 

(in case of missing observation), the a posteriori state might not be correct and counteract the updates in the surrounding 15 

locations. This behaviour has not been observed in the presented hydrodynamics of Lake Geneva. This indicates that the 

covariance matrices were well estimated from the ensemble members and their physical dynamics. The non-static covariance 

matrix derived from the EnKF allows longer-term studies, such as over the entire year, with complex changes in the thermal 

structure of the waterbody. Time-varying covariance error estimates for 3D models is a complex task in DA. Analysis updates 

were not intense nor frequent enough to cause model shocks or solver failure. This would have a minimal impact on the surface 20 

layers, since such corrections would not be persistent due to the rather variable nature of surface layers and sensitivity to 

atmospheric forcing. However, more issues would arise from model shocks in the deep water, which could trigger movements 

of large water volumes. Since in-situ profiles have a much lower uncertainty than AVHRR observations (<0.1 °C vs 1 °C, 

Section 2.4), intense state updates are more likely, however they have not been observed in this study and no model solver 

failure arose from the EnKF updates. After significant updates, the model generally recovered inover a sub-daily time 25 

frameperiod. Increasing the observational frequency (here limited to one satellite observation per day) would increase the 

likelihood of encountering model shocks, as equilibrium adjustment may not be reached between updates. Higher 

computational cost also weights in the data quality/quantity compromise, particularly when considering near real-time systems. 

Detailed discussions regarding model error formulation are provided by Akella and Navon (2009) and Daescu and Navon 

(2013) for variational data assimilation. 30 

Physical processes –Fig. 3 showed that various physical processes, such as upwellings and gyres, are better resolved with the 

use of EnKF. Phenomena such as upwellingsUpwellings typically occur more prominent at the beginning or end of the season, 

when stratification is weaker. The better identification of such processes is of prime importance for various water quality 

aspects (e.g. heat extraction (Gaudard et al., 20182019), wastewater discharge, water intakes, etc.). Yet the magnitude of such 
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events has rarely been quantified, due to difficulties with their large-scale identification. Through the combination of remote 

sensing observations and three-dimensional3D hydrodynamic modelling, we open new possibilities for monitoring and 

predicting of such phenomena. In this study we found that upwellings are better reproduced in both in intensity and spatial 

extent. Comparing temperature measurements with a surface model grid point 3 km away from the outflow showed good 

agreements after DA. An underestimation of the upwelling of 2.5 °C after DA is observed (compared to 5 °C with the control 5 

run). Most of this remaining difference can be attributed to the satellite underestimating the event as well (by 1.5 °C, with an 

uncertainty of 1 °C) and the remoteness and depth (surface) of the pixel compared. For Lake Geneva, this is of particular 

interest when an upwelling occurs in the western basin (Petit-Lac), dropping the outflow temperature for millions of 

downstream residents. In terms of gyres, those structures are repeatedly observed in Lake Geneva (Bouffard et al., 2018; Kiefer 

et al., 2015). Because of the Coriolis force, subsequent strong up-/down-lifts of the thermocline occur, which structure the 10 

lateral dispersion of primary productivity (Soomets et al., 2019). 

Ensemble size – Among the various ensemble sizes, assessed for this study (Fig. 8), we found that relatively small ensemble 

sizes (~20) are large enough to derive suitable time-varying covariances and error spreading patterns. This is particularly 

important in the presence of variables with short decorrelation time and spatial scales. Studies indicated that relatively small 

ensembles fail at accurately estimating the small correlation patterns of remote observations (Houtekamer and Mitchell, 2001). 15 

The localization scheme implemented (Section 3.1), defining a cut-off radius around each observation, allows to circumvent 

this limitation. Houtekamer and Mitchell (2001) found that for an increasing ensemble size, the optimal cut-off value increases 

as well. Larger ensemble sizes not only restrain the underestimation of ensemble spread and accuracy, but also allow the use 

of more remote observations. For DA experiments with limited data, larger ensemble sizes may be a requirement to maximize 

observational coverage. 20 

Limitations and perspectives - A main limitation of the EnKF is the Gaussian assumption, which in the case of large data-

model mismatches, could have led to artefacts and unrealistic a posteriori state values. This has not been observed in this 

analysis with the provided noise definition and observational stochastic setup. Furthermore, while we did not study 

systematically the physics after each analysis step, we think the method can still be used for the study of physical processes, 

provided the user assesses the intensity of those physical discontinuities. Out of the 152 assimilations, only 8 created some 25 

numerical instabilities in the model, though small enough to prevent solver failure. The existence of an upper limit to the 

amount of information assimilated was not investigated here, as the aim of this work is to provide an operational system with 

data assimilation in lakes. 

