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Abstract. Over the last decade, advanced statistical inference and machine learning have been used to fill the gaps in sparse 

surface ocean CO2 measurements (Rödenbeck et al. 2015). The estimates from these methods have been used to constrain 

seasonal, interannual and decadal variability in sea-air CO2 fluxes and the drivers of these changes (Landschützer et al. 2015, 

2016, Gregor et al. 2018). However, it is also becoming clear that these methods are converging towards a common bias and 

RMSE boundary: the wall, which suggests that pCO2 estimates are now limited by both data gaps and scale-sensitive 

observations. Here, we analyse this problem by introducing a new gap-filling method, an ensemble average of six machine 

learning models (CSIR-ML6 version 2019a), where each model is constructed with a two-step clustering-regression approach. 

The ensemble average is then statistically compared to well-established methods. The ensemble average, CSIR-ML6, has an 

RMSE of 17.16 µatm and bias of 0.89 µatm when compared to a test-dataset kept separate from training procedures. However, 

when validating our estimates with independent datasets, we find that our method improves only incrementally on other gap-

filling methods. We investigate the differences between the methods to understand the extent of the limitations of gap-filling 

estimates of pCO2. We show that disagreement between methods in the South Atlantic, south-eastern Pacific and parts of the 

Southern Ocean are too large to interpret the interannual variability with confidence. We conclude that improvements in surface 

ocean pCO2 estimates will likely be incremental with the optimisation of gap-filling methods by (1) the inclusion of additional 

clustering and regression variables (e.g. eddy kinetic energy), (2) increasing the sampling resolution, (3) successfully 

incorporating pCO2 estimates from alternate platforms (e.g. floats, gliders) into existing machine learning approaches.  

1 Introduction  

The ocean plays a crucial role in mitigating against climate change by taking up about a third of anthropogenic carbon 

dioxide (CO2) emissions (Sabine et al. 2004; Khatiwala et al., 2013; McKinley et al.  2016). While the mean state in the 
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global contemporary marine CO2 uptake is a widely-used benchmark (Le Quéré et al., 2018), underlying assumptions and 

limited confidence regarding the variability and long-term evolution of this sink persist. Sparse observations of surface ocean 

CO2 during winter and in large inaccessible regions has been the biggest barrier in constraining the seasonal and interannual 

variability of global contemporary sea-air exchange (Monteiro et al. 2010; Rödenbeck et al. 2015; Bakker et al. 2016; Ritter 

et al. 2017). The increasing ship-based sampling effort and the ongoing development of autonomous observational platforms 

(e.g. biogeochemical Argo floats and Wave Gliders) have improved confidence of interannual estimates of ocean CO2 uptake 

in more recent years (Monteiro et al. 2015; Bakker et al. 2016; Gray et al., 2018).  

 

The community has turned to models and data-based approaches to improve estimates of CO2 uptake by the oceans for 

periods and regions with poor or no observational coverage (Wanninkhof et al. 2013a; Rödenbeck et al. 2015; Verdy and 

Mazloff, 2017). Ocean biogeochemical models are able to capture the general global trend in increasing oceanic CO2 uptake 

shown by observations but suffer from significant regional and interannual (~1 PgC yr-1) differences in their estimates 

because these models cannot yet accurately parameterise the marine carbonate system at computationally feasible resolutions 

(Wanninkhof et al. 2013a). In recent years, data-based approaches, e.g. statistical interpolations and regression methods, 

have become a popular alternative to biogeochemical models (Lefèvre et al. 2005; Telszewski et al. 2009; Landschützer et 

al. 2014; Rödenbeck et al. 2014; Jones et al. 2015; Iida et al. 2015). The regression methods try to maximise the utility of 

existing ship-based observations by extrapolating CO2 using proxy variables (observable from space or interpolated). 

Extrapolating with proxy variables is possible due to the non-linear relationship between the partial pressure of CO2 (pCO2) 

in the surface ocean and proxies that may drive changes in surface ocean pCO2. Improved access to quality-controlled ship-

based measurements of surface ocean CO2 through the Surface Ocean CO2 Atlas (SOCAT) database, and satellite and 

reanalysis products as proxy variables have aided the development of the data-based methods (Rödenbeck et al. 2015; 

Bakker et al. 2016). 

The current state of machine learning in ocean CO2 estimates 

With the increase in the number of statistical estimates of surface-ocean CO2, the Surface Ocean CO2 Mapping (SOCOM) 

community collated fourteen of these methods in an intercomparison of “gap-filling” methods (Rödenbeck et al. 2015). The 

intercomparison gives an overview of the SOCOM landscape, with regression and statistical interpolation approaches 

making up eight and four of the fourteen methods respectively (Rödenbeck et al. 2015). Two model-based approaches were 

also compared.  

 

While SOCOM intercomparison did not seek to identify an optimal mapping method, it assessed members according to how 

well they represented interannual variability (IAV) relative to climatological surface ocean pCO2 increasing at the rate of 
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atmospheric CO2 concentrations (Riav). Two methods, the Jena-MLS (Mixed-Layer Scheme) and MPI-SOMFFN (Self-

Organising Map Feed-Forward Neural-Network), achieved lower Riav scores compared to other members of the comparison. 

The MPI-SOMFFN is a global implementation of a two-step clustering-regression approach and has been widely adopted in 

the literature (Landschützer et al. 2015, 2016, 2018, Ritter et al. 2017). The elegance of the clustering-regression approach, 

particularly the clustering step, is that it reduces the problem into smaller parts with more coherent variability and reduces 

the computational size of the problem per cluster – a beneficial attribute when using regression methods that do not scale 

well to big datasets.  

 

The SOCOM intercomparison found that the gap-filling methods were in agreement in regions with a large number of 

seasonally-resolving persistent measurements, but the different methods did not agree in regions where data were sparse (e.g. 

the Southern Ocean). Similarly, Ritter et al. (2017) found little agreement in the Southern Ocean on seasonal timescales, yet 

on decadal time-scales, there was agreement on the direction of trends between gap-filling methods. 

1.2 Measuring the uncertainty of estimates? 

The assessment of gap-filling methods is largely limited by the distribution of the observational coverage, which is 

particularly true for the Southern Hemisphere where data is sparse (Rödenbeck et al. 2015; Bakker et al. 2016). The standard 

use of root-mean-squared error (RMSE) and bias as measures of uncertainty give larger weighting to observation-heavy 

regions or periods compared with data-sparse regions and periods, potentially leading to underestimates of uncertainty 

(Lebehot et al. 2019). Note that the term “error” refers here to the error introduced by the gap-filling method relative to the 

observations. The Riav score improves on the standard implementation of RMSE and bias by weighting the uncertainties 

annually, thus giving a less temporally biased estimate of uncertainty.  

 

Previous studies have compared their methods’ estimates to independent datasets, where measurements of pCO2 are not 

included in the SOCAT datasets (Landschützer et al. 2013, 2014; Jones et al. 2015; Denvil-Sommer et al. 2018). These data 

serve as good validation data, particularly with the inclusion of derivations of pCO2 from autonomous platforms in the 

Southern Ocean, a historically undersampled area especially during winter (Boutin and Merlivat, 2013; Gray et al. 2018). 

 

One of the concluding statements in the SOCOM intercomparison is that pseudo- or synthetic data (deterministic model 

output) experiments should be used to test and compare methods. Gregor et al. (2017) did just this, but their study was 

limited to the Southern Ocean, and the synthetic data did not fully capture the variability represented by observations, in part 

due to coarse synthetic data resolution (5-daily mean and ½° spatially). The authors found that the ensemble average 

performed slightly better than ensemble members, in agreement with ensemble averaging approaches previously used in 
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ocean CO2 studies (Khatiwala et al. 2013). On the other hand, Lebehot et al. (2019) investigated the performance of an 

interpolation method in the North Atlantic using an ensemble of model outputs. Their approach offered a unique way of 

assessing a gap-filling method at places and times where no observations were made. 

1.3 Aims 

The main aim of this study is to present and evaluate a new machine learning approach to estimate surface ocean pCO2. We 

propose the use of an ensemble average, where we hypothesise that the “whole is greater than the sum of its parts” as the 

strengths of the ensemble members are often complementary in such a way to overcome the weaknesses (Khatiwala et al. 

2013; Gregor et al. 2017). Further, we aim to evaluate the method for a selection of existing gap-filling methods. From this 

comparison we aim not only to gain a sense of our method’s performance but also the state of gap-filling based estimates; 

i.e. where would we be able to improve in future work? 

2 Methods 

There are two main components to this study: surface pCO2 mapping with multiple methods, and robust error estimation 

from SOCAT v5 gridded product and independent data sources. This study takes a similar two-step approach used in the 

JMA-MLR and MPI-SOMFFN approaches, where data is grouped or clustered first, and then a regression algorithm is 

applied separately to each group or cluster. We use the ocean CO2 biomes by Fay and McKinley (2014) as an option for 

grouping. Alongside this grouping, we use an optimal K-means clustering configuration. Next, four non-linear regression 

methods are applied to each of the groupings. The regression methods are Support Vector Regression (SVR), Feed-Forward 

Neural Network (FFN), Extremely Randomised Trees (ERT) and Gradient Boosting Machine (GBM). The latter two 

approaches are new to the application. These methods are then compared to independent data sources. This is outlined in 

more detail in the Experimental Overview below. 

