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Authors	Comments	

We	would	like	to	thank	the	reviewers	for	their	thoughtful	and	constructive	feedback.	We	think	that	their	

feedback	has	contributed	to	strengthening	the	paper	and	its	ideas.	 	

	

Reviewers'	comments	are	in	black	(Line	numbers	refer	to	first	submission	manuscript)	

Responses	are	in	blue	(Line	numbers	refer	to	updated	line	numbers	in	the	track	changes	document)	

	

Summary	of	large	changes	

We	have	made	large	changes	primarily	to	the	discussion	as	requested	by	Reviewer	3.	We	have	also	added	a	

section	to	the	supplementary	material	to	address	the	point	made	by	Reviewer	2	(Jamie	Shutler)	about	the	

mismatched	temperatures	between	SOCAT	and	the	satellite	SST	product.	We	have	also	opted	to	use	the	gas	

transfer	velocity	of	Nightingale	et	al.	(2000;	Ni00)	instead	of	Wanninkhof	et	al.	(2014)	as	recommended	by	

Goddijn-Murphy	et	al.	(2016),	where	the	former	(Ni00)	parameterises	the	effect	of	bubbles	relatively	well	

compared	to	other	methods.		

Corrections	made,	but	not	requested	by	the	reviewers	

● Figure	10:	the	key	for	JMA-MLR	and	Jena-MLS	were	incorrectly	swapped	in	the	submitted	manuscript.	

This	was	corrected.		

● Correction	of	SST	product:	we	used	the	AVHRR	product	by	Reynolds	et	al	(2007)	and	not	the	OSTIA	

product	by	Donlon	et	al	(2012).	This	is	discussed	in	more	detail	in	Reviewer	2’s	comments.		

● Data	availability:	we	will	make	the	data	available	on	OCADS	(	https://www.nodc.noaa.gov/ocads/oceans/	)	

instead	of	figshare.		

	 	

https://www.nodc.noaa.gov/ocads/oceans/
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Reviewer	1:	Peter	Landschützer	

Gregor	and	colleagues	present	an	impressive	and	comprehensive	study,	comparing	the	performance	of	various	

machine	learning-based	regression	approaches	in	combi-	nation	with	different	ocean-biome	combinations.	The	

authors	compare	their	new	esti-	mates	with	the	current	“state-of-the-art”	methods	represented	in	the	SOCOM	

intercom-	parison	project	and	a	wide	range	of	independent	and	novel	validation	data.	Using	this	impressive	set	

of	data,	the	authors	ask	the	question,	whether	we	have	“hit	the	wall”	in	our	accuracy	to	reconstruct	the	ocean	

carbon	sink,	and	in	what	way	we	may	further	improve	in	the	future.	

Strengths:	I	am	particularly	impressed	by	the	amount	of	data	and	experiments	used	by	the	au-	thors.	And	despite	

this	vast	amount	of	information,	the	manuscript	is	clearly	written	and	easy	to	follow.	The	study	provides	a	step	

forward	compared	to	other	existing	in-	tercomparison	studies	(e.g.	the	cited	papers	of	Rödenbeck	et	al	2015	and	

Ritter	et	al	2017)	as	it	compares	a	more	consistent	set	(or	ensemble)	of	estimates,	all	created	within	the	same	

regions	and	with	the	same	observational	dataset	(SOCATv5).	Ad-	ditionally,	I	am	not	aware	of	any	other	study	

that	makes	use	of	such	a	large	set	of	independent	estimates	(GLODAPv2,	SOCCOM,	etc.)	to	validate	their	

results.	All	of	the	above	are	significant	steps	forward	and	provide	a	well-suited	set-up	for	answering	the	research	

questions	posed	by	the	authors.	

Weaknesses:	I	have	not	encountered	any	major	weakness.		

Recommendation:	This	study	is	a	significant	contribution	to	our	scientific	understanding	of	current	“state-	

of-the-art”	observation-based	pCO2	and	air-sea	CO2	flux	estimates,	their	limitations	in	space	and	time	as	well	as	

potential	pathways	for	future	improvement.	The	study	will	instantly	be	of	interest	and	benefit	ongoing	carbon	

cycle	assessment	studies,	such	

	

Page	2	line	61:	“did	not	identify”	–	I	would	rather	say	that	SOCOM	“did	not	look	for”	the	best	method.	Unlike	

this	study,	the	SOCOM	comparison	was	slightly	more	difficult	as	some	methods	were	still	based	on	older	

observational	datasets	(e.g.	LDEOv1)	which	made	an	objective	comparison	with	one	dataset	(e.g.	SOCATv5)	

additionally	challenging.	

L63:	Changed	to:		did	not	seek	to	identify	

	

Page	3	line	72-73:	Correct.	Very	little	agreement	was	found	in	the	SO,	however,	it	is	worth	noting	that	Ritter	et	

al	also	found	remarkable	agreement	regarding	decadal	signals,	despite	the	strong	discrepancies	in	seasonality	

and	IAV.	

L76:	Added	the	following	text:		Similarly,	Ritter	et	al.	(2017)	found	little	agreement	in	the	Southern	Ocean	on	

seasonal	timescales,	yet	on	decadal	time-scales,	there	was	an	agreement	on	the	direction	of	trends	between	

gap-filling	methods.	

	

Page	9	lines	186-187:	I	find	myself	arguing	a	lot	against	the	direct	inclusion	of	spatial	coordinates.	The	reason	is	

that	CO2	is	not	directly	affected	by	longitude	or	latitude,	but	rather	direct	environmental	proxies	that	vary	along	

space	and	time	(e.g.	SST).	Adding	Lat	and	Lon	might	decrease	the	error	metric	as	it	replaces	an	unknown.	
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However,	in	a	process-sense,	it	makes	much	more	sense	to	apply	some	special	selection	by	regimes,	biomes	or	

clusters.	

L203:	We	have	added	the	bold	text	to	make	our	statement	clearer:		This	is	due	to	the	fact	that	pCO2	may	

respond	inconsistently	to	observable	feature-variables	in	different	regions	as	it	is	not	possible	to	observe	all	

feature-variables	that	drive	pCO2	.	A	common	practice		to	avoid	the	inclusion	of	coordinates		is	to	separate	

divide		the	ocean	into	regions	where	processes	that	drive	pCO2	are	coherent	and	then	apply	regressions	to	each	

region	–	five	of	the	eight	regression	methods	in	Rödenbeck	et	al.	(2015)	apply	this	approach.		We	adopt	two		such	

approaches	to	develop	regions	of	internal	coherence	in	respect	of	CO2	variability,	namely	regions	defined	by	

biogeochemical	properties	and	clusters	defined	by	a	clustering	algorithm.	.	

	

Page	9	figure	3:	I	absolutely	understand	the	advantage	of	adding	additional	regions	to	the	“blank”	Fay	and	

McKinley	biomes,	but	a	bit	more	motivation	would	be	good	on	how	these	additional	regions	were	chosen	(e.g.	it	

is	immediately	obvious	to	combine	the	EBUS	regions,	but	why	not	the	very	small	Sea	of	Japan	with	the	

surrounding	waters?)	

L213:	The	following	was	added	to	the	text:		We	maintain	these	as	separate	regions	from	the	original	Fay	and	

McKinley	(2015).	Their	study	originally	did	not	classify	these	regions	in	the	core	biomes	because	the	physical	

and	biogeochemical	properties	were	not	accounted	for	by	the	set	thresholds	from	their	study.	This	would	suggest	

that	drivers	of	CO2	in	these	regions	could	be	quite	different	from	the	adjacent	open	ocean	biomes.	

	

Page	14	lines	322-323:	This	is	a	repeat	and	can	be	removed	

L361-L364:	Removed	as	suggested	

	

Page	14	Figure	5	and	following	text:	The	authors	in	the	text	often	use	words	like	“out-perform”	(e.g.	line	355,	

line	384)	or	“much	larger”	(e.g.	line	364).	As	a	reader	when	I	hear	outperform,	I	immediately	think	of	a	50%	

error	reduction	or	similar,	whereas	in	fact	not	a	single	bias	value	in	Figure	5	or	table	3	and	table	4	are	above	

1μatm.	Just	to	put	this	into	context:	The	current	flag	A	measurement	uncertainty	is	in	the	range	of	1-2μatm.	

Hence	these	differences	are	small.	They	might	be	significant,	but	certainly	don’t	deserve	wording	like	

“outperformed”	

Changed	this	as	suggested	by	adding		slightly		or		marginally	

	

Page	18	line	410:	word	“bias”	occurs	twice	–	remove	first	occurrence	

460:	Removed	as	suggested	

	

Page	24	lines	544-546:	One	has	to	be	careful	quoting	the	SOCOM	study	here.	The	SOCOM	study	faced	2	

additional	differences	which	made	a	combination	trickier.	Firstly,	not	all	methods	were	based	on	the	same	

observational	dataset	(some	were	built	on	1	million	data,	others	on	almost	15	million	at	the	time).	Secondly,	not	

all	methods	did	span	the	same	geographical	extend	(with	some	covering	more	of	the	coast,	less	of	the	Arctic,	
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etc.).	Based	on	all	these	differences	(and	others),	Rödenbeck	et	al	2015	avoided	to	provide	an	ensemble	mean	

estimate.	

L596:	We	removed	this	quote	and	associated	text	to	uncomplicate	the	paragraph.		

	

Page	24	and	onward:	The	authors	argue	for	the	inclusion	of	EKE	to	move	forward,	but	I	was	not	fully	

convinced,	given	the	small	improvement	in	Figure	5.	Another	limiting	factor	that	is	not	discussed	is	availability.	

In	an	ideal	case	one	would	use	time	varying	fields	of	SST,	SSS,	DIC,	TALK,	etc.	however,	in	most	cases	they	

are	not	available.	As	the	authors	mention,	EKE	only	exists	as	a	climatology,	hence	one	cannot	expect	directly	

improved	IAV	signals	from	it	(as	e.g.	visible	in	Figure	5c).	I	do	however	agree	with	the	authors	on	their	

conclusions	regarding	the	addition	of	novel	proxies.	

L611:	We	use	EKE	only	as	a	clustering	variable	–	this	means	that	it	will	not	influence	the	variance	of	the	

clusters,	but	it	can	capture	regions	where	pCO2	might	respond	differently	to	drivers.	The	reviewer	is	right	in	

saying	that	it	will	not	improve	the	IAV,	but	it	could	improve	the	fit	(RMSE).	We	have	further	clarified	our	choice	

in	using	the	clustering	method	including	EKE	(column	E	in	Figure	5)	for	21	clusters	in		L374	:		“While	the	

individual	regression	methods’	bias	and	RMSE	scores	(Figures	S5	and	S6	respectively)	do	not	match	the	

distributions	exactly,	the	two	selected	clustering	configurations	(black	boxes	in	Figure	5)	score	consistently	low	

for	both	metrics	(with	the	exception	of	ERT	–	discussed	in	greater	detail	further	on).	We	motivate	to	select	only	

one	clustering	configuration	for	the	sake	of	simplicity.	Furthermore,	we	select	the	configuration	with	21	clusters	

(rather	than	23)	as	fewer	clusters	further	reduces	the	possible	complexity	at	little	cost.		We	select	the	

configuration	with	the	lowest	RMSE,	which	has	21	clusters	with		The	selected	clustering	configuration	with	21	

clusters	has	the	following	features:	SST,	log10(MLDclim),	pCO2clim,	log10(Chl-aclim),	and	log10(EKEclim);	

and	is	hereinafter	abbreviated	as	K21E	(see	Figure	S2	for	the	distribution	of	the	climatology	for	these	clusters).	

	

Page	26	line	611	–twice	the	use	of	the	word	“first”	

L665:	Removed	as	suggested	

	

Page	27	line	633:	The	authors	name	the	Denvil-Sommer	method	as	a	way	forward.	I	agree	that	this	is	an	

exciting	new	method,	however	–	in	the	context	of	the	text	lines	above	–	it	is	also	not	a	fundamentally	different	

method,	as	it	is	also	based	on	machine	learning.	

L694-L704:	This	section	has	been	removed	as	large	changes	have	been	made	to	the	discussion.		
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Reviewer	2:	Jamie	Shutler	

The	authors	present	a	novel	intelligent	interpolation	method	and	a	comprehensive	analysis	of	current	methods	to	

intelligently	interpolate	pCO2	data	(which	then	enable	the	calculation	of	global	and	regional	atmosphere-ocean	

gas	fluxes	and	net	sink	values).	The	analysis	concludes	that	we	are	reaching	the	limit	of	improvement	in	these	

methods	and	that	an	increase	in	data	coverage	within	those	regions	sparsely	sampled	is	now	needed	to	allow	

further	advancement.		

	

Whilst	I	agree	with	the	final	conclusion,	I	can	see	that	the	methods	in	the	analysis	would	benefit	from	further	

refinement	to	enable	the	’wall’	to	be	correctly	identified.	This	refinement	should	focus	on	the	consistent	and	

more	thorough	handling	of	temperature	within	the	data	used	for	training	and	verifying	the	pCO2	interpolation	

methods.	Improvements	within	the	air-sea	gas	flux	calculation	itself	would	also	enable	a	more	accurate	flux	

calculation.	Hence	I	would	recommend	revision	of	this	paper	before	acceptance.	This	will	require	updating	the	

methods	and	re-running	the	analysis.	

	

Here	are	the	major	points	that	would	need	to	be	addressed.	I	suspect	that	addressing	these	temperature	related	

issues	will	improve	the	overall	results	and	conclusions.	

	

The	temperature	issue	relates	to	the	section	in	the	discussion	that	focuses	on	uncertainty.	The	strong	temperature	

dependence	of	pCO2	means	that	a	consistent	handling	of	temperature	is	needed	throughout	the	analysis	to	

ensure	that	(inconsistent	handling	of)	temperature	is	not	the	source	of	any	biases	and/or	accuracy	issues.	This	is	

especially	true	for	a	large	collated	dataset	which	has	been	generated	from	data	collated	from	multiple	systems,	

regions	and	ships	(i.e.	the	SOCAT	data).	The	SOCAT	dataset	is	an	amazing	resource	and	vital	in	the	study	of	

air-sea	CO2	exchange,	but	using	it	directly	(in	its	original	form)	for	this	sort	of	global	air-sea	gas	flux	study	can	

lead	to	unknown	errors	and	biases.	The	need	for	correct	temperature	handling	in	air-sea	gas	exchange	studies	

has	been	reviewed	in	depth	by	Woolf	et	al.,	(2016).	The	impacts	of	incorrect	and	inconsistent	temperature	

handling	can	be	significant,	especially	within	large	collated	datasets	and	global	analyses	(please	see	the	different	

examples	and	impacts	that	temperature	can	have	on	the	different	components	of	the	gas	flux	calculation	that	are	

detailed	within	Woolf	et	al.	2016).		

We	tackle	this	point	in	details	below,	but	would	like	to	highlight	beforehand	that	we	made	a	mistake	in	the	

citation	of	the	SST	dataset	used	-	we	originally	cited	the	OSTIA	product	by	Donlon	et	al.	(2012),	while	it	was		in	

fact	the	dOISSTv2	product	that	uses	only	AVHRR	data	(Reynolds	et	al.	2007;	Banzon	et	al.	2016),	a	product	

that	reports	the	bulk	temperature	(between	0.5	and	1.0	m	depth).		

	

1. The	SOCAT	gridded	dataset	are	based	on	gridded	data	that	have	all	originated	from	different	ships,	systems	

and	times.	Hence	the	gridded	values	are	likely	to	contain	unknown	biases	due	to	inconsistent	depths	and	thus	

temperatures	that	were	originally	captured/linked	to	each	pCO2/SST	pair,	but	which	was	lost	as	a	result	of	

gridding	(as	SST	and	pCO2	are	gridded	individually).	Furthermore,	the	differing	depths	of	each	sample	

means	that	multiple	measurements	within	each	box	could	be	from	different	depths	and	so	they	are	not	part	of	
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the	same	(statistical)	population.	This	issue	can	be	overcome	by	first	re-analysing	the	original	SOCAT	cruise	

data	to	a	common	temperature	dataset	(and	thus	a	common	sampling	depth)	and	then	re-gridding	them	

(through	the	use	of	a	satellite	observed	sea	surface	temperature	dataset).	This	theory	is	explained	in	Woolf	et	

al.,	2016,	the	method	is	described	in	Goddij-murphy	et	al	(2015)	and	a	software	tool	to	enable	this	is	

available	within	the	FluxEngine	open	source	toolbox	(Shutler	et	al.,	2016).	A	link	to	the	github	repository	is	

below.	This	needs	to	be	done	for	the	data	used	to	train	the	methods	and	data	used	to	verify	the	performance	

of	the	methods.	

	

This	is	a	very	interesting	point,	and	one	that	we	have	not	considered.	We	have	done	an	experiment	in	

the	supplementary	material	(S2.4)	that	investigates	this	issue.	This	is	done	in	two	parts:	a)	difference	

between	SOCAT	pCO	2		calculated	from	ship	intake	temperature	and	skin	temperature	as	measured	by	

satellite;	b)	the	impact	that	this	has	on	machine	learning	estimates	of	pCO	2	.		

We	show	the	following	figure	in	the	SM	(as	Figure	S3).	According	to	Banzon	et	al.	(2016)	who	

released	the	dOISSTv2	product,	the	global	positive	temperature	bias	(0.13°C,	panel	(a)	below)	is	due	to	

warming	in	the	engine	room	between	the	water	intake	and	the	thermosalinograph.	With	this	bias	

removed,	the	distribution	is	heterogeneous	on	a	large	scale,	but	there	still	seem	to	be	regional	biases	

(e.g.	overall	negative	bias	in	the	high	latitude	and	positive	bias	in	the	low	latitudes).		

	

In	part	two	of	the	experiment	we	show	that	the	temperature	adjustment	actually	results	in	larger	RMSE	

scores	and	stronger	biases	(table	below).	Moreover,	the	regionality	in	the	biases	still	persists.	We	have	

thus	opted		not	to	apply	this	correction.		

	

	 Bias	 MAE	 RMSE	 r	2	

(a)	SOCAT	SST	/	no		p	CO	2		correction	 -0.23	 12.15	 18.83	 0.74	

(b)	OISST	/	no		p	CO	2		correction	 0.00	 12.43	 19.17	 0.73	

(c)	OISST	/		p	CO	2		corrected	to	OISST	 -0.50	 13.55	 20.94	 0.7	

	

To	investigate	these	errors	further	we	plotted	the	distribution	of	the	biases	as	shown	in	Figure	S4.	The	

distribution	for	the	biases	is	very	similar	for	all	experiments.	This	illustrates	that	the	models’	capability	
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to	reproduce	the	observations	is	a	far	greater	contributor	to	the	error	than	the	error	attributed	to	the	

temperature	discrepancy.		

	

Figure	S4:		The	biases	from	three	regression	experiments	testing	the	effect	of	correcting	pCO	2		to	the	temperature	

discrepancy	between	SOCAT	temperatures	and	the	OISST	product.	The	figure	numbers	correspond	to	the	first	

column	in	Table	S1.	Note	that	the	spatial	biases	are	robust	to	the	temperature	corrections	.		

	

L163-L171:		We	have	added	the	following	text	to	the	main	manuscript	to	address	this:		A	consideration	

in	this	application	of	SOCAT	data	is	the	mismatch	between	the	temperature	at	which	pCO2	is	measured	

(SST	SOCAT	)	and	the	OISST	(Goddijn-Murphy	et	al.	2015).	The	OISST	product	reports	the	bulk	

temperature	at	~1	m,	whereas	SST	SOCAT		is	measured	at	the	depth	of	a	ship’s	water	intake	(Banzon	et	al.,	

2016;	Bakker	et	al.	2016).	A	comparison	of	SST	SOCAT		and	OISST	shows	that	the	former	has	a	warm	

global	mean	bias	of	0.13°C	(Figure	S3a),	the	same	as	that	reported	by	Banzon	et	al.	(2016),	which	they	

attribute	to	warming	in	the	ships	intake.	Further	investigation	shows	that	correcting	pCO2	for	the	

temperature	bias	reduces	the	accuracy	of	the	machine	learning	estimates	relative	to	the	training	data	

(Section	S2.4)	and	does	not	improve	spatial	biases.	We	thus	do	not	apply	the	correction	applied	in	

Goddijn-Murphy	et	al.	(2015).		

