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Abstract	17	
Simulating	 surface	 inundation	 is	 particularly	 challenging	 for	 the	 high	 latitude	18	
permafrost	regions.	Ice-rich	permafrost	thaw	can	create	expanding	thermokarst	19	
lakes	 as	 well	 as	 shrinking	 large	 wetlands.	 Such	 processes	 can	 have	 major	20	
biogeochemical	implications	and	feedbacks	to	the	climate	system	by	altering	the	21	
pathways	 and	 rates	 of	 permafrost	 carbon	 release.	 However,	 the	 processes	22	
associated	 with	 it	 have	 not	 yet	 been	 properly	 represented	 in	 Earth	 system	23	
models.	 We	 show	 a	 new	 model	 parameterization	 that	 allows	 direct	24	
representation	of	surface	water	dynamics	in	CLM	(Community	Land	Model),	the	25	
land	 surface	 model	 of	 several	 Earth	 System	 Models.	 Specifically,	 we	 coupled	26	
permafrost-thaw	 induced	 ground	 subsidence	 and	 surface	 microtopography	27	
distribution	 to	 represent	 surface	 water	 dynamics	 in	 the	 high	 latitudes.	 Our	28	
results	 show	 increased	 surface	water	 fractions	 around	western	 Siberian	plains	29	
and	 northeastern	 territories	 of	 Canada.	 Additionally,	 localized	 drainage	 events	30	
correspond	 well	 to	 severe	 ground	 subsidence	 events.	 Our	 parameterization	 is	31	
one	 of	 the	 first	 steps	 towards	 a	 process-oriented	 representation	 of	 surface	32	
hydrology,	which	is	crucial	to	assess	the	biogeochemical	feedbacks	between	land	33	
and	the	atmosphere	under	changing	climate.		34	
	35	
1.	Introduction	36	
Northern	 high	 latitudes	 experience	 pronounced	 warming	 due	 to	 Arctic	37	
amplification	(Serreze	and	Francis,	2006).	Within	the	last	decades,	temperature	38	
increase	in	the	Arctic	has	been	twice	the	amount	of	that	in	the	tropics	(Solomon	39	
et	al.,	2007).	The	abrupt	increase	in	Arctic	temperatures	threatens	to	destabilize	40	
the	global	permafrost	areas	and	can	alter	land	surface	structures,	which	can	lead	41	
to	releasing	considerable	amounts	of	permafrost	carbon	as	greenhouse	gases	to	42	
the	 climate	 system	 (Schuur	 et	 al.,	 2008).	 Similarly,	 increased	 precipitation	 can	43	
accelerate	the	release	of	permafrost	carbon	in	high	latitudes	(Chang	et	al.,	2019;	44	
Grant	et	 al.,	 2017).	The	balance	between	CO2	and	CH4	 release	 from	permafrost	45	
depends	largely	on	the	organic	matter	decomposition	pathway;	larger	inundated	46	
areas	release	more	CH4	than	CO2	using	the	anaerobic	pathway	but	overall	release	47	
of	greenhouse	gases	is	greater	under	aerobic	conditions	(Lee	et	al.	2014;	Treat	et	48	
al.	2015).	However,	for	a	future	model	estimate,	Knoblauch	et	al	(2018)	predicts	49	
twice	as	much	permafrost	carbon	release	 in	anoxic	conditions	(241±138	g	CO2	50	
kgC-1)	 compared	 to	 oxic	 conditions	 (113±58	 g	 CO2	 kgC-1)	 by	 2100.	 The	main	51	
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natural	 sources	 of	 CH4	 emissions	 are	 from	 tropical	 wetlands,	 however	 the	1	
contributions	from	high	latitude	wetlands	are	 increasing	each	decade	 	(Saunois	2	
et	al.,	2016)	with	further	thawing	of	permafrost.	3	
	4	
With	high	percentage	of	surface	wetland	coverage	(Grosse	et	al.,	2013;	Muster	et	5	