2.1 Experimental Overview  

The experimental design, outlined below, is summarised in Figure 1:  

1. In the first step (denoted as “K-means clustering” in Figure 1), we generate climatological biomes using the oceanic 

CO2 biomes by Fay and McKinley (2014), and a selection of features variables (five combinations) and number of 

clusters (a range of 11 to 25 clusters, stepping by two) resulting in a total of 41 clustering configurations.  

2. Four regression algorithms are applied to each clustering configuration, resulting in 164 models (described by the 

“Regression” section in Figure 1). The test data (isolated from the model training procedure) is used to identify the 

best performing clustering configuration with annually weighted bias, RMSE and Riav. The four regression models 



 

5 

for CO2 biomes and the four models from the best performing clustering configuration (as indicated by the bold 

lines in Figure 1) are used in the steps that follow. The selected eight models are averaged to create an ensemble 

average that is included with the eight members for further evaluation. 

3. The third step (as represented by the “K-fold testing” section in Figure 1 and Section 2.5) provides a robust 

uncertainty evaluation based on the training data (SOCAT v5).  An iterative test-train approach is applied to 

estimate the bias, RMSE and Riav for the complete SOCAT v5 dataset (rather than just one test split).  

4. The fourth step compares the ensemble average estimates of surface ocean pCO2 with independent test data (that is 

not in SOCATv5, as represented by the “Independent” section in Figure 1), which allows testing the predictive 

ability of the ensemble method (Section 2.6). Four methods from the SOCOM gap-filling intercomparison study are 

included for reference.  

5. Lastly, all gap-filling methods are compared to identify regions where there is a divergence in the trend and 

seasonal cycle. 

 

2.2 Data: clustering, training and prediction 

Standard machine learning implementation requires a training- and a predictive dataset. The training dataset consists of a 

target variable that is being predicted (in this case pCO2) and one or more feature-variables that have samples that 

correspond with target samples (e.g. SST, Chl-a, MLD co-located in space and time), where feature-variables may directly 

or indirectly influence the target variable. Features variables are used to predict once a machine learning model has been 

trained and must thus be available for the full prediction domain.  

 

Here we use surface ocean pCO2 calculated from the SOCAT v5 monthly gridded fCO2 (fugacity of CO2) product 

(hereinafter SOCAT v5 as shown in Figure 2) as the target variable (Sabine et al. 2013; Bakker et al. 2016). SOCAT v5 is a 

quality-controlled dataset that contains observations of surface ocean fCO2, which is converted to pCO2 with:  

𝑝𝐶𝑂2 = 𝑓𝐶𝑂2 ⋅ 𝑒𝑥𝑝( 𝑃𝑎𝑡𝑚
𝑠𝑢𝑟𝑓

⋅
𝐵 + 2⋅𝛿

𝑅 ⋅ 𝑇
 )−1        (1) 

where 𝑃𝑎𝑡𝑚
𝑠𝑢𝑟𝑓

 is the atmospheric pressure at the surface of the ocean, T is the sea surface temperature (SST) in °K, B and 𝛿 are 

virial coefficients, and R is the gas constant (Dickson et al. 2007). We used ERA-interim 𝑃𝑎𝑡𝑚
𝑠𝑢𝑟𝑓

(Dee et al., 2011) and 

NOAA daily optimally interpolated SST version 2 (dOISSTv2) that uses only Advanced Very-High-Resolution Radiometer 

data (AVHRR; Reynolds et al. 2007; Banzon et al. 2016).  
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An important consideration in the use of the SOCAT database is that in-situ measurements (i.e. ship measurements) are not 

collected at the surface. The in-situ temperatures that coincide with pCO2 in the SOCAT database are thus different from 

surface temperature product used to estimate pCO2 and calculate fluxes (Goddijn-Murphy et al. 2015; Bakker et al., 2016). 

The discrepancy in in-situ and remotely sensed temperature results in a theoretical difference between pCO2 measured at the 

ship intake depth and the surface due to warming or cooling (Takahashi et a., 1993). Goddijn-Murphy et al. (2015) suggest 

that a correction for the theoretical difference in pCO2 should be made using the empirical relationship between pCO2 and 

temperature (Takahashi et al. 1993). While this merits further coordinated consideration by the marine CO2 observations 

community, we do not apply such a temperature correction in this study as we aim to be consistent with the earlier pCO2 

estimates from the SOCOM intercomparison (Rödenbeck et al., 2015). However, we do present the potential impact of this 

discrepancy in Section S2.4.   

 

Feature-variables in both the training and predictive datasets are globally gridded products, including satellite observations, 

in-situ measurements and reanalysis products (Table 1, see Section S1 for details). All feature-variables are gridded to a 

monthly frequency onto a global 1° ⨉ 1° resolution grid. Thereafter, data processing steps are applied as shown in Table 1 

and described in detail in Supplementary Materials (Section S1) with the final output being a complete dataset ranging from 

1982 to 2016. Note that the clustering and regression steps use different subsets of the feature-variables as indicated in Table 

1. 

 

In this paragraph, we briefly describe the data processing steps shown in Table 1 - detailed product descriptions and in-depth 

processing steps are in Section S1. We derive an additional SST feature, SST′, by subtracting the annual mean of SST from 

each respective year, leaving the annual mean anomalies (Reynolds et al. 2007; Banzon et al. 2016). We use the log10 

transformation of the Globcolour Chl-a global product (Maritorena et al. 2010). Cloud gaps and the period before the start of 

the product (1982 to 1997) are filled with the climatology (1998 – 2016), and high-latitude winter regions (where there is no 

climatology for Chl-a) is filled with low concentration random noise to be consistent with regions of low concentration Chl-

a (Gregor et al. 2017). We derive an additional Chl-a feature, Chl-a′ using the same procedure as described for the SST 

annual mean anomalies. We use a log10 transformation of mixed layer depth (MLD) from Argo float density profiles (Holte 

et al. 2017) to create a monthly climatology, thus imposing the assumption that there is no interannual variability. Wind 

speed is calculated from 6-hourly data using the equation in Table 1 before taking the monthly average. Atmospheric pCO2 

is calculated with: 𝑝𝐶𝑂2 = 𝑥𝐶𝑂2
𝑎𝑡𝑚 × 𝑃𝑎𝑡𝑚, where 𝑥𝐶𝑂2

𝑎𝑡𝑚 is the mole fraction of atmospheric CO2 (from ObsPack v3 by 

Masarie et al. 2014) and 𝑃𝑎𝑡𝑚 is the reanalysed mean sea-level pressure (from ERA-interim 2; Dee et al. 2011) – further 

details for the procedure are in Section S1 of the Supplementary Materials. The climatology of eddy kinetic energy (EKEclim) 
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is calculated from u and v surface current components (integrated for depth < 15 m) from the Globcurrent product (Rio et al., 

2014), where 𝑢′ is calculated as 𝑢 − 𝑢 and similarly with v (Table 1).  

2.3 Clustering and biomes 

The seasonal and interannual variability of global surface ocean pCO2 is complex due to interactions of various driver 

variables acting on the surface ocean at different space and time scales (Lenton et al. 2012; Landschützer et al. 2015; Gregor 

et al. 2018). Machine learning algorithms applied globally struggle to represent the pCO2 accurately unless spatial 

coordinates are included as feature-variables (Gregor et al. 2017). This is due to the fact that pCO2 may respond 

inconsistently to observable feature-variables in different regions as it is not possible to observe all feature-variables that 

drive pCO2. A common practice to avoid the inclusion of coordinates is to separate the ocean into regions where processes 

that drive pCO2 are coherent and then apply individual regressions to each region – five of the eight regression methods in 

Rödenbeck et al. (2015) apply this approach.  We adopt two such approaches to develop regions of internal coherence in 

respect of CO2 variability, namely regions defined by biogeochemical properties and clusters defined by a clustering 

algorithm.  

 

Our first “clustering” approach uses the oceanic CO2 biomes by Fay and McKinley (2014) that divide the ocean into 17 

biomes. Fay and McKinley (2014) define their biomes by establishing thresholds for SST, Chl-a, sea-ice extent and 

maximum MLD. Unclassified regions from the original biomes are manually assigned based on their geographical extent 

resulting in six additional regions (Figure 3). We maintain these as separate regions from the original Fay and McKinley 

(2014) biomes. Their study originally did not classify these regions in the core biomes because the physical and 

biogeochemical properties were not accounted for by the set thresholds from their study. This would suggest that drivers of 

CO2 in these regions could be quite different from the adjacent open ocean biomes. Note that we may refer to the modified 

Fay and McKinley (2014) ocean CO2 biomes as “CO2 biomes” or as “BIO23” from here on (Figure 3). For later analyses, we 

group certain biomes together as shown by the brackets above the colour-bar in Figure (3).  