	

We	further	address	this	in	the	discussion	(	L683	-	L693	),	urging	the	community	to	explore	these	

potentially	important	issues	in	a	coordinated	way.	The	impact	of	temperature	biases	are	not	negligible	

with	the	first	quartile	of	the	∆pCO2	differences	being	~	-7	µatm.		

		

	

2. The	gas	flux	calculation	itself	as	used	by	the	authors	(equation	2)	is	likely	to	add	temperature	related	errors	

into	the	analysis.	This	bulk	formulation	using	DpCO2	ignores	vertical	temperature	gradients	and	so	is	likely	
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to	introduce	additional	(and	unknown)	errors	into	the	analysis.	Woolf	et	al.,	(2016)	also	discusses	the	

shortfalls	of	using	an	inaccurate	gas	flux	calculation.	The	work	would	benefit	from	using	a	version	of	the	

equation	that	accounts	for	differing	solubilities	at	the	top	and	bottom	of	the	mass	boundary	layer.	Section	2	

of	Woolf	et	al.,	(2016)	provides	the	information	needed	to	achieve	this.	

L323-328:		We	have	considered	this	correction	extensively,	reading	through	Woolf	et	al.	(2016)	and	even	the	

FluxEnging	code,	and	applied	it	to	the	CSIR-ML6	flux	estimates	to	test	this	difference.	While	we	feel	that	

this	is	an	important	consideration	in	the	calculation	of	sea-air	CO2	fluxes,	we	think	that	it	does	not	change	

the	message	of	this	publication	which	is	focussed	primarily	on	pCO2	and	not	fluxes.	Given	that	we	do	not	

have	immediate	access	to	the	temperature	inputs	of	the	comparison	datasets	(JENA,	MPL,	UEA,	JMA),	

applying	this	correction	only	to	CSIR-ML6	is	not	consistent.	We	thus	stick	with	the	bulk	fluxes	approach.	

We	have	however	included	the	variables	required	to	calculate	fluxes	using	the	RAPID	model		(K	0	skin	,		f	CO	2	skin	,	

K	0	fnd	,		f	CO	2	fnd	)	in	the	final	netCDF	file	that	will	be	shared	on	OCADS,	where		skin		is	an	approximation	of	the	

interfacial	layer	and	we	make	the	assumption	that	the	base	temperature	is	equivalent	to	the	foundation	(	fnd	)	

temperature	(Woolf	et	al.	2016).		

	

3. All	of	the	independent	methods	used	for	the	secondary	validation	also	suffer	from	the	issues	of	inconsistent	

temperature	handling.	This	was	a	shortfall	of	the	Rodenbeck	et	al.	2015.	The	work	of	Rodenbeck	et	al.,	2015	

was	an	excellent	first	step,	but	any	verification	using	these	data	should	consider	the	impact	that	inconsistent	

temperature	handling	is	likely	to	have	on	any	derived	results.	The	authors	should	recognise	this	and	discuss	

the	issue.		

L475:		We	have	added	the	following	text:		Note	that	these	datasets	(with	the	exception	of	the	UEA-SI)	will	

also	suffer	from	the	same	temperature	biases	discussed	in	S2.4	.	 	

	

4. The	independent	data	used	for	verification	(e.g.	from	GLODAPv2)	will	also	suffer	from	the	same	

temperature	issue.	the	GLODAPv2	data	is	also	an	amazing	and	very	useful	dataset.	However,	the	data	are	all	

sampled	from	different	depths	and	using	different	methods.	So	any	conclusions	drawn	from	deriving	PCO2	

from	these	data	and	its	use	for	verification	should	consider	the	impact	of	inconsistent	sampling	depths	and	

the	resultant	(unknown)	temperature	biases	that	this	will	introduce.	The	authors	should	recognise	this	and	

discuss	the	issue.	

L310-314:		We	have	picked	this	up	in	the	discussion	and	made	reference	to	the	fact	that	these	validation	

datasets	likely	also	suffer	from	temperature	mismatches.	However,	we	also	add	that	because	we	deal	with	

each	validation	dataset	independently,	this	issue	does	not	impact	the	outcome	of	the	assessment.	

	

5. The	GLODAPv2	data	and	its	accompanying	publication	(Pfeil	et	al)	provides	an	estimate	of	the	bias	within	

the	GLODAPv2	data,	which	the	authors	here	have	used	as	an	estimate	of	the	uncertainty	for	the	GLODAPv2	

data.	The	bias	will	only	be	one	component	of	the	uncertainty	(especially	when	using	a	large	historical	dataset	

like	GLODAPv2	which	spans	many	years,	a	period	over	which	significant	advances	in	methods	have	been	

made).	The	authors	should	mention	and	discuss	this	issue.	
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L305:		The	following	text	was	added	to	address	this	point:		Additionally,	GLODAP	v2	data	has	been	adjusted	

on	a	per-profile	bases	to	minimise	the	biases	through	the	comparison	of	deep	slow-changing	ocean	

properties	(Olsen	et	al.	2016).	

	

6. The	GHRSSt	dataset	that	is	used	within	the	analysis	is	(i	think)	a	combined	thermal	and	microwave	dataset	

and	so	its	valid	for	a	specific	depth	(if	mostly	microwave	data	then	its	most	likely	sub-skin)	making	it	valid	

for	the	bottom	of	the	mass	boundary	layer	(which	is	key	when	considering	calculating	the	pCO2	and	relevant	

solubility).	if	this	is	used	as	the	input	dataset	for	training	the	different	interpolation	methods	then	it	would	

seem	sensible	to	use	this	dataset	for	the	gas	flux	calculation	(to	represent	the	temperature	at	the	bottom	of	the	

mass	boundary	layer).	This	could	also	be	used	as	the	reference	for	re-analysing	the	SOCAT	data	prior	to	

re-gridding.	Doing	all	of	this	will	ensure	that	your	methods	are	consistent	throughout.	

The	temperature	data	was	incorrectly	cited,	where	we	cited	Donlon	et	al.	(2012)	the	data	used	is	the	updated	

dOISSTv2	product	(an	update	to	Reynolds	et	al.	2007	which	is	referenced	as	Banzon	et	al.	2016).	This	

temperature	product	reports	bulk	SST	(between	0.5	and	1	m).	We	thus	have	to	make	the	assumption	that	the	

bulk	temperature	is	representative	of	foundation	temperature.	However,	as	mentioned,	we	do	not	implement	

the	RAPID	model	in	flux	calculations	for	the	paper,	but	we	do	provide	the	components	required	to	calculate	

pCO2	as	defined	in	Woolf	et	al.	(2016).	Please	see	our	response	to	point	2	for	further	details.		

	

7. Minor	point,	but	still	important:	Please	can	the	authors	clarify	their	descriptions	of	satellite	observations?	

Satellite	observations	are	not	proxies	(as	stated	on	line	670).	This	is	a	common	misconception,	satellite	

observations	are	precise	and	accurate	measurements	of	electromagnetic	energy.	e.g.	some	satellite	

observations	of	SST	are	thermal	infrared	measurements	and	can	be	more	accurate	and	precise	than	in	situ	sea	

surface	temperature	measurements	(O’carroll	et	al	2008).	The	difference	between	satellite	and	in	situ	

measurements	or	observations	(apart	from	the	method	of	collecting	them)	is	predominantly	the	depth	that	the	

measurement	is	valid	for,	as	satellite	sensors	will	retrieve	the	skin	or	sub-skin	temperature,	whereas	an	in	situ	

measurement	(which	is	a	voltage	measurement	through	a	thermally	sensitive	resistor	that	is	then	calibrated	to	

temperature)	is	normally	collected	at	a	few	metres	depth	or	somewhere	near	the	surface.	These	differences	

are	also	briefly	discussed	in	Woolf	et	al.,	2016.	For	satellite	chl-a	its	typically	a	visible	spectrum	

measurement	that	uses	a	empirical	relationship	to	calibrate	the	optical	measurement	to	estimate	chl-a.	So	the	

sentence	(line	670)	should	be	corrected	to	say	’satellite	observations’	(rather	than	proxy).	please	can	the	

author	check	that	the	rest	of	their	manuscript	for	further	instances	of	the	same	issue?	

The	text	on	L70	has	been	removed	to	simplify	the	discussion	as	requested	by	Reviewer	3.	However,	we	feel	

that	this	is	sufficiently	clear	throughout	the	rest	of	the	manuscript,	where	proxy	variables	refer	to	variables	

that	may	impact	pCO2	and	are	thus	used	as	predictors.		
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Reviewer	3:	Anon 	

The	authors	present	(1)	a	new	algorithm	to	spatiotemporally	interpolate	discrete	pCO2	measurements	into	

continuous	pCO2	field,	and	(2)	present	and	discuss	a	comparison	between	this	and	existing	pCO2	interpolations	

in	the	light	of	several	metrics.	Concerning	(1),	though	the	algorithm	is	based	on	the	same	principles	(namely	

non-linear	regression	of	pCO2	against	driving	quantities	measured	more	completely)	which	have	also	been	

employed	by	several	existing	algorithms	for	the	same	purpose,	it	differs	by	a	formalized	selection	of	how	to	split	

the	ocean	into	areas	of	similar	biogeochemical	behaviour.	In	particular,	the	selection	is	not	done	in	isolation	but	

involves	the	regression	step	itself.	This	split	into	coherent	areas	is	an	important	element	in	regression-based	

pCO2	interpolations.	It	is	therefore	an	interesting	contribution	worth	to	be	published.	The	comparison	(2)	is	a	

useful	part	of	the	evaluation.	In	the	discussion,	however,	the	authors	somewhat	delve	in	general	statements	that	

have	already	been	discussed	in	the	literature	or	have	been	tackled	in	ongoing	research	projects	(see	below).	I	

also	think	that	some	statements	may	be	put	into	perspective	(see	below).	The	paper	is	well	written,	though	at	a	

number	of	places	the	text	may	be	revised	to	become	more	accessible	(see	some	suggestions	below).	In	summary,	

I’d	like	to	recommend	to	publish	this	study	in	GMD,	after	revisions	to	address	the	points	detailed	in	the	

following.		

	

On	terminology,	there	is	a	problem	with	the	authors’	use	of	"ensemble".	Usually,	an	"ensemble"	means	a	set	of	

several	members.	At	various	places	(first	in	L124),	however,	the	word	is	apparently	used	for	"ensemble	mean"	

(=	just	one	entity,	not	a	set	any	more).	This	sometimes	distorts	the	meaning	and	confused	me	substantially	on	

first	reading.	Similarly	confusing	is	the	use	of	"clusters"	not	only	for	"points	belonging	together"	but	also	for	

"cases	having	different	(or	differently	many)	clusters".	

The	reviewer	raises	a	valid	point	about	the	ambiguity	in	the	use	of	“ensemble”	and	“cluster”.	We	have	

appropriately	changed	the	use	of	ensemble	to	ensemble	mean/average	throughout	the	manuscript	(this	is	shown	

in	the	document	with	the	track	changes).	Where	appropriate,	cluster	was	changed	to	clustering	configuration.	

	

As	an	interesting	feature	in	Fig	7(a),	I	notice	adjacent	bands	of	strong	opposite	biases	in	the	eastern	Pacific.	

Could	this	point	to	an	inappropriately	located	boundary	between	the	regions?	It	may	help	to	check	if	these	bands	

also	occur	for	K21E	and	BIO23	individually,	do	they?	If	so,	is	there	a	systematic	difference	in	the	location	of	the	

region	boundary	between	K21E	and	BIO23?	I	imagine	that	such	analysis	might	give	hints	on	how	to	improve	

the	interpolation.	

Yes,	agreed!	We	highlight	these	adjacent	biases	in	the	discussion	in	greater	detail	and	use	this	as	motivation	for	

the	development	of	methods	that	are	able	to	resolve	these	juxtaposed	biases	(4.3.1	Reducing	existing	biases	on	

L667	).		

	

The	paper	also	discusses	more	general	aspects	of	pCO2	interpolation,	such	as	the	potential	"wall"	mentioned	in	

the	title,	which	is	definitely	an	interesting	and	relevant	question.	However,	I’m	a	bit	surprised	by	some	

formulations,	such	as	L677-678	or	L578	("stagnant"),	which	seem	to	suggest	that	"there	must	be	intrinsic	limits	

if	not	even	our	method	performs	better	than	other	methods".	Why	should	we	expect	your	particular	method	to	
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exhaust	all	what’s	achievable?	After	all,	the	presented	method	is	based,	like	several	previous	pCO2	gap-filling	

studies,	on	instantaneous	relationships	to	physical	or	biological	oceanic	quantities.		

We	recognise	that	“	relatively	stagnant	”	is	perhaps	slightly	overcritical	and	suggest	that	using	“	plateaued	”		may	

perhaps	better.	However,	we	do	not	make	the	assumption	that	we	exhaust	all	options	as	we	suggest	that	there	is	a	

way	forward	(and	we	also	recognize	that		our	suggestions	are	not	all	encompassing).	But,	as	so	many	studies	

have	pointed	out	(Rödenbeck	et	al.	2015;	Landschützer	et	al.	2014;	Ritter	et	al.	2017),	that	the	available	data	is	a	

big	limitation	to	improved	estimates.	This	has	been	added	on		L713-L739	(Section	4.3.2)	.		

	

While	such	relationships	have	proven	to	capture	a	good	fraction	of	pCO2	variability,	it	is	clear	that	oceanic	

biogeochemistry	is	a	dynamical	system,	ie.,	pCO2,	depends	not	only	on	the	current	state	but	on	the	past	history.		

The	reviewer’s	sentiment	from	the	two	statements	above	(“After	all,	the	presented	method	is	based,	like	several	

previous	pCO2	gap-filling	studies,	on	instantaneous	relationships	to	physical	or	biological	oceanic	quantities.	

While	such	relationships	have	proven	to	capture	a	good	fraction	of	pCO2	variability,	it	is	clear	that	oceanic	

biogeochemistry	is	a	dynamical	system,	ie.,	pCO2,	depends	not	only	on	the	current	state	but	on	the	past	

history”)	has	been	incorporated	into	the	text	on		L735	.		

	

Though	the	need	of	"new	methods"	is	being	mentioned	(L629-L638),	the	discussion	remains	solely	with	

regressions.	For	example,	it	ignores	that	other	approaches	like	"data	assimilation"	into	process	models	do	exist	

already	(though	mostly	not	yet	in	a	stage	to	fit	the	data	closely).	On	the	other	hand,	the	discussion	likewise	

ignores	that	sophisticated	methods	like	regressions	against	drivers	or	data	assimilation	are	only	needed	because	

large	data	gaps	need	to	be	bridged.	In	a	data-rich	world,	such	as	pleaded	for	by	the	authors,	simpler	

auto-regressive	methods	are	also	sufficient,	as	indicated	e.g.	in	your	Fig	10	by	the	relatively	good	agreement	of	

driver-regressions	and	auto-regressions	in	the	more	data-covered	areas.	In	order	to	make	the	discussion	more	

interesting	in	the	revised	paper,	therefore,	I	feel	that	it	should	be	done	in	a	wider	context	of	the	existing	literature	

and	make	more	concrete	statements	on	how	to	go	forward.		

The	reviewer	mentions,	these	methods	are	“not	yet	in	a	stage	to	fit	the	data	closely”.	We	have	made	the	point	

that	until	we	reach	a	stage	when	data	assimilation	methods	are	able	to	“fit	the	data	closely”,	the	community	

should	continue	to	explore	machine	learning	alternatives.		L735:			This	includes	assimilative	modeling	

approaches,	such	as	B-SOSE	(Biogeochemical	Southern	Ocean	State	Estimate),	which	would	also	provide	

greater	understanding	of	the	driver	for	changes	in	surface	pCO2	(Verdy	and	Mazloff,	2017).	These	methods	may	

be	able	to	provide	better	constraints	on	pCO2	in	data	poor	regions.	However,	these	assimilative	models	are	not	

yet	in	a	stage	to	fit	the	data	closely	(Verdy	and	Mazloff,	2017).	

	

An	alternative	option	may	be	to	substantially	shorten	the	discussion	and	keep	ideas	for	a	future	research	paper	

(why	not	in	the	context	of	a	new	SOCOM	as	the	authors	propose?).		

We	would	like	to	submit	this	manuscript	as	one	article,	rather	than	in	two	separate	manuscripts.		

	



The	same	also	applies	to	the	discussion	of	sampling	strategies.	The	dependence	of	accuracy	on	data	density,	the	

need	for	denser	sampling	in	many	parts	of	the	southern	hemisphere,	or	the	use	of	synthetic	data	to	test	sampling	

strategies,	are	all	not	new.	While	autonomous	sampling	devices	are	presented	as	"a	new	way",	there	are	papers,	

e.g.,	from	the	SOCCOM	project,	which	are	not	even	cited	in	the	discussion.	These	papers	already	discuss	

possibilities	and	limits	on	a	higher	level.	In	my	opinion,	a	discussion	of	sampling	also	needs	the	input	by	the	

experimentalists	(e.g.,	I’m	not	sure	how	"low-cost"	the	autonomous	platforms	really	are).	I	feel	the	paper	would	

win	from	a	shorter	and	more	concise	discussion.		

We	have	broadened	the	context	of	the	discussion	and	simplified	it	as	much	as	possible.	We	have	also	included	

references	to	ongoing	projects,	particularly	the	SOCCOM	project	and	the	breakthroughs	that	have	been	made	in	

Southern	Ocean	CO	2		fluxes	(Williams	et	al.	2017;	Gray	et	al.	2018).	We	make	the	point	these	data	have	yet	to	be	

incorporated	into	regressive	machine	learning	methods.	We	have	removed	the	paragraphs	dealing	with	

scale-sensitive	sampling	as	this	is	indeed	a	premature	claim	without	sufficient	backing	of	its	efficacy	to	reduce	

the	uncertainties	in	pCO2	estimates.	These	changes	have	been	made	from		L709	–	L768		in	the	track	changes	

document.	

	

The	authors	find	that	the	average	over	their	ensemble	of	regressions	performed	better	under	several	metrics	than	

the	individual	ensemble	members.	They	present	this	as	a	contradiction	to	warnings	against	the	use	of	ensemble	

averages	in	the	literature.	When	comparing	the	presented	ensemble	of	pCO2	interpolations	with	e.g.	the	

SOCOM	ensemble,	however,	there	seem	to	be	distinct	differences	in	how	statistically	homogeneous	these	

ensembles	are:	The	presented	ensemble	of	regressions	against	the	same	explanatory	variables	likely	spreads	in	

the	finer	details	(see	the	rather	similar	behaviour	in	Fig	6)	such	that	averaging	may	reduce	noise,	while	there	are	

large	systematic	differences	(including	members	with	limited	ability	to	fit	the	data)	in	the	SOCOM	ensemble	or	

other	ensembles	from	the	literature.	Therefore,	I	feel	the	authors	should	discuss	better	the	conditions	under	

which	the	average	over	an	ensemble	really	is	a	meaningful	estimate.		

We	removed	the	following	quotes	from	SOCOM	study:		

“	We	also	discourage	any	ensemble	averaging	(or	medians,	etc.)	of	full	spatiotemporal	fields	or	time	series,	as	

this	would	result	in	variations	that	are	not	self	-consistent	any	more	and	fit	the	data	less	well	than	individual	

products.”		

“	It	also	makes	the	case	for	ensembles	stronger	as	the	CSIR	ML6			performs	well	relative	to	other	gap-	filling	

methods.”	

The	removal	of	these	statements	simplifies	the	subsection	tremendously.	IQR	IA	/pco2	trend	amplitude	also	offers	

a	metric	by	which	to	scale	data.		

	

Minor	comments:	

L47:	maybe	add	"e.g."	

L47:	done	as	suggested	

L48:	"maximise"	does	not	seem	to	be	the	right	word	here	



L50:	Bold	text	added	to	make	clearer:		The	regression	methods	try	to	maximise		the	utility		of	existing	ship-based	

observations		by		extrapolating	CO	2		using	proxy	variables	

L57:	"consolidated"	probably	means	"collated"	or	similar	

L59:	Changed	to	collated	

L65:	as	far	as	I	see,	there	is	not	actually	any	weighting	in	that	paper	

L67:	We	have	changed	this	to	not	focus	on	the	weighting.	The	aim	is	to	introduce	the	topic	of	RIAV,	SOMFFN	

and	MLS:		While	SOCOM	intercomparison	did	not		seek	to		identify			an	optimal	mapping	method,	it		assessed	

weighted	the	ensemble		members	according	to…	

Two	methods,	...,		achieved	lower			were	weighted	more	due	to	lower		R	iav		scores		compared	to	other	members	of	

the	comparison.	

