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Abstract.    Over   the   last   decade,   advanced   statistical   inference   and   machine   learning   have   been  

used   to   fill   the   gaps   in   sparse   surface   ocean   CO 2    measurements   (Rödenbeck   et   al.   2015).   The  

estimates   from   these   methods   have   been   used   to   constrain   seasonal,   interannual   and   decadal  

variability   in   sea-air   CO 2    fluxes   and   the   drivers   of   these   changes   (Landschützer   et   al.   2015,   2016,  

Gregor   et   al.   2018).   However,   it   is   also   becoming   clear   that   these   methods   are   converging   towards  

a   common   bias   and   RMSE   boundary:    the   wall ,   which   suggests   that    p CO 2    estimates   are   now  

limited   by   both   data   gaps   and   scale-sensitive   observations.   Here,   we   analyse   this   problem   by  

introducing   a   new   gap-filling   method,   an   ensemble   average   of   six   machine   learning   models  

(CSIR-ML6   version   2019a),   where   each   model   is   constructed   with   a   two-step  

clustering-regression   approach.   The   ensemble   average   is   then   statistically   compared   to  

well-established   methods.   The   ensemble   average,   CSIR-ML6,   has   an   RMSE   of   17.16   µatm   and  

bias   of   0.89   µatm   when   compared   to   a   test-dataset   kept   separate   from   training   procedures.  

However,   when   validating   our   estimates   with   independent   datasets,   we   find   that   our   method  

improves   only   incrementally   on   other   gap-filling   methods.   We   investigate   the   differences   between  

the   methods   to   understand   the   extent   of   the   limitations   of   gap-filling   estimates   of    p CO 2 .   We   show  

that   disagreement   between   methods   in   the   South   Atlantic,   southeastern   Pacific   and   parts   of   the  

Southern   Ocean   are   too   large   to   interpret   the   interannual   variability   with   confidence.   We   conclude  

that   improvements   in   surface   ocean    p CO 2    estimates   will   likely   be   incremental   with   the  

optimisation   of   gap-filling   methods   by   (1)   the   inclusion   of   additional   clustering   and   regression  

variables   ( e.g.    eddy   kinetic   energy),   (2)   increasing   the   sampling   resolution,   (3)   successfully  

incorporating    p CO 2    estimates   from   alternate   platforms   ( e.g.    floats,   gliders)   into   existing   machine  

learning   approaches.   
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1   Introduction   

The   ocean   plays   a   crucial   role   in   mitigating   against   climate   change   by   taking   up   about   a   third   of   anthropogenic  

carbon   dioxide   (CO 2 )   emissions   (Sabine   et   al.   2004;   Khatiwala   et   al.,   2013;   McKinley   et   al.    2016).   While   the  

mean   state   in   the   global   contemporary   marine   CO 2    uptake   is   a   widely-used   benchmark   (Le   Quéré   et   al.,   2018),  

underlying   assumptions   and   limited   confidence   regarding   the   variability   and   long-term   evolution   of   this   sink  

persist.   Sparse   observations   of   surface   ocean   CO 2    during   winter   and   in   large   inaccessible   regions   has   been   the  

biggest   barrier   in   constraining   the   seasonal   and   interannual   variability   of   global   contemporary   sea-air   exchange  

(Monteiro   et   al.   2010;   Rödenbeck   et   al.   2015;   Bakker   et   al.   2016;   Ritter   et   al.   2017).   The   increasing   ship-based  

sampling   effort   and   the   ongoing   development   of   autonomous   observational   platforms   (e.g.   biogeochemical   Argo  

floats   and   Wave   Gliders)   have   improved   confidence   of   interannual   estimates   of   ocean   CO 2    uptake   in   more  

recent   years   (Monteiro   et   al.   2015;   Bakker   et   al.   2016;   Gray   et   al.,   2018).   

 

The   community   has   turned   to   models   and   data-based   approaches   to   improve   estimates   of   CO 2    uptake   by   the  

oceans   for   periods   and   regions   with   poor   or   no   observational   coverage   (Wanninkhof   et   al.   2013a;   Rödenbeck   et  

al.   2015;   Verdy   and   Mazloff,   2017).   Ocean   biogeochemical   models   are   able   to   capture   the   general   global   trend  

in   increasing   oceanic   CO 2    uptake   shown   by   observations   but   suffer   from   significant   regional   and   interannual   (~1  

PgC   yr -1 )   differences   in   their   estimates   because   these   models   cannot   yet   accurately   parameterise   the   marine  

carbonate   system   at   computationally   feasible   resolutions   (Wanninkhof   et   al.   2013a).   In   recent   years,   data-based  

approaches,   e.g.   statistical   interpolations   and   regression   methods,   have   become   a   popular   alternative   to  

biogeochemical   models   (Lefèvre   et   al.   2005;   Telszewski   et   al.   2009;   Landschützer   et   al.   2014;   Rödenbeck   et   al.  

2014;   Jones   et   al.   2015;   Iida   et   al.   2015).   The   regression   methods   try   to   maximise   the   utility   of   existing  

ship-based   observations   by   extrapolating   CO 2    using   proxy   variables   (observable   from   space   or   interpolated).  

Extrapolating   with   proxy   variables   is   possible   due   to   the   non-linear   relationship   between   the   partial   pressure   of  

CO 2    ( p CO 2 )   in   the   surface   ocean   and   proxies   that   may   drive   changes   in   surface   ocean    p CO 2 .   Improved   access   to  

quality-controlled   ship-based   measurements   of   surface   ocean   CO 2    through   the   Surface   Ocean   CO 2    Atlas  

(SOCAT)   database,   and   satellite   and   reanalysis   products   as   proxy   variables   have   aided   the   development   of   the  

data-based   methods   (Rödenbeck   et   al.   2015;   Bakker   et   al.   2016).  

The   current   state   of   machine   learning   in   ocean   CO 2    estimates  

With   the   increase   in   the   number   of   statistical   estimates   of   surface-ocean   CO 2 ,   the   Surface   Ocean   CO 2    Mapping  

(SOCOM)   community   collated   fourteen   of   these   methods   in   an   intercomparison   of   “gap-filling”   methods  

(Rödenbeck   et   al.   2015).   The   intercomparison   gives   an   overview   of   the   SOCOM   landscape,   with   regression   and  

statistical   interpolation   approaches   making   up   eight   and   four   of   the   fourteen   methods   respectively   (Rödenbeck  

et   al.   2015).   Two   model-based   approaches   were   also   compared.   

 

While   SOCOM   intercomparison   did   not   seek   to   identify   an   optimal   mapping   method,   it   assessed   members  

according   to   how   well   they   represented   interannual   variability   (IAV)   relative   to   climatological   surface   ocean  
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p CO 2    increasing   at   the   rate   of   atmospheric   CO 2    concentrations   (R iav ).   Two   methods,   the   Jena-MLS  

(Mixed-Layer   Scheme)   and   MPI-SOMFFN   (Self-Organising   Map   Feed-Forward   Neural-Network),   achieved  

lower   R iav    scores   compared   to   other   members   of   the   comparison.   The   MPI-SOMFFN   is   a   global   implementation  

of   a   two-step   clustering-regression   approach   and   has   been   widely   adopted   in   the   literature   (Landschützer   et   al.  

2015,   2016,   2018,   Ritter   et   al.   2017).   The   elegance   of   the   clustering-regression   approach,   particularly   the  

clustering   step,   is   that   it   reduces   the   problem   into   smaller   parts   with   more   coherent   variability   and   reduces   the  

computational   size   of   the   problem   per   cluster   –   a   beneficial   attribute   when   using   regression   methods   that   do   not  

scale   well   to   big   datasets.   

 

The   SOCOM   intercomparison   found   that   the   gap-filling   methods   were   in   agreement   in   regions   with   a   large  

number   of   seasonally-resolving   persistent   measurements,   but   the   different   methods   did   not   agree   in   regions  

where   data   were   sparse   (e.g.   the   Southern   Ocean).   Similarly,   Ritter   et   al.   (2017)   found   little   agreement   in   the  

Southern   Ocean   on   seasonal   timescales,   yet   on   decadal   time-scales,   there   was   agreement   on   the   direction   of  

trends   between   gap-filling   methods.  

1.2   Measuring   the   uncertainty   of   estimates?  

The   assessment   of   gap-filling   methods   is   largely   limited   by   the   distribution   of   the   observational   coverage,   which  

is   particularly   true   for   the   Southern   Hemisphere   where   data   is   sparse   (Rödenbeck   et   al.   2015;   Bakker   et   al.  

2016).   The   standard   use   of   root-mean-squared   error   (RMSE)   and   bias   as   measures   of   uncertainty   give   larger  

weighting   to   observation-heavy   regions   or   periods   compared   with   data-sparse   regions   and   periods,   potentially  

leading   to   underestimates   of   uncertainty   (Lebehot   et   al.   2019).   Note   that   the   term   “error”   refers   here   to   the   error  

introduced   by   the   gap-filling   method   relative   to   the   observations.   The   R iav    score   improves   on   the   standard  

implementation   of   RMSE   and   bias   by   weighting   the   uncertainties   annually,   thus   giving   a   less   temporally   biased  

estimate   of   uncertainty.   

 

Previous   studies   have   compared   their   methods’   estimates   to   independent   datasets,   where   measurements   of    p CO 2  

are   not   included   in   the   SOCAT   datasets   (Landschützer   et   al.   2013,   2014;   Jones   et   al.   2015;   Denvil-Sommer   et   al.  

2018).   These   data   serve   as   good   validation   data,   particularly   with   the   inclusion   of   derivations   of    p CO 2    from  

autonomous   platforms   in   the   Southern   Ocean,   a   historically   undersampled   area   especially   during   winter   (Boutin  

and   Merlivat,   2013;   Gray   et   al.   2018).  

 

One   of   the   concluding   statements   in   the   SOCOM   intercomparison   is   that   pseudo-   or   synthetic   data  

(deterministic   model   output)   experiments   should   be   used   to   test   and   compare   methods.   Gregor   et   al.   (2017)   did  

just   this,   but   their   study   was   limited   to   the   Southern   Ocean,   and   the   synthetic   data   did   not   fully   capture   the  

variability   represented   by   observations,   in   part   due   to   coarse   synthetic   data   resolution   (5-daily   mean   and   ½°  

spatially).   The   authors   found   that   the   ensemble   average   performed   slightly   better   than   ensemble   members,   in  

agreement   with   ensemble   averaging   approaches   previously   used   in   ocean   CO 2    studies   (Khatiwala   et   al.   2013).  

On   the   other   hand,   Lebehot   et   al.   (2019)   investigated   the   performance   of   an   interpolation   method   in   the   North  
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Atlantic   using   an   ensemble   of   model   outputs.   Their   approach   offered   a   unique   way   of   assessing   a   gap-filling  

method   at   places   and   times   where   no   observations   were   made.  

1.3   Aims  

The   main   aim   of   this   study   is   to   present   and   evaluate   a   new   machine   learning   approach   to   estimate   surface   ocean  

p CO 2 .   We   propose   the   use   of   an   ensemble   average,   where   we   hypothesise   that   the   “whole   is   greater   than   the   sum  

of   its   parts”   as   the   strengths   of   the   ensemble   members   are   often   complementary   in   such   a   way   to   overcome   the  

weaknesses   (Khatiwala   et   al.   2013;   Gregor   et   al.   2017).   Further,   we   aim   to   evaluate   the   method   for   a   selection   of  

existing   gap-filling   methods.   From   this   comparison   we   aim   not   only   to   gain   a   sense   of   our   method’s  

performance   but   also   the   state   of   gap-filling   based   estimates;   i.e.   where   would   we   be   able   to   improve   in   future  

work?  

2   Methods  

There   are   two   main   components   to   this   study:   surface    p CO 2    mapping   with   multiple   methods,    and   robust   error  

estimation   from   SOCAT   v5   gridded   product   and   independent   data   sources.   This   study   takes   a   similar   two-step  

approach   used   in   the   JMA-MLR   and   MPI-SOMFFN   approaches,   where   data   is   grouped   or   clustered   first,   and  

then   a   regression   algorithm   is   applied   separately   to   each   group   or   cluster.   We   use   the   ocean   CO 2    biomes   by   Fay  

and   McKinley   (2014)   as   an   option   for   grouping.   Alongside   this   grouping,   we   use   an   optimal   K-means   clustering  

configuration.   Next,   four   non-linear   regression   methods   are   applied   to   each   of   the   groupings.   The   regression  

methods   are   Support   Vector   Regression   (SVR),   Feed-Forward   Neural   Network   (FFN),   Extremely   Randomised  

Trees   (ERT)   and   Gradient   Boosting   Machine   (GBM).   The   latter   two   approaches   are   new   to   the   application.  