 

We also use K-means clustering, which groups data based on Euclidean distances. More specifically, we implement mini-

batch K-means from Python’s Scikit-Learn package (Sculley 2010; Pedregosa et al. 2012), which is described in the 

Supplementary Materials (Section S2.2; Figure S2). We apply clustering with various feature combinations and the number 

of clusters (shown by orange hexagons in Figure 1). We tested a range of 11 to 25 clusters (stepping by two). The 

performance of each clustering configuration is not tested with a clustering metric; instead, we test the performance based on 

the test scores of the regressions in the next step as a more complete indicator of performance. We find optimal results in 

respect of RMSE and biases with 21 and 23 clusters. We selected 21 clusters (Figure S2). Each method of defining regional 
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coherence in respect of pCO2 variability has its methodological weaknesses so in this study, we adopted the approach of 

incorporating both K-means and CO2 biomes into the ensemble average (Figure 1).  Although this likely weakens the 

geophysical meaning of the ensembled domains we show that it strengthens the overall performance of the ensemble 

average. 

2.4 Regression 

Here we describe the underlying machine learning principles of regression. The co-located data (i.e. SOCAT v5) are split 

into training and test-subsets with a roughly 80:20 split. The test-subset is isolated from the training process to attain a 

reliable estimate of uncertainty. We make the split between training and test-subsets based on a random subset of years in the 

time series (1982 to 2016): 1984, 1990, 1995, 2000, 2005, 2010 and 2014. We avoid using a shuffled train–test split 

(completely random) as this leads to artificially low uncertainties in machine learning algorithms that are prone to overfitting 

(see the experiment in S2.1), where the models can reproduce the shuffled test data better as these data are adjacent to 

samples of the same ship track.  

 

We further reduce the possibility of overfitting by tuning the hyper-parameters for each model to be more generalised, i.e. 

able to fit the data that the model has not been exposed to. The search for the optimal hyper-parameters is achieved with 

grid-search cross-validation, where a portion of the training subset is iteratively kept separate from the training process for a 

certain set of hyper-parameters (Hastie et al. 2009). The hyper-parameters that result in the best score from the grid-search 

are used for the fit with the full training subset (see S2.3 for more details). We use a variation of K-fold cross-validation 

called group K-fold in Scikit-Learn (Pedregosa et al. 2012). Rather than having arbitrary splits for each fold, a given 

grouping variable is used to split the data – in this case, years. Using years as the grouping variable reduces bias towards the 

second half of the time series where data is less sparse.  

 

The train-test split and cross-validation are applied identically to each of the four machine learning algorithms for each 

clustering configuration. We use the following machine learning algorithms: Extremely Randomised Trees (ERT – Geurts 

2006); Gradient Boosting Machines (GBM – Friedman 2001); Support Vector Regression (SVR – Drucker et al. 1997); and 

Feed-Forward Neural Networks (FFN). The details of these methods and how they were tuned are explained in the 

supplementary materials (Section S2.3). The first two methods, ERT and GBM, are new to this application. SVR has been 

implemented as a single global domain by Zeng et al. (2017), and FFN is used by several different methods, some of which 

are in the SOCOM intercomparison (Landschützer et al. 2014; Zeng et al. 2014; Sasse et al. 2013).  
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Regression performance is tested using RMSE primarily but also bias (Equations 3 and 4 below) and Riav (Equation 5) with 

only the models from the best averaged clustering configuration used for the rest of the study.  

2.5 Robust biases and root-mean-square errors 

Standard practice in machine learning is to set aside a test-subset of the data as described in Section 2.4. We use this 

standard approach in the second step of our experiment (regression comparison) as an estimate of the performance for each 

of the machine learning models (164 in total). However, this grouped train-test split gives a bias and RMSE estimate limited 

to the random test years of test-subset (see Section 2.4). To overcome this limitation, we iteratively apply the train-test split 

method with multiple selections of years. The splits in the test fold are based on a subset of years spaced five years apart. We 

then refactor the five test-fold estimates into a complete test-estimate (with the same structure as the original SOCAT v5), 

thus giving a complete estimate of bias and RMSE (Figure 1 step 3). This robust test-estimate method ensures that correct 

biases and RMSE scores are reported even if methods are prone to overfitting (see Section S2.1 and Figure S1). We limit this 

procedure to only the CO2 biome and best clustered regressions as it has five times the computational cost of a single train-

test split. 

2.6 Method validation data 

For method validation we use observation data that are not used in SOCAT (Figure 4 and Table 2) as they are either: 1) 

included in the Lamont-Doherty Earth Observatory (LDEO) database, but not in SOCAT; 2) not measured with an infrared 

analyser; 3) derived from two other variables in the marine carbonate system, where these include dissolved inorganic 

carbon (DIC), pH and total alkalinity (TA) – where the Southern Ocean Carbon and Climate Observation and Modeling 

(SOCCOM) floats use empirically calculated TA.  

 

The uncertainty of pCO2 that is calculated from DIC and TA is dependent on the accuracy of these two measurements, as 

well as the derivation of pCO2 with dissociation constants, for which we use the CBSys package in Python (Hain et al. 2015). 

CBSys implements the constants from Lueker et al. (2000) that reports an uncertainty of 1.9% standard deviation of the 

calculated pCO2 where DIC and TA uncertainties are 2.0 µmol.kg-1 and 4.0 µmol.kg-1 respectively. The measurements in 

GLODAP v2 are slightly larger than this at 4 and 6 µmol.kg-1, which would result in an error larger than 1.9% – this is 12 

µatm for a 400 µatm estimate at a hypothetical 3% error. However, this error may be larger as reported in Table 2, where 

Bockmon and Dickson (2015) showed that the uncertainty for DIC and TA is likely closer to ±10 µmol.kg-1. While this 

potentially large error range may seem concerning, we argue that the inclusion of these data in data-sparse regions is more 

valuable than their omission. Additionally, GLODAP v2 data has been adjusted on a per-profile basis to minimise the biases 

through the comparison of deep slow-changing ocean properties (Olsen et al. 2016). Williams et al. (2017) estimated the 
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error for pCO2 calculated empirically to be 2.7%, where TA was calculated empirically with the Locally Interpolated 

Alkalinity Regression (LIAR) algorithm (Carter et al. 2016). Note that the datasets in Table 2 likely suffer from biases 

unaccounted for due to temperature mismatches as discussed in Section 2.2 (Goddijn-Murphy et al. 2015). It is important to 

note that each of the validation datasets are compared independently of each other, thus avoiding the complications of 

accounting for the biases between datasets. All pCO2 data are then gridded to the same time and space resolution as the 

feature-variables (monthly ⨉ 1°) using xarray and pandas packages in Python (McKinney, 2010; Hoyer and Hamman, 

2017).  

2.7 Sea-air CO2 flux calculation 

Bulk sea-air CO2 flux (FCO2) is calculated with: 

𝐹𝐶𝑂2 = 𝑘𝑤 ⋅ 𝐾0 ⋅ (𝑝𝐶𝑂2
𝑠𝑒𝑎 − 𝑝𝐶𝑂2

𝑎𝑡𝑚),        (2) 

where K0 is the solubility of CO2 in seawater (Weiss 1974) and kw is the gas-transfer velocity calculated from wind speed 

using formulation by Nightingale et al. (2000) as this parameterisation was the closest match to in-situ observations of CO2 

fluxes (Goddijn-Murphy et al. 2016). The ERA-interim v2 wind product is used to calculate kw. pCO2sea is from the gap-

filling methods, and pCO2atm is atmospheric pCO2. All ancillary variables required in these calculations are the same as those 

listed in Table 1, except for pCO2atm, which is the CarboScope atmospheric pCO2 product from Rödenbeck et al. (2014). One 

of the problems with the bulk estimates of sea-air CO2 fluxes is that models of gas exchange in the surface layer of the water 

column are simplified, but there are approaches, such as the rapid equilibrium model, that account for more complex 

temperature gradients in the upper layer of the surface ocean (Wanninkhof et al. 2009; Woolf et al. 2016). However, for the 

sake of consistency with past studies, we use the bulk approximation of sea-air fluxes (Eq. 2) where kw is scaled to 16 cm.hr-1 

as in the SOCOM intercomparison (Rödenbeck et al., 2015).  

2.8 Relative interannual variability and interquartile range metrics 

2.8.1 Regression metrics 

We use bias and root-mean-square error (RMSE) as first-order metrics of model performance.  

Bias is the mean difference between the target variable and the estimates thereof:  

𝐵𝑖𝑎𝑠 = ∑
�̂�𝑖−𝑦

𝑛

𝑛
𝑖=1            (3) 

where n is the number of training samples, y is the array of target data and �̂� is the corresponding array of estimates. 

Similarly, RMSE is a measure of the difference between the target variable and the estimates thereof: 

𝑅𝑀𝑆𝐸 = √∑
(𝑦𝑖−�̂�𝑖)2

𝑛
𝑛
𝑖=1            (4) 
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In our study, these metrics are calculated for each year and then the mean of the annual bias or RMSE scores is taken as a 

more robust measure of performance in the context of temporally imbalanced data. This is typically done for the global 

domain unless otherwise stated. 