L67:	from	my	knowledge	of	the	literature,	most	studies	analysing	existing	pCO2	interpolations	actually	use	

several	of	these,	rather	than	one	"most	widely	used	method"	

L69:		The	MPI-SOMFFN		(Self-Organising	Map	Feed-Forward	Neural-Network)	,	is	a	global	implementation	of	a	

two-step	clustering-regression	approach	and	has	been		subsequently	become	the	most		widely	adopted		used	

method		in	the	literature	

L106:maybe	add	"separately"	after	"applied"	

L112:	added		separately 	

L107:	"K-means	clustering"	should	be	briefly	explained	(either	here	or	later,	e.g.	around	L232)	

We	added/changed	the	following	around		L228	:		Further		We	also	use	K-means	clustering,		which	groups	data	

based	on	Euclidean	distances.	More		specifically,		we	implement			the		mini-batch	K-means	from		implementation	

in	Python’s	Scikit-Learn	package	

L115:	"described	by"	may	better	be	"denoted	as"	(same	in	L120)		

L120:	Changed	as	suggested	

L117:	you	probably	mean	"a	range	of	11	to	25	clusters"		

L223:	Changed	as	suggested	

L123:	spurious	“and”		

L128:	Removed		

Fig	1,	section	"DATA":	Table	"XX"	

Replaced	XX	with	1.	

Fig	1	Sect	4	(and	many	other	places	in	text,	tables,	and	figures):	"HOTS"	should	be	"HOT"	

Corrected	for	all	figures	and	tables	

L140:	maybe	add	"a"	before	"predictive"	

L145:	“a”	added	

L155:	Explain	or	spell	out	"GHRSST"		

L159:	We	have	made	a	correction	to	the	SST	data	citation,	this	is	now	OISST	

L172:	Is	the	use	of	"random	noise"	a	standard	technique	to	fill	incomplete	input	data?	Isn’t	there	a	chance	that	

this	creates	instability	to	the	regression?	A	brief	explanation	or	a	reference	would	be	useful	here	



L188:		filled	with	low	concentration	random	noise		to	be	consistent	with	other	regions	of	low	concentration	

Chl-a	(Gregor	et	al.	2017).	

L188:	Maybe	add	"separate"	or	"individual"	before	"regressions"	

L206:	Added	individual	here	

L198:	"palate"	is	probably	misspelled,	what	about	"shown	by	separate	colors"	

L221:	Changed	as	suggested	

L214:	Reference	to	Fig	5	would	break	the	order	of	figures,	but	could	easily	be	removed	here	

L234:	Removed	reference	to	Fig	5	

L216:	not	sure	"a.k.a."	is	a	suitable	abbreviation	

L240:	Removed	the	phrase	in	the	brackets	as		supervised	learning		can	also	refer	to	classification.		

L217:	"80:20"	seems	to	contradict	"75:25"	in	Fig	1	

Text	is	correct.	Changed	figure	

L224-235:	I	found	this	paragraph	difficult	to	understand.	Can	you	say	more	explicitly	which	"hyper-parameters"	

you	mean?	It	may	also	help	to	better	link	this	paragraph	and	the	previous	one.	

L248-L256:	Linked	the	paragraph	a	little	better,	and	referenced	the	supplementary	materials	where	the	model	

specific	hyper-parameters	are	mentioned.	Code	has	also	been	made	available	for	the	exact	training	procedure.	

Following	text	was	removed	and	the	paragraph	was	shortened:	

Machine	learning	models	have	the	ability	to	be	as	complex	as	the	dataset	at	hand	and	are	thus	at	risk	of	fitting	

not	only	the	signal	but	also	the	noise	of	the	training	data	–	this	is	known	as	the	bias-variance	tradeoff.	High	

variance	is	a	result	of	a	machine	learning	model	that	is	too	complex	and	is	fitting	the	noise,	and	high	bias	is	due	

to	insufficient	complexity	where	the	model	cannot	fit	the	signal	(Hastie	et	al.	2009).	Machine	learning	

algorithms	have	hyper-parameters	that	control	the	complexity	of	the	model	for	each	specific	problem.	In	this	

study,	hyper-parameters	are	tuned	by	training	the	model	with	grid-search	cross-validation,		We	further	reduce	

the	possibility	of	overfitting	by	tuning	the	hyper-parameters	for	each	model	to	be	more	generalised,	i.e.	able	to	

fit	the	data	that	the	model	has	not	been	exposed	to.	The	search	for	the	optimal	hyper-parameters	is	achieved	

with	grid-search	cross-validation,		where	a	portion	of	...	

L244:	add	"below"	after	"Eqn	3	and	4"	

L271:	Added	below	

L247-257:	I	did	not	find	this	paragraph	very	clear.	Does	it	mean	that	you	repeat	the	previous	steps	with	other	

selections	of	years	in	the	test-training	split?	

L279:	Changed	the	following	sentence	to	make	the	paragraph	clearer.	Also	referenced	Figure	1	step	3	later	in	the	

paragraph	as	we	feel	that	this	illustrates	the	approach	well.		

To	overcome	this	limitation,	we		iteratively		apply	the	train-test	split	method		with	multiple	selections	of	years			five	

times	in	a	K-fold-like	test	approach	(Figure	1:	“K-fold	testing”	section),	meaning	that	the	data	in	a	test	fold	is	

never	used	to	train	the	model	.	

L300:	The	RˆIAV	metric	was	first	mentioned	in	the	SOCOM	paper	(ie.	Rödenbeck	et	al.,	2015)	

L338:	Corrected	by	removing	the	reference	to	Rödenbeck	et	al	(2014)		



L303-304:	According	to	Rödenbeck	et	al.	(2015),	their	benchmark	has	no	interannual	variability,	but	it	does	

have	seasonal	variability.	

L342:		…	by	normalising	annually	weighted	RMSE	to	a	benchmark	with		minimal		interannual		and	seasonal	

variability		driven	only	by	atmospheric	pCO	
2	
: 	

L306-307:	Also	here,	the	metric	used	by	the	authors	(or	at	least	the	description	of	it)	is	not	the	same	as	that	

presented	in	Rödenbeck	et	al.	(2015):	SOCOM	used	the	standard	deviation	over	yearly	averaged	pCO2	

mismatches,	not	standard	deviations	over	the	full	data	in	individual	years.	If	the	metric	used	in	this	study	has	

indeed	been	calculated	in	the	way	it	is	described,	it	should	be	sensitive	to	within-year	variations	(probably	

dominated	by	the	match	to	the	seasonal	cycle)	but	be	insensitive	to	interannual	variations.	

L345:	AV	was	calculated	correctly	but	described	incorrectly.	The	text	has	been	changed	as	follows:		where	IAV	

has	been	removed	by	summing	the	climatology	of	the	mapped	pCO	2		and	the	annual	trend	of	atmospheric	pCO	2	.	

L309-310:	A	benchmark	constructed	this	way	still	contains	the	interannual	variations	of	pCO2	(as	the	

atmospheric	pCO2	has	very	little	IAV	compared	to	seawater	pCO2,	except	for	the	rising	trend).	Also	here,	this	is	

opposite	to	what	has	been	described	by	Rödenbeck	et	al.	(2015)	which	removed	IAV	from	the	benchmark.	

Addressed	in	the	statement	above	(incorrectly	described)		

L313:	I	guess	you	mean	"in	contrast	to	the	standard	deviation	which	is	sensitive	to	outliers."	

L352:	Changed	as	suggested	

L314:	It	is	not	clear	to	me	what	"interannual	resampling"	means,	please	be	more	explicit.	

L354:	Changed	to		annually	averaged	

L319:	What	do	you	mean	by	"second	part	of	the	experiment"?	Is	it	the	"regression	step	of	the	algorithm"?	

L359:	Text	changed	as	follows:		The	results	from	the	regression	comparisons		second	part	of	the	experiment		(step	

two		as	shown		in	Figure	1)		

Fig	5:	Why	can	e.g.	D	ever	be	worse	than	C,	given	that	D	has	more	degrees	of	freedom	than	C?	

While	there	may	be	more	degrees	of	freedom	w.r.t.	data	clustering,	the	number	of	clusters	(y-axis)	is	still	kept	

constant.	Moreover,	the	given	clustering	variables	may	not	be	suitable	for	separating	the	variability	of	pCO2.	

Hence,	it	is	possible	that	regressions	using	the	A	clustering	scheme	(which	has	only	3	clustering	variables),	has	

slightly	lower	RMSE	values	compared	to	even	D	(which	has	5	clustering	variables).		

L326-327:	If	Fig	5	is	showing	the	averages	of	the	scores	from	the	4	methods,	I	was	wondering	whether	these	4	

methods	show	the	same	general	behaviour	(ie.	whether	the	better/worse	scores	occur	in	similar	rows/columns)?	

I’m	asking	because	only	if	yes,	Fig	5	would	give	a	meaningful	picture	about	which	number	of	clusters	and	

which	features	are	best.	A	statement	on	that	should	be	added.	

L373:	We	have	included	the	regression-method-specific	plots	in	the	supplementary	material.	The	distribution	of	

these	differs	somewhat	to	Figure	5,	but	this	is	more	transparent.	We	motivate	that	we	use	only	the	K21E	

clustering	configuration	for	the	sake	of	consistency.	The	following	text	was	added	on		L378-384	:		While	the	

individual	regression	methods’	bias	and	RMSE	scores	(Figures	S5	and	S6	respectively)	do	not	match	the	

distributions	exactly,	the	two	selected	clustering	configurations	(black	boxes	in	Figure	5)	score	consistently	low	

for	both	metrics	(with	the	exception	of	ERT	–	discussed	in	greater	detail	further	on).	We	motivate	to	select	only	



one	clustering	configuration	for	the	sake	of	simplicity.	Furthermore,	we	select	the	configuration	with	21	clusters	

(rather	than	23)	as	fewer	clusters	further	reduces	the	possible	complexity	at	little	cost..		

L343:	This	has	been	said	before	and	should	be	omitted	here.		

L390:	Removed	second	reference	to	BIO23	

L344:	Contradictory	use	of	the	term	"ensemble",	see	remark	above	

Have	changed		ensemble		to		ensemble	average		where	applicable	

L347:	add	"average"	after	"ensemble"		

Have	changed		ensemble		to		ensemble	average		where	applicable	

Tab	3	(also	Tab4):	I	think	the	1st	column	should	better	termed	"clustering"	

Table	3:	Good	suggestion.	Done	

L355:	I	guess	you	mean	"for	each	number	of	clusters"?	

L403:	Changed	to:		in	each	cluster	ing	approach	

L366:	I	was	wondering	whether	the	occurrence	of	lower	biases	in	the	test	years	may	actually	be	systematic	(ie.	

not	by	chance).	Are	the	same	years	(as	listed	in	Sect	2.4)	used	in	all	the	regressions?	If	so,	couldn’t	it	be	that	

they	implicitly	lead	to	low	biases	through	the	model	selection?	

Yes!	There	is	a	chance	that	this	may	happen,	and	that	is	why	we	apply	the	robust	approach	in	estimating	RMSE	

as	shown	in	Figure	6	and	Table	4	where	all	years	are	equally	represented.		

L380:	You	probably	mean	"sampling	density"?	

L429:	Added	density	

L397	and	399:	The	"||"	around	the	unit	is	a	rather	sloppy	notation.	Better	be	explicit	by	writing	"|bias|	<	5uatm,	

RSME	<	10uatm".	

L448:	Changed	as	suggested	

L410:	Duplicate	"bias"	

L460:	Removed		

L411:	Add	comma	after	"ERT",	otherwise	difficult	to	read.	

L461:	Added	comma	

L426:	Are	the	statistics	shown	in	the	Taylor	diagrams	calculated	over	all	individual	data	points?	That	is,	do	they	

reflect	both	spatial	and	temporal	features?		

L470:	Yes,	calculated	over	individual	data	points.	Have	added	this	to	the	text.		

Fig	8:	Consider	to	use	the	same	radial	axis	limits	for	all	6	Taylor	diagrams.	For	example,	the	estimates	seem	to	

lie	more	apart	for	HOT,	but	that’s	only	because	the	variability	at	HOT	is	smaller	than	in	others	of	the	

independent	data	sets. 	

X-axis	limits	changed.	HOT(s)	also	renamed	

L436:	Spurious	"that"	

L489:	Removed		

L469:	"2002"	seems	to	contradict	"2000"	in	L475	and	480.	

L516:	Corrected	

L470:	Shouldn’t	"regions"	be	"region	groups"?	



L517:	No,	regions	refer	to	the	grouped	biomes.	

L479:	It	seems	to	me	that	"reflect"	would	better	fit	than	"highlight"		

L531:	Changed	as	suggested	

L523-525:	You	could	nicely	link	this	back	to	Fig	2	

L577:		The	interannual	estimates	of	interquartile	range	(IQR	IA	;	Figure	11a)	show	the	disagreement	between	

methods	is	relatively	small	in	the	majority	of	the	ocean	(⪝	5	µatm).	;	t	T	he	exceptions	being	the	South	Atlantic,	

southeastern	Pacific	and	eastern	equatorial	Pacific	with	differences	of	>	10	µatm,		where	these	regions	coincide	

with	regions	of	low	sampling	density	(Figure	2)	.		

L526:	Add	"trend"	after	"NH-ST",	as	it	is	mainly	the	trend	which	is	reflected	by	IQRˆIA	(if	I	understood	

correctly)		

L579:	Correct,	added		trend	

L544:	replace	"ensembles"	by	"ensemble	averages"	(see	remark	on	terminology	above)	

Done		

L593,	Fig	12:	It	remains	unclear	to	me	how	to	interpret	the	"seasonal	cycle	reproducibility".	Doesn’t	it	get	

smaller	with	stronger	IAV?	A	short	explanation	would	be	helpful.	

The	image	caption	contains	the	description	of	what	seasonal	cycle	reproducibility	is	

L611:	duplicate	"first"	

L660:	Removed	

L628:	According	to	the	paper,	the	resolution	is	daily,	not	6-hourly.		

L677:	Correct,	changed	to	daily	

L623:	What	do	you	mean	by	"procedural	architectures"?	

L732-L739:	This	paragraph	has	been	reworded	extensively	and	moved	to	the	specified	line	numbers	

L633:	The	method	by	Denvil-Sommer	et	al.	(2018)	is	named	as	an	example	of	a	"fundamentally	new	method".	

In	fact,	however,	the	"CARBONES-NN"	contribution	to	the	SOCOM	ensemble	also	employed	a	climatological	

and	an	interannual	step,	but	did	not	outperform	other	methods	there.	To	clarify	this	interesting	question,	I’d	

suggest	to	include	the	Denvil-Sommer	et	al.	(2018)	results	into	your	comparison	Sect	3.3-3.5,	as	this	would	

allow	a	clean	comparison.	

We	agree	that	Denvil-Sommer’s	method	is	not	fundamentally	new	and	this	paragraph	has	been	moved	to	the	

next	section	and	simplified.	The	paragraph	now	includes	reference	to	assimilation	models	(	e.g.		B-SOSE	by	

Verdy	and	Mazloff	2017).		

L645:	If	I	understood	correctly,	the	IQRˆIA	metric	is	specifically	sensitive	to	the	trend.	Why	do	you	particularly	

propose	this	metric	in	the	sampling	context?	

Have	removed	the	reference	to	IQR^IA	here	due	to	extensive	restructuring	as	suggested	in	the	overall	

comments.		

L695:	Is	"spatial	coherence"	really	the	right	word	here?		

L788:	Removed	spatial,	the	rest	of	the	sentence	implies	that	we	refer	to	the	spatial	distribution	
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A	comparative	assessment	of	the	uncertainties	of	global	surface-ocean	CO	2		estimates	using	a	
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Abstract.		Over	the	last	decade,	advanced	statistical	inference	and	machine	learning	have	been	

used	to	fill	the	gaps	in	sparse	surface	ocean	CO	2		measurements	(Rödenbeck	et	al.	2015).	The	

estimates	from	these	methods	have	been	used	to	constrain	seasonal,	interannual	and	decadal	

variability	in	sea-air	CO	2		fluxes	and	the	drivers	of	these	changes	(Landschützer	et	al.	2015,	2016,	

Gregor	et	al.	2018).	However,	it	is	also	becoming	clear	that	these	methods	are	converging	towards	

a	common	bias	and	RMSE	boundary:		the	wall	,	which	suggests	that		p	CO	2		estimates	are	now	

limited	by	both	data	gaps	and	scale-sensitive	observations.			Here,	we	analyse	this	problem	by	

introducing	a	new	gap-filling	method,	an	ensemble		average		of	six	machine	learning	models	

(CSIR-ML6	version	2019a),	where	each	model	is	constructed	with	a	two-step	

clustering-regression	approach.	The	ensemble		average		is	then	statistically	compared	to	

well-established	methods.	The	ensemble		average	,	CSIR-ML6,	has	an	RMSE	of	17.16	µatm	and	

bias	of	0.89	µatm	when	compared	to	a	test-dataset	kept	separate	from	training	procedures.	

However,	when	validating	our	estimates	with	independent	datasets,	we	find	that	our	method	

improves	only	incrementally	on	other	gap-filling	methods.	We	investigate	the	differences	between	

the	methods	to	understand	the	extent	of	the	limitations	of	gap-filling	estimates	of		p	CO	2	.	We	show	

that	disagreement	between	methods	in	the	South	Atlantic,	southeastern	Pacific	and	parts	of	the	

Southern	Ocean	are	too	large	to	interpret	the	interannual	variability	with	confidence.	We	conclude	

that	improvements	in	surface	ocean		p	CO	2		estimates	will	likely	be	incremental	with	the	

optimisation	of	gap-filling	methods	by	(1)	the	inclusion	of	additional	clustering	and	regression	

variables	(	e.g.		eddy	kinetic	energy),	(2)	increasing	the	sampling	resolution	,	(3)	successfully	

incorporating		p	CO	2		estimates	from	alternate	platforms	(	e.g.		floats,	gliders)	into	existing	machine	

learning	approaches.	.	Larger	improvements	will	only	be	realised	with	an	increase	in	CO	2	

observational	coverage,	particularly	in	today’s	poorly	sampled	areas.		
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1	Introduction		

The	ocean	plays	a	crucial	role	in	mitigating	against	climate	change	by	taking	up	about	a	third	of		the	

anthropogenic	carbon	dioxide	(CO	2	)	emissions	(Sabine	et	al.	2004;	Khatiwala	et	al.,	2013;	McKinley	et	al.	

2016).	While	the	mean	state	in	the	global	contemporary	marine	CO	2		uptake	is	a	widely-used	benchmark	(Le	

Quéré	et	al.,	2018),	underlying	assumptions	and	limited	confidence	regarding	the	variability	and	long-term	

evolution	of	this	sink	persist.	Sparse	observations	of	surface	ocean	CO	2		during	winter	and	in	large	inaccessible	

regions	has	been	the	biggest	barrier	in	constraining	the	seasonal	and	interannual	variability	of	global	

contemporary	sea-air	exchange	(Monteiro	et	al.	2010;	Rödenbeck	et	al.	2015;	Bakker	et	al.	2016;	Ritter	et	al.	

2017).	The	increasing	ship-based	sampling	effort	and	the	ongoing	development	of	autonomous	observational	

platforms	(e.g.	biogeochemical	Argo	floats	and	Wave	Gliders)	have	improved	confidence	of	interannual	

estimates	of	ocean	CO	2		uptake	in	more	recent	years	(Monteiro	et	al.	2015;	Bakker	et	al.	2016;	Gray	et	al.,	2018).		

	

The	community	has	turned	to	models	and	data-based	approaches	to	improve	estimates	of	CO	2		uptake	by	the	

oceans	for	periods	and	regions	with	poor	or	no	observational	coverage	(Wanninkhof	et	al.	2013a;	Rödenbeck	et	

al.	2015;	Verdy	and	Mazloff,	2017).	Ocean	biogeochemical	models	are	able	to	capture	the	general	global	trend	

in	increasing	oceanic	CO	2		uptake	shown	by	observations	but	suffer	from	significant	regional	and	interannual	(~1	

PgC	yr	-1	)	differences	in	their	estimates	because	these	models	cannot	yet	accurately	parameterise	the	marine	

carbonate	system	at	computationally	feasible	resolutions	(Wanninkhof	et	al.	2013a).	In	recent	years,	data-based	

approaches,		e.g.	namely		statistical	interpolations	and	regression	methods,	have	become	a	popular	alternative	to	

biogeochemical	models	(Lefèvre	et	al.	2005;	Telszewski	et	al.	2009;	Landschützer	et	al.	2014;	Rödenbeck	et	al.	