Other difficulties arise in the presence of bias, where Kalman Filtering performs suboptimal corrections (Dee and Da Silva, 

1998), as observations and model are assumed unbiased. Solutions for dealing with biases in EnKF may become necessary 30 

(De Lannoy et al., 2007a). In the present approach, however, occasionally occurring model biases have been effectively 

handled by the update. The DA model did not drift back to its biased or control run state. We believe that this is a result of the 

adequate initial parameterization of the model (Baracchini et al., 20192019a). This further highlights the crucial importance 

of accurate model calibration and formulation before proceeding withapplying DA experiments. It is worth noting that the 
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EnKF is able to provide updates also to parameters and forcing conditions, which in some cases, may provide more persistent 

improvements (for example when time-varying parameters are needed). 

This DA experiment is time-consuming from a computational aspect. For example, it took nearly one month to compute the 

present setup on a dual Intel Xeon E5-2697v4 processors machine with 256 GB of memory, generating close to a terabyte of 

data. While the analysis time for in-situ data has been reasonable (~1 hour), the immense amount of observations generated 5 

by an AVHRR image (entire coverage of the surface layer of the computational grid) brought the analysis time up to 3 hours 

for a single image. This is largely due to the current lack of multi-core support for the analysis step. A multi-core local analysis 

has been implemented in the scope of this study for multi-variables (e.g. temperature with water levels and or flow velocities) 

assimilations, but gains can further be obtainedachieved from a local analysis based on the observation localization scheme. 

6 Conclusion 10 

For managerial and scientific purposes, new monitoring and forecasting tools, covering wide ranges of spatio-temporal scales, 

are of great interest. The coverage of such scale breadth of inland waters is achieved by combining three information sources, 

namely (i) in-situ measurements, (ii) remote sensing observations and (iii) model simulations. With data assimilation (DA), 

optimal combinations can be achieved and valorised. 

For several decades, DA has been applied in oceanography and atmospheric sciences, yet its presenceapplications in limnology 15 

remained limited. In this study, we proposedeveloped a flexible framework and tools to blend real time data into model 

simulations tailored to lakes. We applied this method to Lake Geneva using large datasets consisting of a three-dimensional 

hydrodynamic model, AVHRR lake surface water temperature and in-situ profiles over an entire year. Results demonstrated 

the effectiveness of DA as significant gains were obtained for both the surface and deep water dynamics over a well-calibrated 

baseline. We showed that both data types (in-situ and remote sensing) are important to constrain the entire spatial extent 20 

(horizontal and vertical) of the model. Results also indicate that AVHRR data is aare valid RS data source for DA into lake 

hydrodynamics, provided that observational error and uncertainties are well defined.  

In that regard, the use of an Ensemble Kalman Filter (EnKF) allowed to handle non-static covariance estimation, a key element 

of any DA problem. Additionally, it is able to account for the uncertainties of each data source. Those are essential elements 

influencing DA performance (Qi et al., 2014). We found that the ensemble size played an important role in reducing model 25 

errors. To keep their number limited, a localization scheme has been implemented, hence circumventing the estimation of 

improper small correlations at large distances (Houtekamer and Mitchell, 2001). In that regard, while the EnKF adds 

computational complexitycost to the problem, it is capable of estimating dynamically the stochastic model based on the 

physical properties of the system. This is well encompassed by the paradox defined by (Bertino et al., 2007), stating that simple 

DA methods become complicatedcomplex engineering tasks, when the inconsistency between the stochastic and the physical 30 

model becomes relevant. Due to the flexibility of the tools developed and used, we expect this procedure can be transferred to 
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other lakes and hydrodynamicalhydrodynamics models with relatively limited development.minor modification (Baracchini 

et al. 2019b). 