 

The relative interannual variability metric (Riav) was used in the SOCOM intercomparison by Rödenbeck et al. (2015) to 

measure how well a method represents the interannual variability of the SOCAT data. The metric furthers the idea of RMSE 

calculated by year (and region if stated, otherwise global) by normalising annually weighted RMSE to a benchmark with 

interannual variability driven only by atmospheric pCO2: 

𝑅𝑖𝑎𝑣 =
𝜎1982−2015 (𝑀 

𝑖𝑎𝑣 (𝑡))

𝜎1982−2015 (𝑀𝑏𝑒𝑛𝑐ℎ
𝑖𝑎𝑣 (𝑡)

)
           (5.1) 

𝑀𝑖𝑎𝑣(𝑡) = √
∑ (𝑦𝑖−�̂�𝑖)𝑛

𝑖=1

𝑛−1
           (5.2) 

𝑀𝑏𝑒𝑛𝑐ℎ
𝑖𝑎𝑣 (𝑡)

= √𝛴𝑖=0
𝑛 (𝑦𝑖−�̂�𝑖

𝑏)

𝑛−1
           (5.3) 

Here 𝜎 is the standard deviation of Miav and 𝑀𝑏𝑒𝑛𝑐ℎ
𝑖𝑎𝑣  respectively, which are both represented as yearly time series. Equations 

5.2 and 5.3 show the formulation for  𝑀𝑖𝑎𝑣(𝑡) and 𝑀𝑏𝑒𝑛𝑐ℎ
𝑖𝑎𝑣 (𝑡)

,which represent these metrics for a single year (t). The symbol i 

represents individual data points in a particular year t, y is the observation-based data for that year, �̂� is the predicted data 

and n is the number of points in the year and region. The benchmarked 𝑀𝑏𝑒𝑛𝑐ℎ
𝑖𝑎𝑣  is calculated to normalise Miav. The �̂�𝑏  

represents the data where IAV has been removed by summing the climatology of the mapped surface ocean pCO2 and the 

annual trend of atmospheric pCO2. 

2.8.2 Ensemble metrics 

We use the interquartile range (IQR) between different gap-filling methods as a robust metric of disagreement, in contrast to 

the standard deviation which is sensitive to outliers. IQR is calculated as the third quartile (75th percentile) minus the first 

quartile (25th percentile). The disagreement between methods is calculated with annually-averaged data with the resulting 

difference averaged over the time series to arrive at the interannual disagreement (IQRIA). This is calculated per pixel if the 

representation of the data is spatial (maps) and per time step of a time series. 

3 Results 

3.1 Regression results 

The results from the regression comparisons (step two in Figure 1) are depicted in Figure (5a-c) which plots the matrix of the 

(a) average bias, (b) RMSE and (c) Riav for each combination of the experimental number of clusters and clustering features.  
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Results show that the configuration that includes EKEclim (column E in Figure 5a-c) as a clustering feature has the lowest 

average RMSE and absolute bias for nearly all clustering configurations, regardless of the number of clusters (rows in Figure 

5a,b). The increased dynamics associated with high EKE regions might change the way pCO2 behaves compared to low 

EKE regions (Boutin et al., 2008; Monteiro et al. 2015; du Plessis et al., 2017, 2019). The optimal number of clusters within 

this configuration is either 21 or 23, based on the smallest bias and RMSE scores (as indicated by the black box in Figure 5), 

while we do not weight Riav strongly in this assessment as a Riav score of less than 0.3 is in the top-performing category in 

the SOCOM intercomparison (Rödenbeck et al. 2015). While the individual regression methods’ bias and RMSE scores 

(Figures S5 and S6 respectively) do not match the distributions exactly, the two selected clustering configurations (black 

boxes in Figure 5) score consistently low for both metrics (with the exception of ERT – discussed in greater detail further 

on). We motivate to select only one clustering configuration for the sake of simplicity. Furthermore, we select the 

configuration with 21 clusters (rather than 23), as fewer clusters further reduce the possible complexity at little cost. The 

selected clustering configuration with 21 clusters has the following features: SST, log10(MLDclim), pCO2clim, log10(Chl-aclim), 

and log10(EKEclim); and is hereinafter abbreviated as K21E (see Figure S2 for the distribution of the climatology for these 

clusters). 

 

Comparatively, the Fay and McKinley (2014) CO2 biomes have an average RMSE score of 18.98 µatm (Table 3) but have a 

lower mean Riav (0.26) and smaller bias (0.03 µatm) than the K21E configuration. Given that the CO2 biomes perform well 

and provide an alternate clustering approach, we include the regression estimates. The eight machine learning models from 

K21E and BIO23 (four each) were used to create an ensemble average by averaging pCO2 estimates (CSIR-ML8).  

 

All regression methods have lower RMSE scores for K21E than for BIO23, but Riav and bias do not indicate that any of the 

two clustering approaches is preferable (Table 3). Comparing the RMSE scores of the individual regression methods, we see 

that the model scores are ranked the same in each cluster from first to last: SVR, ERT, GBM, FFN. However, it is important 

to note that this ranking does not apply to bias or Riav, where ERT has low RMSE, but the largest bias and Riav in each 

clustering approach. CSIR-ML8 only slightly betters its members with RMSE and bias scores of 17.25 µatm and 0.04 µatm 

respectively. However, the ensemble average Riav (0.25) is only just less than the average of the ensemble members’ average 

(0.26). 

3.2 Robust RMSE, bias and Riav 

Here, we study the change in the bias and RMSE for all selected methods (i.e. K21E, BIO23 and CSIR-ML8; Table 3) across 

1982-2016 (Figure 6). Most notable is that bias scores for all models have the same interannual tendencies, with a positive 
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bias at the beginning of the time series (1982 to 1993) that is strongest before 1990, strongly influencing the mean bias 

(Table 4). Secondly, the biases for K21E (solid lines) are, on average, smaller than for BIO23 (dashed lines) as shown for the 

annually-averaged results in Table 4 (0.73 µatm and 2.24 µatm respectively). These biases are larger than those reported in 

Table 3 (with averages of absolute biases of 0.48 µatm and 0.41 µatm for K21E and BIO23 respectively), but this is likely 

since selected test years (black triangles in Figure 6b) fall on years of low bias. While FFN has the largest RMSE (18.93 

µatm and 20.24 µatm for K21E and BIO23), it has a smaller bias compared to other regression methods (0.04 µatm and 1.60 

µatm respectively), motivating for including FFN regressions in the ensemble average (Table 4). Conversely, the ERT 

approach has a significant positive bias likely due to the method’s resilience to outliers, where sparse measurements could be 

treated as outliers (2.08 µatm and 3.88 µatm for K21E and BIO23 respectively, with p > 0.95 for both values; Table 4; 

Gregor et al. 2017). A second ensemble average without ERT regressions, thus with six members (CSIR-MLR6 version 

2019a, hereafter called CSIR-ML6), has lower biases compared to CSIR-ML8 (0.98 µatm and 1.48 µatm respectively; Table 

4). 

 

Similar to the biases, RMSE for all models (Figure 6b) have similar interannual tendencies and variability, with a sharp peak 

in the year 2000 (> 20 µatm where the mean RMSE is 18.61 µatm). The increased RMSE scores are likely due to the spatial 

distribution of sampling density (see Figure S7), e.g. an increase in sampling in the high latitudes during spring and summer, 

a region and period of high variability and biogeochemical complexity, would increase the weight of these data in the final 

RMSE calculation, thus resulting in larger RMSE scores. The increase in the number of samples from 2002 to 2016 results 

in a sharp decrease in RMSE ( < 19 µatm for the majority of this period). Both ensemble averages perform slightly better 

than all other methods for the majority of the time series with RMSE scores of 17.16 µatm and 17.25 µatm for CSIR-ML6 

and CSIR-ML8 respectively (see Table S1 comparisons of ensemble averages with different members). 

 

The Riav scores for the robust errors (Table 4) are lower than train-test results with a single split reported in Table 3, likely 

due to an increase of standard deviation for the IAV benchmark (Equation 5). The lowest score is held by CSIR-ML6 (0.20) 

and is lower (better) than the average for its members (0.21). These Riav estimates compare well to the Jena-MLS and SOM-

FFN, which both scored < 0.3 (Rödenbeck et al. 2015).  

 

The spatial distribution of the bias and RMSE is now studied for CSIR-ML6 (Figure 7 a and b, respectively), particularly 

focusing on the regional patterns emerging from the data. CSIR-ML6 clearly represents the subtropical regions (NH-ST and 

SH-ST) with relatively low biases and RMSE scores (|bias|< 5 µatm and RMSE < 10 µatm). The equatorial regions (EQU), 

especially the eastern Pacific, contrasts this with large uncertainties in both bias and RMSE (> |10 µatm| and 30 µatm 

respectively). The high-latitude oceans (NH-HL and SH-HL) have considerable uncertainties due to the large interannual 
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variability of surface ocean pCO2 caused by the formation and retreat of sea-ice (around Antarctica; Ishii et al. 1998; Bakker 

et al. 2008) and phytoplankton spring blooms (Atlantic sector of the Southern Ocean, North Pacific and Arctic Atlantic; 

Thomalla et al. 2011; Lenton et al. 2013; Gregor et al. 2018). There are two bands of overestimates on the southern and 

northern boundaries of the North Atlantic Gyre, where the latter coincides with the Gulf Stream. Regression approaches may 

be prone to a positive bias in the North Atlantic as this was also shown by Landschützer et al. (2013; 2014).  