2014;	Jones	et	al.	2015;	Iida	et	al.	2015).	The	regression	methods	try	to	maximise	the		utility	of		existing	

ship-based	observations		by		extrapolating	CO	2		using	proxy	variables	(observable	from	space	or	interpolated).	

Extrapolating	with	proxy	variables	is	possible	due	to	the	non-linear	relationship	between	the	partial	pressure	of	

CO	2		(	p	CO	2	)	in	the	surface	ocean	and	proxies	that	may	drive	changes	in	surface	ocean		p	CO	2	.	Improved	access	to	

quality	controlled	ship-based	measurements	of	surface	ocean	CO	2		through	the	Surface	Ocean	CO	2		Atlas	

(SOCAT)	database,	and	satellite	and	reanalysis	products	as	proxy	variables	has	aided	the	development	of	the	

data-based	methods	(Rödenbeck	et	al.	2015;	Bakker	et	al.	2016).	

The	current	state	of	machine	learning	in	ocean	CO	2		estimates	

With	the	increase	in	the	number	of	statistical	estimates	of	surface-ocean	CO	2	,	the	Surface	Ocean	CO	2		Mapping	

(SOCOM)	community		collated	consolidated		fourteen	of	these	methods	in	an	intercomparison	of	“gap-filling”	

methods	(Rödenbeck	et	al.	2015).	The	intercomparison	gives	an	overview	of	the	SOCOM	landscape,	with	

regression	and	statistical	interpolation	approaches	making	up	eight	and	four	of	the	fourteen	methods	respectively	

(Rödenbeck	et	al.	2015).	Two	model-based	approaches	were	also	compared.		

	

While	SOCOM	intercomparison	did	not		seek	to		identify	an	optimal	mapping	method,	it		assessed	weighted	the	

ensemble		members	according	to	how	well	they	represented	interannual	variability	(IAV)	relative	to	
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climatological	surface	ocean		p	CO	2		increasing	at	the	rate	of	atmospheric	CO	2		concentrations	(R	iav	).	Two	methods,	

the	Jena-MLS	(Mixed-Layer	Scheme)	and	MPI-SOMFFN	(Self-Organising	Map	Feed-Forward	

Neural-Network)	,			achieved	lower	were	weighted	more	due	to	lower		R	iav		scores		compared	to	other	members	of	

the	comparison	.	The	MPI-SOMFFN		(Self-Organising	Map	Feed-Forward	Neural-Network)	,	is	a	global	

implementation	of	a	two-step	clustering-regression	approach	and	has		been	subsequently	become	the	most		widely	

adopted	used	method		in	the	literature	(Landschützer	et	al.	2015,	2016,	2018,	Ritter	et	al.	2017).	The	elegance	of	

the	clustering-regression	approach,	particularly	the	clustering	step,	is	that	it	reduces	the	problem	into	smaller	

parts	with	more	coherent	variability	and	reduces	the	computational	size	of	the	problem	per	cluster	–	a	beneficial	

attribute	when	using	regression	methods	that	do	not	scale	well	to	big	datasets.		

	

The	SOCOM	intercomparison	found	that	the	gap-filling	methods	were	in	agreement	in	regions	with	a	large	

number	of	seasonally-resolving	persistent	measurements,	but	the	different	methods	did	not	agree	in	regions	

where	data	were	sparse	(e.g.	the	Southern	Ocean).		Similarly,	Ritter	et	al.	(2017)	found	little	agreement	in	the	

Southern	Ocean	on	seasonal	timescales,	yet	on	decadal	time-scales,	there	was	agreement	on	the	direction	of	

trends	between	gap-filling	methods.	

1.2	Measuring	the	uncertainty	of	estimates?	

The	biggest	limitation	in	assessing	gap-filling	methods	is	the	paucity	of	data	in	the	Southern	Hemisphere	

(Rödenbeck	et	al.	2015;	Bakker	et	al.	2016).	The	standard	use	of	RMSE	and	bias	as	measures	of	uncertainty	

weight	the	regions	or	periods	with	observations	heavily	compared	to	the	data-sparse	regions	and	periods.	The	

R	iav		score	improves	on	the	standard	implementation	of	RMSE	and	bias	by	weighting	the	uncertainties	annually,	

thus	giving	a	less	temporally	biased	estimate	of	uncertainty.	However,	the	method	is	still	limited	to	the	regions	

where	there	are	observations	of		p	CO	2	.	

	

Previous	studies	have	compared	their	methods’	estimates	to	independent	datasets,	where	measurements	of		p	CO	2	

are	not	included	in	the	SOCAT	datasets	(Landschützer	et	al.	2013,	2014;	Jones	et	al.	2015;	Denvil-Sommer	et	al.	

2018).	These	data	serve	as	good	validation	data,	particularly	with	the	inclusion	of	derivations	of		p	CO	2		from	

autonomous	platforms	in	the	Southern	Ocean,	a	historically	undersampled	area	especially	during	winter	(Boutin	

and	Merlivat,	2013;	Gray	et	al.	2018).	

	

One	of	the	concluding	statements	in	the	SOCOM	intercomparison	is	that	pseudo-	or	synthetic	data	

(deterministic	model	output)	experiments	should	be	used	to	test	and	compare	methods.	Gregor	et	al.	(2017)	did	

just	this,	but	their	study	was	limited	to	the	Southern	Ocean,	and	the	synthetic	data	did	not	fully	capture	the	

variability	represented	by	observations,	in	part	due	to	coarse	synthetic	data	resolution	(5-daily	mean	and	½°	

spatially).	Moreover,	such	studies	can	only	compare	the	limitations	of	the	gap-filling	methods	within	the	

framework	of	the	model.	The	authors	found	that	the	ensemble	average		of	the	compared	methods	outperformed	

performed	slightly	better	than	ensemble	members	individual	methods	,	in	agreement	with	ensemble		averaging	

approaches	previously	used	in	ocean	CO	2		studies	(Khatiwala	et	al.	2013).		
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1.3	Aims	

The	main	aim	of	this	study	is	to	present	and	evaluate	a	new	machine	learning	approach	to	estimate	surface	ocean	

p	CO	2	.	We	propose	the	use	of	an	ensemble		average	,	where	we	hypothesise	that	the	“whole	is	greater	than	the	sum	

of	its	parts”	as	the	strengths	of	the	ensemble	members	are	often	complementary	in	such	a	way	to	overcome	the	

weaknesses	(Khatiwala	et	al.	2013;	Gregor	et	al.	2017).	Further,	we	aim	to	evaluate	the	method	for	a	selection	of	

existing	gap-filling	methods.	From	this	comparison	we	aim	not	only	to	gain	a	sense	of	our	method’s	

performance	but	also	the	state	of	gap-filling	based	estimates;	i.e.	where	would	we	be	able	to	improve	in	future	

work?	

2	Methods	

There	are	two	major	components	to	this	study:	surface		p	CO	2		mapping	with	multiple	methods,		robust	error	

estimation	from	SOCAT	v5	gridded	product	and	independent	data	sources.	This	study	takes	a	similar	two-step	

approach	used	in	the	JMA-MLR	and	MPI-SOMFFN	approaches,	where	data	is	grouped	or	clustered	first,	and	

then	a	regression	algorithm	is	applied		separately		to	each	group	or	cluster.	We	use	the	ocean	CO	2		biomes	by	Fay	

and	McKinley	(2014)	as	an	option	for	grouping.	Alongside	this	grouping,	we	use	an	optimal	K-means	clustering	

configuration.	Next,	four	non-linear	regression	methods	are	applied	to	each	of	the	groupings.	The	regression	

methods	are	Support	Vector	Regression	(SVR),	Feed-Forward	Neural	Network	(FFN),	Extremely	Randomised	

Trees	(ERT)	and	Gradient	Boosting	Machine	(GBM).	The	latter	two	approaches	are	new	to	the	application.	

These	methods	are	then	compared	to	independent	data	sources.	This	is	outlined	in	more	detail	in	the	

Experimental	Overview	below.	

2.1	Experimental	overview		

The	experimental	design,	outlined	below,	is	summarised	in	Figure	1:		

1. In	the	first	step	(	denoted	as	described	by	the		“K-means	clustering”		section		in	Figure	1),	we	generate	

climatological		biomes	clusters		using	the	oceanic	CO	2		biomes	by	Fay	and	McKinley	(2014),	and	a	

selection	of	features	variables	(five	combinations)	and	number	of	clusters	(a	range	of		clusters	from		11	

to	25		clusters	,	stepping	by	two)	resulting	in	a	total	of	41	clustering	configurations.		

2. Four	regression	algorithms	are	applied	to	each	clustering	configuration,	resulting	in	164	models	

(described	by	the	“Regression”	section	in	Figure	1).	The	test	data	(isolated	from	model	training	

procedure)	is	used	to	identify	the	best	performing	cluster	ing	configuration		with	annually	weighted	bias,	

root-mean-squared	error	(RMSE)	and	R	iav	.	The	four	regression	models	for	CO	2		biomes	and	the	four	

models	from	the	best	performing	cluster	ing	configuration			and		(as	indicated	by	the	bold	lines	in	Figure	

1)	are	used	in	the	steps	that	follow.	The	selected	eight	models	are	averaged	to	create	an	ensemble	

average		that	is	included	with	the	eight	members	for	further	evaluation.	

3. The	third	step	(as	represented	by	the	“K-fold	testing”	section	in	Figure	1	and	Section	2.5)	provides	a	

robust	uncertainty	evaluation	based	on	the	training	data	(SOCAT	v5).		An	iterative	test-train	approach	
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is	applied	to	estimate	the	bias,	RMSE	and	R	iav		for	the	complete	SOCAT	v5	dataset	(rather	than	just	one	

test	split).		

4. The	fourth	step	compares	the	ensemble		average		estimates	of	surface	ocean		p	CO	2		with	independent	test	

data	(that	is	not	in	SOCATv5,	as	represented	by	the	“Independent”	section	in	Figure	1),	which	allows	

testing	the	predictive	skill	of	the	ensemble	method	(Section	2.6).	Four	methods	from	the	SOCOM	

gap-filling	intercomparison	study	are	included	for	reference.		

5. Lastly,	all	gap-filling	methods	are	compared	to	identify	regions	where	there	is	a	divergence	in	the	trend	

and	seasonal	cycle.	
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Figure	1:		A	flow	diagram	that	shows	the	experimental	procedure	used	in	this	study.	Abbreviations	for	feature-variables	in	
the	orange	hexagons	can	be	found	in	Table	1.	All	other	abbreviations	are	given	in	the	diagram.	Details	of	each	step	are	given	
in	the	text.		
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2.2	Data:	clustering,	training	and	predictive	

Standard	machine	learning	implementation	requires	a	training-	and		a		predictive	dataset.	The	training	dataset	

consists	of	a	target	variable	that	is	being	predicted	(in	this	case		p	CO	2	)	and	one	or	more	feature-variables	that	

have	samples	that	correspond	with	target	samples	(	e.g.		SST,	Chl-	a	,	MLD	co-located	in	space	and	time),	where	

feature-variables	may	directly	or	indirectly	influence	the	target	variable.	Features	variables	are	used	to	predict	

once	a	machine	learning	model	has	been	trained	and	must	thus	be	available	for	the	full	prediction	domain.		

	

	

Figure	2:		Map	showing	the	distribution	of	the	SOCAT	v5	monthly	gridded	product	(1982	to	2016)	as	a	monthly	climatology	
to	show	how	well	the	seasonal	cycle	is	represented	(regardless	of	the	year).	The	red	shading	shows	grid-points	where	the	
majority	of	data	occur	from	May	to	October	and	the	blue	shading	shows	grid-points	where	the	majority	of	data	occur	from	
November	to	April.	
	

Here	we	use	surface	ocean		p	CO	2		calculated	from	the	SOCAT	v5	monthly	gridded		f	CO	2		(fugacity	of	CO	2	)	

product	(hereinafter	SOCAT	v5	as	shown	in	Figure	2)	as	the	target	variable	(Sabine	et	al.	2013;	Bakker	et	al.	

2016).	SOCAT	v5	is	a	quality	controlled	dataset	that	contains	observations	of	surface	ocean		f	CO	2	,	which	is	

converted	to		p	CO	2		with:		

CO CO xp( P  p 2 = f 2 e
atm

surf  )
R   T
B + 2 δ 1 		 Eq.	1	

where	 	is	the	atmospheric	pressure	at	the	surface	of	the	ocean,		T		is	the	sea	surface	temperature	(SST)	inP
atm

surf 	

°K,		B		and	 	are	virial	coefficients,	and		R		is	the	gas	constant	(Dickson	et	al.	2007).	We	used		ERA-interim	P
atm

surf  

(Dee	et	al.,	2011)	and	NOAA	daily	optimally	interpolated	SST	version	2	(dOISSTv2)	that	uses	only	Advanced	

Very-High-Resolution	Radiometer	data	(AVHRR;	Reynolds	et	al.	2007;	Banzon	et	al.	2016).			SST	from	the	

Operational	Sea	Surface	Temperature	and	Sea	Ice	Analysis	(OSTIA)	product	by		GHRSST	(Group	for	High	

Resolution	Sea	Surface	Temperature;	Dolon	et	al.	2012)	and	ERA-interim	 (Dee	et	al.,	2011)	)	.		AP
atm

surf   	

consideration	in	this	application	of	SOCAT	data	is	the	mismatch	between	the	temperature	at	which		p	CO	2		is	

measured	(SST	SOCAT	)	and	the	OISST	(Goddijn-Murphy	et	al.	2015).	The	OISST	product	reports	the	bulk	

temperature	at	~1	m,	whereas	SST	SOCAT		is	measured	at	the	depth	of	a	ship’s	water	intake	(Banzon	et	al.,	2016;	

Bakker	et	al.	2016).	A	comparison	of	SST	SOCAT		and	OISST	shows	that	the	former	has	a	global	mean	warm	bias	
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of	0.13°C	(Figure	S3a),	the	same	as	that	reported	by	Banzon	et	al.	(2016),	which	they	attribute	to	warming	in	the	

ships	intake.	Further	investigation	shows	that	correcting		p	CO	2		for	the	temperature	bias	reduces	the	accuracy	of	

the	machine	learning	estimates	relative	to	the	training	data	(Section	S2.4)	and	does	not	improve	spatial	biases.	

We	thus	do	not	apply	the	correction	applied	in	Goddijn-Murphy	et	al.	(2015).		

	

Feature-variables	in	both	the	training	and	predictive	datasets	are	globally	gridded	products,	including	satellite	

observations,		in-situ		measurements	and	reanalysis	products	(Table	1,	see	Section	S1	for	details).	All	

feature-variables	are	gridded	to	a	monthly	frequency	onto	a	global	1°	⨉	1°	resolution	grid.	Thereafter,	data	

processing	steps	are	applied	as	shown	in	Table	1	and	described	in	detail	in	Supplementary	Materials	(Section	

S1)	with	the	final	output	being	a	complete	dataset	ranging	from	1982	to	2016.	Note	that	the	clustering	and	

regression	steps	use	different	subsets	of	the	feature-variables	as	indicated	in	Table	1.	

	

Table	1	:	Summary	of	the	products,	variables	and	data	processing	steps	used	for	feature-variables.	The	column	“Usage”	
indicates	the	features	that	are	used	for	the	clustering	step	(identified	by	C)	and	for	the	regression	step	(identified	by	R).	
Abbreviations	are	used	in	Figure	1	and	throughout	the	text.	Basic	data	processing	is	described	in	the	text	with	details	in	the	
supplementary	materials	(Section	S1).		
Group:	Product	 Variable	 Abbrev	 Usage	 Processing	 Reference	

NOAA:		dOISSTv2	

Sea	surface	temperature	 SST	 C	 R	 -	

Reynolds	et	al.	(2007)	
Banzon	et	al.	(2016)	

SST	seasonal	anom.	 SST'	 C	 R	 SST	–		annual	average	

Sea	ice	fraction	 ICE	 	 R	 -	

MetOffice:		EN4	 Salinity	 SSS	 	 R	 -	 Good	et	al.	(2013)	

CDIAC:		ObsPack	v3	 Atmospheric		p	CO	2	 p	CO	2	
atm	 	 R	 x	CO	2	atm			⨉	sea	level	pressure	 Masarie	et	al.	(2014)	

UCSD:		Argo	Mixed	Layers	 Mixed	Layer	Depth	 MLD	 C	 R	 log	10	(	climatology	)	 Holte	et	al.	(2017)	

ESA:		Globcolour	

Chlorophyll-	a	 Chl-	a	 C	 R	 log	10	( )limatology f illedc
 cloud gaps
1982 1997

	

Maritorena	et	al.	(2010)	Chla	seasonal	anom.	 Chl-	a	′	 	 R	 Chl-	a		–		annual	average	

ECMWF:		ERA-Interim	2	

u	-wind	 u	 	 R	 -	

Dee	et	al.	(2011)	

v	-wind	 v	 	 R	 -	

Wind	speed	 U	
10	

	 R	 √u2 + v2 	

ESA:		Globcurrent	 Eddy	kinetic	energy	 EKE	clim	 C	 	 log	10	(½	 u ) )  (  2 + v  2 	 Rio	et	al.	(2014)	

-	 Day	of	the	year	 J	 	 R	 sin( ),	cos( )j

365
j

365  	 -	

LDEO:		p	CO	2		climatology	 Surface	ocean		p	CO	2	 p	CO	2	
clim	 C	 	 Data	smoothing	 Takahashi	et	al.	(2009)	

	

In	this	paragraph,	we	briefly	describe	the	data	processing	steps	shown	in	Table	1	-	detailed	product	descriptions	

and	in-depth	processing	steps	are	in	Section	S1.	We	derive	an	additional	SST	feature,	SST′,	by	subtracting	the	

annual	mean	of	SST	from	each	respective	year,	leaving	the	annual	mean	anomalies	(	Reynolds	Donlon		et	al.	

20	07	12	;	Banzon	et	al.	2016	).	We	use	the	log	10		transformation	of	the	Globcolour	Chl-a	global	product	

(Maritorena	et	al.	2010).	Cloud	gaps	and	the	period	before	the	start	of	the	product	(1982	to	1997)	are	filled	with	

the	climatology	(1998	–	2016),	and	high-latitude	winter	regions	(where	there	is	no	climatology	for	Chl-	a	)	is	

filled	with	low	concentration	random	noise		to	be	consistent	with	regions	of	low	concentration	Chl-	a		(Gregor	et	

al.	2017)	.	We	derive	an	additional	Chl-a	feature,	Chl-	a	′	using	the	same	procedure	as	described	for	the	SST	
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annual	mean	anomalies.	We	use	a	log	10		transformation	of	mixed	layer	depth	(MLD)	from	Argo	float	density	

profiles	(Holte	et	al.	2017)	to	create	a	monthly	climatology,	thus	imposing	the	assumption	that	there	is	no	

interannual	variability.	Wind	speed	is	calculated	from	6-hourly	data	using	the	equation	in	Table	1	before	taking	

the	monthly	average.	Atmospheric		p	CO	2		is	calculated	with:	 ,	where	 	is	the	moleCO CO  p 2 = x 2
atm

P
atm

COx 2
atm 	

fraction	of	atmospheric	CO	2		(from	ObsPack	v3	by	Masarie	et	al.	2014)	and	 	is	reanalysed	mean	sea-levelP
atm 	

pressure	(from	ERA-interim	2;	Dee	et	al.	2011)	–	further	details	for	the	procedure	are	in	the	Section	S1	of	the	

Supplementary	Materials.	The	climatology	of	Eddy	Kinetic	Energy	(EKE	clim	)	is	calculated	from		u		and		v		surface	

current	components	(integrated	for	depth	<	15	m)	from	the	Globcurrent	product	(Rio	et	al.,	2014),	where	 	is u 	

calculated	as	 	and	similarly	with		v		(Table	1). u u 		

2.3	Clustering	and	biomes	

The	seasonal	and	interannual	variability	of	global	surface	ocean		p	CO	2		is	complex	due	to	interactions	of	various	

driver	variables	acting	on	the	surface	ocean	at	different	space	and	time	scales	(Lenton	et	al.	2012;		Landschützer	

et	al.	2015;	Gregor	et	al.	2018).	Machine	learning	algorithms	applied	globally	struggle	to	represent	the		p	CO	2	

accurately	unless	spatial	coordinates	are	included	as	feature-variables	(Gregor	et	al.	2017)	.	This	is	due	to	the	fact	

that		p	CO	2		may	respond	inconsistently	to	observable	feature-variables	in	different	regions	as	it	is	not	possible	to	

observe	all	feature-variables	that	drive		p	CO	2	.	A	common	practice		to	avoid	the	inclusion	of	coordinates		is	to	

separate	divide		the	ocean	into	regions	where	processes	that	drive		p	CO	2		are	coherent	and	then	apply		individual	

regressions	to	each	region	–	five	of	the	eight	regression	methods	in	Rödenbeck	et	al.	(2015)	apply	this	approach.	