These   methods   are   then   compared   to   independent   data   sources.   This   is   outlined   in   more   detail   in   the  

Experimental   Overview   below.  

2.1   Experimental   Overview   

The   experimental   design,   outlined   below,   is   summarised   in   Figure   1:   

1. In   the   first   step   (denoted   as   “K-means   clustering”   in   Figure   1),   we   generate   climatological   biomes  

using   the   oceanic   CO 2    biomes   by   Fay   and   McKinley   (2014),   and   a   selection   of   features   variables   (five  

combinations)   and   number   of   clusters   (a   range   of   11   to   25   clusters,   stepping   by   two)   resulting   in   a   total  

of   41   clustering   configurations.   

2. Four   regression   algorithms   are   applied   to   each   clustering   configuration,   resulting   in   164   models  

(described   by   the   “Regression”   section   in   Figure   1).   The   test   data   (isolated   from   the   model   training  

procedure)   is   used   to   identify   the   best   performing   clustering   configuration   with   annually   weighted   bias,  

RMSE   and   R iav .   The   four   regression   models   for   CO 2    biomes   and   the   four   models   from   the   best  

performing   clustering   configuration   (as   indicated   by   the   bold   lines   in   Figure   1)   are   used   in   the   steps  

that   follow.   The   selected   eight   models   are   averaged   to   create   an   ensemble   average   that   is   included   with  

the   eight   members   for   further   evaluation.  
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3. The   third   step   (as   represented   by   the   “K-fold   testing”   section   in   Figure   1   and   Section   2.5)   provides   a  

robust   uncertainty   evaluation   based   on   the   training   data   (SOCAT   v5).    An   iterative   test-train   approach  

is   applied   to   estimate   the   bias,   RMSE   and   R iav    for   the   complete   SOCAT   v5   dataset   (rather   than   just   one  

test   split).   

4. The   fourth   step   compares   the   ensemble   average   estimates   of   surface   ocean    p CO 2    with   independent   test  

data   (that   is   not   in   SOCATv5,   as   represented   by   the   “Independent”   section   in   Figure   1),   which   allows  

testing   the   predictive   ability   of   the   ensemble   method   (Section   2.6).   Four   methods   from   the   SOCOM  

gap-filling   intercomparison   study   are   included   for   reference.   

5. Lastly,   all   gap-filling   methods   are   compared   to   identify   regions   where   there   is   a   divergence   in   the   trend  

and   seasonal   cycle.  

5  
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Figure   1:    A   flow   diagram   that   shows   the   experimental   procedure   used   in   this   study.   Abbreviations   for   feature-variables   in  
the   orange   hexagons   can   be   found   in   Table   1.   All   other   abbreviations   are   given   in   the   diagram.   Details   of   each   step   are   given  
in   the   text   (Section   2.1).   
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2.2   Data:   clustering,   training   and   prediction  

Standard   machine   learning   implementation   requires   a   training-   and   a   predictive   dataset.   The   training   dataset  

consists   of   a   target   variable   that   is   being   predicted   (in   this   case    p CO 2 )   and   one   or   more   feature-variables   that  

have   samples   that   correspond   with   target   samples   ( e.g.    SST,   Chl- a ,   MLD   co-located   in   space   and   time),   where  

feature-variables   may   directly   or   indirectly   influence   the   target   variable.   Features   variables   are   used   to   predict  

once   a   machine   learning   model   has   been   trained   and   must   thus   be   available   for   the   full   prediction   domain.   

 

 

Figure   2:    Map   showing   the   distribution   of   the   SOCAT   v5   monthly   gridded   product   (1982   to   2016)   as   a   monthly   climatology  
to   show   how   well   the   seasonal   cycle   is   represented   (regardless   of   the   year).   The   red   shading   shows   grid-points   where   the  
majority   of   data   occur   from   May   to   October   and   the   blue   shading   shows   grid-points   where   the   majority   of   data   occur   from  
November   to   April.  
 

Here   we   use   surface   ocean    p CO 2    calculated   from   the   SOCAT   v5   monthly   gridded    f CO 2    (fugacity   of   CO 2 )  

product   (hereinafter   SOCAT   v5   as   shown   in   Figure   2)   as   the   target   variable   (Sabine   et   al.   2013;   Bakker   et   al.  

2016).   SOCAT   v5   is   a   quality   controlled   dataset   that   contains   observations   of   surface   ocean    f CO 2 ,   which   is  

converted   to    p CO 2    with:   

CO CO xp( P  p 2 = f 2 · e atm
surf ·  )R · T

B + 2·δ 1   Eq.   1  

where     is   the   atmospheric   pressure   at   the   surface   of   the   ocean,    T    is   the   sea   surface   temperature   (SST)   in P atm
surf  

°K,    B    and   𝛿   are   virial   coefficients,   and    R    is   the   gas   constant   (Dickson   et   al.   2007).   We   used   ERA-interim   P atm
surf  

(Dee   et   al.,   2011)   and   NOAA   daily   optimally   interpolated   SST   version   2   (dOISSTv2)   that   uses   only   Advanced  

Very-High-Resolution   Radiometer   data   (AVHRR;   Reynolds   et   al.   2007;   Banzon   et   al.   2016).   

 

An   important   consideration   in   the   use   of   the   SOCAT   database   is   that   in-situ   measurements   (i.e.   ship  

measurements)   are   not   collected   at   the   surface.   The    in-situ    temperatures   that   coincide   with    p CO 2    in   the   SOCAT  

database   are   thus   different   from   surface   temperature   product   used   to   estimate    p CO 2    and   calculate   fluxes  

(Goddijn-Murphy   et   al.   2015;   Bakker   et   al.,   2016).   The   discrepancy   in    in-situ    and   remotely   sensed   temperature  

results   in   a   theoretical   difference   between    p CO 2    measured   at   the   ship   intake   depth   and   the   surface   due   to  

warming   or   cooling   (Takahashi   et   a.,   1993).   Goddijn-Murphy   et   al.   (2015)   suggest   that   a   correction   for   the  

7  
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theoretical   difference   in    p CO 2    should   be   made   using   the   empirical   relationship   between    p CO 2    and   temperature  

(Takahashi   et   al.   1993).   While   this   merits   further   coordinated   consideration   by   the   marine   CO 2    observations  

community,   we   do   not   apply   such   a   temperature   correction   in   this   study   as   we   aim   to   be   consistent   with   the  

earlier    p CO 2    estimates   from   the   SOCOM   intercomparison   (Rödenbeck   et   al.,   2015).   However,   we   do   present   the  

potential   impact   of   this   discrepancy   in   Section   S2.4.   

 

Feature-variables   in   both   the   training   and   predictive   datasets   are   globally   gridded   products,   including   satellite  

observations,    in-situ    measurements   and   reanalysis   products   (Table   1,   see   Section   S1   for   details).   All  

feature-variables   are   gridded   to   a   monthly   frequency   onto   a   global   1°   ⨉   1°   resolution   grid.   Thereafter,   data  

processing   steps   are   applied   as   shown   in   Table   1   and   described   in   detail   in   Supplementary   Materials   (Section  

S1)   with   the   final   output   being   a   complete   dataset   ranging   from   1982   to   2016.   Note   that   the   clustering   and  

regression   steps   use   different   subsets   of   the   feature-variables   as   indicated   in   Table   1.  

 

Table   1 :   Summary   of   the   products,   variables   and   data   processing   steps   used   for   feature-variables.   The   column   “Usage”  
indicates   the   features   that   are   used   for   the   clustering   step   (identified   by   C)   and   for   the   regression   step   (identified   by   R).  
Abbreviations   are   used   in   Figure   1   and   throughout   the   text.   Basic   data   processing   is   described   in   the   text   with   details   in   the  
Supplementary   Materials   (Section   S1).   
Group:   Product  Variable  Abbrev  Usage  Processing  Reference  

NOAA:    dOISSTv2  
(AVHRR   only)  

Sea   surface   temperature  SST  C  R  -  

Reynolds   et   al.   (2007)  
Banzon   et   al.   (2016)  

SST   seasonal   anom.  SST'  C  R  SST   –    annual   average  

Sea   ice   fraction  ICE   R  -  

MetOffice:    EN4  Salinity  SSS   R  -  Good   et   al.   (2013)  

CDIAC:    ObsPack   v3  Atmospheric    p CO 2  p CO 2 
atm   R  x CO 2 

atm     ⨉   sea   level   pressure  Masarie   et   al.   (2014)  

UCSD:    Argo   Mixed   Layers  Mixed   Layer   Depth  MLD  C  R  log 10 ( climatology )  Holte   et   al.   (2017)  

ESA:    Globcolour  

Chlorophyll- a  Chl- a  C  R  log 10 ( ) limatology f illedc  cloud gaps
19821997

 

Maritorena   et   al.   (2010)  Chla   seasonal   anom.  Chl- a ′   R  Chl- a    –    annual   average  

ECMWF:    ERA-Interim   2  

u -wind  u   R  -  

Dee   et   al.   (2011)  

v -wind  v   R  -  

Wind   speed  U 10  
 R  √u2 + v2  

ESA:    Globcurrent  Eddy   kinetic   energy  EKE clim  C   log 10 (½   u ) )  · ( ′ 2 + v′ 2  Rio   et   al.   (2014)  

-  Day   of   the   year  J   R  sin( ),   cos( ) j
365

j
365   -  

LDEO:    p CO 2    climatology  Surface   ocean    p CO 2  p CO 2 
clim  C   Data   smoothing  Takahashi   et   al.   (2009)  

 

In   this   paragraph,   we   briefly   describe   the   data   processing   steps   shown   in   Table   1   -   detailed   product   descriptions  

and   in-depth   processing   steps   are   in   Section   S1.   We   derive   an   additional   SST   feature,   SST′,   by   subtracting   the  

annual   mean   of   SST   from   each   respective   year,   leaving   the   annual   mean   anomalies   (Reynolds   et   al.   2007;  

Banzon   et   al.   2016).   We   use   the   log 10    transformation   of   the   Globcolour   Chl-a   global   product   (Maritorena   et   al.  

2010).   Cloud   gaps   and   the   period   before   the   start   of   the   product   (1982   to   1997)   are   filled   with   the   climatology  

(1998   –   2016),   and   high-latitude   winter   regions   (where   there   is   no   climatology   for   Chl- a )   is   filled   with   low  

concentration   random   noise   to   be   consistent   with   regions   of   low   concentration   Chl- a    (Gregor   et   al.   2017).   We  
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derive   an   additional   Chl-a   feature,   Chl- a ′   using   the   same   procedure   as   described   for   the   SST   annual   mean  

anomalies.   We   use   a   log 10    transformation   of   mixed   layer   depth   (MLD)   from   Argo   float   density   profiles   (Holte   et  

al.   2017)   to   create   a   monthly   climatology,   thus   imposing   the   assumption   that   there   is   no   interannual   variability.  

Wind   speed   is   calculated   from   6-hourly   data   using   the   equation   in   Table   1   before   taking   the   monthly   average.  