 

In summary, the robust test-estimates show that there is a positive bias in pCO2 predictions before 1990 for all models, but it 

is largest for ERT, and excluding these models from the ensemble results in better pCO2 predictions. The spatial evaluation 

of the performance metrics for CSIR-ML6 shows that regions with specific oceanic features (e.g. western boundary currents) 

mostly have positive biases. However, it is important to note that these uncertainty assessments are limited as the 

characteristics and biases of the dataset are intrinsic to the models. Validation with independent data is thus a more reliable 

estimate of the performance of these methods.  

3.3 Validation with independent datasets 

Here, we validate the accuracy of pCO2 estimates from CSIR-ML6 with independent data (that is not in SOCAT v5 as 

described in Table 2). To further study the behaviour of our ensemble average estimates relative to previous studies, we 

compare the results from four independent methods of the SOCOM intercomparison project against the independent data 

calculated over individual data points (Rödenbeck et al. 2015). Those four independent methods are:  the Jena mixed-layer 

scheme (Jena-MLS version oc_v1.6, Rödenbeck et al. 2014); Japanese Meteorological Agency – multi-linear regression 

(JMA-MLR updated on 2018-12-2, Iida et al. 2015); Max Planck Institute – Self-organising Map Feed-forward Neural-

network (MPI-SOMFFN v2016, Landschützer et al. 2017); and University of East Anglia – Statistical Interpolation (UEA-SI 

version 1.0, Jones et al. 2015). pCO2 estimates by the Jena-MLS were resampled to monthly temporal resolution and 

interpolated to a one-degree grid using Python’s xarray package. Note that these datasets will also suffer from the same 

temperature biases discussed in S2.4.  

 

The performance of each gap-filling method is represented with a Taylor diagram for each independent validation dataset 

(Figure 8; Taylor et al. 2001). The most important characteristic learnt from these plots is that the gap-filling methods are 

tightly bunched for nearly all validation datasets, indicating a similar RMSE, correlation and standard deviation relative to 

the reference datasets. Poor estimates in Figures 8a-d may indicate that the training data for gap-filling methods is the 

limiting factor. Secondly, the gap-filling methods almost always underestimate the standard deviation of the validation 

datasets, being below the black arced line for all but the station HOT (Figure 8e).  
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All methods fail to represent the standard deviation of the two global validation datasets, LDEO and GLODAP v2 (Figures 

8a,b), with centred RMSE scores greater than 35 µatm. However, calculating RMSE annually results in scores of ~27 µatm 

for LDEO and ~35µatm for GLODAP v2, much lower than shown in Figure 8a,b due to high RMSE scores (> 40 µatm) for 

a small subset of years (Section S3.4 and Figure S7). Estimates of the Southern Ocean datasets (Figures 8c, d), SOCCOM 

and CARIOCA, have lower RMSE scores (~16 µatm and ~23 µatm respectively) relative to LDEO and GLODAP v2.  

However, for standard deviation scores of similar magnitude and low correlation coefficients, the datasets are not well 

constrained (Table 5). The SOCCOM dataset also has the largest average absolute bias for estimates, with gap-filling 

methods underestimating by at least 11 µatm (Table 5). This large bias may be because SOCCOM floats have a 

proportionately large number of winter samples – suggesting that our knowledge of Southern Ocean winter fluxes are largely 

underestimated (Williams et al. 2017). In contrast, all methods estimate the two time-series stations, HOT and BATS 

(Figures 8e,f and Table 5) relatively well with correlation scores   > 0.8 and low average bias ~4.5 µatm.  

 

Despite all scores being closely grouped (Figure 8), Table 5 shows that the CSIR-ML6 method scores significantly lower 

RMSE scores (using a two-tailed Z-test with p < 0.05) for all but one of the datasets (SOCCOM). However, bunching of the 

RMSE scores (Figure 8) is beneficial with regard to achieving low p-values. No single method dominates the biases, with 

JMA-MLR and MPI-SOMFFN each scoring the lowest bias on two occasions. To summarise, all gap-filling methods 

underperform when validated against independent observational products. Tight bunching of gap-filling method scores per 

validation dataset shows that training data may limit all methods in the same manner.  

3.4 The effect of uncertainties on the sea-air CO2 flux interannual variability 

In this section, we assess the regional implications of the differences in gap-filling methods’ estimates (within CSIR-ML6 

and the four independent methods described in Section 3.3) of the sea-air CO2 flux (FCO2) over the period 1990 to 2016. 

FCO2 was calculated using the same gas transfer velocity and solubility for each gap-filling method (Section 2.7). 

Differences in FCO2 are thus driven by variations in pCO2 from each gap-filling method.  

 

The average FCO2 for 1990-2016 by CSIR-ML6 (Figure 9a) contextualises the regional distribution of fluxes: strong 

outgassing in the Equatorial Pacific, strong sink in the mid-latitudes, a moderate uptake for the most part of the subtropics, 

and weak source in the majority of the Southern Ocean (in agreement with e.g. Takahashi et al., 2009). The global annual 

time-series for FCO2 as simulated by CSIR-ML6 (Figure 10a) indicates a strengthening for 2000 to 2016 (as for the other 

methods). To give spatial context to this strengthening, we display the differences in FCO2 between 2016 and 2000 (Figure 

9b), since those are the two years where the difference in global FCO2 is greatest for CSIR-ML6 (Figure 10a). Note that 

Figure 9b serves as a snapshot for the change in FCO2 between those two years, whose interpretation cannot be linked to an 
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overall anthropogenically-forced change as the comparison between two years could reflect interannual, decadal or multi-

decadal variability. The differences in FCO2 between 2016 and 2000 is negative in the high latitudes and moderately positive 

in the subtropics, indicating a respective increase and decrease in the CO2 ocean uptake between the two years. The Eastern 

Equatorial Pacific is the only region that shows a considerable increase in FCO2 (> 10 gC m-2 yr-1) between the two specific 

years.  

 

The annual change in FCO2 is also studied for the different regions.  The Southern Hemisphere high-latitude (SH-HL) region 

is the strongest contributor to the trend (Figure S10b), where there is a steady increase in the uptake of CO2 since the 2000s 

for all methods (Landschützer et al. 2015; Gregor et al. 2018). On average, the Northern Hemisphere high latitudes (NH-HL) 

are a weaker sink relative to the SH-HL, because the SH-HL is more than double the area of the NH-HL (Figure S10c). The 

equatorial (EQU) region is the only persistent source of CO2 to the atmosphere (also seen in Figure 9a). The subtropical 

regions (Figure 10c, e) contribute to global flux on similar orders of magnitude; however, there is a large divergence 

between gap-filling methods in the SH-HL. 

 

We use the average interquartile range between the one-year rolling mean estimates (IQRIA) as a measure of agreement or 

divergence between gap-filling methods, where large values indicate a divergence (Section 2.8.2). We also show the IQRIA 

scaled to the range of the regional interannual variability (max – min) as a percentage (relative IQRIA), which shows if the 

trend for a particular region is agreed on by all methods (the smaller the percentage, the better the agreement across 

methods). The disagreement between methods in the SH-ST is substantial (Figure 10e), with diverging FCO2 throughout the 

period with an IQRIA of 0.11 PgC yr-1 and a large relative IQRIA of 28%. Similarly, the IQRIA for the SH-HL region (Figure 

10f) is 0.08 PgC yr-1, but the relative IQRIA is lower at 14%, indicating that all methods agree on the observed strong trend. 

Compared to the Southern Hemisphere, the Northern Hemisphere regions are both relatively well constrained, with IQRIA 

estimates of 0.04 PgC yr-1 and 0.05 PgC yr-1 for the NH-ST and NH-HL regions respectively (Figure 10c,d). However, a 

larger relative IQRIA of 20% suggests that the interannual FCO2 estimates in the NH-ST region are potentially not resolving 

the trend, or more likely that there is a weak trend with a small difference between the minimum and maximum interannual 

estimates of FCO2. The equatorial region (EQU - Figure 10b) has an IQRIA and relative score at 0.03 PgC yr-1 and 14%.  

 

The CSIR-ML8 method is not included in the IQRIA calculations but is included in Figure 10 to show the impact of the ERT 

models’ positive bias in pCO2 on FCO2 (Figure 6a). The biases are positive at the beginning and negative end of the time 

series, with the average absolute difference between the CSIR methods being 0.08 PgC yr-1. The positive biases have the 

strongest impact on the SH-ST that occupies 36% total area (Figure S10c), with only 11% of the total observations in 

SOCAT, suggesting that this method is sensitive to imbalanced datasets.  
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3.5 Regional disagreement between methods 

In order to better understand the regional distribution of the uncertainties in FCO2, we assess the level of agreement between 

independent gap-filling methods in their interannual surface ocean pCO2 estimates (Figure 11). We use pCO2 for this 

representation as no spatial integration occurs – only time averaging.  