al.,	 2017),	 characterizing	 high	 latitude	 CH4	 emissions	 require	 detailed	 process	6	
representations	 in	models.	 Besides	 surface	 wetland	 conditions,	 models	 should	7	
also	 properly	 estimate	 permafrost	 thaw	 stage	 (Malhotra	 &	 Roulet,	 2015),	8	
changing	surface	 topography	(Olefeldt	et	al.,	2013),	and	surface	vegetation	and	9	
microbial	 conditions	 (Grant	 et	 al.,	 2017)	 in	 order	 to	 improve	 estimations	 of	10	
surface	CH4	emissions.		11	
However,	 Earth	 system	 models	 (ESMs)	 used	 in	 the	 future	 climate	 projections	12	
struggle	 to	 represent	 the	 complex	 physical/hydrological	 changes	 in	 the	13	
permafrost	covered	high	 latitude	regions.	Therefore,	 it	 is	necessary	 to	 improve	14	
model	representation	of	surface	hydrology	processes	within	the	ESMs.		15	
	16	
Permafrost	 processes	 have	 now	 been	 represented	 commonly	 within	 the	 land	17	
surface	models	(Lawrence	et	al.,	2008;	Gouttevin	et	al.,	2012;	Ekici	et	al.,	2014;	18	
Chadburn	 et	 al.,	 2015),	 however,	 the	 complex	 hydrological	 feedbacks	 between	19	
degrading	 permafrost	 and	 thermokarst	 lake	 formations	 have	 been	 a	 major	20	
challenge.	 An	 extensive	 review	 of	 wetland	 modeling	 activities	 and	 an	21	
intercomparison	effort	of	evaluating	methane-modeling	approaches	are	given	in	22	
Wania	 et	 al.	 (2013)	 and	 Melton	 et	 al.	 (2013).	 These	 studies,	 however,	 do	 not	23	
include	permafrost	specific	features	such	as	excess	ice	in	frozen	soils,	therefore	24	
they	have	 tendency	 to	under-represent	key	processes	associated	 to	permafrost	25	
thaw.	Excess	 ice	melt	within	 the	 frozen	soils	 can	 lead	 to	abrupt	 changes	 in	 the	26	
surface	 topography,	 creating	 subsided	 ground	 levels,	which	 can	 enhance	 pond	27	
formation	 often	 recognized	 as	 thermokarst	 formation.	 Such	 changes	 in	 surface	28	
microtopography	 can	 be	 very	 effective	 in	 altering	 the	 soil	 thermal	 and	29	
hydrological	conditions	(Zona	et	al.,	2011).		30	
	31	
Lee	et	al.	 (2014)	 implemented	surface	subsidence	processes	 in	 the	Community	32	
Land	 Model	 (CLM:	 Oleson	 et	 al.,	 2013;	 Lawrence	 et	 al.,	 2011;	 Swenson	 et	 al.,	33	
2012)	to	overcome	some	of	the	limitations	in	representing	processes	associated	34	
with	 permafrost	 thaw	 and	 subsequent	 land	 surface	 subsidence.	 The	 surface	35	
conditions	altered	by	the	subsidence	events	change	the	microtopography	of	the	36	
area,	which	can	further	modify	the	surface	hydrological	conditions	in	reality.	Lee	37	
et	al.	(2014)	did	not	further	couple	the	land	surface	subsidence	with	hydrological	38	
processes	 to	 represent	 subsequent	 changes	 in	 local	 hydrology	 created	 under	39	
permafrost	 thawing.	 Here	 we	 developed	 a	 conceptual	 coupling	 of	 excess	 ice	40	
melting	and	subsequent	land	surface	subsidence	with	hydrology	and	show	how	41	
implementing	 permafrost	 thaw	 induced	 subsidence	 affects	 surface	42	
microtopography	distribution	and	surface	inundation	in	the	CLM	model.		43	
	44	
2.	Methods	45	
Simulating	the	effects	of	permafrost	thaw	on	surface	water	dynamics	requires	a	46	