Atmospheric    p CO 2    is   calculated   with:   ,   where     is   the   mole   fraction   of CO CO  p 2 = x 2
atm × P atm COx 2

atm  

atmospheric   CO 2    (from   ObsPack   v3   by   Masarie   et   al.   2014)   and     is   the   reanalysed   mean   sea-level   pressure P atm  

(from   ERA-interim   2;   Dee   et   al.   2011)   –   further   details   for   the   procedure   are   in   Section   S1   of   the   Supplementary  

Materials.   The   climatology   of   eddy   kinetic   energy   (EKE clim )   is   calculated   from    u    and    v    surface   current  

components   (integrated   for   depth   <   15   m)   from   the   Globcurrent   product   (Rio   et   al.,   2014),   where     is  u′  

calculated   as     and   similarly   with    v    (Table   1).  u  u   

2.3   Clustering   and   biomes  

The   seasonal   and   interannual   variability   of   global   surface   ocean    p CO 2    is   complex   due   to   interactions   of   various  

driver   variables   acting   on   the   surface   ocean   at   different   space   and   time   scales   (Lenton   et   al.   2012;    Landschützer  

et   al.   2015;   Gregor   et   al.   2018).   Machine   learning   algorithms   applied   globally   struggle   to   represent   the    p CO 2  

accurately   unless   spatial   coordinates   are   included   as   feature-variables   (Gregor   et   al.   2017).   This   is   due   to   the   fact  

that    p CO 2    may   respond   inconsistently   to   observable   feature-variables   in   different   regions   as   it   is   not   possible   to  

observe   all   feature-variables   that   drive    p CO 2 .   A   common   practice   to   avoid   the   inclusion   of   coordinates   is   to  

separate   the   ocean   into   regions   where   processes   that   drive    p CO 2    are   coherent   and   then   apply   individual  

regressions   to   each   region   –   five   of   the   eight   regression   methods   in   Rödenbeck   et   al.   (2015)   apply   this   approach.  

We   adopt   two   such   approaches   to   develop   regions   of   internal   coherence   in   respect   of   CO 2    variability,   namely  

regions   defined   by   biogeochemical   properties   and   clusters   defined   by   a   clustering   algorithm.   

 

Our   first   “clustering”   approach   uses   the   oceanic   CO 2    biomes   by   Fay   and   McKinley   (2014)   that   divide   the   ocean  

into   17   biomes.   Fay   and   McKinley   (2014)   define   their   biomes   by   establishing   thresholds   for   SST,   Chl- a ,   sea-ice  

extent   and   maximum   MLD.   Unclassified   regions   from   the   original   biomes   are   manually   assigned   based   on   their  

geographical   extent   resulting   in   six   additional   regions   (Figure   3).   We   maintain   these   as   separate   regions   from   the  

original   Fay   and   McKinley   (2014)   biomes.   Their   study   originally   did   not   classify   these   regions   in   the   core  

biomes   because   the   physical   and   biogeochemical   properties   were   not   accounted   for   by   the   set   thresholds   from  

their   study.   This   would   suggest   that   drivers   of   CO 2    in   these   regions   could   be   quite   different   from   the   adjacent  

open   ocean   biomes.   Note   that   we   may   refer   to   the   modified   Fay   and   McKinley   (2014)   ocean   CO 2    biomes   as  

“CO 2    biomes”   or   as   “BIO23”   from   here   on   (Figure   3).   For   later   analyses,   we   group   certain   biomes   together   as  

shown   by   the   brackets   above   the   colour-bar   in   Figure   (3).   
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Figure   3:    Regions   or   biomes   as   defined   by   Fay   and   McKinley   (2014).   Unclassified   regions   from   the   original   data   have   been  
assigned   manually   in   this   study   and   are   shown   by   the   separate   colours.   This   modified   configuration   of   the   CO 2    biomes   is  
referred   to   as   BIO23   in   this   study.   The   sea-mask   used   in   Lanschützer   et   al.   (2014)   has   been   applied.   For   the   biome  
abbreviations   (below   the   colour-bar)   see   Fay   and   McKinley   (2014).   The   abbreviations   above   the   colour-bar   are   used   in   this  
study,   where   selected   biomes   are   grouped   together.   Thick   white   lines   show   the   boundaries   of   the   grouped   regions.   Prefixes  
are:   NH   =   Northern   Hemisphere,   SH=Southern   hemisphere;   suffixes   are   HL   =   high   latitudes,   ST   =   subtropics,   and   EQU   =  
equatorial.  
 

We   also   use   K-means   clustering,   which   groups   data   based   on   Euclidean   distances.   More   specifically,   we  

implement   mini-batch   K-means   from   Python’s   Scikit-Learn   package   (Sculley   2010;   Pedregosa   et   al.   2012),  

which   is   described   in   the   Supplementary   Materials   (Section   S2.2;   Figure   S2).   We   apply   clustering   with   various  

feature   combinations   and   the   number   of   clusters   (shown   by   orange   hexagons   in   Figure   1).   We   tested   a   range   of  

11   to   25   clusters   (stepping   by   two).   The   performance   of   each   clustering   configuration   is   not   tested   with   a  

clustering   metric;   instead,   we   test   the   performance   based   on   the   test   scores   of   the   regressions   in   the   next   step   as  

a   more   complete   indicator   of   performance.   We   find   optimal   results   in   respect   of   RMSE   and   biases   with   21   and  

23   clusters.   We   selected   21   clusters   (Figure   S2).   Each   method   of   defining   regional   coherence   in   respect   of    p CO 2  

variability   has   its   methodological   weaknesses   so   in   this   study,   we   adopted   the   approach   of   incorporating   both  

K-means   and   CO 2    biomes   into   the   ensemble   average   (Figure   1).    Although   this   likely   weakens   the   geophysical  

meaning   of   the   ensembled   domains   we   show   that   it   strengthens   the   overall   performance   of   the   ensemble  

average.  

2.4   Regression  

Here   we   describe   the   underlying   machine   learning   principles   of   regression.   The   co-located   data   ( i.e.    SOCAT   v5)  

are   split   into   training   and   test-subsets   with   a   roughly   80:20   split.   The   test-subset   is   isolated   from   the   training  
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process   to   attain   a   reliable   estimate   of   uncertainty.   We   make   the   split   between   training   and   test-subsets   based   on  

a   random   subset   of   years   in   the   time   series   (1982   to   2016):   1984,   1990,   1995,   2000,   2005,   2010   and   2014.   We  

avoid   using   a   shuffled   train–test   split   (completely   random)   as   this   leads   to   artificially   low   uncertainties   in  

machine   learning   algorithms   that   are   prone   to   overfitting   (see   the   experiment   in   S2.1),   where   the   models   can  

reproduce   the   shuffled   test   data   better   as   these   data   are   adjacent   to   samples   of   the   same   ship   track.   

 

We   further   reduce   the   possibility   of   overfitting   by   tuning   the   hyper-parameters   for   each   model   to   be   more  

generalised,    i.e.    able   to   fit   the   data   that   the   model   has   not   been   exposed   to.   The   search   for   the   optimal  

hyper-parameters   is   achieved   with   grid-search   cross-validation,   where   a   portion   of   the   training   subset   is  

iteratively   kept   separate   from   the   training   process   for   a   certain   set   of   hyper-parameters   (Hastie   et   al.   2009).   The  

hyper-parameters   that   result   in   the   best   score   from   the   grid-search   are   used   for   the   fit   with   the   full   training  

subset   (see   S2.3   for   more   details).   We   use   a   variation   of   K-fold   cross-validation   called    group   K-fold    in  

Scikit-Learn   (Pedregosa   et   al.   2012).   Rather   than   having   arbitrary   splits   for   each   fold,   a   given   grouping   variable  

is   used   to   split   the   data   –   in   this   case,   years.   Using   years   as   the   grouping   variable   reduces   bias   towards   the  

second   half   of   the   time   series   where   data   is   less   sparse.   

 

The   train-test   split   and   cross-validation   are   applied   identically   to   each   of   the   four   machine   learning   algorithms  

for   each   clustering   configuration.   We   use   the   following   machine   learning   algorithms:   Extremely   Randomised  

Trees   (ERT   –   Geurts   2006);   Gradient   Boosting   Machines   (GBM   –   Friedman   2001);   Support   Vector   Regression  

(SVR   –   Drucker   et   al.   1997);   and   Feed-Forward   Neural   Networks   (FFN).   The   details   of   these   methods   and   how  

they   were   tuned   are   explained   in   the   supplementary   materials   (Section   S2.3).   The   first   two   methods,   ERT   and  

GBM,   are   new   to   this   application.   SVR   has   been   implemented   as   a   single   global   domain   by   Zeng   et   al.   (2017),  

and   FFN   is   used   by   several   different   methods,   some   of   which   are   in   the   SOCOM   intercomparison   (Landschützer  

et   al.   2014;   Zeng   et   al.   2014;   Sasse   et   al.   2013).   

 

Regression   performance   is   tested   using   RMSE   primarily   but   also   bias   (Equations   3   and   4   below)   and   R iav  

(Equation   5)   with   only   the   models   from   the   best   averaged   clustering   configuration   used   for   the   rest   of   the   study.   

2.5   Robust   biases   and   root-mean-square   errors  

Standard   practice   in   machine   learning   is   to   set   aside   a   test-subset   of   the   data   as   described   in   Section   2.4.   We   use  

this   standard   approach   in   the   second   step   of   our   experiment   (regression   comparison)   as   an   estimate   of   the  

performance   for   each   of   the   machine   learning   models   (164   in   total).   However,   this   grouped   train-test   split   gives  

a   bias   and   RMSE   estimate   limited   to   the   random   test   years   of   test-subset   (see   Section   2.4).   To   overcome   this  

limitation,   we   iteratively   apply   the   train-test   split   method   with   multiple   selections   of   years.   The   splits   in   the   test  

fold   are   based   on   a   subset   of   years   spaced   five   years   apart.   We   then   refactor   the   five   test-fold   estimates   into   a  

complete   test-estimate   (with   the   same   structure   as   the   original   SOCAT   v5),   thus   giving   a   complete   estimate   of  

bias   and   RMSE   (Figure   1   step   3).   This   robust   test-estimate   method   ensures   that   correct   biases   and   RMSE   scores  

are   reported   even   if   methods   are   prone   to   overfitting   (see   Section   S2.1   and   Figure   S1).   We   limit   this   procedure  
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to   only   the   CO 2    biome   and   best   clustered   regressions   as   it   has   five   times   the   computational   cost   of   a   single  

train-test   split.  

2.6   Method   validation   data  

For   method   validation   we   use   observation   data   that   are   not   used   in   SOCAT   (Figure   4   and   Table   2)   as   they   are  

either:   1)   included   in   the   Lamont-Doherty   Earth   Observatory   (LDEO)   database,   but   not   in   SOCAT;   2)   not  

measured   with   an   infrared   analyser;   3)   derived   from   two   other   variables   in   the   marine   carbonate   system,   where  

these   include   dissolved   inorganic   carbon   (DIC),   pH   and   total   alkalinity   (TA)   –   where   the   Southern   Ocean  

Carbon   and   Climate   Observation   and   Modeling   (SOCCOM)   floats   use   empirically   calculated   TA.  

 

Figure   4:    The   distribution   of   the   validation   data.   Details   of   these   datasets   are   given   in   Table   2.   The   Hawaii   Ocean  
Time-series   (HOT)   and   the   Bermuda   Atlantic   Time-series   (BATS)   are   marked   as   diamonds   to   distinguish   them   as   time   series  
stations.   
 