 

The interannual estimates of interquartile range (IQRIA; Figure 11a) show the disagreement between methods is relatively 

small in the majority of the ocean (⪝ 5 µatm). The exceptions being the Southern Ocean, South Atlantic, south-eastern 

Pacific and eastern equatorial Pacific with differences of > 10 µatm, where these regions coincide with regions of low 

sampling density (Figure 2). The IQRIA scaled to the maximum-minimum range of interannual pCO2 suggests that the NH-

ST trend is relatively well constrained (< 10%), which is in conflict with the IQRIA for FCO2 in Figure 10c (where the 

relative IQRIA is 20%). The disagreement may stem from the magnifying impact that wind speed has on FCO2, i.e. small 

differences in pCO2 may become large when fluxes are calculated. The same principle may apply to the EQU in Figure 11b, 

where relative IQRIA is large (> 10 %) for pCO2, but low wind speeds result in a low relative IQRIA for FCO2 (7% in Figure 

10b). The largest relative IQRIA scores occur in the SH-ST (> 10% in Figure 11c) where data is sparse, specifically the South 

Atlantic and south eastern Pacific (Figure 2a). The relative IQRIA scores suggest that the gap-filling methods agree on pCO2 

in the SH-HL east of the Greenwich meridian (> 0° E).  

 

In summary, we show that there is an agreement between gap-filling methods in the Northern Hemisphere for interannual 

pCO2, but the methods show considerable disagreement in the Southern Hemisphere, particularly in the subtropics. 

Disagreements in the Equatorial and Southern Hemisphere high-latitude regions are large (> 10%) and should be treated with 

caution when considering trends in these regions.  

4 Discussion 

4.1 Not all models are equal 

In their study, Khatiwala et al. (2013) stated that: “our comparison of different methods suggests, that multiple approaches, 

each with its own strengths and weaknesses, remain necessary to quantify the ocean sink of anthropogenic CO2”. In our 

study, we embrace this philosophy by creating an ensemble average of two-step machine learning models that estimate 

global surface ocean pCO2. We show robustly that the CSIR-ML6 method reproduces the available data with greater 

accuracy than previous methods, albeit in an incremental way. Our method is methodologically consistent with regard to 

feature-variables. Though there is variability in the clustering and regression, we create the ensemble average with a good 

understanding of each model’s biases (Figure 6 and Figure S8). The argument that ensemble averages reduce transparency is 
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also somewhat diminished by the fact that little additional information that can be gained from highly non-linear models, 

with the exception of basic diagnostics such as feature-variable importance (see Figure S11) from decision-tree-based 

approaches (Pedregosa et al. 2012; Castelvecchi, 2016). Our results thus show that there is, in fact, a benefit in creating an 

ensemble average of models (Table 5), and if carefully implemented is an additional tool that can be used to reduce the 

uncertainties in gap-filling estimates of pCO2.  

 

It could be argued that an exhaustive search for the optimal configuration (Figure 5) for CSIR-ML6 may result in poorly 

trained individual models. However, we think that the merit of introducing and assessing regression algorithms new to the 

application (for gradient boosting machines and extremely randomised trees) outweighs the marginal loss in potential 

performance for individual methods. Moreover, lessons learnt from our study can be used to improve on future iterations. It 

also makes the case for ensembles averages stronger as the CSIR-ML6 performs well relative to other gap-filling methods. 

 

In the search for the optimal clustering configuration (Figure 5a,b), we show that including EKE (along with SST) as a 

clustering feature-variable leads to an improvement in bias and RMSE for nearly all number of clusters, albeit a small 

improvement. Increased intra-seasonal variability of pCO2 appears to be associated with regions of high EKE compared to 

low EKE regions (Monteiro et al. 2015; du Plessis, 2017, 2019). Moreover, the importance of EKE as a part of the clustering 

constraints also shows that more thought should be given to how we sample pCO2 in high-EKE regions and at what 

resolution regression methods are run at. 

 

Our findings suggest the following about the individual regression methods: the SVR and GBM algorithms produce good 

estimates with lower RMSE scores and biases, the FFN approach has larger RMSE scores yet low biases than the other 

methods, and the ERT approach has low RMSE scores but large biases in the estimates (Figure 6a,b; Table 4). We do not 

include the ERT approach in the ensemble average (CSIR-ML6) due to the large time-evolving biases, suggesting that ERT 

(with our tuning) is not suitable for estimating surface ocean pCO2. The bias in ERT may be due to its sensitivity to 

imbalanced datasets (Crone and Finlay, 2012), where the data in SOCAT v5 are few before 2000. Returning to the above 

quote by Khatiwala et al. (2013), we thus find that the weaknesses of ERT outweigh its strengths.  

4.2 Divergent gap-filling estimates 

While we see that the improvements in the performance of gap-filling methods are relatively stagnant (relative to the training 

and validation data), the differences between the methods’ estimates of pCO2 and FCO2 vary significantly in some regions, 

particularly in regions where data is sparse, such as in the Southern Hemisphere oceans (Figure 2). We also find that training 

the gap-filling methods with limited training data exposes the intrinsic biases of the algorithms, or in the words of Ritter et 
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al. (2017): “the difference [between gap-filling methods] is a result of how the spatial and seasonal heterogeneity and the 

sparseness of the data is dealt with”. Conversely, as the number of training data increase, the biases are reduced, and the 

methods converge.  

 

The Northern Hemisphere subtropical regions are a good example of a region where the gap-filling methods converge 

(Figure 11b), as also shown by the low RMSE scores and high correlation for the two mooring stations, HOT and BATS 

(Figure 8e,f). One of the reasons that the methods predict the variability well in the subtropics (Figure 8e,f) is that these 

regions are less biogeochemically complex and driven primarily by seasonal changes in SST (Bates 2001; Dore et al. 2009). 

This strong SST-driven seasonality in the subtropics is shown by the high seasonal cycle reproducibility (Figure 12). 

 

The gap-filling methods’ divergences also serve as a metric to inform where there is not enough data to constrain the pCO2 

or FCO2 estimates, i.e. the divergences inform us where estimates should be treated with caution. The IQRIA, when scaled to 

the range of interannual variability (Figure 11b), should be taken into account when analysing interannual trends of ∆pCO2 

(Figure 13). For instance, significant trend estimates in ∆pCO2 for CSIR-ML6 (p < 0.05) are negative for the majority of the 

global ocean, even in regions where method estimates are too disparate to resolve interannual variability (relative IQRIA > 

15%; dotted regions in Figure 13). However, the relative IQRIA is not without its limits, as there may be regions where 

methods are in agreement but share the same biases, thus reporting false confidence in the estimates. Regions of false 

confidence would most likely occur in data sparse areas but could only truly be identified with better data coverage in these 

regions. 

4.3 Inching up and over the wall: incremental improvements 

In our study, we show that all gap-filling methods suffer from the same uncertainties where there are data to test and validate 

the estimates (Figure 8), and divergences between estimates when there are insufficient data to constrain the methods (Figure 

11b). From these points, it may seem that we may have in fact “hit the wall” in terms of better resolving surface ocean pCO2. 

In this section, we discuss how we might overcome this proverbial wall. First, by addressing the existing uncertainty and 

biases, and then discussing how we could improve on estimates in data-poor regions. 

4.3.1 Reducing existing biases  

The robust test-estimates show that there are regions where training data is not sparse, yet estimates still suffer from large 

uncertainties (e.g. northern and southern boundaries of the North Atlantic gyre in Figure 7a,b and Figure S8). These errors 

are spatially consistent with those reported by Landschützer et al. (2014). Such regional mismatches between gridded 

observations and estimates are likely systematic – meaning that gap-filling methods are not able to resolve the more complex 



 

20 

pCO2 variability at current resolutions (monthly ⨉ 1° or coarser) or with the current regression feature-variables (Gregor et 

al. 2017; Denvil-Sommer et al. 2018). It may be possible to reduce these uncertainties with consideration about the drivers of 

CO2 in a specific region. Including appropriate additional feature-variables (if available), such as reanalysis mixed-layer 

depth products, may improve the uncertainties of gap-filling methods (Gregor et al. 2017). Similarly, increasing the temporal 

and spatial resolution may be able to improve estimates where aliasing occurs in regions of high dynamic variability such as 

the mid-latitude oceans (Monteiro et al. 2015). It is worthwhile noting that increasing the resolution may not be the panacea 

for poor estimates. For example, the Jena-MLS method is able to estimate pCO2 with relative accuracy (Figure 8) at a low 

spatial resolution (≈ 4° ⨉ 5°; Rödenbeck et al. 2014); however, with the trade-off in spatial resolution, the method is able to 

increase the temporal resolution to daily estimates.  

 

Another source of bias is the mismatch between the temperature at which pCO2 is measured (i.e. at the depth of a ship’s 

intake) and the temperature to which pCO2 is predicted (~1 m in the case of the dOISSTv2 data; Banzon et al. 2016; 

Goddijn-Murphy et al. 2015). Goddijn-Murphy et al. (2015) show that this mismatch is considerable in some cases (> 5 

µatm for large regions as shown in Figure S3b). However, the correction of the intake temperature to the remotely sensed 

surface temperature also makes the assumption that temperature is the only factor that influences pCO2 in the surface layer 

of the ocean. The correction will thus not account for other processes such as primary production, stratification and gas 

exchange within the surface layer. This is an issue that should be discussed by the community and tested experimentally to 

assess the impact that these processes may have on pCO2.  

4.3.2 Improving estimates in data-poor regions 

All gap-filling methods suffer from similar biases and uncertainties (Figure 8, Table 5) when compared to independent 

validation data, yet the same methods show vastly different results in data-sparse regions. These shared uncertainties and 

regionally consistent divergences between methods are in agreement with past studies, which find that insufficient training 

data is the limiting factor (Rödenbeck et al. 2015; Landschützer et al. 2016; Ritter et al. 2017; Denvil-Sommer et al. 2018).  