complex	 interaction	of	 thermodynamics	 and	hydrology	within	 the	model.	Here	47	
we	use	the	1°	spatial	resolution	simulations	of	CLM5	(Lawrence	et	al.,	submitted	48	
2018)	 to	represent	such	dynamics.	CLM	 is	a	complex,	process	based	 terrestrial	49	
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ecosystem	 model	 simulating	 biogeophysical	 and	 biogeochemical	 processes	1	
within	the	soil	and	vegetation	level.	Lee	et	al.	(2014)	have	presented	the	excess	2	
ice	 implementation	 into	 CLM.	 The	 ground	 excess	 ice	 data	 from	 International	3	
Circum-Arctic	Map	of	Permafrost	and	Ground-Ice	Conditions	(Brown	et	al.,	1997)	4	
are	used	to	create	an	initial	soil	ice	dataset	to	be	prescribed	into	the	model.	This	5	
excess	 ice	 is	 added	 between	 0.8	 and	 3.8	 meters	 in	 CLM	 soil	 scheme	 where	6	
permafrost	exists	and	increases	the	relevant	soil	 layer	thicknesses.	The	amount	7	
of	 excess	 ice	 for	 each	 gridcell	 is	 estimated	 by	 multiplying	 percent	 permafrost	8	
area	with	 amount	 of	 excess	 ice	 from	 the	 Brown	 et	 al.	 (1997)	 dataset.	 The	 soil	9	
physical	 parameters	 (heat	 capacity	 and	 conductivity)	 are	 updated	 with	 the	10	
addition	 of	 excess	 ice.	 The	 excess	 ice	 in	 the	 model	 undergoes	 physical	 phase	11	
change	but	most	 importantly	melting	ice	allows	a	first-order	estimation	of	 land	12	
surface	 subsidence	under	permafrost	 thaw.	First	 the	 soil	 ice	 is	allowed	 to	melt	13	
and	then	the	excess	ice	is	subjected	to	phase	change.	Ice	melt	water	is	then	added	14	
the	 soil	 hydrology	 scheme	 in	 CLM	 and	 can	 be	 directed	 as	 runoff	 if	 it	 exceeds	15	
saturation.	 The	 soil	 layer	 thicknesses	 are	 then	 updated	 with	 the	 disappearing	16	
amount	 of	 excess	 ice.	 Lee	 et	 al.	 (2014)’s	 scheme	 does	 not	 allow	 formation	 of	17	
excess	ice	after	initialization.	18	
	19	
In	 CLM,	 surface	 inundated	 fraction	 (ƒh2osfc)	 of	 each	 grid	 cell	 is	 calculated	 by	20	
using	the	microtopography	distribution	(σmicro)	and	the	surface	water	level	(d)	of	21	
the	 grid	 cell	 (Eq.	 1	 -	 3).	 	 Surface	 water	 is	 defined	 by	 a	 spatial	 scale	 elevation	22	
variation	 that	 is	 the	 microtopography.	 The	 microtopography	 is	 normally	23	
distributed	around	 the	grid	 cell	mean	elevation.	The	 fractional	 area	of	 the	grid	24	
cell	that	is	inundated	(fh2osfc)	can	be	calculated	with	the	standard	deviation	of	this	25	
microtopographic	 distribution.	 The	 surface	 inundated	 fraction,	 in	 turn,	 affects	26	
the	soil	heat/water/carbon	fluxes	with	the	atmosphere.		27	
	28	
	29	
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Eq.1:	Parameterization	of	 surface	 inundated	 fraction	 ‘ƒh2osfc’	 using	an	error	 function	of	32	
surface	 water	 level	 ‘d’	 (height	 in	 m	 relative	 to	 the	 gridcell	 mean	 elevation)	 and	33	
microtopography	distribution	‘σmicro’	(m).		34	
	35	
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Eq.	 2:	 Microtopography	 distribution	 ‘σmicro’	 as	 a	 function	 of	 slope,	 where	 β	 is	 the	38	
prescribed	topographic	slope	and	“η”	is	an	adjustable	parameter.	39	
	40	