Table   2:    Details   for   the   validation   datasets.   The   measured   variables   are   shown   (DIC   =   dissolved   inorganic   carbon;   TA   =   total  
alkalinity)   along   with   the   estimated   accuracy   of    p CO 2 .   This   includes   the   propagated   uncertainty   in   the   conversion   from   DIC  
and   TA   to    p CO 2    as   defined   by   Lueker   et   al.   (2000),   where   the   estimates   marked   with   *   are   an   extrapolation   of   the   estimates  
as   the   DIC   and   TA   uncertainties   do   not   match   or   exceed   those   listed   in   the   publication.   Note   that   the   error   estimates   for  
GLODAP   v2   are   larger   than   shown   in   the   table   as   measurement   uncertainty   is   defined   as   ±10   µmol.kg -1    in   Bockmon   and  
Dickson   (2015).   Grid   points   show   the   number   of   data   at   the   same   resolution   as   the   feature-variables.  
Platform  Project  Measured   variable  Accuracy   (µatm)  Reference  Grid   points  

Ship  LDEO  p CO 2    Equilibrator  ±2.5   µatm  Takahashi   et   al.   (2016)  16161  

GLODAP   v2  DIC   +   TA   >   12   µatm   @   400   µatm   *  
Olsen   et   al.   (2016);   
Bockmon   and   Dickson   (2015)  5976  

Surface   floats  CARIOCA  p CO 2    Colourimetric  ±3.0   µatm  Boutin   and   Merlivat   (2013)  613  

Profiling   floats  SOCCOM  pH   +   TA   (LIAR)  ~   11   µatm   @   400   µatm  Carter   et   al.   (2016)  1037  

Mooring  BATS  DIC   +   TA   ~   4   µatm   @   400   µatm  Bates   (2007)  246  

HOT  DIC   +   TA   <   7.6   µatm   @   400   µatm   *  Dore   et   al.   (2009)  214  

 

The   uncertainty   of    p CO 2    that   is   calculated   from   DIC   and   TA   is   dependent   on   the   accuracy   of   these   two  

measurements,   as   well   as   the   derivation   of    p CO 2    with   dissociation   constants,   for   which   we   use   the    CBSys  

package   in   Python   (Hain   et   al.   2015).    CBSys    implements   the   constants   from   Lueker   et   al.   (2000)   that   reports   an  

uncertainty   of   1.9%   standard   deviation   of   the   calculated    p CO 2    where   DIC   and   TA   uncertainties   are   2.0  

µmol.kg -1     and   4.0   µmol.kg -1    respectively.   The   measurements   in   GLODAP   v2   are   slightly   larger   than   this   at   4  
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and   6   µmol.kg -1 ,   which   would   result   in   an   error   larger   than   1.9%   –   this   is   12   µatm   for   a   400 µatm   estimate   at   a  

hypothetical   3%   error.   However,   this   error   may   be   larger   as   reported   in   Table   2,   where   Bockmon   and   Dickson  

(2015)   showed   that   the   uncertainty   for   DIC   and   TA   is   likely   closer   to   ±10   µmol.kg -1 .   While   this   potentially   large  

error   range   may   seem   concerning,   we   argue   that   the   inclusion   of   these   data   in   data-sparse   regions   is   more  

valuable   than   their   omission.   Additionally,   GLODAP   v2   data   has   been   adjusted   on   a   per-profile   basis   to  

minimise   the   biases   through   the   comparison   of   deep   slow-changing   ocean   properties   (Olsen   et   al.   2016).  

Williams   et   al.   (2017)   estimated   the   error   for    p CO 2    calculated   empirically   to   be   2.7%,   where   TA   was   calculated  

empirically   with   the   Locally   Interpolated   Alkalinity   Regression   (LIAR)   algorithm   (Carter   et   al.   2016).   Note   that  

the   datasets   in   Table   2   likely   suffer   from   biases   unaccounted   for   due   to   temperature   mismatches   as   discussed   in  

Section   2.2   (Goddijn-Murphy   et   al.   2015).   It   is   important   to   note   that   each   of   the   validation   datasets   are  

compared   independently   of   each   other,   thus   avoiding   the   complications   of   accounting   for   the   biases   between  

datasets.   All    p CO 2    data   are   then   gridded   to   the   same   time   and   space   resolution   as   the   feature-variables   (monthly  

⨉   1°)   using    xarray    and    pandas    packages   in   Python   (McKinney,   2010;   Hoyer   and   Hamman,   2017).   

2.7   Sea-air   CO 2    flux   calculation  

Bulk   sea-air   CO 2    flux   ( F CO 2 )   is   calculated   with:  

CO pCO CO )  F 2 = kw · K0 · ( 2
sea  p 2

atm  Eq.   2  

where    K 0    is   the   solubility   of   CO 2    in   seawater   (Weiss   1974)   and    k w    is   the   gas-transfer   velocity   calculated   from  

wind   speed   using   formulation   by   Nightingale   et   al.   (2000)   as   this   parameterisation   was   the   closest   match   to  

in-situ    observations   of   CO 2    fluxes   (Goddijn-Murphy   et   al.   2016).   The   ERA-interim   v2   wind   product   is   used   to  

calculate    k w .    p CO 2 
sea    is   from   the   gap-filling   methods,   and    p CO 2 

atm    is   atmospheric    p CO 2 .   All   ancillary   variables  

required   in   these   calculations   are   the   same   as   those   listed   in   Table   1,   except   for    p CO 2 
atm ,   which   is   the  

CarboScope   atmospheric    p CO 2    product   from   Rödenbeck   et   al.   (2014).   One   of   the   problems   with   the   bulk  

estimates   of   sea-air   CO 2    fluxes   is   that   models   of   gas   exchange   in   the   surface   layer   of   the   water   column   are  

simplified,   but   there   are   approaches,   such   as   the   rapid   equilibrium   model,   that   account   for   more   complex  

temperature   gradients   in   the   upper   layer   of   the   surface   ocean   (Wanninkhof   et   al.   2009;   Woolf   et   al.   2016).  

However,   for   the   sake   of   consistency   with   past   studies,   we   use   the   bulk   approximation   of   sea-air   fluxes   (Eq.   2)  

where    k w    is   scaled   to   16   cm.hr -1    as   in   the   SOCOM   intercomparison   (Rödenbeck   et   al.,   2015).   

2.8   Relative   interannual   variability   and   interquartile   range   metrics  

2.8.1   Regression   metrics  

We   use   bias   and   root-mean-square   error   (RMSE)   as   first-order   metrics   of   model   performance.   

Bias   is   the   mean   difference   between   the   target   variable   and   the   estimates   thereof:   

iasB = ∑
n

i=1
n

y yˆ i  Eq.   3  

where    n    is   the   number   of   training   samples,    y    is   the   array   of   target   data   and     is   the   corresponding   array   of  ŷ  

estimates.   Similarly,   RMSE   is   a   measure   of   the   difference   between   the   target   variable   and   the   estimates   thereof:  
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MSE  R =√∑
n

i=1
n

(y y )i ˆ i
2
   Eq.   4  

In   our   study,   these   metrics   are   calculated   for   each   year   and   then   the   mean   of   the   annual   bias   or   RMSE   scores   is  

taken   as   a   more   robust   measure   of   performance   in   the   context   of   temporally   imbalanced   data.   This   is   typically  

done   for   the   global   domain   unless   otherwise   stated.  

 

The   relative   interannual   variability   metric   (R iav )   was   used   in   the   SOCOM   intercomparison   by   Rödenbeck   et   al.  

(2015)   to   measure   how   well   a   method   represents   the   interannual   variability   of   the   SOCAT   data.   The   metric  

furthers   the   idea   of   RMSE   calculated   by   year   (and   region   if   stated,   otherwise   global)   by   normalising   annually  

weighted   RMSE   to   a   benchmark   with   interannual   variability   driven   only   by   atmospheric    p CO 2 :  

Riav =
σ  (M )19822015 bench

iav (t)

σ  (M )19822015  
iav (t)

 Eq.   5.1  

 M  
iav (t) =√ n1

(y y )∑
n

i=1
i ˆ i

 Eq.   5.2  

 M bench
iav (t) =√ n1

Σ (y y )n
i=0 i

︿
i
b

 Eq.   5.3  

Here   𝜎   is   the   standard   deviation   of    M iav    and     respectively,   which   are   both   represented   as   yearly   time M iav
bench  

series.   Equations   5.2   and   5.3   show   the   formulation   for     and   which   represent   these   metrics   for   a M  
iav (t) ,M bench

iav (t)  

single   year   ( t) .   The   symbol    i    represents   individual   data   points   in   a   particular   year    t ,    y    is   the   observation-based  

data   for   that   year,     is   the   predicted   data   and    n    is   the   number   of   points   in   the   year   and   region.   The   benchmarked  ŷ  

  is   calculated   to   normalise   M iav .   The     represents   the   data   where   IAV   has   been   removed   by   summing M iav
bench ŷb  

the   climatology   of   the   mapped   surface   ocean    p CO 2    and   the   annual   trend   of   atmospheric    p CO 2 .  

2.8.2   Ensemble   metrics  

We   use   the   interquartile   range   (IQR)   between   different   gap-filling   methods   as   a   robust   metric   of   disagreement,  

in   contrast   to   the   standard   deviation   which   is   sensitive   to   outliers.   IQR   is   calculated   as   the   third   quartile   (75 th  

percentile)   minus   the   first   quartile   (25 th    percentile).   The   disagreement   between   methods   is   calculated   with  

annually-averaged   data   with   the   resulting   difference   averaged   over   the   time   series   to   arrive   at   the   interannual  

disagreement   (IQR IA ).   This   is   calculated   per   pixel   if   the   representation   of   the   data   is   spatial   (maps)   and   per   time  

step   of   a   time   series.  
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3   Results  

3.1   Regression   results  

The   results   from   the   regression   comparisons   (step   two   in   Figure   1)   are   depicted   in   Figure   (5a-c)   which   plots   the  

matrix   of   the   (a)   average   bias,   (b)   RMSE   and   (c)   R iav    for   each   combination   of   the   experimental   number   of  

clusters   and   clustering   features.   

 

Figure   5:    Heatmaps   showing   the   average   cluster   (a)   bias,   (b)   root-mean-squared   error   (RMSE)   and   (c)   relative   interannual  
variability   ( R iav )   for   different   cluster   configurations,   where   smaller   scores   are   better   for   all   metrics.   The   rows   show   the  
number   of   clusters,   and   the   columns   show   clustering   feature-variable   configurations.   Each   cluster   contains   the   average   of   the  
scores   for   four   regression   methods:   support   vector   regression,   extremely   randomised   trees,   gradient   boosting   machine,   and  
feed-forward   neural   network.   The   black   box   indicates   clustering   configurations   that   perform   well   across   all   metrics   –   note  
that   a   R iav    <   0.3   falls   within   the   best   category   of   performance   in   Rödenbeck   et   al.   (2015).  
 

Results   show   that   the   configuration   that   includes   EKE clim    (column   E   in   Figure   5a-c)   as   a   clustering   feature   has  

the   lowest   average   RMSE   and   absolute   bias   for   nearly   all   clustering   configurations,   regardless   of   the   number   of  

clusters   (rows   in   Figure   5a,b).   The   increased   dynamics   associated   with   high   EKE   regions   might   change   the   way  

p CO 2    behaves   compared   to   low   EKE   regions   (Boutin   et   al.,   2008;   Monteiro   et   al.   2015;   du   Plessis   et   al.,   2017,  

2019).   The   optimal   number   of   clusters   within   this   configuration   is   either   21   or   23,   based   on   the   smallest   bias   and  

RMSE   scores   (as   indicated   by   the   black   box   in   Figure   5),   while   we   do   not   weight   R iav    strongly   in   this  

assessment   as   a   R iav    score   of   less   than   0.3   is   in   the   top-performing   category   in   the   SOCOM   intercomparison  

(Rödenbeck   et   al.   2015).   While   the   individual   regression   methods’   bias   and   RMSE   scores   (Figures   S5   and   S6  

respectively)   do   not   match   the   distributions   exactly,   the   two   selected   clustering   configurations   (black   boxes   in  

Figure   5)   score   consistently   low   for   both   metrics   (with   the   exception   of   ERT   –   discussed   in   greater   detail   further  

on).   We   motivate   to   select   only   one   clustering   configuration   for   the   sake   of   simplicity.   Furthermore,   we   select  
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the   configuration   with   21   clusters   (rather   than   23),   as   fewer   clusters   further   reduce   the   possible   complexity   at  

little   cost.   The   selected   clustering   configuration   with   21   clusters   has   the   following   features:   SST,   log 10 (MLD clim ),  

p CO 2 
clim ,   log 10 (Chl- a clim ),   and   log 10 (EKE clim );   and   is   hereinafter   abbreviated   as   K21E   (see   Figure   S2   for   the  

distribution   of   the   climatology   for   these   clusters).  

 

Comparatively,   the   Fay   and   McKinley   (2014)   CO 2    biomes   have   an   average   RMSE   score   of   18.98   µatm   (Table  

3)   but   have   a   lower   mean   R iav    (0.26)   and   smaller   bias   (0.03   µatm)   than   the   K21E   configuration.   Given   that   the  

CO 2    biomes   perform   well   and   provide   an   alternate   clustering   approach,   we   include   the   regression   estimates.   The  

eight   machine   learning   models   from   K21E   and   BIO23   (four   each)   were   used   to   create   an   ensemble   average   by  

averaging    p CO 2    estimates   (CSIR-ML8).   