 

Strides have been made in closing these data-sparse gaps with the deployment of autonomous sampling platforms. The 

Southern Ocean Carbon and Climate Observations and Modelling (SOCCOM) project, in particular, has been influential in 

closing the gap in the Southern Ocean with the deployment of ~200 pH-capable biogeochemical Argo floats in the region 

since 2015 (Williams et al., 2017; Gray et al., 2018). The data collected by these floats during winter has shown that we have 

previously underestimated winter outgassing of CO2 in the Southern Ocean (Gray et al. 2018). Incorporating these new 

estimates into machine learning estimates should be a priority for the community as the Southern Ocean plays an important 

role in anthropogenic CO2 uptake (Gruber et al. 2019). Incorporating this data successfully into existing models may not be 
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straight-forward due to the strong temporal bias of these data toward the end of the time-series. For instance, the inclusion of 

atmospheric pCO2 could result in temporally skewed estimates due to the “memory” effect that including the annually 

increasing atmospheric pCO2 could have on estimates.  

 

The complex machine learning models often used to estimate pCO2 are prone to overfitting the data, particularly in regions 

where data is sparse. Using less complex models, e.g. multi-linear regression, in such regions would reduce the risk of 

overfitting the data. A regionally weighted ensemble approach may be an eloquent way to address this problem. In regions 

with sparse data coverage, simpler models could be favoured, while more complex models could be weighted more in 

regions with more data. However, the user would have to apply a potentially subjective model-complexity ranking for each 

approach. This may work well in the subtropical gyres where pCO2 has a strong seasonal signal driven primarily by 

temperature (Figure 12; Lefèvre and Taylor, 2002).  

 

One of the weaknesses of our study is that our approach is similar to other regression methods (e.g. MPI-SOMFFN by 

Landschützer et al. 2014, and JMA-MLR and LSCE-FFNN by Denvil-Sommer et al. 2019) that predict pCO2 based on the 

instantaneous physical and biological variables without regard for past states. There is thus a need to explore methods that 

incorporate the past state into future state estimates. This includes assimilative modelling approaches, such as B-SOSE 

(Biogeochemical Southern Ocean State Estimate), which would also provide greater understanding of the driver for changes 

in surface pCO2 (Verdy and Mazloff, 2017). These methods may be able to provide better constraints on pCO2 in data-poor 

regions. However, these assimilative models are not yet in a stage to fit the data closely (Verdy and Mazloff, 2017). 

 

5 Summary 

Our study suggests that we may be reaching the limits of gap-filling methods’ abilities to reduce uncertainties, as shown by 

the limited incremental improvement in errors by the ensemble method we compare with established methods. Significant 

uncertainties still prevail across all gap-filling methods, most likely limited by the extent of basin-scale observational gaps in 

the Southern Hemisphere as well as sampling aliases in mesoscale intensive ocean regions. We propose ways in which the 

surface ocean CO2 community can improve estimates within the bounds of the current observations and make 

recommendations for future observations. 

 

We introduce a new surface ocean pCO2 gap-filling method that is a machine learning ensemble average of six two-step 

clustering-regression models (CSIR-ML6 version 2019a). An exhaustive search process was used to find the best K-means 

clustering configuration which was used alongside the Fay and McKinley (2014) oceanic CO2 biomes. The regression 
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models applied to each clustering method are support vector regression, feed-forward neural-networks and gradient boosting 

machines. We show that the ensemble average of the six methods marginally outperforms each of its members, thus 

promoting the idea that averaging model estimates, each with different strengths and weaknesses, results in an improvement 

in the overall estimates. 

 

The CSIR-ML6 (version 2019a) approach was compared to validation data alongside four other methods from the SOCOM 

intercomparison study (Rödenbeck et al. 2015). Our new method marginally outperformed the SOCOM methods when 

comparing RMSE scores for the validation data but fared equally on biases. Despite this improvement, all methods had 

errors of roughly the same magnitude, suggesting that the methods are resolving pCO2 equally outside the bounds of the 

training data.  

 

Closer assessment of the spatial distribution of errors shows that there is spatial coherence between regression approaches 

for the Northern Hemisphere. Some of these errors coincide with regions of high dynamic variability or complex 

biogeochemistry, suggesting that increasing the spatial and temporal resolution of gap-filling methods could improve 

estimates. Moreover, introducing additional feature-variables for regression, such as eddy kinetic energy, may improve 

estimates in these regions.  

 

A comparison of the distribution of mismatches in pCO2 between gap-filling methods shows that there are regions (primarily 

in the Southern Hemisphere) where the compared methods, as an ensemble, cannot resolve interannual variability of pCO2 and 

as such, trends analyses in those regions should be interpreted with caution These large mismatches likely occur due to 

amplification of algorithm specific biases in data-sparse areas. We suggest that an ensemble with data density-driven weighting 

for model complexity could be a way to reduce potential overfitting in data-sparse regions. We also urge the community to 

focus on incorporating new measurements from autonomous platforms such as the pCO2 derived from pH measured by 

biogeochemical Argo floats, and new platforms such as pCO2 capable Wavegliders.  

 

In closing, we suggest that it is time to consider another SOCOM-like intercomparison. Several new methods have been 

developed since the last intercomparison and the addition of these would improve the robustness of ensemble average flux 

estimates. Further, the authors of the SOCOM intercomparison suggest that a future intercomparison should include a 

comparison of methods using simulated data, a method to overcome the limitation of the lack of data to test the estimates.   
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Table 1: Summary of the products, variables and data processing steps used for feature-variables. The column “Usage” indicates 

the features that are used for the clustering step (identified by C) and for the regression step (identified by R). Abbreviations are 

used in Figure 1 and throughout the text. Basic data processing is described in the text with details in the Supplementary Materials 

(Section S1).  

Group: Product Variable Abbrev Usa

ge 

Processing Reference 

NOAA: dOISSTv2 

(AVHRR only) 

Sea surface 

temperature 

SST C R - Reynolds et al. (2007) 

Banzon et al. (2016) 

SST seasonal anom. SST' C R SST – annual average 

Sea ice fraction ICE  R - 

MetOffice: EN4 Salinity SSS  R - Good et al. (2013) 

CDIAC: ObsPack v3 Atmospheric pCO2 pCO2atm  R xCO2atm ⨉ sea level pressure Masarie et al. (2014) 

UCSD: Argo Mixed 

Layers 

Mixed Layer Depth MLD C R log10(climatology) Holte et al. (2017) 

ESA: Globcolour Chlorophyll-a Chl-a C R log10(

𝑐𝑙𝑖𝑚𝑎𝑡𝑜𝑙𝑜𝑔𝑦 𝑓𝑖𝑙𝑙𝑒𝑑1982−1997
 𝑐𝑙𝑜𝑢𝑑 𝑔𝑎𝑝𝑠

) 

Maritorena et al. 

(2010) 

Chla seasonal anom. Chl-a′  R Chl-a – annual average 

ECMWF: ERA-Interim 2 u-wind u  R - Dee et al. (2011) 

v-wind v  R - 

Wind speed U10  R √𝑢2 + 𝑣2 

ESA: Globcurrent Eddy kinetic energy EKEclim C  log10(½ ⋅ (𝑢′ 2 + 𝑣′ 2) ) Rio et al. (2014) 

- Day of the year J  R sin(
𝑗

365
), cos(

𝑗

365 
) - 

LDEO: pCO2 climatology Surface ocean pCO2 pCO2clim C  Data smoothing Takahashi et al. (2009) 

 

 

 

 

Table 2: Details for the validation datasets. The measured variables are shown (DIC = dissolved inorganic carbon; TA = total 

alkalinity) along with the estimated accuracy of pCO2. This includes the propagated uncertainty in the conversion from DIC and 

TA to pCO2 as defined by Lueker et al. (2000), where the estimates marked with * are an extrapolation of the estimates as the DIC 

and TA uncertainties do not match or exceed those listed in the publication. Note that the error estimates for GLODAP v2 are larger 

than shown in the table as measurement uncertainty is defined as ±10 µmol.kg-1 in Bockmon and Dickson (2015). Grid points show 

the number of data at the same resolution as the feature-variables. 

Platform Project Measured variable Accuracy (µatm) Reference Grid 
points 

Ship LDEO pCO2 Equilibrator ±2.5 µatm Takahashi et al. (2016) 16161 

GLODAP 

v2 

DIC + TA  > 12 µatm @ 400 µatm * Olsen et al. (2016);  

Bockmon and Dickson (2015) 

5976 

Surface floats CARIOCA pCO2 Colourimetry ±3.0 µatm Boutin and Merlivat (2013) 613 

Profiling 

floats 

SOCCOM pH + TA (LIAR) ~ 11 µatm @ 400 µatm Carter et al. (2016) 1037 

Mooring BATS DIC + TA  ~ 4 µatm @ 400 µatm Bates (2007) 246 

HOT DIC + TA  < 7.6 µatm @ 400 µatm * Dore et al. (2009) 214 
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Table 3: Regression scores for the CO2 biomes (BIO23), the clustering configuration from column E in Figure 5 (K21E) and the 

ensemble average (CSIR-ML8). Abbreviations are: RMSE = root-mean-square error; Riav = relative interannual variability 

(Equation 5). Regression methods are: SVR = support vector regression; ERT = extremely randomised trees; GBM = gradient 

boosting machine; FFN = feed-forward neural network. Bold values are significantly lower than the mean for that column (p < 0.05 

for two-tailed Z-test; absolute values used for bias column). 