We	adopt	two		such		approaches	to	develop	regions	of	internal	coherence	in	respect	of	CO	2		variability	,	namely	

regions	defined	by	biogeochemical	properties	and	clusters	defined	by	a	clustering	algorithm	.		

	

Our	first	“clustering”	approach	uses	the	oceanic	CO	2		biomes	by	Fay	and	McKinley	(2014)	that	divide	the	ocean	

into	17	biomes.	Fay	and	McKinley	(2014)	define	their	biomes	by	establishing	thresholds	for	SST,	Chl-	a	,	sea-ice	

extent	and	maximum	MLD	depth.	Unclassified	regions	from	the	original	biomes	are	manually	assigned	based	on	

their	geographical	extent	resulting	in	six	additional	regions	(Figure	3)	.	We	maintain	these	as	separate	regions	

from	the	original	Fay	and	McKinley	(2014).	Their	study	originally	did	not	classify	these	regions	in	the	core	

biomes	because	the	physical	and	biogeochemical	properties	were	not	accounted	for	by	the	set	thresholds	from	

their	study.	This	would	suggest	that	drivers	of	CO	2		in	these	regions	could	be	quite	different	from	the	adjacent	

open	ocean	biomes	.	Note	that	we	may	refer	to	the	modified	Fay	and	McKinley	(2014)	ocean	CO	2		biomes	as	CO	2	

biomes	from	here	on.	For	later	analyses,	we	group	certain	biomes	together	as	shown	by	the	brackets	above	the	

colour-bar	in	Figure	(3).		
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Figure	3:		Regions	or	biomes	as	defined	by	Fay	and	McKinley	(2014).	Unclassified	regions	from	the	original	data	have	been	
assigned	manually	in	this	study	and	are	shown	by	the	separate	colou	rs	r	palate	.	This	modified	configuration	of	the	CO	2	
biomes	is	referred	to	as	BIO23	in	this	study.	The	sea-mask	used	in	Lanschützer	et	al.	(2014)	has	been	applied.	For	the	biome	
abbreviations	(below	the	colour-bar)	see	Fay	and	McKinley	(2014).	The	abbreviations	above	the	colour-bar	are	used	in	this	
study,	where	selected	biomes	are	grouped	together.	Thick	white	lines	show	the	boundaries	of	the	grouped	regions.	Prefixes	
are:	NH	=	Northern	Hemisphere,	SH=Southern	hemisphere;	suffixes	are	HL	=	high	latitudes,	ST	=	subtropics,	and	EQU	=	
equatorial.	
	

W	Further,	w	e	also	use	K-means	clustering	,	which	groups	data	based	on	Euclidean	distances.	More		,		specifically	

,	we	implement		the		mini-batch	K-means		from	implementation	in		Python’s	Scikit-Learn	package	(Sculley	2010;	

Pedregosa	et	al.	2012),	which	is	described	in	the	supplementary	materials	(Section	S2.2;	Figure	S2).	We	apply	

clustering	with	various	feature	combinations	and	the	number	of	clusters	(shown	by	orange	hexagons	in	Figure	

1).	We	tested		a	range	of	11	to	25	clusters	the	number	of	clusters	ranging	from	11	to	25		(stepping	by	two).	The	

performance	of	each	cluster	ing	configuration		is	not	tested	with	a	clustering	metric;	instead,	we	test	the	

performance	based	on	the	test	scores	of	the	regressions	in	the	next	step	as	a	more	complete	indicator	of	

performance.	We	find	optimal	results	in	respect	of	RMSE	and	biases	with	21	and	23	clusters		(Figure	5)	.	We	

selected	21	clusters	(Figure	S2).	Each	method	of	defining	regional	coherence	in	respect	of		p	CO2	variability	has	

its	methodological	weaknesses	so	in	this	study	we	adopted	the	approach	of	incorporating	both	K-means	and	CO	2	

biomes	into	the	ensemble		average		(Figure	1).		Although	this	likely	weakens	the	geophysical	meaning	of	the	

ensembled	domains	we	show	that	it	strengthens	the	overall	performance	of	the	ensemble		average		(Figure	5).	

2.4	Regression	

Here	we	describe	the	underlying	machine	learning	principles	of	regression		(	or	a.k.a.			supervised	learning)	.	The	

co-located	data	(	i.e.		SOCAT	v5)	are	split	into	training	and	test-subsets	with	a	roughly	80:20	split.	The	test-subset	
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is	isolated	from	the	training	process	to	attain	a	reliable	estimate	of	uncertainty.	We	make	the	split	between	

training	and	test-subsets	based	on	a	random	subset	of	years	in	the	time	series	(1982	to	2016):	1984,	1990,	1995,	

2000,	2005,	2010	and	2014.	We	avoid	using	a	shuffled	train–test	split	(completely	random)	as	this	leads	to	

artificially	low	uncertainties	in	machine	learning	algorithms	that	are	prone	to	overfitting	(see	the	experiment	in	

S2.1),	where	the	models	can	reproduce	the	shuffled	test	data	better	as	these	data	are	adjacent	to	samples	of	the	

same	ship	track.		

	

Machine	learning	models	have	the	ability	to	be	as	complex	as	the	dataset	at	hand	and	are	thus	at	risk	of	fitting	

not	only	the	signal	but	also	the	noise	of	the	training	data	–	this	is	known	as	the	bias-variance	tradeoff.	High	

variance	is	a	result	of	a	machine	learning	model	that	is	too	complex	and	is	fitting	the	noise,	and	high	bias	is	due	

to	insufficient	complexity	where	the	model	cannot	fit	the	signal	(Hastie	et	al.	2009).	Machine	learning	

algorithms	have	hyper-parameters	that	control	the	complexity	of	the	model	for	each	specific	problem.	In	this	

study,	hyper-parameters	are	tuned	by	training	the	model	with	grid-search	cross-validation,		We	further	reduce	the	

possibility	of	overfitting	by	tuning	the	hyper-parameters	for	each	model	to	be	more	generalised,		i.e.		able	to	fit	

the	data	that	the	model	has	not	been	exposed	to.	The	search	for	the	optimal	hyper-parameters	is	achieved	with	

grid-search	cross-validation,		where	a	portion	of	the	training	subset	is	iteratively	kept	separate	from	the	training	

process	for	a	certain	set	of	hyper-parameters		(Hastie	et	al.	2009)	.	The	hyper-parameters	that	result	in	the	best	

score	from	the	grid-search	are	used	for	the	fit	with	the	full	training	subset		(see	S2.3	for	more	details)	.	We	use	a	

variation	of	K-fold	cross-validation	called		group	K-fold		in	Scikit-Learn	(Pedregosa	et	al.	2012).	Rather	than	

having	arbitrary	splits	for	each	fold,	a	given	grouping	variable	is	used	to	split	the	data	–	in	this	case,	years.	

Using	years	as	the	grouping	variable	reduces	bias	towards	the	second	half	of	the	time	series	where	data	is	less	

sparse.		

	

The	train-test	split	and	cross-validation	are	applied	identically	to	each	of	the	four	machine	learning	algorithms	

for	each	clustering	configuration.	We	use	the	following	machine	learning	algorithms:	Extremely	Randomised	

Trees	(ERT	–	Geurts	2006);	Gradient	Boosting	Machines	(GBM	–	Friedman	2001);	Support	Vector	Regression	

(SVR	–	Drucker	et	al.	1997);	and	Feed-Forward	Neural	Networks	(FFN).	The	details	of	these	methods	and	how	

they	were	tuned	are	explained	in	the	supplementary	materials	(Section	S2.3).	The	first	two	methods,	ERT	and	

GBM,	are	new	to	this	application.	SVR	has	been	implemented	as	a	single	global	domain	by	Zeng	et	al.	(2017),	

and	FFN	is	used	by	several	different	methods,	some	of	which	are	in	the	SOCOM	intercomparison	(Landschützer	

et	al.	2014;	Zeng	et	al.	2014;	Sasse	et	al.	2013).		

	

Regression	performance	is	tested	using	RMSE	primarily	but	also	bias	(Equations	3	and	4		below	)	and	R	iav	

(Equation	5)	with	only	the	models	from	the	best	averaged	cluster	ing	configuration				used	for	the	rest	of	the	study.		

2.5	Robust	biases	and	root-mean-square	errors	

Standard	practice	in	machine	learning	is	to	set	aside	a	test-subset	of	the	data	as	described	in	Section	2.4.	We	use	

this	standard	approach	in	the	second	step	of	our	experiment		(regression	comparison)		as	an	estimate	of	the	
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performance	for	each	of	the	machine	learning	models	(164	in	total).	However,	this	grouped	train-test	split	gives	

a	bias	and	RMSE	estimate	limited	to	the	random	test	years	of	test-subset	(see	Section	2.4).	To	overcome	this	

limitation,	we		iteratively		apply	the	train-test	split	method		with	multiple	selections	of	years	five	times	in	a	

K-fold-like	test	approach	(Figure	1:	“K-fold	testing”	section),	meaning	that	the	data	in	a	test	fold	is	never	used	

to	train	the	model	.	The	splits	in	the	test	fold	are		also		based	on	a	subset	of	years	spaced	five	years	apart.	We	then	

refactor	the	five	test-fold	estimates	into	a	complete	test-estimate	(with	the	same	structure	as	the	original	SOCAT	

v5),	thus	giving	a	complete	estimate	of	bias	and	RMSE		(Figure	1	step	3)	.	This	robust	test-estimate	method	

ensures	that	correct	biases	and	RMSE	scores	are	reported	even	if	methods	are	prone	to	overfitting	(see	Section	

S2.1	and	Figure	S1).	We	limit	this	procedure	to	only	the	CO	2		biome	and	best	cluster	ed		regressions	as	it	has	five	

times	the	computational	cost	of	a	single	train-test	split.	

2.6	Method	validation	data	

For	method	validation	we	use	observation	data	that	are	not	used	in	SOCAT	(Figure	4	and	Table	2)	as	they	are	

either:	1)	included	in	LDEO,	but	not	SOCAT;	2)	not	measured	with	an	infrared	analyser;	3)	derived	from	two	

other	variables	in	the	marine	carbonate	system,	where	these	include	dissolved	inorganic	carbon	(DIC),	pH	and	

total	alkalinity	(TA)	–	SOCCOM	floats	use	empirically	calculated	TA.	

	

Figure	4:		The	distribution	of	the	validation	data.	Details	of	these	datasets	are	given	in	Table	2.	HOT	S		and	BATS	are	marked	
as	diamonds	to	distinguish	them	as	time	series	stations.		
	

Table	2:		Details	for	the	validation	datasets.	The	measured	variables	are	shown	(DIC	=	dissolved	inorganic	carbon;	TA	=	total	
alkalinity)	along	with	the	estimated	accuracy	of		p	CO	2	.	This	includes	the	propagated	uncertainty	in	the	conversion	from	DIC	
and	TA	to		p	CO	2		as	defined	by	Lueker	et	al.	(2000),	where	the	estimates	marked	with	*	are	an	extrapolation	of	the	estimates	
as	the	DIC	and	TA	uncertainties	do	not	match	or	exceed	those	listed	in	the	publication.	Grid	points	show	the	number	of	data	
at	the	same	resolution	as	the	feature-variables.	
Platform	 Project	 Measured	variable	 Accuracy	(µatm)	 Reference	 Grid	points	

Ship	 LDEO	 p	CO	2		Equilibrator	 ±2.5	µatm	 Takahashi	et	al.	(2016)	 16161	

GLODAP	v2	 DIC	+	TA		 ~	12	µatm	@	400	µatm	*	 Olsen	et	al.	(2016)	 5976	

Surface	floats	 CARIOCA	 p	CO	2		Colourimetric	 ±3.0	µatm	 Boutin	and	Merlivat	(2013)	 613	

Profiling	floats	 SOCCOM	 pH	+	TA	(LIAR)	 ~	11	µatm	@	400	µatm	 Carter	et	al.	(2016)	 1037	

Mooring	 BATS	 DIC	+	TA		 ~	4	µatm	@	400	µatm	 Bates	(2007)	 246	

HOT	S	 DIC	+	TA		 <	7.6	µatm	@	400	µatm	*	 Dore	et	al.	(2009)	 214	
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The	uncertainty	of		p	CO	2		that	is	calculated	from	DIC	and	TA	is	dependent	on	the	accuracy	of	these	two	

measurements,	as	well	as	the	derivation	of		p	CO	2		with	dissociation	constants,	for	which	we	use	the		CBSys	

package	in	Python	(Hain	et	al.	2015).		CBSys		implements	the	constants	from	Lueker	et	al.	(2000)	that	reports	an	

uncertainty	of	1.9%	standard	deviation	of	the	calculated		p	CO	2		where	DIC	and	TA	uncertainties	are	2.0	and	4.0	

µmol.kg	-1		respectively.	The	measurements	in	GLODAP	v2	are	slightly	larger	than	this	at	4	and	6	µmol.kg	-1	,	

which	would	result	in	an	error	larger	than	1.9%	–	this	is	12	µatm	for	a	400	µatm	estimate	at	a	hypothetical	3%	

error.	While	this	potentially	large	error	range	may	seem	concerning,	we	argue	that	the	inclusion	of	these	data	in	

data-sparse	regions	is	more	valuable	than	their	omission	.	Additionally,	GLODAP	v2	data	has	been	adjusted	on	a	

per-profile	bases	to	minimise	the	biases	through	the	comparison	of	deep	slow-changing	ocean	properties	(Olsen	

et	al.	2016)	.	Moreover,	the	errors	from	the	previous	gap-filling	products	are	on	the	order	of	20	µatm,	below	the	

potential	uncertainty	from	the	DIC/TA	conversion	to		p	CO	2		(Landschützer	et	al.	2014;	Rödenbeck	et	al.	2014).	

Williams	et	al.	(2017)	estimated	the	error	for		p	CO	2		calculated	empirically	to	be	2.7%,	where	TA	was	calculated	

empirically	with	the	Locally	Interpolated	Alkalinity	Regression	(LIAR)	algorithm	(Carter	et	al.	2016)	.	Note	that	

the	datasets	in	Table	2	likely	suffer	from	biases	unaccounted	for	due	to	temperature	temperature	mismatches	as	

discussed	in	Section	2.2	(Goddijn-Murphy	et	al.	2015).	It	is	important	to	note	that	each	of	the	validation	datasets	

are	compared	independently	of	each	other,	thus	avoiding	the	complications	of	accounting	for	the	biases	between	

datasets	.	All		p	CO	2		data	are	then	gridded	to	the	same	time	and	space	resolution	as	the	feature-variables	(monthly	

⨉	1°)	using		xarray		and		pandas		packages	in	Python	(McKinney,	2010;	Hoyer	and	Hamman,	2017).		

2.7	Sea-air	CO	2		flux	calculation	

Bulk		S	s	ea-air	CO	2		flux	(	F	CO	2	)	is	calculated	with:	

CO pCO CO )  F 2 = kw K0 ( 2
sea

p 2
atm 	 Eq.	2	

where		K	
0	
	is	the	solubility	of	CO	2		in	seawater	(Weiss	1974)	and		k	

w	
	is	the	gas-transfer	velocity	calculated	from	

wind	speed	using	formulation	by		Nightingale	Wanninkhof		et	al.	(20	00	13	)		as	this	parameterisation	was	the	closest	

match	to	in-situ	observations	of	CO	2		fluxes	(Goddijn-Murphy	et	al.	2016)	.		p	CO	2	sea		is	from	the	gap-filling	

methods,	and		p	CO	2	atm		is	atmospheric		p	CO	2	.	All	ancillary	variables	required	in	these	calculations	are	the	same	as	

those	listed	in	Table	1,	except	for		p	CO	2	atm	,	which	is	the	CarboScope	atmospheric		p	CO	2		product	from	Rödenbeck	

et	al.	(2014).		One	of	the	problems	with	the	bulk	estimates	of	sea-are	CO	2		fluxes	is	that	models	of	gas	exchange	

in	the	surface	layer	of	the	water	column	are	simplified	(Wanninkhof	et	al.	2009;	Woolf	et	al.	2016).	Other	

approaches	such	as	the	rapid	equilibrium	model	maintain	a	degree	of	complexity	(Woolf	et	al.	2016).	This	

requires	the	separate	calculation	of	atmospheric	and	oceanic	CO	2		concentrations	in	the	foundation	(	fnd	)	and	

interfacial	(	skin	)	layers.	We	thus	include	the	variables	required	to	calculate	sea-air	fluxes	using	the	rapid	

equilibrium	model	in	the	data	repository.		

2.8	Relative	interannual	variability	and	interquartile	range	metrics	

2.8.1	Regression	metrics	

We	use	bias	and	root-mean-square	error	(RMSE)	as	first-order	metrics	of	model	performance.		
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Bias	is	the	mean	difference	between	the	target	variable	and	the	estimates	thereof:		

iasB = ∑
n

i=1
n

y yˆ
i 	 Eq.	3	

where		n		is	the	number	of	training	samples,		y		is	the	array	of	target	data	and	 	is	the	corresponding	array	of ŷ 	

estimates.	Similarly,	RMSE	is	a	measure	of	the	difference	between	the	target	variable	and	the	estimates	thereof:	

MSE  R =√∑
n

i=1
n

(y y )
i
ˆ
i

2
  	 Eq.	4	

In	our	study,	these	metrics	are	calculated	for	each	year	and	then	the	mean	of	the	annual	bias	or	RMSE	scores	is	

taken	as	a	more	robust	measure	of	performance	in	the	context	of	temporally	imbalanced	data.	This	is	typically	

done	for	the	global	domain	unless	otherwise	stated.	

	

The	relative	interannual	variability	metric	(R	iav	)	was		introduced	by	Rödenbeck	et	al.	(2014)	and		used	in	the	

SOCOM	intercomparison	by	Rödenbeck	et	al.	(2015)	to	measure	how	well	a	method	represents	the	interannual	

variability	of	SOCAT		data	v5	.	The	metric	furthers	the	idea	of	RMSE	calculated	by	year	(and	region	if	stated,	

otherwise	global)	by	normalising	annually	weighted	RMSE	to	a	benchmark	with		minimal		interannual		and	

seasonal		variability		driven	only	by	atmospheric		p	CO	2	:	

R
iav =

σ  (M )1982 2015 bench

iav (t)

σ  (M )1982 2015  
iav (t)

	 Eq.		6	5	.1	

 M  
iav (t) =√ n 1

(y y )∑
n

i=1
i
ˆ
i

	 Eq.		6	5	.2	

 M
bench

iav (t) =√ n 1
Σ (y y )n

i=0 i

︿
i

b

	 Eq.		6	5	.3	

Here	 	is	the	standard	deviation	of		M	iav		and	 	respectively,	which	are	both	represented	as	yearly	timeM
iav

bench 	

series.	Equations		6	5	.2	and		6	5	.3	show	the	formulation	for	 	and	 which	represent	these	metrics	forM  
iav (t) ,M

bench

iav (t) 	

a	single	year.	The	symbol		i		represents	individual	data	points	in	a	particular	year		t	,		y		is	the	observation-based	data	

for	that	year,	 	is	the	predicted	data	and		n		is	the	number	of	points	in	the	year	and	region.	The	benchmarked ŷ 	

	is	calculated	to	normalise	M	iav	.	The	 	represents	the	data		where	IAV	has	been	removed	by	summingM
iav

bench ŷ
b 	

the	climatology	of	the	mapped		p	CO	2		and	the	annual	trend	of	atmospheric		p	CO	2	.	that	has	been	corrected	for	IAV	

by	subtracting	the	climatology	and	atmospheric	pCO2	trend	from	the	predictions.		