 

Table   3:    Regression   scores   for   the   CO 2    biomes   (BIO23),   the   clustering   configuration   from   column   E   in   Figure   5   (K21E)   and  
the   ensemble   average   (CSIR-ML8).   Abbreviations   are:   RMSE   =   root-mean-square   error;    R iav    =   relative   interannual  
variability   (Equation   5).   Regression   methods   are:   SVR   =   support   vector   regression;   ERT   =   extremely   randomised   trees;   GBM  
=   gradient   boosting   machine;   FFN   =   feed-forward   neural   network.   Bold   values   are   significantly   lower   than   the   mean   for   that  
column   ( p    <   0.05   for   two-tailed    Z -test;   absolute   values   used   for   bias   column).  

Clustering  Regression  
Bias  
(µatm)  

RMSE  
(µatm)  R iav  

CSIR-ML8  0.04  17.25  0.25  

K21E  SVR  -0.45  17.95  0.24  

ERT  0.84  17.96  0.36  

GBM  -0.32  18.21  0.24  

FFN  -0.30  18.82  0.27  

BIO23  SVR  -0.19  18.47  0.15  

ERT  0.85  18.76  0.38  

GBM  0.02  19.05  0.28  

FFN  -0.58  19.65  0.21  

 

All   regression   methods   have   lower   RMSE   scores   for   K21E   than   for   BIO23,   but   R iav    and   bias   do   not   indicate   that  

any   of   the   two   clustering   approaches   is   preferable   (Table   3).   Comparing   the   RMSE   scores   of   the   individual  

regression   methods,   we   see   that   the   model   scores   are   ranked   the   same   in   each   cluster   from   first   to   last:   SVR,  

ERT,   GBM,   FFN.   However,   it   is   important   to   note   that   this   ranking   does   not   apply   to   bias   or   R iav ,   where   ERT  

has   low   RMSE,   but   the   largest   bias   and   R iav    in   each   clustering   approach.   CSIR-ML8   only   slightly   betters   its  

members   with   RMSE   and   bias   scores   of   17.25   µatm   and   0.04   µatm   respectively.   However,   the   ensemble  

average   R iav    (0.25)   is   only   just   less   than   the   average   of   the   ensemble   members’   average   (0.26).  

3.2   Robust   RMSE,   bias   and   R iav  

Here,   we   study   the   change   in   the   bias   and   RMSE   for   all   selected   methods   (i.e.   K21E,   BIO23   and   CSIR-ML8;  

Table   3)   across   1982-2016   (Figure   6).   Most   notable   is   that   bias   scores   for   all   models   have   the   same   interannual  

tendencies,   with   a   positive   bias   at   the   beginning   of   the   time   series   (1982   to   1993)   that   is   strongest   before   1990,  
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strongly   influencing   the   mean   bias   (Table   4).   Secondly,   the   biases   for   K21E   (solid   lines)   are,   on   average,   smaller  

than   for   BIO23   (dashed   lines)   as   shown   for   the   annually-averaged   results   in   Table   4   (0.73   µatm   and   2.24   µatm  

respectively).   These   biases   are   larger   than   those   reported   in   Table   3   (with   averages   of   absolute   biases   of   0.48  

µatm   and   0.41   µatm   for   K21E   and   BIO23   respectively),   but   this   is   likely   since   selected   test   years   (black  

triangles   in   Figure   6b)   fall   on   years   of   low   bias.   While   FFN   has   the   largest   RMSE   (18.93   µatm   and   20.24   µatm  

for   K21E   and   BIO23),   it   has   a   smaller   bias   compared   to   other   regression   methods   (0.04   µatm   and   1.60   µatm  

respectively),   motivating   for   including   FFN   regressions   in   the   ensemble   average   (Table   4).   Conversely,   the   ERT  

approach   has   a   significant   positive   bias   likely   due   to   the   method’s   resilience   to   outliers,   where   sparse  

measurements   could   be   treated   as   outliers   (2.08   µatm   and   3.88   µatm   for   K21E   and   BIO23   respectively,   with    p    >  

0.95   for   both   values;   Table   4;   Gregor   et   al.   2017).   A   second   ensemble   average   without   ERT   regressions,   thus  

with   six   members   (CSIR-MLR6   version   2019a,   hereafter   called   CSIR-ML6),   has   lower   biases   compared   to  

CSIR-ML8   (0.98   µatm   and   1.48   µatm   respectively;   Table   4).  

 

Figure   6:    Annually   averaged   (a)   bias   and   (b)   RMSE   for   the   eight   individual   regression   methods   in   Table   3:   BIO23   (dashed  
lines)   and   K21E   (solid   lines).   The   dotted   black   lines   show   the   ensemble   averages   for   all   eight   models   (CSIR-ML8),   and   the  
solid   black   line   shows   metrics   for   the   ensemble   average   of   the   SVR,   GBM   and   FFN   (CSIR-ML6)   from   BIO23   and   K21E.  
The   grey   filled   area   in   (b)   shows   the   number   of   observations   per   year   and   black   triangles   shows   the   years   that   are   isolated   as  
the   test   subset.   The   vertical   dashed   grey   line   demarks   1990   prior   to   which   there   is   a   large   positive   bias.  
 

Similarly   to   the   biases,   RMSE   for   all   models   (Figure   6b)   have   similar   interannual   tendencies   and   variability,  

with   a   sharp   peak   in   the   year   2000   (   >   20   µatm   where   the   mean   RMSE   is   18.61   µatm).   The   increased   RMSE  

scores   are   likely   due   to   the   spatial   distribution   of   sampling   density   (see   Figure   S7),    e.g.    an   increase   in   sampling  

in   the   high   latitudes   during   spring   and   summer,   a   region   and   period   of   high   variability   and   biogeochemical  

complexity,   would   increase   the   weight   of   these   data   in   the   final   RMSE   calculation,   thus   resulting   in   larger  
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RMSE   scores.   The   increase   in   the   number   of   samples   from   2002   to   2016   results   in   a   sharp   decrease   in   RMSE   (  

<   19   µatm   for   the   majority   of   this   period).   Both   ensemble   averages   perform   slightly   better   than   all   other  

methods   for   the   majority   of   the   time   series   with   RMSE   scores   of   17.16   µatm   and   17.25   µatm   for   CSIR-ML6   and  

CSIR-ML8   respectively   (see   Table   S1   comparisons   of   ensemble   averages   with   different   members).  

 

The   R iav    scores   for   the   robust   errors   (Table   4)   are   lower   than   train-test   results   with   a   single   split   reported   in   Table  

3,   likely   due   to   an   increase   of   standard   deviation   for   the   IAV   benchmark   (Equation   5).   The   lowest   score   is   held  

by   CSIR-ML6   (0.20)   and   is   lower   (better)   than   the   average   for   its   members   (0.21).   These   R iav    estimates   compare  

well   to   the   Jena-MLS   and   SOM-FFN,   which   both   scored   <   0.3   (Rödenbeck   et   al.   2015).   

 

Table   4:    The   robust   estimates   of   bias,   RMSE   and    R iav    from   1982   to   2016   for   BIO23,    K21E   and   the   ensemble   averages,  
CSIR-ML6   and   CSIR-ML8,   where   the   first   excludes   the   ERT   method.   Bold   values   are   significantly   lower   than   the   mean   for  
that   column   ( p    <   0.05   for   two-tailed    Z -test;   absolute   values   used   for   bias   column).   See   Table   S1   for   further   comparisons  
between   different   ensemble   average   configurations.  

Clustering  Regression  
Bias  

(µatm)  
RMSE  
(µatm)  R iav  

CSIR  ML6  0.98  17.16  0.20  

ML8  1.48  17.25  0.22  

K21E  SVR  0.58  18.04  0.21  

ERT  2.08  18.20  0.27  

GBM  0.21  18.05  0.21  

FFN  0.04  18.93  0.22  

BIO23  SVR  1.76  18.17  0.21  

ERT  3.88  19.16  0.32  

GBM  1.72  18.59  0.21  

FFN  1.60  20.24  0.21  

 

The   spatial   distribution   of   the   bias   and   RMSE   is   now   studied   for   CSIR-ML6   (Figure   7   a   and   b,   respectively),  

particularly   focusing   on   the   regional   patterns   emerging   from   the   data.   CSIR-ML6   clearly   represents   the  

subtropical   regions   (NH-ST   and   SH-ST)   with   relatively   low   biases   and   RMSE   scores   (|bias|<   5   µatm   and   RMSE  

<   10   µatm).   The   equatorial   regions   (EQU),   especially   the   eastern   Pacific,   contrasts   this   with   large   uncertainties  

in   both   bias   and   RMSE   (>   |10   µatm|   and   30   µatm   respectively).   The   high-latitude   oceans   (NH-HL   and   SH-HL)  

have   considerable   uncertainties   due   to   the   large   interannual   variability   of   surface   ocean    p CO 2    caused   by   the  

formation   and   retreat   of   sea-ice   (around   Antarctica;   Ishii   et   al.   1998;   Bakker   et   al.   2008)   and   phytoplankton  

spring   blooms   (Atlantic   sector   of   the   Southern   Ocean,   North   Pacific   and   Arctic   Atlantic;   Thomalla   et   al.   2011;  

Lenton   et   al.   2013;   Gregor   et   al.   2018).   There   are   two   bands   of   overestimates   on   the   southern   and   northern  

boundaries   of   the   North   Atlantic   Gyre,   where   the   latter   coincides   with   the   Gulf   Stream.   Regression   approaches  

may   be   prone   to   a   positive   bias   in   the   North   Atlantic   as   this   was   also   shown   by   Landschützer   et   al.   (2013;   2014).   
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Figure   7:    (a)   shows   the   biases   from   the   robust   test-estimates;   (b)   shows   the   root-mean-squared   errors   for   CSIR-ML6.  
Convolution   has   been   applied   to   (a)   and   (b)   to   make   it   easier   to   see   the   regional   nature   of   the   biases   and   RMSE.   Figure   S8  
shows   the   bias   for   every   ensemble   member.   Black   lines   show   the   regions   as   defined   in   Figure   3.  
 

In   summary,   the   robust   test-estimates   show   that   there   is   a   positive   bias   in    p CO 2    predictions   before   1990   for   all  

models,   but   it   is   largest   for   ERT,   and   excluding   these   models   from   the   ensemble   results   in   better    p CO 2  

predictions.   The   spatial   evaluation   of   the   performance   metrics   for   CSIR-ML6   shows   that   regions   with   specific  

oceanic   features   (e.g.   western   boundary   currents)   mostly   have   positive   biases.   However,   it   is   important   to   note  

that   these   uncertainty   assessments   are   limited   as   the   characteristics   and   biases   of   the   dataset   are   intrinsic   to   the  

models.   Validation   with   independent   data   is   thus   a   more   reliable   estimate   of   the   performance   of   these   methods.   

3.3   Validation   with   independent   datasets  

Here,   we   validate   the   accuracy   of    p CO 2    estimates   from   CSIR-ML6   with   independent   data   (that   is   not   in   SOCAT  

v5   as   described   in   Table   2).   To   further   study   the   behaviour   of   our   ensemble   average   estimates   relative   to  

previous   studies,   we   compare   the   results   from   four   independent   methods   of   the   SOCOM   intercomparison  

project   against   the   independent   data   calculated   over   individual   data   points   (Rödenbeck   et   al.   2015).   Those   four  

independent   methods   are:    the   Jena   mixed-layer   scheme   (Jena-MLS   version    oc_v1.6 ,   Rödenbeck   et   al.   2014);  

Japanese   Meteorological   Agency   –   multi-linear   regression   (JMA-MLR   updated   on   2018-12-2,   Iida   et   al.   2015);  

Max   Planck   Institute   –   Self-organising   Map   Feed-forward   Neural-network   (MPI-SOMFFN    v2016 ,   Landschützer  

et   al.   2017);   and   University   of   East   Anglia   –   Statistical   Interpolation   (UEA-SI   version   1.0,   Jones   et   al.   2015).  

p CO 2    estimates   by   the   Jena-MLS   were   resampled   to   monthly   temporal   resolution   and   interpolated   to   a  

one-degree   grid   using   Python’s    xarray    package.   Note   that   these   datasets   will   also   suffer   from   the   same  

temperature   biases   discussed   in   S2.4.   