Clustering Regression Bias 

(µatm) 

RMSE 

(µatm) 

Riav 

CSIR-ML8 0.04 17.25 0.25 

K21E SVR -0.45 17.95 0.24 

ERT 0.84 17.96 0.36 

GBM -0.32 18.21 0.24 

FFN -0.30 18.82 0.27 

BIO23 SVR -0.19 18.47 0.15 

ERT 0.85 18.76 0.38 

GBM 0.02 19.05 0.28 

FFN -0.58 19.65 0.21 

 

 

 

 

Table 4: The robust estimates of bias, RMSE and Riav from 1982 to 2016 for BIO23, K21E and the ensemble averages, CSIR-ML6 

and CSIR-ML8, where the first excludes the ERT method. Bold values are significantly lower than the mean for that column (p < 

0.05 for two-tailed Z-test; absolute values used for bias column). See Table S1 for further comparisons between different ensemble 

average configurations. 

Clustering Regression Bias 

(µatm) 

RMSE 

(µatm) 

Riav 

CSIR ML6 0.98 17.16 0.20 

ML8 1.48 17.25 0.22 

K21E SVR 0.58 18.04 0.21 

ERT 2.08 18.20 0.27 

GBM 0.21 18.05 0.21 

FFN 0.04 18.93 0.22 

BIO23 SVR 1.76 18.17 0.21 

ERT 3.88 19.16 0.32 

GBM 1.72 18.59 0.21 

FFN 1.60 20.24 0.21 
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Table 5: The RMSE and bias for each gap-filling method compared to the validation datasets. For more information on the 

validation-datasets see Table 2. The first row of data (count) shows the number of gridded samples in the dataset during the period 

1990-2015 (that are not in the SOCAT v5 gridded product). Values shown in bold are significantly different from the mean for the 

column (p < 0.05 for two-tailed Z-test; absolute values used for biases). The UEA-SI method does not have error estimates for 

SOCCOM floats as these two time series do not overlap.  

Metric Method LDEO GLODAP-v2 SOCCOM CARIOCA BATS HOT 

Count Count 16161 5976 1037 613 246 214 

RMSE CSIR-ML6 26.55 32.84 23.15 14.26 12.53 8.62 

MPI-

SOMFFN 
27.43 35.96 25.21 15.08 13.39 10.40 

JMA-MLR 29.11 34.53 22.32 16.05 14.29 11.64 

Jena-MLS 27.61 35.52 26.83 18.24 16.14 12.28 

UEA-SI 27.35 35.07  15.73 13.35 18.52 

Bias CSIR-ML6 -1.18 8.48 -13.12 4.28 0.32 0.46 

MPI-

SOMFFN 
-0.19 9.16 -13.79 4.00 -1.41 -0.12 

JMA-MLR -1.86 6.62 -11.25 2.85 -3.98 2.22 

Jena-MLS -0.14 8.48 -14.68 7.18 4.09 6.15 

UEA-SI -0.71 9.20  0.79 -2.02 16.27 
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Figure 1: A flow diagram that shows the experimental procedure used in this study. Abbreviations for feature-variables in the 

orange hexagons can be found in Table 1. All other abbreviations are given in the diagram. Details of each step are given in the text 

(Section 2.1).  
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Figure 2: Map showing the distribution of the SOCAT v5 monthly gridded product (1982 to 2016) as a monthly climatology to show 

how well the seasonal cycle is represented (regardless of the year). The red shading shows grid-points where the majority of data 

occur from May to October and the blue shading shows grid-points where the majority of data occur from November to April. 

 

 

Figure 3: Regions or biomes as defined by Fay and McKinley (2014). Unclassified regions from the original data have been assigned 

manually in this study and are shown by the separate colours. This modified configuration of the CO2 biomes is referred to as BIO23 

in this study. The sea-mask used in Landschützer et al. (2014) has been applied. For the biome abbreviations (below the colour-bar) 

see Fay and McKinley (2014). The abbreviations above the colour-bar are used in this study, where selected biomes are grouped 

together. Thick white lines show the boundaries of the grouped regions. Prefixes are: NH = Northern Hemisphere, SH=Southern 

hemisphere; suffixes are HL = high latitudes, ST = subtropics, and EQU = equatorial. 
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Figure 4: The distribution of the validation data. Details of these datasets are given in Table 2. The Hawaii Ocean Time-series (HOT) 

and the Bermuda Atlantic Time-series (BATS) are marked as diamonds to distinguish them as time series stations.  
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Figure 5: Heatmaps showing the average cluster (a) bias, (b) root-mean-squared error (RMSE) and (c) relative interannual 

variability (Riav) for different cluster configurations, where smaller scores are better for all metrics. The rows show the number of 

clusters, and the columns show clustering feature-variable configurations. Each cluster contains the average of the scores for four 

regression methods: support vector regression, extremely randomised trees, gradient boosting machine, and feed-forward neural 

network. The black box indicates clustering configurations that perform well across all metrics – note that a Riav < 0.3 falls within 

the best category of performance in Rödenbeck et al. (2015). 
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Figure 6: Annually averaged (a) bias and (b) RMSE for the eight individual regression methods in Table 3: BIO23 (dashed lines) 

and K21E (solid lines). The dotted black lines show the ensemble averages for all eight models (CSIR-ML8), and the solid black line 

shows metrics for the ensemble average of the SVR, GBM and FFN (CSIR-ML6) from BIO23 and K21E. The grey filled area in (b) 

shows the number of observations per year and black triangles shows the years that are isolated as the test subset. The vertical 

dashed grey line demarks 1990 prior to which there is a large positive bias. 
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Figure 7: (a) shows the biases from the robust test-estimates; (b) shows the root-mean-squared errors for CSIR-ML6. Convolution 

has been applied to (a) and (b) to make it easier to see the regional nature of the biases and RMSE. Figure S8 shows the bias for 

every ensemble member. Black lines show the regions as defined in Figure 3. 
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Figure 8: Taylor diagrams comparing the pCO2 estimates of five gap-filling methods (represented by the different markers) with 

validation datasets (Table 2), for the period 1990-2015. Each validation dataset has its own Taylor diagram as labelled on the bottom 

axes. The black marker on the bottom axis in each subplot represents the validation dataset and the black arc shows the standard 

deviation thereof. The closer the gap-filling estimates are to this point, the better the model’s performance, in terms of variance, 

centred RMSE and correlation (for bias information, see Table 5). The solid grey arcs show the centred RMSE for the datasets (with 

bias removed). Description of the gap-filling methods from independent studies is provided in the text, Section 3.3.  
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Figure 9: (a) Average sea-air CO2 fluxes (FCO2) of CSIR-ML6 for 1990 to 2016, where FCO2 is calculated as shown in Equation 2. 

Negative FCO2 (blue) indicates regions of atmospheric CO2 uptake. (b) The difference between FCO2 in 2016 and 2000, which are 

the minimum and maximum of global ocean uptake flux (FCO2) estimates respectively (for CSIR-ML6 in Figure 10a). Black lines 

show the regions as defined in Figure 3.  
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Figure 10: Sea-air CO2 fluxes averaged for regions as shown in Figure 2: (a) global domain, (b) Equatorial regions, (c) Northern 

Hemisphere Subtropical, (d) Northern Hemisphere High Latitude, (e) Southern Hemisphere Subtropical. (f) Southern Hemisphere 

High Latitude. The coloured lines show the four SOCOM products. The thick and dotted grey lines show the results for CSIR-ML6 

and CSIR-ML8, respectively. A moving average of 12 months has been applied to smooth the data. Note that the y-axes’ scales differ 

for the top (a) and (b). Note that the uncertainties of each model (e.g. bias and RMSE from Figure 6) are not shown here. The text 

at the right of each figure shows the number of SOCAT v5 gridded data points for each region (n) and the inter-annual interquartile 

range (IQRIA).  
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Figure 11: (a) The magnitude of the interannual disagreement between independent gap-filling methods (IQRIA) as shown in Figure 

10; hence low IQRIA indicates good agreement amongst the different methods. (b) Level of agreement on the interannual variability 

across methods (in %), more specifically IQRIA scaled by the difference between the maximum and minimum values for interannual 

pCO2 (the range).  

 

 

Figure 12: The seasonal cycle reproducibility of CSIR-ML6 pCO2, which is a correlation of detrended pCO2 with its own climatology 

– the larger the correlation the stronger the reproducibility of the seasonal cycle (method from Thomalla et al. 2011). 
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Figure 13: ∆pCO2 trends (p < 0.05), where ∆pCO2 is calculated as the estimated surface ocean pCO2 from the CSIR-ML6 method 

minus atmospheric pCO2 from the CarboScope project (Rödenbeck et al. 2014). The shaded areas show the regions where IQRIA is 

> 15%, thus indicating regions where trends should be interpreted with caution. 
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