2.8.2	Ensemble	metrics	

We	use	the	interquartile	range	(IQR)	between	different	gap-filling	methods	as	a	robust	metric	of	disagreement,	

in	contrast	to	where		the	standard	deviation		which		is	sensitive	to	outliers.	IQR	is	calculated	as	the	third	quartile	

(75	th		percentile)	minus	the	first	quartile	(25	th		percentile).	The	disagreement	between	methods	is	calculated	with	

inter	annually		averaged	resampled		data		with	the	resulting	difference	and	then		averaged	over	the	time	series	to	
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arrive	at	the	interannual	disagreement	(IQR	IA	).	This	is	calculated	per	pixel	if	the	representation	of	the	data	is	

spatial	(maps)	and	per	time	step	of	a	time	series.	

3	Results	

3.1	Regression	results	

The	results	from	the		regression	comparisons	second	part	of	the	experiment		(	step	two	as	shown		in	Figure	1)	are	

depicted	in	Figure	(5a-c)	which	plots	the	matrix	of	the	(a)	average	bias,	(b)	RMSE	and	(c)	R	iav		for	each	

combination	of	the	experimental	number	of	clusters	and	clustering	features.		The	RMSE	and	bias	are	calculated	

by	averaging	the	annual	estimates	for	the	randomly	selected	test	years	(as	explained	in	Section	2.4)	rather	than	

using	the	entire	dataset	-	this	is	done	to	minimise	the	effect	of	the	temporal	imbalance	in	the	number	of	

observations.		

	

Figure	5:		Heatmaps	showing	the	average	cluster	(a)	bias,	(b)	root-mean-squared	error	(RMSE)	and	(c)	relative	interannual	
variability	(	R	iav	)	for	different	cluster	configurations,	where	smaller	scores	are	better	for	all	metrics.	The	rows	show	the	
number	of	clusters,	and	the	columns	show	clustering	feature-variable	configurations.	Each	cluster	contains	the	average	of		the	
scores	for	four	regression	methods:	support	vector	regression,	extremely	randomised	trees,	gradient	boosting	machine,	and	
feed-forward	neural-network.	The	black	box	indicates	clustering	configurations	that	perform	well	across	all	metrics	–	note	
that	a	R	iav		<	0.3	falls	within	the	best	category	of	performance	in	Rödenbeck	et	al.	(2015).	
	

Results	show	that	the	configuration	that	includes	EKE	clim		(column	E	in	Figure	5a-c)	as	a	clustering	feature	has	

the	lowest	average	RMSE	and	absolute	bias	for	nearly	all	cluster	ing	configurations	s	,	regardless	of	the	number	of	

clusters	(rows	in	Figure	5a,b).	The	increased	dynamics	associated	with	high	EKE	regions	might	change	the	way	

p	CO	2		behaves	compared	to	low	EKE	regions	(	Boutin	et	al.,	2008;		Monteiro	et	al.	2015;	du	Plessis		et	al.	,	2017,	

2019).	The	optimal	number	of	clusters	within	this	configuration	is	either	21	or	23,	based	on	the	smallest	bias	and	

RMSE	scores	(as	indicated	by	the	black	box	in	Figure	5)	,	while	.	Note	that		we	do	no	t		weight	R	iav		strongly	in	this	
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assessment	as	a	R	iav		score	of	less	than	0.3	is	in	the	top	performing	category	in	the	SOCOM	intercomparison	

(Rödenbeck	et	al.	2015).		While	the	individual	regression	methods’	bias	and	RMSE	scores	(Figures	S5	and	S6	

respectively)	do	not	match	the	distributions	exactly,	the	two	selected	clustering	configurations	(black	boxes	in	

Figure	5)	score	consistently	low	for	both	metrics	(with	the	exception	of	ERT	–	discussed	in	greater	detail	further	

on).	We	motivate	to	select	only	one	clustering	configuration	for	the	sake	of	simplicity.	Furthermore,	we	select	

the	configuration	with	21	clusters	(rather	than	23)	as	fewer	clusters	further	reduces	the	possible	complexity	at	

little	cost.	.		We	select	the	configuration	with	the	lowest	RMSE,	which	has	21	clusters	with		The	selected	

clustering	configuration	with	21	clusters	has		the	following	features:	SST,	log	10	(MLD	clim	),		p	CO	2	clim	,	

log	10	(Chl-	a	clim	),	and	log	10	(EKE	clim	);	and	is	hereinafter	abbreviated	as	K21E	(see	Figure	S2	for	the	distribution	of	

the	climatology	for	these	clusters).	

	

Comparatively,	the	Fay	and	McKinley	(2014)	CO	2		biomes	have	an	average	RMSE	score	of	18.98	µatm	(Table	3)	

but	have	a	lower	mean	R	iav		(0.26)	and	smaller	bias	(0.03	µatm)	than	the	K21E	configuration.	Given	that	the	CO	2	

biomes	perform	well	and	provide	an	alternate	clustering	approach,	we	include	the	regression	estimates	

(hereinafter	we	refer	to	the	Fay	and	McKinley	(2014)	CO	2		biomes	with	the	six	additional	biomes	as	BIO23)	.	

The	eight	machine	learning	models	from	K21E	and	BIO23	(four	each)	were	used	to	create	an	ensemble		average	

by	averaging		p	CO	2		estimates	(CSIR-ML8).		

	

Table	3:		Regression	scores	for	the	CO	2		biomes	(BIO23),	the	cluster	ing		configuration	from	column	E	in	Figure	5	(K21E)	and	
the	ensemble		average		(CSIR-ML8).	Abbreviations	are:	RMSE	=	root-mean-square	error;		R	iav		=	relative	interannual	
variability	(Equation	5).	Regression	methods	are:	SVR	=	support	vector	regression;	ERT	=	extremely	randomised	trees;	GBM	
=	gradient	boosting	machine;	FFN	=	feed-forward	neural-network.	Bold	values	are	significantly	lower	than	the	mean	for	that	
column	(	p		<	0.05	for	two-tailed		Z	-test;	absolute	values	used	for	bias	column).	

Cluster	ing	 Regression	
Bias	
(µatm)	

RMSE	
(µatm)	 R	iav	

CSIR-ML8	 0.04	 17.25	 0.25	

K21E	 SVR	 -0.45	 17.95	 0.24	

ERT	 0.84	 17.96	 0.36	

GBM	 -0.32	 18.21	 0.24	

FFN	 -0.30	 18.82	 0.27	

BIO23	 SVR	 -0.19	 18.47	 0.15	

ERT	 0.85	 18.76	 0.38	

GBM	 0.02	 19.05	 0.28	

FFN	 -0.58	 19.65	 0.21	

	

All	regression	methods	have	lower	RMSE	scores	for	K21E	than	for	BIO23,	but	R	iav		and	bias	do	not	indicate	that	

any	of	the	two	clustering	approaches	is	preferable	(Table	3).	Comparing	the	RMSE	scores	of	the	individual	

regression	methods,	we	see	that	the	model	scores	are	ranked	the	same	in	each	cluster	from	first	to	last:	SVR,	

ERT,	GBM,	FFN.	However,	it	is	important	to	note	that	this	ranking	does	not	apply	to	bias	or	R	iav	,	where	ERT	has	

low	RMSE,	but	the	largest	bias	and	R	iav		in	each	cluster	ing	approach	.	CSIR-ML8		only	slightly	betters	
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outperforms	nearly	all		its	members	with	RMSE	and	bias	scores	of		17.25	µatm	and	0.04	µatm	respectively.	

However,	the	ensemble		average		R	iav		(0.25)	is	only	just	less	than	the	average	of	the	ensemble	members’	average	

(0.26).	

3.2	Robust	RMSE,	bias	and	R	iav	

Here,	we	study	the	change	in	the	bias	and	RMSE	for	all	selected	methods	(i.e.	K21E,	BIO23	and	CSIR-ML8;	

Table	3)	across	1982-2016	(Figure	6).	Most	notable	is	that	bias	scores	for	all	models	have	the	same	interannual	

tendencies,	with	a	positive	bias	at	the	beginning	of	the	time	series	(1982	to	1993)	that	is	strongest	before	1990,	

strongly	influencing	the	mean	bias	(Table	4).	Secondly,	the	biases	for	K21E	(solid	lines)	are,	on	average,	smaller	

than	for	BIO23	(dashed	lines)	as	shown	for	the	annually	averaged	results	in	Table	4	(0.73	µatm	and	2.24	µatm	

respectively).	These	biases	are		much		larger	than	those	reported	in	Table	3	(with	averages	of	absolute	biases	of	

0.48	µatm	and	0.41	µatm	for	K21E	and	BIO23	respectively),	but	this	is	likely	since	selected	test	years	(black	

triangles	in	Figure	6b)	fall	on	years	of	low	bias.	While	FFN	has	the	largest	RMSE	(18.93	µatm	and	20.24	µatm	

for	K21E	and	BIO23),	it	has	a	smaller	bias	compared	to	other	regression	methods	(0.04	µatm	and	1.60	µatm	

respectively),	motivating	for	including	FFN	regressions	in	the	ensemble		average		(Table	4).	Conversely,	the	ERT	

approach	has	a	significant	positive	bias		likely	due	to	the	method’s	resilience	to	outliers,	where	sparse	

measurements	could	be	treated	as	outliers		(2.08	µatm	and	3.88	µatm	for	K21E	and	BIO23	respectively,	with		p		>	

0.95	for	both	values;	Table	4	;	Gregor	et	al.	2017	).	A	second	ensemble		average		without	ERT	regressions,	thus	

with	six	members	(CSIR-MLR6	version	2019a,	hereafter	called	CSIR-ML6),	has	lower	biases	compared	to	

CSIR-ML8	(0.98	µatm	and	1.48	µatm	respectively;	Table	4).	
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Figure	6:		Annually	averaged	(a)	bias	and	(b)	RMSE	for	the	eight	individual	regression	methods	in	Table	3:	BIO23	(dashed	
lines)	and	K21E	(solid	lines).	The	dotted	black	lines	show	the	ensemble	averages	for	all	eight	models	(CSIR-ML8),	and	the	
solid	black	line	shows	metrics	for	the	ensemble		average		of	the	SVR,	GBM	and	FFN	(CSIR-ML6)	from	BIO23	and	K21E.	
The	grey	filled	area	in	(b)	shows	the	number	of	observations	per	year	and	black	triangles	shows	the	years	that	are	isolated	as	
the	test	subset.	The	vertical	dashed	grey	line	demarks	1990	prior	to	which	there	is	a	large	positive	bias.	
	

Similarly	to	the	biases,	RMSE	for	all	models	(Figure	6b)	have	similar	interannual	tendencies	and	variability,	

with	a	sharp	peak	in	the	year	2000	(	>	20	µatm	where	the	mean	RMSE	is	18.61	µatm).	The	increased	RMSE	

scores	are	likely	due	to	the	spatial	distribution	of	sampling		density		(see	Figure	S7),		e.g.		an	increase	in	sampling	

in	the	high	latitudes	during	spring	and	summer,	a	region	and	period	of	high	variability	and	biogeochemical	

complexity,	would	increase	the	weight	of	these	data	in	the	final	RMSE	calculation,	thus	resulting	in	larger	

RMSE	scores.	The	increase	in	the	number	of	samples	from	2002	to	2016	results	in	a	sharp	decrease	in	RMSE	(	

<	19	µatm	for	the	majority	of	this	period).	Both	ensemble		averages	s			perform	slightly	better	than	outperform		all	

other	methods	for	the	majority	of	the	time	series	with	RMSE	scores	of	17.16	µatm	and	17.25	µatm	for	

CSIR-ML6	and	CSIR-ML8	respectively	(see	Table	S1	comparisons	of	ensemble		average	s	with	different	

members).	

	

The	R	iav		scores	for	the	robust	errors	(Table	4)	are	lower	than	train-test	results	with	a	single	split	reported	in	Table	

3,	likely	due	to	an	increase	of	standard	deviation	for	the	IAV	benchmark	(Equation	5).	The	lowest	score	is	held	

by	CSIR-ML6	(0.20)	and	is	lower	(better)	than	the	average	for	its	members	(0.21).	These	R	iav		estimates	compare	

well	to	the	Jena-MLS	and	SOM-FFN,	which	both	scored	<	0.3	(Rödenbeck	et	al.	2015).		

	

Table	4:		The	robust	estimates	of	bias,	RMSE	and		R	iav		from	1982	to	2016	for	BIO23,		K21E	and	the	ensemble	averages,	
CSIR-ML6	and	CSIR-ML8,	where	the	first	excludes	the	ERT.	Bold	values	are	significantly	lower	than	the	mean	for	that	
column	(	p		<	0.05	for	two-tailed		Z	-test;	absolute	values	used	for	bias	column).	See	Table	S1	for	further	comparisons	between	
different	ensemble		average		configurations.	

Cluster	ing	 Regression	
Bias	

(µatm)	
RMSE	
(µatm)	 R	iav	

CSIR	 ML6	 0.98	 17.16	 0.20	

ML8	 1.48	 17.25	 0.22	

K21E	 SVR	 0.58	 18.04	 0.21	

ERT	 2.08	 18.20	 0.27	

GBM	 0.21	 18.05	 0.21	

FFN	 0.04	 18.93	 0.22	

BIO23	 SVR	 1.76	 18.17	 0.21	

ERT	 3.88	 19.16	 0.32	

GBM	 1.72	 18.59	 0.21	

FFN	 1.60	 20.24	 0.21	

	

The	spatial	distribution	of	the	bias	and	RMSE	is	now	studied	for		the		CSIR-ML6		ensemble		average			(Figure	7	a	

and	b,	respectively),	particularly	focusing	on	the	regional	patterns	emerging	from	the	data.	CSIR-ML6	clearly	
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represents	the	subtropical	regions	(NH-ST	and	SH-ST)	with	relatively	low	biases	and	RMSE	scores	(	|bias|	<		|	5	

µatm	|		and		RMSE	<		10	µatm		respectively	).	The	equatorial	regions	(EQU),	especially	the	eastern	Pacific,	

contrasts	this	with	large	uncertainties	in	both	bias	and	RMSE	(>	|10	µatm|	and	30	µatm	respectively).	The	

high-latitude	oceans	(NH-HL	and	SH-HL)	have	considerable	uncertainties	due	to	the	large	interannual	

variability	of	surface	ocean		p	CO	2		caused	by	the	formation	and	retreat	of	sea-ice	(around	Antarctica;	Ishii	et	al.	

1998;	Bakker	et	al.	2008)	and	phytoplankton	spring	blooms	(Atlantic	sector	of	the	Southern	Ocean,	North	

Pacific	and	Arctic	Atlantic;	Thomalla	et	al.	2011;	Lenton	et	al.	2013;	Gregor	et	al.	2018).	There	are	two	bands	of	

overestimates	on	the	southern	and	northern	boundaries	of	the	North	Atlantic	Gyre,	where	the	latter	coincides	

with	the	Gulf	Stream.	Regression	approaches	may	be	prone	to	a	positive	bias	in	the	North	Atlantic	as	this	was	

also	shown	by	Landschützer	et	al.	(2013;	2014).		

	

	

	

	

Figure	7:		(a)	shows	the	biases	from	the	robust	test-estimates;	(b)	shows	the	root-mean-squared	errors	for	CSIR-ML6.		C	A	
c	onvolution	has	been	applied	to	(a)	and	(b)	to	make	it	easier	to	see	the	regional	nature	of	the	biases	and	RMSE.	Figure	S8	
shows	the	bias	for	every	ensemble	member.		
	

In	summary,	the	robust	test-estimates	show	that	there	is	a		bias		positive	bias	in		p	CO	2		predictions	before	1990	for	

all	models,	but	is	largest	for	ERT	,		and	excluding	these	models	from	the	ensemble	results	in	better		p	CO	2	

predictions.	The	spatial	evaluation	of	the	performance	metrics	for	CSIR-ML6	shows	that	regions	with	specific	

oceanic	features	(e.g.	western	boundary	currents)	mostly	have	positive	biases.	However,	it	is	important	to	note	

that	these	uncertainty	assessments	are	limited	as	the	characteristics	and	biases	of	the	dataset	are	intrinsic	to	the	

models.	Validation	with	independent	data	is	thus	a	more	reliable	estimate	of	the	performance	of	these	methods.		

3.3	Validation	with	independent	datasets	

Here,	we	validate	the	accuracy	of		p	CO	2		estimates	from	CSIR-ML6	with	independent	data	(that	is	not	in	SOCAT	

v5	as	described	in	Table	2).	To	further	study	the	behaviour	of	our	ensemble		average		estimates	relative	to	

previous	studies,	we	compare	the	results	from	four	independent	methods	of	the	SOCOM	intercomparison	

project	against	the	independent	data		calculated	over	individual	data	points		(Rödenbeck	et	al.	2015).	Those	four	

independent	methods	are:		the	Jena	mixed-layer	scheme	(Jena-MLS	version		oc_v1.6	,	Rödenbeck	et	al.	2014);	
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Japanese	Meteorological	Agency	–	multi-linear	regression	(JMA-MLR	updated	on	2018-12-2,	Iida	et	al.	2015);	

Max	Planck	Institute	–	Self-organising	Map	Feed-forward	Neural-network	(MPI-SOMFFN		v2016	,	Landschützer	

et	al.	2017);	and	University	of	East	Anglia	–	Statistical	Interpolation	(UEA-SI	version	1.0,	Jones	et	al.	2015).	

p	CO	2		estimates	by	the	Jena-MLS	were	resampled	to	monthly	temporal	resolution	and	interpolated	to	a	

one-degree	grid	using	Python’s		xarray		package.		Note	that	these	datasets	(with	the	exception	of	the	UEA-SI)	will	

also	suffer	from	the	same	temperature	biases	discussed	in	S2.4.		

	

The	performance	of	each	gap-filling	method	is	represented	with	a	Taylor	diagram	for	each	independent	

validation	dataset	(Figure	8;	Taylor	et	al.	2001).	The	most	important	characteristic	learnt	from	these	plots	is	that	

the	gap-filling	methods	are	tightly	bunched	for	nearly	all	validation	datasets,	indicating	a	similar	RMSE,	

correlation	and	standard	deviation	relative	to	the	reference	datasets.	Poor	estimates	in	Figures	8a-d	may	indicate	

that	the	training	data	for	gap-filling	methods	is	the	limiting	factor.	Secondly,	the	gap-filling	methods	almost	

always	underestimate	the	standard	deviation	of	the	validation	datasets,	being	below	the	black	arced	line	for	all	

but	HOT	S		(Figure	8e).		

	

Figure	8:		Taylor	diagrams	comparing	the		p	CO	2		estimates	of	five	gap-filling	methods	with	validation	datasets	(Table	2),	for	
the	period	1990-2015.	Each	validation	dataset	has	its	own	Taylor	diagram	as	labelled	on	the	bottom	axes.	The	black	marker	
on	the	bottom	axis	in	each	subplot	represents	the	validation	dataset	and	the	black	arc	shows	the	standard	deviation	thereof.	
The	closer		that		the	gap-filling	estimates	are	to	this	point,	the	better	the	model’s	performance,	in	terms	of	variance,	centred	
RMSE	and	correlation	(for	bias	information,	see	Table	5).	The	solid	grey	arcs	show	the	centred	RMSE	for	the	datasets	(with	
bias	removed).	
	