 

The   performance   of   each   gap-filling   method   is   represented   with   a   Taylor   diagram   for   each   independent  

validation   dataset   (Figure   8;   Taylor   et   al.   2001).   The   most   important   characteristic   learnt   from   these   plots   is   that  

the   gap-filling   methods   are   tightly   bunched   for   nearly   all   validation   datasets,   indicating   a   similar   RMSE,  

correlation   and   standard   deviation   relative   to   the   reference   datasets.   Poor   estimates   in   Figures   8a-d   may   indicate  

that   the   training   data   for   gap-filling   methods   is   the   limiting   factor.   Secondly,   the   gap-filling   methods   almost  
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always   underestimate   the   standard   deviation   of   the   validation   datasets,   being   below   the   black   arced   line   for   all  

but   the   station   HOT   (Figure   8e).   

 

Figure   8:    Taylor   diagrams   comparing   the    p CO 2    estimates   of   five   gap-filling   methods   (represented   by   the   different   markers)  
with   validation   datasets   (Table   2),   for   the   period   1990-2015.   Each   validation   dataset   has   its   own   Taylor   diagram   as   labelled  
on   the   bottom   axes.   The   black   marker   on   the   bottom   axis   in   each   subplot   represents   the   validation   dataset   and   the   black   arc  
shows   the   standard   deviation   thereof.   The   closer   the   gap-filling   estimates   are   to   this   point,   the   better   the   model’s  
performance,   in   terms   of   variance,   centred   RMSE   and   correlation   (for   bias   information,   see   Table   5).   The   solid   grey   arcs  
show   the   centred   RMSE   for   the   datasets   (with   bias   removed).   Description   of   the   gap-filling   methods   from   independent  
studies   is   provided   in   the   text,   Section   3.3.   
 

All   methods   fail   to   represent   the   standard   deviation   of   the   two   global   validation   datasets,   LDEO   and   GLODAP  

v2   (Figures   8a,b),   with   centred   RMSE   scores   greater   than   35   µatm.   However,   calculating   RMSE   annually  

results   in   scores   of   ~27   µatm   for   LDEO   and   ~35µatm   for   GLODAP   v2,   much   lower   than   shown   in   Figure   8a,b  

due   to   high   RMSE   scores   (>   40   µatm)   for   a   small   subset   of   years   (Section   S3.4   and   Figure   S7).   Estimates   of   the  

Southern   Ocean   datasets   (Figures   8c,   d),   SOCCOM   and   CARIOCA,   have   lower   RMSE   scores   (~16   µatm   and  

~23   µatm   respectively)   relative   to   LDEO   and   GLODAP   v2.    However,   for   standard   deviation   scores   of   similar  

magnitude   and   low   correlation   coefficients,   the   datasets   are   not   well   constrained   (Table   5).   The   SOCCOM  

dataset   also   has   the   largest   average   absolute   bias   for   estimates,   with   gap-filling   methods   underestimating   by   at  

least   11   µatm   (Table   5).   This   large   bias   may   be   because   SOCCOM   floats   have   a   proportionately   large   number   of  

winter   samples   –   suggesting   that   our   knowledge   of   Southern   Ocean   winter   fluxes   are   largely   underestimated  

(Williams   et   al.   2017).   In   contrast,   all   methods   estimate   the   two   time-series   stations,   HOT   and   BATS   (Figures  

8e,f   and   Table   5)   relatively   well   with   correlation   scores     >   0.8   and   low   average   bias   ~4.5   µatm.   
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Table   5:    The   RMSE   and   bias   for   each   gap-filling   method   compared   to   the   validation   datasets.   For   more   information   on   the  
validation-datasets   see   Table   2.   The   first   row   of   data   (count)   shows   the   number   of   gridded   samples   in   the   dataset   during   the  
period   1990-2015   (that   are   not   in   the   SOCAT   v5   gridded   product).   Values   shown   in   bold   are   significantly   different   from   the  
mean   for   the   column   ( p    <   0.05   for   two-tailed    Z -test;   absolute   values   used   for   biases).   The   UEA-SI   method   does   not   have  
error   estimates   for   SOCCOM   floats   as   these   two   time   series   do   not   overlap.   
Metric  Method  LDEO  GLODAP-v2  SOCCOM  CARIOCA  BATS  HOT  
Count  Count  16161  5976  1037  613  246  214  
RMSE  CSIR-ML6  26.55  32.84  23.15  14.26  12.53  8.62  

MPI-SOMFFN  27.43  35.96  25.21  15.08  13.39  10.40  
JMA-MLR  29.11  34.53  22.32  16.05  14.29  11.64  
Jena-MLS  27.61  35.52  26.83  18.24  16.14  12.28  
UEA-SI  27.35  35.07   15.73  13.35  18.52  

Bias  CSIR-ML6  -1.18  8.48  -13.12  4.28  0.32  0.46  
MPI-SOMFFN  -0.19  9.16  -13.79  4.00  -1.41  -0.12  
JMA-MLR  -1.86  6.62  -11.25  2.85  -3.98  2.22  
Jena-MLS  -0.14  8.48  -14.68  7.18  4.09  6.15  

UEA-SI  -0.71  9.20   0.79  -2.02  16.27  
 

Despite   all   scores   being   closely   grouped   (Figure   8),   Table   5   shows   that   the   CSIR-ML6   method   scores  

significantly   lower   RMSE   scores   (using   a   two-tailed    Z -test   with    p    <   0.05)   for   all   but   one   of   the   datasets  

(SOCCOM).   However,   bunching   of   the   RMSE   scores   (Figure   8)   is   beneficial   with   regard   to   achieving   low  

p- values.   No   single   method   dominates   the   biases,   with   JMA-MLR   and   MPI-SOMFFN   each   scoring   the   lowest  

bias   on   two   occasions.   To   summarise,   all   gap-filling   methods   underperform   when   validated   against   independent  

observational   products.   Tight   bunching   of   gap-filling   method   scores   per   validation   dataset   shows   that   training  

data   may   limit   all   methods   in   the   same   manner.   

3.4   The   effect   of   uncertainties   on   the   sea-air   CO 2    flux   interannual   variability  

In   this   section,   we   assess   the   regional   implications   of   the   differences   in   gap-filling   methods’   estimates   (within  

CSIR-ML6   and   the   four   independent   methods   described   in   Section   3.3)   of   the   sea-air   CO 2    flux   ( F CO 2 )   over   the  

period   1990   to   2016.    F CO 2    was   calculated   using   the   same   gas   transfer   velocity   and   solubility   for   each  

gap-filling   method   (Section   2.7).   Differences   in    F CO 2    are   thus   driven   by   variations   in    p CO 2    from   each  

gap-filling   method.   
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Figure   9:    (a)   Average   sea-air   CO 2    fluxes   ( F CO 2 )   of   CSIR-ML6   for   1990   to   2016,   where    F CO 2    is   calculated   as   shown   in  
Equation   2.   Negative    F CO 2    (blue)   indicates   regions   of   atmospheric   CO 2    uptake.   (b)   The   difference   between    F CO 2    in   2016  
and   2000,   which   are   the   minimum   and   maximum   of   global   ocean   uptake   flux   ( F CO 2 )   estimates   respectively   (for   CSIR-ML6  
in   Figure   10a).   Black   lines   show   the   regions   as   defined   in   Figure   3.   
 

The   average    F CO 2    for   1990-2016   by   CSIR-ML6   (Figure   9a)   contextualises   the   regional   distribution   of   fluxes:  

strong   outgassing   in   the   Equatorial   Pacific,   strong   sink   in   the   mid-latitudes,   a   moderate   uptake   for   the   most   part  

of   the   subtropics,   and   weak   source   in   the   majority   of   the   Southern   Ocean   (in   agreement   with   e.g.   Takahashi   et  

al.,   2009).   The   global   annual   time-series   for    F CO 2    as   simulated   by   CSIR-ML6   (Figure   10a)   indicates   a  

strengthening   for   2000   to   2016   (as   for   the   other   methods).   To   give   spatial   context   to   this   strengthening,   we  

display   the   differences   in    F CO 2    between   2016   and   2000   (Figure   9b),   since   those   are   the   two   years   where   the  

difference   in   global    F CO 2    is   greatest   for   CSIR-ML6   (Figure   10a).   Note   that   Figure   9b   serves   as   a   snapshot   for  

the   change   in    F CO 2       between   those   two   years,   whose   interpretation   cannot   be   linked   to   an   overall  

anthropogenically-forced   change   as   the   comparison   between   two   years   could   reflect   interannual,   decadal   or  

multi-decadal   variability.   The   differences   in    F CO 2    between   2016   and   2000   is   negative   in   the   high   latitudes   and  

moderately   positive   in   the   subtropics,   indicating   a   respective   increase   and   decrease   in   the   CO 2    ocean   uptake  

between   the   two   years.   The   Eastern   Equatorial   Pacific   is   the   only   region   that   shows   a   considerable   increase   in  

F CO 2    (>   10   gC   m -2    yr -1 )   between   the   two   specific   years.   

 

The   annual   change   in    F CO 2    is   also   studied   for   the   different   regions.    The   Southern   Hemisphere   high-latitude  

(SH-HL)   region   is   the   strongest   contributor   to   the   trend   (Figure   S10b),   where   there   is   a   steady   increase   in   the  

uptake   of   CO 2    since   the   2000s   for   all   methods   (Landschützer   et   al.   2015;   Gregor   et   al.   2018).   On   average,   the  

Northern   Hemisphere   high   latitudes   (NH-HL)   are   a   weaker   sink   relative   to   the   SH-HL,   because   the   SH-HL   is  

more   than   double   the   area   of   the   NH-HL   (Figure   S10c).   The   equatorial   (EQU)   region   is   the   only   persistent  

source   of   CO 2    to   the   atmosphere   (also   seen   in   Figure   9a).   The   subtropical   regions   (Figure   10c,   e)   contribute   to  

global   flux   on   similar   orders   of   magnitude;   however,   there   is   a   large   divergence   between   gap-filling   methods   in  

the   SH-HL.  
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Figure   10:    Sea-air   CO 2    fluxes   averaged   for   regions   as   shown   in   Figure   2:   (a)   global   domain,   (b)   Equatorial   regions,   (c)  
Northern   Hemisphere   Subtropical,   (d)   Northern   Hemisphere   High   Latitude,   (e)   Southern   Hemisphere   Subtropical.   (f)  
Southern   Hemisphere   High   Latitude.   The   coloured   lines   show   the   four   SOCOM   products.   The   thick   and   dotted   grey   lines  
show   the   results   for   CSIR-ML6   and   CSIR-ML8,   respectively.   A   moving   average   of   12   months   has   been   applied   to   smooth  
the   data.   Note   that   the   y-axes’   scales   differ   for   the   top   (a)   and   (b).   Note   that   the   uncertainties   of   each   model   (e.g.   bias   and  
RMSE   from   Figure   6)   are   not   shown   here.   The   text   at   the   right   of   each   figure   shows   the   number   of   SOCAT   v5   gridded   data  
points   for   each   region   ( n )   and   the   inter-annual   interquartile   range   (IQR IA ).   
 

We   use   the   average   interquartile   range   between   the   one-year   rolling   mean   estimates   (IQR IA )   as   a   measure   of  

agreement   or   divergence   between   gap-filling   methods,   where   large   values   indicate   a   divergence   (Section     2.8.2).  

We   also   show   the   IQR IA    scaled   to   the   range   of   the   regional   interannual   variability   (max   –   min)   as   a   percentage  

(relative   IQR IA ),   which   shows   if   the   trend   for   a   particular   region   is   agreed   on   by   all   methods   (the   smaller   the  

percentage,   the   better   the   agreement   across   methods).   The   disagreement   between   methods   in   the   SH-ST   is  

substantial   (Figure   10e),   with   diverging    F CO 2    throughout   the   period   with   an   IQR IA    of   0.11   PgC   yr -1    and   a   large  

relative   IQR IA    of   28%.   Similarly,   the   IQR IA    for   the   SH-HL   region   (Figure   10f)   is   0.08   PgC   yr -1 ,   but   the   relative  

IQR IA    is   lower   at   14%,   indicating   that   all   methods   agree   on   the   observed   strong   trend.   Compared   to   the   Southern  

Hemisphere,   the   Northern   Hemisphere   regions   are   both   relatively   well   constrained,   with   IQR IA    estimates   of   0.04  

PgC   yr -1    and   0.05   PgC   yr -1    for   the   NH-ST   and   NH-HL   regions   respectively   (Figure   10c,d).   However,   a   larger  

relative   IQR IA    of   20%   suggests   that   the   interannual    F CO 2    estimates   in   the   NH-ST   region   are   potentially   not  

resolving   the   trend,   or   more   likely   that   there   is   a   weak   trend   with   a   small   difference   between   the   minimum   and  
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maximum   interannual   estimates   of    F CO 2 .   The   equatorial   region   (EQU   -   Figure   10b)   has   an   IQR IA    and   relative  

score   at   0.03   PgC   yr -1    and   14%.   