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	42	
Eq.	 3:	 Adjustable	 coefficient	 β0	 as	 a	 function	 of	 maximum	 topographical	 distribution	43	
‘σmax’.	Original	value	for	σmax	is	0.4	while	η	is	-3.		44	
	45	
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This	parameterization	is	similar	to	the	TOPMODEL	approach	(Beven	and	Kirkby,	1	
1979),	 where	 a	 hypsometric	 function	 is	 used	 to	 define	 the	 height	 of	 standing	2	
water	 (d)	 within	 the	 gridbox	 by	 assuming	 a	 normal	 statistical	 distribution	 of	3	
ground	 level	 microtopography.	 In	 this	 study,	 the	 subsidence	 levels	 from	4	
permafrost	 thaw	 induced	 excess	 ice	 melt	 are	 coupled	 with	 σmicro	 in	 order	 to	5	
represent	 the	 naturally	 occurring	 subsided	 landscapes	 within	 the	 permafrost-6	
affected	areas.	With	increasing	excess	ice	melt,	more	subsidence	occurs	and	the	7	
amount	of	 subsidence	redefines	 the	surface	σmicro,	which	 is	 inversely	related	 to	8	
ƒh2osfc	(Eq.	1).	Therefore,	to	represent	increased	ƒh2osfc,	σmicro	has	to	be	decreased	9	
in	 value.	 However,	 σmicro	 is	 the	 statistical	 distribution	 of	 surface	10	
microtopography,	hence	cannot	be	directly	related	to	physical	subsidence	levels.	11	
Therefore,	a	conceptual	method	of	relating	σmicro	to	an	order	of	magnitude	lower	12	
ground	subsidence	levels	is	used	(Eq.	4).	This	first	step	of	conceptualization	can	13	
be	 improved	 with	 subgrid	 scale	 parameterization	 (Aas	 et	 al.,	 2019)	 in	 future	14	
studies.	15	
	16	
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Eq.	 4:	 New	 microsigma	 parameterization	 ‘σ’micro’	 where	 ‘s’	 is	 the	 accumulated	19	
subsidence	in	meters	and	‘b’	is	the	adjustable	parameter	set	to	10.	20	
	21	
We	implemented	a	conditional	formulation	regarding	the	severity	of	subsidence.	22	
In	general,	the	surface	is	forced	to	allow	more	ponding	of	water	with	moderate	23	
levels	of	subsidence.	However,	advance	levels	of	excess	ice	melt	can	degrade	the	24	
surface	levels	so	much	that	the	small	troughs	created	from	the	initial	degradation	25	
can	connect	to	create	a	drainage	system	that	the	grid	box	can	no	longer	support	26	
any	 ponding	 (Liljedahl	 et	 al.,	 2016).	 For	 this	 reason,	 the	 excess	 ice	melt	 has	 a	27	
reversed	 effect	 on	 σmicro	 after	 a	 threshold	 value	 of	 0.5	m	 (Eq.4).	 Choice	 of	 this	28	
threshold	value	is	discussed	in	the	following	section.	29	
				30	
We	performed	several	experiments	using	CLM5	to	assess	the	general	response	of	31	
surface	 hydrology	 to	 changing	 microsigma	 parameter	 values.	 First,	 the	32	
dependence	 of	 ƒh2osfc	 to	 σmicro	 is	 investigated	 by	 doubling	 σmicro	 (experiment:	33	
Sigma-2)	and	reducing	it	by	half	(experiment:	Sigma-0.5).	Afterwards,	initialized	34	
with	 the	 default	 microsigma	 distribution	 (Fig.	 S1),	 results	 of	 the	 new	 σmicro	35	
parameterization	(experiment:	Exice)	 is	compared	to	the	default	model	version	36	
(experiment:	Control),	where	subsidence	does	not	alter	σmicro	or	ƒh2osfc	and	to	a	37	
satellite	driven	data	product	(GIEMS,	the	Global	Inundation	Extent	from	Multiple	38	