All	methods	fail	to	represent	the	standard	deviation	of	the	two	global	validation	datasets,	LDEO	and	GLODAP	

v2	(Figures	8a,b),	with	centred	RMSE	scores	greater	than	35	µatm.	However,	calculating	RMSE	annually	results	
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in	scores	of	~27	µatm	for	LDEO	and	~35µatm	for	GLODAP	v2,	much	lower	than	shown	in	Figure	8a,b	due	to	

high	RMSE	scores	(>	40	µatm)	for	a	small	subset	of	years	(Section	S3.4	and	Figure	S9).	Estimates	of	the	

Southern	Ocean	datasets	(Figures	8c,	d),	SOCCOM	and	CARIOCA,	have	lower	RMSE	scores	(~16	µatm	and	

~23	µatm	respectively)	relative	to	LDEO	and	GLODAP	v2.		However,	for	standard	deviation	scores	of	similar	

magnitude	and	low	correlation	coefficients,	the	datasets	are	not	well	constrained	(Table	5).	The	SOCCOM	

dataset	also	has	the	largest	average	absolute	bias	for	estimates,	with	gap-filling	methods	underestimating	by	at	

least	11	µatm	(Table	5).	This	large	bias	may	be	because	SOCCOM	floats	have	a	proportionately	large	number	of	

winter	samples	–	suggesting	that	our	knowledge	of	Southern	Ocean	winter	fluxes	are	largely	underestimated	

(Williams	et	al.	2017).	In	contrast,	all	methods	estimate	the	two	time-series	stations,	HOT	S		and	BATS	(Figures	

8e,f	and	Table	5)	relatively	well	with	correlation	scores	of		>	0.8	and	low	average	bias	~4.5	µatm.		

	

	
Table	5:		The	RMSE	and	bias	for	each	gap-filling	method	compared	to	the	validation	datasets.	For	more	information	on	the	
validation-datasets	see	Table	2.	The	first	row	of	data	(count)	shows	the	number	of	gridded	samples	in	the	dataset	during	the	
period	1990-2015	(that	are	not	in	the	SOCAT	v5	gridded	product).	Values	shown	in	bold	are	significantly	different	from	the	
mean	for	the	column	(	p		<	0.05	for	two-tailed		Z	-test;	absolute	values	used	for	biases).	
Metric	 Method	 LDEO	 GLODAP-v2	 SOCCOM	 CARIOCA	 BATS	 HOT	S	
Count	 Count	 16161	 5976	 1037	 613	 246	 214	
RMSE	 CSIR-ML6	 26.55	 32.84	 23.15	 14.26	 12.53	 8.62	

MPI-SOMFFN	 27.43	 35.96	 25.21	 15.08	 13.39	 10.40	
JMA-MLR	 29.11	 34.53	 22.32	 16.05	 14.29	 11.64	
Jena-MLS	 27.61	 35.52	 26.83	 18.24	 16.14	 12.28	
UEA-SI	 27.35	 35.07	 	 15.73	 13.35	 18.52	

Bias	 CSIR-ML6	 -1.18	 8.48	 -13.12	 4.28	 0.32	 0.46	
MPI-SOMFFN	 -0.19	 9.16	 -13.79	 4.00	 -1.41	 -0.12	
JMA-MLR	 -1.86	 6.62	 -11.25	 2.85	 -3.98	 2.22	
Jena-MLS	 -0.14	 8.48	 -14.68	 7.18	 4.09	 6.15	

UEA-SI	 -0.71	 9.20	 	 0.79	 -2.02	 16.27	
	

Despite	all	scores	being	closely	grouped	(Figure	8),	Table	5	shows	that	the	CSIR-ML6	method	scores	

significantly	lower	RMSE	scores	(using	a	two-tailed		Z	-test	with		p		<	0.05)	for	all	but	one	of	the	datasets	

(SOCCOM).	However,	bunching	of	the	RMSE	scores	(Figure	8)	is	beneficial	with	regard	to	achieving	low	

p-	values.	No	single	method	dominates	the	biases,	with	JMA-MLR	and	MPI-SOMFFN	each	scoring	the	lowest	

bias	on	two	occasions.	To	summarise,	all	gap-filling	methods	underperform	when	validated	against	independent	

observational	products.	Tight	bunching	of	gap-filling	method	scores	per	validation	dataset	shows	that	training	

data	may	limit	all	methods	in	the	same	manner.		

3.4	The	effect	of	uncertainties	on	the	sea-air	CO	2		flux	interannual	variability	

In	this	section,	we	assess	the	regional	implications	of	the	differences	in	gap-filling	methods’	estimates	of	the	

sea-air	CO	2		flux	(	F	CO	2	)	over	the	period	1990	to	2016.		F	CO	2		was	calculated	using	the	same	gas	transfer	velocity	
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and	solubility	for	each	gap-filling	method	(Section	2.7).	Differences	in		F	CO	2		are	thus	driven	by	variations	in	

p	CO	2		from	each	gap-filling	method.		

	

	

Figure	9:		(a)	Average	sea-air	CO	2		fluxes	(	F	CO	2	)	of	CSIR-ML6	for	1990	to	2016,	where		F	CO	2		is	calculated	as	shown	in	
Equation	2.	Negative		F	CO	2		(blue)	indicates	regions	of	atmospheric	CO	2		uptake.	(b)	The	difference	between		F	CO	2		in	2016	
and	200	0	2	,	which	are	the	minimum	and	maximum	of	global	ocean	uptake	flux	(	F	CO	2	)	estimates	respectively	(for	
CSIR-ML6	in	Figure	10a).	Black	lines	show	the	regions	as	defined	in	Figure		3	2	.		
	

The	average		F	CO	2		for	1990-2016	by	CSIR-ML6	(Figure	9a)	contextualises	the	regional	distribution	of	fluxes:	

strong	outgassing	in	the	Equatorial	Pacific,	strong	sink	in	the	mid-latitudes,	a	moderate	uptake	for	the	most	part	

of	the	subtropics,	and	weak	source	in	the	majority	of	the	Southern	Ocean	(in	agreement	with	e.g.	Takahashi	et	

al.,	2009).	The	global	annual	time-series	for		F	CO	2		as	simulated	by	CSIR-ML6	(Figure	10a)	indicates	a	

strengthening	for	2000	to	2016	(as	for	the	other	methods).	To	give	spatial	context	to	this	strengthening,	we	

display	the	differences	in		F	CO	2		between	2016	and	2000	(Figure	9b),	since	those	are	the	two	years	where	the	

difference	in	global		F	CO	2		is	greatest	for	CSIR-ML6	(Figure	10a).	Note	that	Figure	9b	serves	as	a	snapshot	for	

the	change	in		F	CO	2					between	those	two	years,	whose	interpretation	cannot	be	linked	to	an	overall	

anthropogenically-forced	change	as	the	comparison	between	two	years	could		reflect	highlight		interannual,	

decadal	or	multi-decadal	variability.	The	differences	in		F	CO	2		between	2016	and	2000	is	negative	in	the	high	

latitudes	and	moderately	positive	in	the	subtropics,	indicating	a	respective	increase	and	decrease	in	the	CO	2	

ocean	uptake	between	the	two	years.	The	Eastern	Equatorial	Pacific	is	the	only	region	that	shows	a	considerable	

increase	in		F	CO	2		(>	10	gC	m	-2		yr	-1	)	between	the	two	specific	years.		

	

The	annual	change	in		F	CO	2		is	also	studied	for	the	different	regions.		The	Southern	Hemisphere	high-latitude	

(SH-HL)	region	is	the	strongest	contributor	to	the	trend	(Figure	S10b),	where	there	is	a	steady	increase	in	the	

uptake	of	CO	2		since	the	2000s	for	all	methods	(Landschützer	et	al.	2015;	Gregor	et	al.	2018).	On	average,	the	

Northern	Hemisphere	high	latitudes	(NH-HL)	are	a	weaker	sink	relative	to	the	SH-HL,	because	the	SH-HL	is	

more	than	double	the	area	of	the	NH-HL	(Figure	S10c).	The	equatorial	(EQU)	region	is	the	only	persistent	

source	of	CO	2		to	the	atmosphere	(also	seen	in	Figure	9a).	The	subtropical	regions	(Figure	10c,	e)	contribute	to	

global	flux	on	similar	orders	of	magnitude;	however,	there	is	a	large	divergence	between	gap-filling	methods	in	

the	SH-HL.	
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Figure	10:		Sea-air	CO	2		fluxes	averaged	for	regions	as	shown	in	Figure	2:	(a)	global	domain,	(b)	Equatorial	regions,	(c)	
Northern	Hemisphere	Subtropical,	(d)	Northern	Hemisphere	High	Latitude,	(e)	Southern	Hemisphere	Subtropical.	(f)	
Southern	Hemisphere	High	Latitude.	The	coloured	lines	show	the	four	SOCOM	products.	The	thick	and	dotted	grey	lines	
show	the	results	for	CSIR-ML6	and	CSIR-ML8,	respectively.	A	moving	average	of	12	months	has	been	applied	to	smooth	
the	data.	Note	that	the	y-axes	scales	differ	for	the	top	(a)	and	(b).	The	text	at	the	right	of	each	figure	shows	the	number	of	
SOCAT	v5	gridded	data	points	for	each	region	(	n	)	and	the	inter-annual	interquartile	range	(IQR	IA	).		
	

We	use	the	average	interquartile	range	between	the	one-year	rolling	mean	estimates	(IQR	IA	)	as	a	measure	of	

agreement	or	divergence	between	gap-filling	methods,	where	large	values	indicate	a	divergence	(Section			2.8.2).	

We	also	show	the	IQR	IA		scaled	to	the	range	of	the	regional	interannual	variability	(max	–	min)	as	a	percentage	

(relative	IQR	IA	),	which	shows	if	the	trend	for	a	particular	region	is	agreed	on	by	all	methods	(the	smaller	the	

percentage,	the	better	the	agreement	across	methods).	The	disagreement	between	methods	in	the	SH-ST	is	

substantial	(Figure	10e),	with	diverging		F	CO	2		throughout	the	period	with	an	IQR	IA		of	0.15	PgC	yr	-1		and	a	very	

large	relative	IQR	IA		of	37%.	Similarly,	the	IQR	IA		for	the	SH-HL	region	(Figure	10f)	is	0.08	PgC	yr	-1	,	but	the	

relative	IQR	IA		is	much	lower	at	11%,	indicating	that	all	methods	agree	on	the	observed	strong	trend.	Compared	

to	the	Southern	Hemisphere,	the	Northern	Hemisphere	regions	are	both	relatively	well	constrained,	with	IQR	IA	

estimates	of	0.04	PgC	yr	-1		for	both	regions	(Figure	10c,d).	However,	a	large	relative	IQR	IA		of	20%	suggests	that	

the	interannual		F	CO	2		estimates	in	this	region	are	potentially	not	resolving	the	trend,	or	more	likely	that	there	is	a	
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weak	trend	with	a	small	difference	between	the	minimum	and	maximum	interannual	estimates	of		F	CO	2	.	The	

equatorial	region	(EQU	-	Figure	10b)	has	the	lowest	IQR	IA		and	relative	score	at	0.02	PgC	yr	-1		and	7%.		

	

The	CSIR-ML8	method	is	not	included	in	the	IQR	IA		calculations	but	is	included	in	Figure	10	to	show	the	impact	

of	the	ERT	models’	positive	bias	in		p	CO	2		on		F	CO	2		(Figure	6a).	The	biases	are	positive	at	the	beginning	and	

negative	end	of	the	time	series,	with	the	average	absolute	difference	between	the	CSIR	methods	being	0.08	PgC	

yr	-1	.	The	positive	biases	have	the	strongest	impact	in	the	SH-ST	that	occupies	36%	total	area	(Figure	S10c),	with	

only	11%	of	the	total	observations	in	SOCAT,	suggesting	that	this	method	is	sensitive	to	imbalanced	datasets.		

3.5	Regional	disagreement	between	methods	

In	order	to	better	understand	the	regional	distribution	of	the	uncertainties	in		F	CO	2	,	we	assess	the	level	of	

agreement	between	methods	in	their	interannual	surface	ocean		p	CO	2		estimates	(Figure	11).	We	use		p	CO	2		for	this	

representation	as	no	spatial	integration	occurs	–	only	time	averaging.		

	

Figure	11:		(a)	The	magnitude	of	the	interannual	disagreement	between	gap-filling	methods	(IQR	IA	).	(b)	Level	of	agreement	
on	the	interannual	variability	across	methods,	more	specifically	IQR	IA		scaled	by	the	difference	between	the	maximum	and	
minimum	values	for	interannual		p	CO	2		(the	range).		
	

The	interannual	estimates	of	interquartile	range	(IQR	IA	;	Figure	11a)	show	the	disagreement	between	methods	is	

relatively	small	in	the	majority	of	the	ocean	(⪝	5	µatm)	.	;	t	T	he	exceptions	being	the	South	Atlantic,	southeastern	

Pacific	and	eastern	equatorial	Pacific	with	differences	of	>	10	µatm	,	where	these	regions	coincide	with	regions	

of	low	sampling	density	(Figure	2)	.	The	IQR	IA		scaled	to	the	maximum-minimum	range	of	interannual		p	CO	2	

suggests	that	the	NH-ST		trend		is	well	constrained	(<	10%),	which	is	in	conflict	with	the	IQR	IA		for		F	CO	2		in	

Figure	10c	(where	the	relative	IQR	IA		is	20%).	The	disagreement	may	stem	from	the	magnifying	impact	that	

wind	speed	has	on		F	CO	2	,		i.e.		small	differences	in		p	CO	2		may	become	large	when	fluxes	are	calculated.	The	same	

principle	may	apply	to	the	EQU	in	Figure	11b,	where	relative	IQR	IA		is	large	(>	10	%)	for		p	CO	2	,	but	low	wind	

speeds	result	in	a	low	relative	IQR	IA		for		F	CO	2		(7%	in	Figure	10b).	The	largest	relative	IQR	IA		scores	occur	in	the	

SH-ST	(	>	10%	in	Figure	11c)	where	data	is	sparse,	specifically	the	South	Atlantic	and	southeastern	Pacific	

(Figure	2a).	The	relative	IQR	IA		scores	suggest	that	the	gap-filling	methods	agree	on		p	CO	2		in	the	SH-HL	east	of	

the	Greenwich	meridian	(>	0°	E).		
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In	summary,	we	show	that	there	is	an	agreement	between	gap-filling	methods	in	the	Northern	Hemisphere	for	

interannual		p	CO	2	,	but	the	methods	show	considerable	disagreement	in	the	Southern	Hemisphere,	particularly	in	

the	subtropics.	Disagreements	in	the	Equatorial	and	Southern	Hemisphere	high-latitude	regions	are	large	(>	

10%)	and	should	be	treated	with	caution	when	considering	trends	in	these	regions.		

4	Discussion	

4.1	Not	all	models	are	equal	

In	their	study,	Khatiwala	et	al.	(2013)	stated	that:	“	our	comparison	of	different	methods	suggests,	that	multiple	

approaches,	each	with	its	own	strengths	and	weaknesses,	remain	necessary	to	quantify	the	ocean	sink	of	

anthropogenic	CO	
2	
”.	In	our	study,	we	embrace	this	philosophy	by	creating	an	ensemble		average		of	two-step	

machine	learning	models	that	estimate	global	surface	ocean		p	CO	2	.		W	The	authors	of	the	SOCOM	

intercomparison	(Rödenbeck	et	al.	2015)	warn	against	the	use	of	ensembles	with	the	statement:		"We	also	

discourage	any	ensemble	averaging	(or	medians,	etc.)	of	full	spatiotemporal	fields	or	time	series,	as	this	would	

result	in	variations	that	are	not	self-consistent	any	more	and	fit	the	data	less	well	than	individual	products".		Our	

approach	may	seem	in	opposition	to	the	statement,	but	w	e	show	robustly	that	the	CSIR-ML6	method	reproduces	

the	available	data	with	greater	accuracy	than	previous	methods,	albeit	in	an	incremental	way.	Our	method	is	

methodologically	consistent	with	regard	to	feature-variables.	Though	there	is	variability	in	the	clustering	and		the	

regression,	we	create	the	ensemble		average		with	a	good	understanding	of	each	model’s	biases	(Figure	6	and	

Figure	S8).	The	argument	that	ensembles		averages		reduce	transparency	is	also	somewhat	diminished	by	the	fact	

that	little	additional	information	that	can	be	gained	from	highly	non-linear	models,	with	the	exception	of	basic	

diagnostics	such	as	feature-variable	importance	(see	Figure	S11)	from	decision-tree-based	approaches	

(Pedregosa	et	al.	2012;	Castelvecchi,	2016).	Our	results	thus	show	that	there	is,	in	fact,	a	benefit	in	creating	an	

ensemble		average		of	models	(Table	5),	and	if	carefully	implemented	is	an	additional	tool	that	can	be	used	to	

reduce	the	uncertainties	in	gap-filling	estimates	of		p	CO	2	.		

	

It	could	be	argued	that	an	exhaustive	search	for	the	optimal	configuration	(Figure	5)	for	CSIR-ML6	may	result	

in	poorly	trained	individual	models.	However,	we	think	that	the	merit	of	introducing	and	assessing	regression	

algorithms	new	to	the	application	(for	gradient	boosting	machines	and	extremely	randomised	trees)	outweighs	

the	marginal	loss	in	potential	performance	for	individual	methods.	Moreover,	lessons	learnt	from	our	study	can	

be	used	to	improve	on	future	iterations.	It	also	makes	the	case	for	ensembles		averages		stronger	as	the	

CSIR-ML6	performs	well	relative	to	other	gap-filling	methods.	

	

In	the	search	for	the	optimal	clustering	configuration	(Figure	5a,b),	we	show	that	including	EKE	(along	with	

SST)	as	a	clustering	feature-variable	leads	to	an	improvement	in	bias	and	RMSE	for	nearly	all	number	of	

clusters	,	albeit	a	small	improvement	.	Increased	intra-seasonal	variability	of		p	CO	2		appears	to	be	associated	with	

regions	of	high	EKE	compared	to	low	EKE	regions	(Monteiro	et	al.	2015;	du	Plessis,	2017,	2019).	Moreover,	
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the	importance	of	EKE	as	a	part	of	the	cluster	ing		constraints	also	shows	that	more	thought	should	be	given	to	

how	we	sample		p	CO	2		in	high-EKE	regions	and	at	what	resolution	regression	methods	are	run	at		–	we	discuss	

this	in	detail	later	.	

	

Our	findings	suggest	the	following	about	the	individual	regression	methods:	the	SVR	and	GBM	algorithms	

produce	good	estimates	with	lower	RMSE	scores	and	biases,	the	FFN	approach	has	larger	RMSE	scores	yet	low	

biases	than	the	other	methods,	and	the	ERT	approach	has	low	RMSE	scores	but	large	biases	in	the	estimates	

(Figure	6a,b;	Table	4).	We	do	not	include	the	ERT	approach	in	the	ensemble		average		(CSIR-ML6)	due	to	the	

large	time-evolving	biases,	suggesting	that	ERT	(with	our	tuning)	is	not	suitable	for	estimating	surface	ocean	

p	CO	2	.	The	bias	in	ERT	may	be	due	to	its	sensitivity	to	imbalanced	datasets	(Crone	and	Finlay,	2012),	where	the	

data	in	SOCAT	v5	are	few	before	2000.	Returning	to	the	above	quote	by	Khatiwala	et	al.	(2013),	we	thus	find	

that	the	weaknesses	of	ERT	outweigh	its	strengths.		

4.2	Divergent	gap-filling	estimates	

While	we	see	that	the	improvements	in	the	performance	of	gap-filling	methods	are	relatively	stagnant	(relative	

to	the	training	and	validation	data),	the	differences	between	the	methods’	estimates	of		p	CO	2		and		F	CO	2		vary	

significantly	in	some	regions	,		particularly	in	regions	where	data	is	sparse	,		such	as	in	the	Southern	Hemisphere	

oceans	(Figure	2).	We	also	find	that	training	the	gap-filling	methods	with	limited	training	data	exposes	the	

intrinsic	biases	of	the	algorithms,	or	in	the	words	of	Ritter	et	al.	(2017):	“	the	difference	[between	gap-filling	

methods]	is	a	result	of	how	the	spatial	and	seasonal	heterogeneity	and	the	sparseness	of	the	data	is	dealt	with	”.	

Conversely,	as	the	number	of	training	data	increase,	the	biases	are	reduced,	and	the	methods	converge.		

	

	
Figure	12:		The	seasonal	cycle	reproducibility	of	CSIR-ML6		p	CO	2	,	which	is	a	correlation	of	detrended		p	CO	2		with	its	own	
climatology	–	the	larger	the	correlation	the	stronger	the	reproducibility	of	the	seasonal	cycle	(method	from	Thomalla	et	al.	
2011)	.	
	