To conclude, this method has been designed with the vision of a future near real-time applications. Implications of DA in the 

operational context are significant to provide robust and timely short-term forecasts, accurate reanalysis products, and 

uncertainties for reliable water management. Over the last decades, the number of remote sensing products available grew 5 

rapidly, however they have hardly been used in the operational context in an optimal way (de Rosnay et al., 2013). The timely 

retrieval and processing of RS products requires interdisciplinary efforts to ensure robustness and the proper error definition 

of the data, which hinders the development of such operational systems (van Velzen and Verlaan, 2007). In this study we 

provided an example of how the entire chain, from the satellite to the assimilation into the model, can be performed, with 

limited field infrastructures. More concretely, we expect the findings of this study to be directly applicable to existing lake 10 

forecasting platforms, such as the one for Lake Geneva (http://meteolakes.ch). Impacts of such implementation are expected 

at scientific, governmental and public level. 

Code and data availability 

Software - The source code and documentation of the numerical model (Delft3D-FLOW) and data assimilation platform 

(OpenDA) developed in and for this study can be accessed and downloaded on their online repositories at 15 

https://oss.deltares.nl/web/delft3d/source-code and https://github.com/OpenDA-Association/OpenDA. 

Data – The authors are grateful to the following institutions that provided the data used in this paper: the Federal Office of 

Meteorology and Climatology (MeteoSwiss) for meteorological data, the Département de l'environnement, des transports et 

de l'agriculture (DETA) du Canton de Genève for in-situ data on Lake Geneva at GE3 and the Federal Office of the Environment 

(FOEN) for the river data temperature in the outlet of Lake Geneva. In-situ data at SHL2 as well as Secchi disk measurements 20 

in Lake Geneva were provided by the Commission International pour la Protection des Eaux du Leman (CIPEL) and the 

Information System of the SOERE OLA (http://si-ola.inra.fr), INRA, Thonon-les-Bains. This data cannot be published as it 

belongs to their aforementioned owners, it is not the property of the authors of this study. It can nonetheless be requested by 

contacting its respective institution. Any other data used in this study is property of the Physics of Aquatic Systems Laboratory 

at EPFL and can be obtained by contacting Prof. Alfred Johny Wüest (alfred.wueest@epfl.ch). 25 

Appendix 

A. AVHRR validation 

Validation – AVHRR data were validated for Lake Geneva by comparing in-situ data from the Buchillon station to the 

remotely sensed-derived skin temperature. Analysis of the data and comparison with both radiometric and in-situ observations 

at Buchillon showed that quality flags are not a sufficient measure to reliably quantify the accuracy of the AVHRR images. 30 

https://oss.deltares.nl/web/delft3d/source-code
https://github.com/OpenDA-Association/OpenDA
mailto:alfred.wueest@epfl.ch
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Indeed, we observed strong fluctuations of up to ±3 °C between skin and bulk temperature especially during daytime where a 

micro-stratification establishes in the surface layer (Gentemann, 2003). Skin and bulk temperature becomes similar under 

windy or convective conditions. Skin to bulk corrections were developed in oceanography as a function of the wind intensity 

(Minnett et al., 2011). Yet, lakes are much more quietcalm environment and parameterization should also take into account 

convective processes (Bouffard and Wüest, 2019). Such parameterization is unfortunately lacking for Lake Geneva and we 5 

initially instead selected night-time/early morning images where surface convective cooling reduces the skin to bulk difference. 