 

The   CSIR-ML8   method   is   not   included   in   the   IQR IA    calculations   but   is   included   in   Figure   10   to   show   the   impact  

of   the   ERT   models’   positive   bias   in    p CO 2    on    F CO 2    (Figure   6a).   The   biases   are   positive   at   the   beginning   and  

negative   end   of   the   time   series,   with   the   average   absolute   difference   between   the   CSIR   methods   being   0.08   PgC  

yr -1 .   The   positive   biases   have   the   strongest   impact   on   the   SH-ST   that   occupies   36%   total   area   (Figure   S10c),  

with   only   11%   of   the   total   observations   in   SOCAT,   suggesting   that   this   method   is   sensitive   to   imbalanced  

datasets.   

3.5   Regional   disagreement   between   methods  

In   order   to   better   understand   the   regional   distribution   of   the   uncertainties   in    F CO 2 ,   we   assess   the   level   of  

agreement   between   independent   gap-filling   methods   in   their   interannual   surface   ocean    p CO 2    estimates   (Figure  

11).   We   use    p CO 2    for   this   representation   as   no   spatial   integration   occurs   –   only   time   averaging.   

 

Figure   11:    (a)   The   magnitude   of   the   interannual   disagreement   between   independent   gap-filling   methods   (IQR IA )   as   shown   in  
Figure   10;   hence   low   IQR IA    indicates   good   agreement   amongst   the   different   methods.   (b)   Level   of   agreement   on   the  
interannual   variability   across   methods   (in   %),   more   specifically   IQR IA    scaled   by   the   difference   between   the   maximum   and  
minimum   values   for   interannual    p CO 2    (the   range).   
 

The   interannual   estimates   of   interquartile   range   (IQR IA ;   Figure   11a)   show   the   disagreement   between   methods   is  

relatively   small   in   the   majority   of   the   ocean   (⪝   5   µatm).   The   exceptions   being   the   Southern   Ocean,   South  

Atlantic,   southeastern   Pacific   and   eastern   equatorial   Pacific   with   differences   of   >   10   µatm,   where   these   regions  

coincide   with   regions   of   low   sampling   density   (Figure   2).   The   IQR IA    scaled   to   the   maximum-minimum   range   of  

interannual    p CO 2    suggests   that   the   NH-ST   trend   is   relatively   well   constrained   (<   10%),   which   is   in   conflict   with  

the   IQR IA    for    F CO 2    in   Figure   10c   (where   the   relative   IQR IA    is   20%).   The   disagreement   may   stem   from   the  

magnifying   impact   that   wind   speed   has   on    F CO 2 ,    i.e.    small   differences   in    p CO 2    may   become   large   when   fluxes  

are   calculated.   The   same   principle   may   apply   to   the   EQU   in   Figure   11b,   where   relative   IQR IA    is   large   (>   10   %)  

for    p CO 2 ,   but   low   wind   speeds   result   in   a   low   relative   IQR IA    for    F CO 2    (7%   in   Figure   10b).   The   largest   relative  

IQR IA    scores   occur   in   the   SH-ST   (   >   10%   in   Figure   11c)   where   data   is   sparse,   specifically   the   South   Atlantic   and  

24  



 

640

645

650

655

660

665

670

south   eastern   Pacific   (Figure   2a).   The   relative   IQR IA    scores   suggest   that   the   gap-filling   methods   agree   on    p CO 2  

in   the   SH-HL   east   of   the   Greenwich   meridian   (>   0°   E).   

 

In   summary,   we   show   that   there   is   an   agreement   between   gap-filling   methods   in   the   Northern   Hemisphere   for  

interannual    p CO 2 ,   but   the   methods   show   considerable   disagreement   in   the   Southern   Hemisphere,   particularly   in  

the   subtropics.   Disagreements   in   the   Equatorial   and   Southern   Hemisphere   high-latitude   regions   are   large   (>  

10%)   and   should   be   treated   with   caution   when   considering   trends   in   these   regions.   

4   Discussion  

4.1   Not   all   models   are   equal  

In   their   study,   Khatiwala   et   al.   (2013)   stated   that:   “ our   comparison   of   different   methods   suggests,   that   multiple  

approaches,   each   with   its   own   strengths   and   weaknesses,   remain   necessary   to   quantify   the   ocean   sink   of  

anthropogenic   CO 2 ”.   In   our   study,   we   embrace   this   philosophy   by   creating   an   ensemble   average   of   two-step  

machine   learning   models   that   estimate   global   surface   ocean    p CO 2 .   We   show   robustly   that   the   CSIR-ML6  

method   reproduces   the   available   data   with   greater   accuracy   than   previous   methods,   albeit   in   an   incremental   way.  

Our   method   is   methodologically   consistent   with   regard   to   feature-variables.   Though   there   is   variability   in   the  

clustering   and   regression,   we   create   the   ensemble   average   with   a   good   understanding   of   each   model’s   biases  

(Figure   6   and   Figure   S8).   The   argument   that   ensemble   averages   reduce   transparency   is   also   somewhat  

diminished   by   the   fact   that   little   additional   information   that   can   be   gained   from   highly   non-linear   models,   with  

the   exception   of   basic   diagnostics   such   as   feature-variable   importance   (see   Figure   S11)   from   decision-tree-based  

approaches   (Pedregosa   et   al.   2012;   Castelvecchi,   2016).   Our   results   thus   show   that   there   is,   in   fact,   a   benefit   in  

creating   an   ensemble   average   of   models   (Table   5),   and   if   carefully   implemented   is   an   additional   tool   that   can   be  

used   to   reduce   the   uncertainties   in   gap-filling   estimates   of    p CO 2 .   

 

It   could   be   argued   that   an   exhaustive   search   for   the   optimal   configuration   (Figure   5)   for   CSIR-ML6   may   result  

in   poorly   trained   individual   models.   However,   we   think   that   the   merit   of   introducing   and   assessing   regression  

algorithms   new   to   the   application   (for   gradient   boosting   machines   and   extremely   randomised   trees)   outweighs  

the   marginal   loss   in   potential   performance   for   individual   methods.   Moreover,   lessons   learnt   from   our   study   can  

be   used   to   improve   on   future   iterations.   It   also   makes   the   case   for   ensembles   averages   stronger   as   the  

CSIR-ML6   performs   well   relative   to   other   gap-filling   methods.  

 

In   the   search   for   the   optimal   clustering   configuration   (Figure   5a,b),   we   show   that   including   EKE   (along   with  

SST)   as   a   clustering   feature-variable   leads   to   an   improvement   in   bias   and   RMSE   for   nearly   all   number   of  

clusters,   albeit   a   small   improvement.   Increased   intra-seasonal   variability   of    p CO 2    appears   to   be   associated   with  

regions   of   high   EKE   compared   to   low   EKE   regions   (Monteiro   et   al.   2015;   du   Plessis,   2017,   2019).   Moreover,  

the   importance   of   EKE   as   a   part   of   the   clustering   constraints   also   shows   that   more   thought   should   be   given   to  

how   we   sample    p CO 2    in   high-EKE   regions   and   at   what   resolution   regression   methods   are   run   at.  
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Our   findings   suggest   the   following   about   the   individual   regression   methods:   the   SVR   and   GBM   algorithms  

produce   good   estimates   with   lower   RMSE   scores   and   biases,   the   FFN   approach   has   larger   RMSE   scores   yet   low  

biases   than   the   other   methods,   and   the   ERT   approach   has   low   RMSE   scores   but   large   biases   in   the   estimates  

(Figure   6a,b;   Table   4).   We   do   not   include   the   ERT   approach   in   the   ensemble   average   (CSIR-ML6)   due   to   the  

large   time-evolving   biases,   suggesting   that   ERT   (with   our   tuning)   is   not   suitable   for   estimating   surface   ocean  

p CO 2 .   The   bias   in   ERT   may   be   due   to   its   sensitivity   to   imbalanced   datasets   (Crone   and   Finlay,   2012),   where   the  

data   in   SOCAT   v5   are   few   before   2000.   Returning   to   the   above   quote   by   Khatiwala   et   al.   (2013),   we   thus   find  

that   the   weaknesses   of   ERT   outweigh   its   strengths.   

4.2   Divergent   gap-filling   estimates  

While   we   see   that   the   improvements   in   the   performance   of   gap-filling   methods   are   relatively   stagnant   (relative  

to   the   training   and   validation   data),   the   differences   between   the   methods’   estimates   of    p CO 2    and    F CO 2    vary  

significantly   in   some   regions,   particularly   in   regions   where   data   is   sparse,   such   as   in   the   Southern   Hemisphere  

oceans   (Figure   2).   We   also   find   that   training   the   gap-filling   methods   with   limited   training   data   exposes   the  

intrinsic   biases   of   the   algorithms,   or   in   the   words   of   Ritter   et   al.   (2017):   “ the   difference   [between   gap-filling  

methods]   is   a   result   of   how   the   spatial   and   seasonal   heterogeneity   and   the   sparseness   of   the   data   is   dealt   with ”.  

Conversely,   as   the   number   of   training   data   increase,   the   biases   are   reduced,   and   the   methods   converge.   

 

 
Figure   12:    The   seasonal   cycle   reproducibility   of   CSIR-ML6    p CO 2 ,   which   is   a   correlation   of   detrended    p CO 2    with   its   own  
climatology   –   the   larger   the   correlation   the   stronger   the   reproducibility   of   the   seasonal   cycle   (method   from   Thomalla   et   al.  
2011).  
 

The   Northern   Hemisphere   subtropical   regions   are   a   good   example   of   a   region   where   the   gap-filling   methods  

converge   (Figure   11b),   as   also   shown   by   the   low   RMSE   scores   and   high   correlation   for   the   two   mooring  

stations,   HOT   and   BATS   (Figure   8e,f).   One   of   the   reasons   that   the   methods   predict   the   variability   well   in   the  

subtropics   (Figure   8e,f)   is   that   these   regions   are   less   biogeochemically   complex   and   driven   primarily   by  

seasonal   changes   in   SST   (Bates   2001;   Dore   et   al.   2009).   This   strong   SST-driven   seasonality   in   the   subtropics   is  

shown   by   the   high   seasonal   cycle   reproducibility   (Figure   12).  
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Figure   13:    ∆ p CO 2    trends   ( p    <   0.05),   where   ∆ p CO 2    is   calculated   as   the   estimated   surface   ocean    p CO 2    from   the  
CSIR-ML6   method   minus   atmospheric    p CO 2    from   the   CarboScope   project   (Rödenbeck   et   al.   2014).   The   shaded   areas  
show   the   regions   where   IQR IA    is   >   15%,   thus   indicating   regions   where   trends   should   be   interpreted   with   caution.  
 

The   gap-filling   methods’   divergences   also   serve   as   a   metric   to   inform   where   there   is   not   enough   data   to  

constrain   the    p CO 2    or    F CO 2    estimates,    i.e.    the   divergences   inform   us   where   estimates   should   be   treated   with  

caution.   The   IQR IA ,   when   scaled   to   the   range   of   interannual   variability   (Figure   11b),   should   be   taken   into  

account   when   analysing   interannual   trends   of   ∆ p CO 2    (Figure   13).   For   instance,   significant   trend   estimates   in  

∆ p CO 2    for   CSIR-ML6   ( p    <   0.05)   are   negative   for   the   majority   of   the   global   ocean,   even   in   regions   where   method  

estimates   are   too   disparate   to   resolve   interannual   variability   (relative   IQR IA    >   15%;   dotted   regions   in   Figure   13).  

However,   the   relative   IQR IA    is   not   without   its   limits,   as   there   may   be   regions   where   methods   are   in   agreement  

but   share   the   same   biases,   thus   reporting   false   confidence   in   the   estimates.   Regions   of   false   confidence   would  

most   likely   occur   in   data   sparse   areas   but   could   only   truly   be   identified   with   better   data   coverage   in   these  

regions.  