The	Northern	Hemisphere	subtropical	regions	are	a	good	example	of	a	region	where	the	gap-filling	methods	

converge	(Figure	11b),	as	also	shown	by	the	low	RMSE	scores	and	high	correlation	for	the	two	mooring	

stations,	HOT	S		and	BATS	(Figure	8e,f).	One	of	the	reasons	that	the	methods		can		predict	the	variability	well	in	

the	subtropics	(Figure	8e,f)	is		that	because		these	regions	are	less	biogeochemically	complex	and	driven	primarily	
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by	seasonal	changes	in	SST	(Bates	2001;	Dore	et	al.	2009).	This	strong	SST-driven	seasonality	in	the	subtropics	

is	shown	by	the	high	seasonal	cycle	reproducibility	(Figure	12).	

	

	

Figure	13:		∆	p	CO	2		trends	(	p		<	0.05),	where	∆	p	CO	2		is	calculated	as	the	estimated	surface	ocean		p	CO	2		from	the	
CSIR-ML6	method	minus	atmospheric		p	CO	2		from	the	CarboScope	project	(Rödenbeck	et	al.	2014).	The	shaded	areas	
show	the	regions	where	IQR	IA		is	>	15%,	thus	indicating	regions	where	trends	should	be	interpreted	with	caution.	
	

The	gap-filling	methods’	divergences	also	serve	as	a	metric	to	inform	where	there	is	not	enough	data	to	

constrain	the		p	CO	2		or		F	CO	2		estimates,		i.e.		the	divergences	inform	us	where	estimates	should	be	treated	with	

caution.	The	IQR	IA	,	when	scaled	to	the	range	of	interannual	variability	(Figure	11b),	should	be	taken	into	

account	when	analysing	interannual	trends	of	∆	p	CO	2		(Figure	13).	For	instance,	trend	estimates	in		∆	p	CO	2				for	

CSIR-ML6	are	negative	(	p		<	0.05)	for	the	majority	of	the	global	ocean,	even	in	regions	where	method	estimates	

are	too	disparate	to	resolve	interannual	variability	(relative	IQR	IA		>	15%;	Figure	13).	However,	the	relative	

IQR	IA		is	not	without	its	limits,	as	there	may	be	regions	where	methods	are	in	agreement	but	share	the	same	

biases,	thus	reporting	false	confidence	in	the	estimates.	Regions	of	false	confidence	would	most	likely	occur	in	

data	sparse	areas,	but	could	only	truly	be	identified	with	better	data	coverage	in	these	regions.	

4.3	Inching	up	and	over	the	wall:	incremental	improvements	

In	our	study,	we	show	that	all	gap-filling	methods	suffer	from	the	same	uncertainties	where	there	are	data	to	test	

and	validate	the	estimates	(Figure	8),	and	divergences	between	estimates	when	there	are	insufficient	data	to	

constrain	the	methods	(Figure	11b).	From	these	points,	it	may	seem	that	we	may	have	in	fact	“hit	the	wall”	in	

terms	of	better	resolving	surface	ocean		p	CO	2	.	In	this	section,	we	discuss	how	we	might	overcome	this	proverbial	

wall.	First,	by		first		addressing	the		existing		uncertainty	and	biases		within	the	methods	,	and	then	discussing		how	

we	could	improve	on	estimates	in	data-poor	regions.		the	issue	of	data	scarcity,	specifically,	how	could	we	most	

effectively	improve	our	sampling	strategies	to	close	the	gaps	in	the	current	datasets	.	

4.3.1	Reducing		existing	biases		systematic	errors	

The	robust	test-estimates	show	that	there	are	regions	where	training	data	is	not	sparse,	yet	estimates	still	suffer	

from	large	uncertainties	(	e.g.		northern	and	southern	boundaries	of	the	North	Atlantic	gyre	in	Figure	7a,b	and	

Figure	S8).	These	errors	are	spatially	consistent	with	those	reported	by	Landschützer	et	al.	(2014).	Such	regional	

27	



	

675

680

685

690

695

700

705

mismatches	between	gridded	observations	and	estimates	are	likely	systematic	–	meaning	that	gap-filling	

methods	are	not	able	to	resolve	the	more	complex		p	CO	2		variability	at	current	resolutions	(monthly	⨉	1°	or	

coarser)	or	with	the	current	regression	feature-variables	(Gregor	et	al.	2017;	Denvil-Sommer	et	al.	2018).	It	may	

be	possible	to	reduce	these	uncertainties	with	consideration	about	the	drivers	of	CO	2		in	a	specific	region.	

Including	appropriate	additional	feature-variables	(if	available),	such	as	reanalysis	mixed-layer	depth	products,	

may	improve	the	uncertainties	of	gap-filling	methods	(Gregor	et	al.	2017).	Similarly,	increasing	the	temporal	

and	spatial	resolution	may	be	able	to	improve	estimates	where	aliasing	occurs	in	regions	of	high	dynamic	

variability	such	as	the	mid-latitude	oceans	(Monteiro	et	al.	2015).	It	is	worthwhile	noting	that	increasing	the	

resolution	may	not	be	the	panacea	for	poor	estimates.	For	example,	the	Jena-MLS	method	is	able	to	estimate	

p	CO	2		with	relative	accuracy	(Figure	8)	at	a	low	spatial	(≈	4°	⨉	5°;	Rödenbeck	et	al.	2014);	however,	with	the	

trade-off	in	spatial	resolution,	the	method	is	able	to	increase	the	temporal	resolution	to		daily	6-hourly		estimates.		

	

Another	source	of	bias	is	the	mismatch	between	the	depth	and	temperature	at	which		p	CO	2		is	measured	(i.e.	a	

ship’s	intake)	and	the	temperature	to	which		p	CO	2		is	predicted	(~1	m	in	the	case	of	the	dOISSTv2	data;	Banzon	

et	al.	2016;	Goddijn-Murphy	et	al.	2015).	As	we	show	in	the	supplementary	material	(S2.4),	compensating	for	

this	mismatch	by	adjusting		p	CO	2		measurements	to	OISST	results	in	larger	errors.	There	is	a	warm	bias	for	the	

ship	temperatures	(0.13°C),	which	Banzon	et	al.	(2016)	attribute	to	ship-based	warming.	However,	this	general	

bias	would	not	contribute	to	the	increase	in	RMSE	as	the	target	variable,		p	CO	2	,	shifts	accordingly	when	the	

correction	is	applied.	Rather	we	suggest	that	these	biases	are	a	complex	interaction	of	ship-specific	biases	and	

water	column	processes	(other	than	temperature)	that	may	lead	to	different	CO	2		concentrations.	The	sampling	

configuration	and	set	up	is	unique	to	each	vessel,	which	suggests	that	ship-specific	corrections	should	be	applied	

to	reported	SST	–	this	would	require	a	community	wide	effort.	The	second	potential	contribution	to	the	

mismatch	could	be	considerable	in	cases	where	primary	production	near	the	surface	is	highly	stratified.		

	

One	of	the	weaknesses	of	our	study	is	that	our	approach	is	similar	to	other	clustering-regression	methods,	

namely	MPI-SOMFFN	and	JMA-MLR,	which	could	lead	to	similar	biases	between	these	clustering-regression	

methods.	Importantly,	this	highlights	the	need	for	new	methods	that	are	fundamentally	different	and	may	lead	to	

the	development	of	procedural	architectures	that	might	be	able	to	resolve	the	biases	in	well-sampled	regions	

better.	For	example,	a	recent	study	by	Denvil-Sommer	et	al.	(2018)	developed	a	method	(LSCE-FFNN)	that	first	

estimates	the	climatological		p	CO	2		and	then	the	anomalies	from	this	climatology	–	their	method	reported	RMSE	

scores	on	the	order	of	those	reported	in	this	study	(~18.0	µatm)	and	very	low	R	iav		scores	(<	0.2).	While	new	

methods	might	not	lead	to	drastic	reductions	in	uncertainties,	incremental	improvements	in	uncertainties	will	be	

driven	by	approaches	that	offer	new	solutions,	whether	it	be	increased	resolution,	additional	feature-variables	or	

a	new	approach.	

4.3.2		Improving	estimates	in	data	poor	regions	Scale-sensitive	sampling	strategies	

All	gap-filling	methods	suffer	from	similar	biases	and	uncertainties	(Figure	8,	Table	5)	when	compared	to	

independent	validation	data,	yet	the	same	methods	show	vastly	different	results	in	data-sparse	regions.	These	
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shared	uncertainties	and	regionally-consistent	divergences	between	methods		are	in	agreement	with	past	studies,	

which	find	that		suggest	that		insufficient	training	data	is	the	limiting	factor	(Rödenbeck	et	al.2015;	Landschützer	

et	al.	2016;	Ritter	et	al.	2017;	Denvil-Sommer	et	al.	2018).		Our	study	highlights	the	need	for	targeted	sampling	

in	these	data-sparse	regions,	with	the	relative	IQR	IA		metric	(Figures	11b)	providing	a	guideline	of	where	

sampling	should	occur	to	better	resolve	interannual		p	CO	2	.	Large	mismatches	in	the	Southern	Hemisphere	

subtropics	and	the	Southern	Ocean	suggest	that	these	remote	regions	require	more	data	to	be	constrained.		

	

Strides	have	been	made	in	closing	these	data-sparse	gaps	with	the	deployment	of		A	a	utonomous	sampling	

platforms	.	The	Southern	Ocean	Carbon	and	Climate	Observations	and	Modelling	(SOCCOM)	project,	in	

particular,	has	been	influential	in	closing	the	gap	in	the	Southern	Ocean	with	the	deployment	of	~200	

pH-capable	biogeochemical	Argo	floats	in	the	region	since	2015	(Williams	et	al.,	2017;	Gray	et	al.,	2018).	The	

data	collected	by	these	floats	during	winter	has	shown	that	we	have	previously	underestimated	winter	outgassing	

of	CO	2		in	the	Southern	Ocean	(Gray	et	al.	2018).	Incorporating	these	new	estimates	into	machine	learning	

estimates	should	be	a	priority	for	the	community	as	the	Southern	Ocean	plays	an	important	role	in	the	uptake	of	

anthropogenic	CO	2		uptake	(Gruber	et	al.	2019).	Incorporating	this	data	successfully	into	existing	models	may	

not	be	straight-forward	due	to	the	strong	temporal	bias	of	these	data	toward	the	end	of	the	time-series.	For	

instance,	the	inclusion	of	atmospheric		p	CO	2		could	result	in	temporally	skewed	estimates	due	to	the	“memory”	

effect	that	including	the	annually	increasing	atmospheric		p	CO	2		could	have	on	estimates.		

	

The	complex	machine	learning	models	often	used	to	estimate		p	CO	2		are	prone	to	overfitting	to	the	data,	

particularly	in	regions	where	data	is	sparse.	Using	less	complex	models,	e.g.	multi-linear	regression,	in	such	

regions	would	reduce	the	risk	of	overfitting	to	the	data.	A	regionally	weighted	ensemble	approach	may	be	an	

eloquent	way	to	address	this	problem.	In	regions	with	sparse	data	coverage,	simpler	models	could	be	favoured,	

while	more	complex	models	could	be	weighted	more	in	regions	with	more	data.	However,	the	user	would	have	

to	apply	a	potentially	subjective	model-complexity	ranking	for	each	approach.	This	may	work	well	in	the	

subtropical	gyres	where		p	CO	2		has	a	strong	seasonal	signal	driven	primarily	by	temperature	(Figure	12;	Lefèvre	

and	Taylor,	2002).		

	

One	of	the	weaknesses	of	our	study	is	that	our	approach	is	similar	to	other	regression	methods,	namely	(e.g.	

MPI-SOMFFN,	and	JMA-MLR	and	LSCE-FFNN	by	Denvil-Sommer	et	al.	2019)	that	predict		p	CO	2		based	on	

the	instantaneous	physical	and	biological	variables	without	regard	for	past	states.	There	is	thus	a	need	to	explore	

methods	that	incorporate	the	past	state	into	future	state	estimates.	This	includes	assimilative	modeling	

approaches,	such	as	B-SOSE	(Biogeochemical	Southern	Ocean	State	Estimate),	which	would	also	provide	

greater	understanding	of	the	driver	for	changes	in	surface		p	CO	2		(Verdy	and	Mazloff,	2017).	These	methods	may	

be	able	to	provide	better	constraints	on		p	CO	2		in	data	poor	regions.	However,	these	assimilative	models	are	not	

yet	in	a	stage	to	fit	the	data	closely	(Verdy	and	Mazloff,	2017).	

		,	such	as	biogeochemical	Argo	floats,	surface	drifters	and	wave	gliders,	are	offering	a	new	and	efficient	way	to	

target	inaccessible	regions	with	relative	affordability	at	the	scales	required	to	resolve	not	only	interannual	but	
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also	intraseasonal	variability	(e.g.	Monteiro	et	al.	2015).	Despite	being	potentially	less	accurate	than	the	SOCAT	

requirements,	including	these	measurements	might	still	result	in	improved		p	CO	2		estimates	as	long	as	

measurements	are	not	positively	or	negatively	biased	(Wanninkhof	et	al.	2013b).	¶

¶

While	autonomous	platforms	offer	a	low-cost	solution	to	improve	data	coverage	in	data-sparse	regions,	there	

needs	to	be	a	better	understanding	of	the	required	sampling	rates	to	resolve		p	CO	2		at	any	given	location	and	

season	-	scale	sensitivity	question	–	a	point	that	also	addresses	the	issue	of	increasing	the	resolution	of	

gap-filling	methods.	Observing	system	simulation	experiments	(OSSEs)	offer	useful	insight	into	the	required	

sampling	density	and	frequency	(Lenton	et	al.	2006,	Lenton	et	al.	2009,	Majkut	et	al.	2014;	Mazloff	et	al.	2018;	

Kamenkovich	et	al.	2011,	2017).	The	majority	of	these	OSSEs	have	been	focussed	on	resolving	fluxes	in	the	

Southern	Ocean,	which	perhaps	deserves	the	attention	as	it	is	the	largest	contributor	to	interannual		F	CO	2	

variability	(Figure	S6b;	Landschützer	et	al.	2016).	Another	Southern	Ocean	study	found	that	a	sampling	rate	of	

at	least	three	days	was	required	to	resolve	intraseasonal	variability	in	a	region	with	high	dynamic	variability	

such	as	the	SH	mid-latitude	oceans	(Monteiro	et	al.	2015)	–	a	much	higher	sampling	rate	than	the	10-day	period	

for	carbon	(pH)-enabled	Argo	floats. ¶	

¶

Finally,	over	and	above	the	focus	of	recent	work	on	the	Southern	Ocean,	there	seems	to	be	a	gap	in	the	

community’s	efforts	in	reducing	the	uncertainties	in	the	Southern	Hemisphere	subtropical	oceans	–	a	region	with	

few	observations	(Figure	2)	and	significant	disagreement	between	methods	(Figure	10).	Importantly,	the	eastern	

Pacific	and	eastern	Indian	oceans	may	be	more	variable	than	their	well	sampled	Northern	Hemisphere	

counterparts	as	suggested	by	the	spatial	autocorrelation	length-scales	of		p	CO	2			(for	where	there	are	

measurements)	and	satellite	proxies	(SST,	Chl-	a		and	sea	surface	height;	Jones	et	al.	2012).	And	while	the	

gap-filling	methods	estimate	that	there	is	high	seasonal	cycle	reproducibility	in	these	regions	(Figure	12;	

meaning	that	gap-filling	methods	might	well	resolve	them),	we	do	not	have	enough	information	about	the	

carbon	cycle	in	these	regions	to	make	these	assumptions.	If	anything,	this	should	be	an	encouragement	to	the	

community	that	these	undersampled	regions	can	easily	be	resolved,	especially	with	the	use	of	autonomous	

sampling	platforms.	

5	Summary	

Our	study	suggests	that	we	may	be	reaching	the	limits	of	gap-filling	methods’	abilities	to	reduce	uncertainties,	

as	shown	by	the	limited	incremental	improvement	in	errors	by	the	ensemble	method	we	compare	with	

established	methods.	Significant	uncertainties	still	prevail	across	all	gap-filling	methods,	most	likely	limited	by	

the	extent	of	basin-scale	observational	gaps	in	the	Southern	Hemisphere	as	well	as	sampling	aliases	in	

mesoscale	intensive	ocean	regions.	We	propose	ways	in	which	the	surface	ocean	CO	2				community	can	improve	

estimates	within	the	bounds	of	the	current	observations,	and	make	recommendations	for	future	observations.	

	

We	introduce	a	new	surface	ocean		p	CO	2		gap-filling	method	that	is	a	machine	learning	ensemble		average		of	six	

two-step	clustering-regression	models	(CSIR-ML6	version	2019a).	An	exhaustive	search	process	was	used	to	
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find	the	best	K-means	clustering	configuration	which	was	used	alongside	the	Fay	and	McKinley	(2014)	oceanic	

CO	2		biomes.	The	regression	models	applied	to	each	clustering	method	are	support	vector	regression,	

feed-forward	neural-networks	and	gradient	boosting	machines.	We	show	that	the	ensemble		average		of	the	six	

methods		marginally		outperforms	each	of	its	members,	thus	promoting	the	idea	that	averaging	model	estimates,	

each	with	different	strengths	and	weaknesses,	results	in	an	improvement	in	the	overall	estimates.	

	

The	CSIR-ML6	(version	2019a)		ensemble		approach	was	compared	to	validation	data	alongside	four	other	

methods	from	the	SOCOM	intercomparison	study	(Rödenbeck	et	al.	2015).	Our	new	method	marginally	

outperformed	the	SOCOM	methods	when	comparing	RMSE	scores	for	the	validation	data,	but	fared	equally	on	

biases.	Despite	this	improvement,	all	methods	had	errors	of	roughly	the	same	magnitude,	suggesting	that	the	

methods	are	resolving		p	CO	2		equally	outside	the	bounds	of	the	training	data.		

	

Closer	assessment	of	the	spatial	distribution	of	errors	shows	that	there	is	spatial	coherence	between	regression	

approaches	for	the	Northern	Hemisphere.	Some	of	these	errors	coincide	with	regions	of	high	dynamic	variability	

or	complex	biogeochemistry,	suggesting	that	increasing	the	spatial	and	temporal	resolution	of	gap-filling	

methods	could	improve	estimates.	Moreover,	introducing	additional	feature-variables	for	regression,	such	as	

eddy	kinetic	energy,	may	improve	estimates	in	these	regions.		

	

A	comparison	of	the		spatial		distribution	of	mismatches	in		p	CO	2		between	gap-filling	methods	shows	that	there	

are	regions	(primarily	in	the	Southern	Hemisphere)	where	the	compared	methods,	as	an	ensemble,	cannot	

resolve	interannual	variability	of		p	CO	2	.	These	large	mismatches		are		likely		to		occur	due	to	amplification	of	

algorithm	specific	biases	methodological	biases		in	data-sparse	areas.		We	suggest	that	an	ensemble	with	data	

density-driven	weighting	for	model	complexity	could	be	a	way	to	reduce	potential	overfitting	in	data-sparse	

regions.	We	also	urge	the	community	to	focus	on	incorporating	new	measurements	from	autonomous	platforms	

such	as	the		p	CO	2		derived	from	pH	measured	by	biogeochemical	Argo	floats,	and	new	platforms	such	as		p	CO	2	

capable	Wavegliders.		We	propose	that	scale-sensitive	integrated	multi-platform	sampling	of		p	CO	2		in	these	

regions	should	be	the	top	priority	for	the	community	-	a	task	that	is	made	easier	by	the	development	of	

autonomous	sampling	platforms.	Moreover,	we	suggest	that	optimised	simulation	sampling	experiments	should	

be	used	to	understand	the	spatial	and	temporal	requirements	of		p	CO	2		in	different	regions	and	periods.	

	

In	closing,	we	suggest	that	it	is	time	to	consider	another	SOCOM-like	intercomparison.	Several	new	methods	

have	been	developed	since	the	last	intercomparison	and	the	addition	of	these	would	improve	the	robustness	of	

ensemble		average		flux	estimates.	Further,	the	authors	of	the	SOCOM	intercomparison	suggest	that	a	future	

intercomparison	should	include	a	comparison	of	methods	using	simulated	data,	a	method	to	overcome	the	

limitation	of	the	lack	of	data	to	test	the	estimates.	 	
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Code	and	data	availability	

Supporting	code	is	available	in	Supplementary	Materials.	Data	(global	surface	ocean		p	CO	2		from	CSIR-ML6	

version	2019a)		is	available	at	OCADS	(link	specified	once	the	manuscript	is	accepted)			is	available	at	

https://doi.org/10.6084/m9.figshare.7894976.v1	.		
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