However, comparison with field data showed that this is still not reliable enough. The discrepancy is indeed strongly linked to 

day-night cycles, but those are also season-dependent. Therefore, no specific satellite overpass can be selected for the entire 

computational time (one year). To ascertain that images portray an accurate representation of the lake bulk LSWT, the 

thermistor at 1 m depth (recording at a 1 hour interval) has been used for a direct comparison with the space-borne AVHRR 10 

data. Considering that the Buchillon station is close (80 m) to the shore, its position has been shifted 2 km south to avoid land 

boundary contamination. Finally, the average of a 3x3 pixel window of the satellite image centred on the south-shifted 

Buchillon station coordinates is used as comparison point with the field data. Only images with an absolute deviation with 

respect to the bulk water lower than 1 °C are retained for further assimilation. The 1 °C threshold will also define the AVHRR 

observational uncertainty needed for the EnKF. Outlier pixel values colder than 4 °C and warmer than 28 °C are removed. 15 

Finally, to avoid assimilating observations at a too high frequency (or too close in time), which can result in physical 

discontinuities and destruction of model processes (model not reaching equilibrium between assimilations), the maximum 

frequency of satellite images is limited to 1 per 24 hours. The screened images are then mapped to the computational grid. 

This procedure aims at bypassing the skin to bulk temperature effect, while ensuring best data quality for assimilation. This 

procedure assumes horizontal uniformity over the lake area (i.e. atmospheric effects are assumed to be the same over the entire 20 

domain), and may be sensitive to local cloud patches...  

B. Assimilation approaches 

The multiple methods proposed for DA mainly fall into two categories: (i) variational (e.g. 3D-VAR, 4D-VAR) and (ii) 

sequential methods (e.g. Kalman Filtering, Particle Filtering). For variational methods, the optimization of the model states 

(or parameters) is based on the minimization of a cost function. Variational methods are popular in meteorological forecasting 25 

(Rawlins et al., 2007). However, the computational burden associated with the collection and storage of data can be significant. 

Moreover, batch processing of data reduces flexibility and complicates the consideration of time-varying model parameters. 

Sequential methods are robust techniques for DA in a broad range of applications. For linear dynamics and measurement 

processes with Gaussian error statistics, the Kalman Filter (Kalman, 1960) is an optimal sequential DA algorithm. However, 

most processes observed in nature, such as hydrodynamics, are non-linear. The analytical solution provided by the Kalman 30 

Filter can therefore not be derived in order to compute the posterior distribution of simulated variables. To overcome this 

limitation variants exist, such as the Extended Kalman Filter (EKF), which consists in a linearization of the model in the 
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neighborhood of the current estimate of the state vector. This linearization can lead to complicated calculations for systems 

with high dimensionality, as the integration and propagation of the error covariance results in a significant computational 

demand (Gillijns et al., 2006). Linearization is done using first-order Taylor expansion, which implies a closure at the second-

order moments. For highly non-linear systems this can result in an improper estimation of the state vector or covariance 

matrices and can therefore lead to quick divergence and instability (Moradkhani et al., 2005; Nakamura et al., 2006).  5 

In order to cope with non-linearities and obtain a full representation of the posterior distribution, other statistical methods, such 

as Particle Filters have been developed (Carpenter et al., 1999). The Particle Filter is a solution following a Darwinian-like 

process of survival of the fittest. It shares properties with EnKF in the sense that the particles are the ensemble members. 

Particle Filters do not need any assumption for the state variable distribution (e.g. Gaussian) and can deal with non-linear 

observation models as well. The updates being applied on particle weights rather than the state variable, which results in less 10 

numerical instabilities for process-based models (van Leeuwen, 2009; Liu et al., 2012; Moradkhani et al., 2005). A major 

drawback is the particle depletion, which requires complex resampling algorithms. Moreover, it is less computationally 

efficient than the EnKF due to the need for a high number of particles (more particles than EnKF ensembles are often needed, 

in the order of tens of thousands). Despite its advantages, the use of the Particle Filter as an assimilation method in 

oceanography and limnology is limited due to its computational cost. To address such issue, solutions are undergoing 15 

development (Šukys and Kattwinkel, 2018). For its flexibility and affordable computational cost, we further focus on the EnKF.  

C. Additional results 
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Figure A1: Surface temperature comparison of the AVHRR observations (left column), control run (central column), and DA run 
(right column) at selected analysis times (four rows) of 2017. The first row highlights the assimilation of sporadic data and the second 
row of complex surface patterns. The third row is an example of upwelling phenomena, and the fourth row of gyre-like structures. 
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