Satellites,	 Prigent	 et	 al.,	 2012).	 All	 experiments	 include	 155-year	 transient	39	
simulations	 following	 a	 spin	 up	 procedure	 of	 repeating	 1901-1930	 climate	40	
forcing	 for	 100	 years.	 The	 transient	 155-year	 simulation	 represents	 the	 time	41	
period	 from	 1860	 till	 2015.	 CRU-NCEP	 (Viovy,	 2009),	 a	 combined	 dataset	 of	42	
Climate	Research	Unit	(CRU)	and	National	Center	for	Environmental	Protection	43	
(NCEP)	 reanalysis	 datasets,	 is	 used	 as	 the	 atmospheric	 forcing	 for	 these	44	
experiments.	45	
	46	
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The	GIEMS	surface	inundation	dataset	from	Prigent	et	al.	(2007,	2012)	is	used	to	1	
compare	 the	 simulated	 inundated	 fractions.	 GIEMS	 uses	 a	 combination	 of	2	
satellite	 observations	 to	 derive	 the	 distribution	 and	 dynamics	 of	 the	 global	3	
surface	 water	 extent.	 The	 inundated	 areas	 are	 calculated	 using	 passive	4	
microwave	 observations	 from	Special	 Sensor	 Microwave/Imager	 (SSM/I),	5	
active	microwave	 observations	 from	 the	 scatterometer	 on	 board	the	European	6	
Remote	 Sensing	 (ERS)	 satellite	 and	 the	normalized	 difference	 vegetation	 index	7	
(NDVI)	 from	 the	Advanced	 Very	 High	 resolution	 Radiometer	 (AVHRR).	 The	8	
dataset	 provides	 monthly-mean	 values	 of	surface	 water	 area	 from	 1993	 to	9	
2007,	with	a	spatial	resolution	of	0.25°.		The	dataset	is	spatially	projected	onto	a	10	
1°	resolution	grid	for	comparison	with	the	model	results.	11	
	12	
3.	Results	and	Discussion	13	
In	 our	 experiments,	 surface	 inundation	 (ƒh2osfc)	 increases	 where	 surface	14	
microtopography	 distribution	 (σmicro)	 decreases	 (Fig.	 1)	 as	 expected	 from	 the	15	
CLM	 parameterization.	 When	 σmicro	 decreases	 (Sigma-0.5)	 compared	 to	 the	16	
original	value	(shown	in	Supplementary	Figure	S1),	it	results	in	very	high	ƒh2osfc	17	
over	 western	 Siberia	 and	 Hudson	 Bay	 area,	 while	 increasing	 σmicro	 (Sigma-2)	18	
results	in	lower	ƒh2osfc	in	general.	In	the	original	CLM	parameterization,	ƒh2osfc	is	19	
calculated	 with	 a	 static	 microtopography	 index	 (Fig.	 S1)	 derived	 from	 a	20	
prescribed	topographic	slope	dataset	(Oleson	et	al.,	2013).	21	

	22	
Fig.	 1:	 High	 latitude	 (>50°N)	maps	 of	 simulated	 surface	water	 fractions	 (ƒh2osfc)	 from	23	
Control,	Sigma-0.5,	and	Sigma-2.0	experiments	with	different	microsigma	distributions	24	
averaged	for	the	period	2000-2010.	25	

	26	
Our	results	illustrate	the	dependence	of	ƒh2osfc	on	σmicro	and	how	certain	range	of	27	
σmicro	values	can	result	in	very	high	ƒh2osfc,	and	differences	in	ƒh2osfc	can	be	quite	28	
regional	(Fig.	S2).		This	relation	emphasize	the	need	for	a	dynamic	circum-Arctic	29	
σmicro	 value	 to	 capture	 the	 natural	 variability	 of	 surface	 conditions	 when	30	
representing	 permafrost	 thaw	 associated	 hydrological	 changes.	 In	 the	 Exice	31	
experiment,	 coupling	excess	 ice	melt	 induced	ground	subsidence	 to	σmicro	 leads	32	
to	significant	 changes	 in	surface	hydrology	 (Fig.	2).	 In	our	simulations,	σmicro	 is	33	
consistently	 lower	 in	Exice	compared	to	Control	at	 the	end	of	 the	20th	century	34	