4.3   Inching   up   and   over   the   wall:   incremental   improvements  

In   our   study,   we   show   that   all   gap-filling   methods   suffer   from   the   same   uncertainties   where   there   are   data   to   test  

and   validate   the   estimates   (Figure   8),   and   divergences   between   estimates   when   there   are   insufficient   data   to  

constrain   the   methods   (Figure   11b).   From   these   points,   it   may   seem   that   we   may   have   in   fact   “hit   the   wall”   in  

terms   of   better   resolving   surface   ocean    p CO 2 .   In   this   section,   we   discuss   how   we   might   overcome   this   proverbial  

wall.   First,   by   addressing   the   existing   uncertainty   and   biases,   and   then   discussing   how   we   could   improve   on  

estimates   in   data-poor   regions.  

4.3.1   Reducing   existing   biases   

The   robust   test-estimates   show   that   there   are   regions   where   training   data   is   not   sparse,   yet   estimates   still   suffer  

from   large   uncertainties   ( e.g.    northern   and   southern   boundaries   of   the   North   Atlantic   gyre   in   Figure   7a,b   and  

Figure   S8).   These   errors   are   spatially   consistent   with   those   reported   by   Landschützer   et   al.   (2014).   Such   regional  

mismatches   between   gridded   observations   and   estimates   are   likely   systematic   –   meaning   that   gap-filling  

methods   are   not   able   to   resolve   the   more   complex    p CO 2    variability   at   current   resolutions   (monthly   ⨉   1°   or  

coarser)   or   with   the   current   regression   feature-variables   (Gregor   et   al.   2017;   Denvil-Sommer   et   al.   2018).   It   may  
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be   possible   to   reduce   these   uncertainties   with   consideration   about   the   drivers   of   CO 2    in   a   specific   region.  

Including   appropriate   additional   feature-variables   (if   available),   such   as   reanalysis   mixed-layer   depth   products,  

may   improve   the   uncertainties   of   gap-filling   methods   (Gregor   et   al.   2017).   Similarly,   increasing   the   temporal  

and   spatial   resolution   may   be   able   to   improve   estimates   where   aliasing   occurs   in   regions   of   high   dynamic  

variability   such   as   the   mid-latitude   oceans   (Monteiro   et   al.   2015).   It   is   worthwhile   noting   that   increasing   the  

resolution   may   not   be   the   panacea   for   poor   estimates.   For   example,   the   Jena-MLS   method   is   able   to   estimate  

p CO 2    with   relative   accuracy   (Figure   8)   at   a   low   spatial   resolution   (≈   4°   ⨉   5°;   Rödenbeck   et   al.   2014);   however,  

with   the   trade-off   in   spatial   resolution,   the   method   is   able   to   increase   the   temporal   resolution   to   daily   estimates.   

 

Another   source   of   bias   is   the   mismatch   between   the   temperature   at   which    p CO 2    is   measured   (i.e.   at   the   depth   of  

a   ship’s   intake)   and   the   temperature   to   which    p CO 2    is   predicted   (~1   m   in   the   case   of   the   dOISSTv2   data;   Banzon  

et   al.   2016;   Goddijn-Murphy   et   al.   2015).   Goddijn-Murphy   et   al.   (2015)   show   that   this   mismatch   is   considerable  

in   some   cases   (>   5   µatm   for   large   regions   as   shown   in   Figure   S3b).   However,   the   correction   of   the   intake  

temperature   to   the   remotely   sensed   surface   temperature   also   makes   the   assumption   that   temperature   is   the   only  

factor   that   influences    p CO 2    in   the   surface   layer   of   the   ocean.   The   correction   will   thus   not   account   for   other  

processes   such   as   primary   production,   stratification   and   gas   exchange   within   the   surface   layer.   This   is   an   issue  

that   should   be   discussed   by   the   community   and   tested   experimentally   to   assess   the   impact   that   these   processes  

may   have   on    p CO 2 .   

4.3.2   Improving   estimates   in   data-poor   regions  

All   gap-filling   methods   suffer   from   similar   biases   and   uncertainties   (Figure   8,   Table   5)   when   compared   to  

independent   validation   data,   yet   the   same   methods   show   vastly   different   results   in   data-sparse   regions.   These  

shared   uncertainties   and   regionally   consistent   divergences   between   methods   are   in   agreement   with   past   studies,  

which   find   that   insufficient   training   data   is   the   limiting   factor   (Rödenbeck   et   al.   2015;   Landschützer   et   al.   2016;  

Ritter   et   al.   2017;   Denvil-Sommer   et   al.   2018).   

 

Strides   have   been   made   in   closing   these   data-sparse   gaps   with   the   deployment   of   autonomous   sampling  

platforms.   The   Southern   Ocean   Carbon   and   Climate   Observations   and   Modelling   (SOCCOM)   project,   in  

particular,   has   been   influential   in   closing   the   gap   in   the   Southern   Ocean   with   the   deployment   of   ~200  

pH-capable   biogeochemical   Argo   floats   in   the   region   since   2015   (Williams   et   al.,   2017;   Gray   et   al.,   2018).   The  

data   collected   by   these   floats   during   winter   has   shown   that   we   have   previously   underestimated   winter   outgassing  

of   CO 2    in   the   Southern   Ocean   (Gray   et   al.   2018).   Incorporating   these   new   estimates   into   machine   learning  

estimates   should   be   a   priority   for   the   community   as   the   Southern   Ocean   plays   an   important   role   in  

anthropogenic   CO 2    uptake   (Gruber   et   al.   2019).   Incorporating   this   data   successfully   into   existing   models   may  

not   be   straight-forward   due   to   the   strong   temporal   bias   of   these   data   toward   the   end   of   the   time-series.   For  

instance,   the   inclusion   of   atmospheric    p CO 2    could   result   in   temporally   skewed   estimates   due   to   the   “memory”  

effect   that   including   the   annually   increasing   atmospheric    p CO 2    could   have   on   estimates.   
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The   complex   machine   learning   models   often   used   to   estimate    p CO 2    are   prone   to   overfitting   the   data,   particularly  

in   regions   where   data   is   sparse.   Using   less   complex   models,   e.g.   multi-linear   regression,   in   such   regions   would  

reduce   the   risk   of   overfitting   the   data.   A   regionally   weighted   ensemble   approach   may   be   an   eloquent   way   to  

address   this   problem.   In   regions   with   sparse   data   coverage,   simpler   models   could   be   favoured,   while   more  

complex   models   could   be   weighted   more   in   regions   with   more   data.   However,   the   user   would   have   to   apply   a  

potentially   subjective   model-complexity   ranking   for   each   approach.   This   may   work   well   in   the   subtropical   gyres  

where    p CO 2    has   a   strong   seasonal   signal   driven   primarily   by   temperature   (Figure   12;   Lefèvre   and   Taylor,   2002).   

 

One   of   the   weaknesses   of   our   study   is   that   our   approach   is   similar   to   other   regression   methods   (e.g.  

MPI-SOMFFN   by   Landschützer   et   al.   2014,   and   JMA-MLR   and   LSCE-FFNN   by   Denvil-Sommer   et   al.   2019)  

that   predict    p CO 2    based   on   the   instantaneous   physical   and   biological   variables   without   regard   for   past   states.  

There   is   thus   a   need   to   explore   methods   that   incorporate   the   past   state   into   future   state   estimates.   This   includes  

assimilative   modelling   approaches,   such   as   B-SOSE   (Biogeochemical   Southern   Ocean   State   Estimate),   which  

would   also   provide   greater   understanding   of   the   driver   for   changes   in   surface    p CO 2    (Verdy   and   Mazloff,   2017).  

These   methods   may   be   able   to   provide   better   constraints   on    p CO 2    in   data-poor   regions.   However,   these  

assimilative   models   are   not   yet   in   a   stage   to   fit   the   data   closely   (Verdy   and   Mazloff,   2017).  

 

5   Summary  

Our   study   suggests   that   we   may   be   reaching   the   limits   of   gap-filling   methods’   abilities   to   reduce   uncertainties,  

as   shown   by   the   limited   incremental   improvement   in   errors   by   the   ensemble   method   we   compare   with  

established   methods.   Significant   uncertainties   still   prevail   across   all   gap-filling   methods,   most   likely   limited   by  

the   extent   of   basin-scale   observational   gaps   in   the   Southern   Hemisphere   as   well   as   sampling   aliases   in  

mesoscale   intensive   ocean   regions.   We   propose   ways   in   which   the   surface   ocean   CO 2  
    community   can   improve  

estimates   within   the   bounds   of   the   current   observations,   and   make   recommendations   for   future   observations.  

 

We   introduce   a   new   surface   ocean    p CO 2    gap-filling   method   that   is   a   machine   learning   ensemble   average   of   six  

two-step   clustering-regression   models   (CSIR-ML6   version   2019a).   An   exhaustive   search   process   was   used   to  

find   the   best   K-means   clustering   configuration   which   was   used   alongside   the   Fay   and   McKinley   (2014)   oceanic  

CO 2    biomes.   The   regression   models   applied   to   each   clustering   method   are   support   vector   regression,  

feed-forward   neural-networks   and   gradient   boosting   machines.   We   show   that   the   ensemble   average   of   the   six  

methods   marginally   outperforms   each   of   its   members,   thus   promoting   the   idea   that   averaging   model   estimates,  

each   with   different   strengths   and   weaknesses,   results   in   an   improvement   in   the   overall   estimates.  

 

The   CSIR-ML6   (version   2019a)   approach   was   compared   to   validation   data   alongside   four   other   methods   from  

the   SOCOM   intercomparison   study   (Rödenbeck   et   al.   2015).   Our   new   method   marginally   outperformed   the  

SOCOM   methods   when   comparing   RMSE   scores   for   the   validation   data   but   fared   equally   on   biases.   Despite   this  
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improvement,   all   methods   had   errors   of   roughly   the   same   magnitude,   suggesting   that   the   methods   are   resolving  

p CO 2    equally   outside   the   bounds   of   the   training   data.   

 

Closer   assessment   of   the   spatial   distribution   of   errors   shows   that   there   is   spatial   coherence   between   regression  

approaches   for   the   Northern   Hemisphere.   Some   of   these   errors   coincide   with   regions   of   high   dynamic   variability  

or   complex   biogeochemistry,   suggesting   that   increasing   the   spatial   and   temporal   resolution   of   gap-filling  

methods   could   improve   estimates.   Moreover,   introducing   additional   feature-variables   for   regression,   such   as  

eddy   kinetic   energy,   may   improve   estimates   in   these   regions.   

 

A   comparison   of   the   distribution   of   mismatches   in    p CO 2    between   gap-filling   methods   shows   that   there   are  

regions   (primarily   in   the   Southern   Hemisphere)   where   the   compared   methods,   as   an   ensemble,   cannot   resolve  

interannual   variability   of    p CO 2    and   as   such,   trends   analyses   in   those   regions   should   be   interpreted   with   caution  

These   large   mismatches   likely   occur   due   to   amplification   of   algorithm   specific   biases   in   data-sparse   areas.   We  

suggest   that   an   ensemble   with   data   density-driven   weighting   for   model   complexity   could   be   a   way   to   reduce  

potential   overfitting   in   data-sparse   regions.   We   also   urge   the   community   to   focus   on   incorporating   new  

measurements   from   autonomous   platforms   such   as   the    p CO 2    derived   from   pH   measured   by   biogeochemical  

Argo   floats,   and   new   platforms   such   as    p CO 2    capable   Wavegliders.   

 

In   closing,   we   suggest   that   it   is   time   to   consider   another   SOCOM-like   intercomparison.   Several   new   methods  

have   been   developed   since   the   last   intercomparison   and   the   addition   of   these   would   improve   the   robustness   of  

ensemble   average   flux   estimates.   Further,   the   authors   of   the   SOCOM   intercomparison   suggest   that   a   future  

intercomparison   should   include   a   comparison   of   methods   using   simulated   data,   a   method   to   overcome   the  

limitation   of   the   lack   of   data   to   test   the   estimates.   

Code   and   data   availability  

Supporting   code   is   available   in   Supplementary   Materials.   Data   (global   surface   ocean    p CO 2    from   CSIR-ML6  

version   2019a)   is   available   at   OCADS   (link   specified   once   the   manuscript   is   accepted).   
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