(Fig.	 2a).	 This	 is	 the	 model	 representation	 of	 increased	 variability	 in	 surface	35	
microtopography	 due	 to	 uneven	 subsidence	 events	 within	 the	 gridcell.	36	
Particularly	larger	inundated	fractions	are	simulated	around	western	Siberia	and	37	
northeast	Canada,	which	conform	well	to	the	observational	datasets	of	peatland	38	
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distribution	(Tarnocai	et	al.,	2007;	2009).		Several	other	observational	estimates	1	
agree	 on	 the	 spatial	 distribution	 of	 high	 latitude	 peatlands,	where	most	 of	 the	2	
wetland	 formations	are	expected	 in	 the	 future	 (Melton	et	al.,	2013).	Therefore,	3	
the	 new	 parameterization	 of	 surface	 inundated	 fraction	 is	 a	 stepping-stone	4	
towards	 a	 more	 realistic	 representation	 of	 surface	 hydrology	 in	 permafrost-5	
affected	areas.	Other	modeling	studies	support	these	results	with	similar	spatial	6	
patterns	of	surface	wetland	distributions	(Wania	et	al.,	2013;	Melton	et	al.,	2013).	7	
In	 the	 previous	 version	 of	 CLM,	 simulated	 inundated	 area	 shows	 slightly	8	
different	 patterns	 (Riley	 et	 al.,	 2011),	 mainly	 due	 to	 non-process	 based	9	
description	 of	 inundated	 fractions.	 We	 emphasize	 that	 although	 our	10	
parameterization	 is	 only	 conceptual,	 this	 is	 the	 first	 attempt	 towards	 coupling	11	
permafrost	 thaw	associated	 land	 surface	 subsidence	with	hydrological	 changes	12	
in	a	land	surface	model	within	an	ESM.		13	
	14	
By	 introducing	 the	effects	of	ground	subsidence	on	σmicro,	a	dynamic	 inundated	15	
fraction	 is	 calculated.	 However,	 there	 is	 no	 observed	 dataset	 to	 evaluate	 the	16	
relation	 between	 subsidence	 and	 ground	 topography,	 therefore	 an	 assumption	17	
had	 to	 be	 made	 regarding	 this	 coupling.	 In	 this	 study,	 changes	 in	 σmicro	 are	18	
proportional	to	the	changes	in	ground	subsidence	with	the	difference	in	an	order	19	
of	magnitude.		This	assumption	is	put	to	test	by	doubling	and	halving	the	initial	20	
σmicro	 values	 and	 the	 results	 show	 10	 to	 20	 %	 change	 in	 surface	 inundated	21	
fractions	(Fig.	1).	The	difference	 in	dynamic	parameterization	(Fig.	2b)	stays	 in	22	
between	 these	 values	 and	 on	 average	 shows	 a	 10	 –	 15	 %	 increase,	 thus	23	
supporting	the	coupling	assumption.	24	

	25	
Fig.	2:	Effects	of	coupled	subsidence-microsigma	parameterization	on	‘σmicro’	and	‘ƒh2osfc’	26	
from	>50°N	difference	maps	of	Exice-Control	experiments	for	the	period	2000-2010.	27	
	28	
As	expected,	 the	ƒh2osfc	and	σmicro	changes	are	related	to	 the	ground	subsidence	29	
processes	 in	most	cases.	Exice	experiment	produces	 land	surface	subsidence	 in	30	
some	gridcells	(Fig.	3)	similar	to	the	spatial	patterns	exhibited	in	σmicro	and	ƒh2osfc	31	
in	 Fig.	 2,	 suggesting	 that	 melting	 of	 excess	 ice	 affects	 changes	 in	 surface	32	
hydrology.	 This	 is	most	 pronounced	 around	western	 Siberia,	 south	 of	 Hudson	33	
Bay	and	around	northwestern	Canada	and	central	Alaska,	where	initial	excess	ice	34	
was	 large	 (Lee	 et	 al.	 2014).	 Simulated	 ground	 subsidence	 is	 associated	 to	35	
changes	in	surface	inundated	fraction	(ƒh2osfc)	described	in	Fig.	2.		36	
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	1	
As	 a	 result	 of	 subsidence	 threshold	 parameterization	 (see	 Methods),	 reversed	2	
effect	of	excess	ice	melting	is	shown	in	the	σmicro	plots	(Fig.	2a),	where	red	points	3	
are	 directly	 related	 to	 the	 severe	 ground	 subsidence	 locations	 (Fig.	 3).	 These	4	
areas	consistently	exhibit	abrupt	melting	of	excess	ice	leading	to	increased	σmicro.	5	
Larger	 negative	 deviations	 of	σmicro	 from	 the	 original	 values	were	 observed	 in	6	
central	 Alaska,	 northwestern	 Canada,	 south	 of	 Hudson	 Bay,	 southwest	 Russia,	7	
central	Siberia,	and	northern	Yakutia	regions	of	Russia	(areas	with	dark	blue	in	8	
Fig2a).	 In	 reality,	 different	 landscapes	 should	 have	 a	 different	 threshold	 value,	9	
yet	our	work	is	aimed	to	capture	the	overall	changes	and	general	patterns	rather	10	
than	local	conditions,	so	a	preliminary	choice	of	a	single	threshold	value	is	used.	11	
Same	 areas	 show	 increased	 ƒh2osfc	 compared	 to	 Control	 (Fig.	 2b).	 The	 largest	12	
increases	in	ƒh2osfc	are	observed	in	central	Siberia	and	southeastern	Russia,	while	13	
some	minor	 decreases	 in	 ƒh2osfc	 values	 are	 present	 in	 an	 unevenly	 distributed	14	
pattern.	It	is	important	to	add	that	the	choice	of	0.5	m	threshold	is	arbitrary	and	15	
can	be	modified	according	to	the	surface	dataset	of	excess	ice.	16	

	17	
Fig.	 3:	 High	 latitude	 (>50°N)	 map	 of	 ground	 subsidence	 simulated	 from	 the	 Exice	18	
experiment	averaged	for	the	period	2000-2010.	19	
	20	
Spatially	 averaged	 timeseries	 of	 σmicro	 and	 ƒh2osfc	 show	 that	 in	 the	 Exice	21	
experiment	σmicro	decreases	over	time	and	ƒh2osfc	shows	a	more	dynamic	change	22	
during	 the	 simulation	 (Fig.	 4).	 The	 discrepancy	 in	 σmicro	 between	 Exice	 and	23	
Control	 in	 the	 beginning	 of	 the	 simulation	 is	 due	 to	 prior	 excess	 ice	 melting	24	
during	 the	 spin-up	 period	 (Fig.	 S3)	 and	 the	 values	 continue	 to	 decrease	25	
throughout	the	20th	century,	while	the	decrease	halts	temporarily	during	1960-	26	
1990	(microsigma-diff	plot	in	Fig.	4).		27	
	28	
Model	results	show	that	ƒh2osfc	is	quite	sensitive	to	the	σmicro	parameter.	With	the	29	
current	knowledge,	there	is	no	perfect	way	to	optimize	the	σmicro	parameter	for	30	
each	 gridbox	 in	 global	 simulations,	 this	 is	 why	 we	 tried	 to	 estimate	 σmicro	 by	31	
coupling	to	other	well-known	physical	processes	like	excess	ice	melt.	Since	there	32	
is	no	global	dataset	 to	directly	 compare	with	our	model	 results,	 one	 should	be	33	
cautious	 interpreting	 our	 model’s	 contemporary	 and	 future	 estimates.	 One	34	
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avenue	 to	 constrain	 our	 parameterization	 will	 be	 to	 use	 the	 terrestrial	1	
greenhouse	gas	fluxes	in	future	studies.	2	
	3	
Higher	 ƒh2osfc	 are	 observed	 in	 Exice	 experiment,	 however,	 the	 differences	4	
between	Exice	 and	Control	 show	a	 general	 increase	 throughout	 the	 simulation	5	
except	 the	 period	 between	 1960-1990.	 The	 spatially	 averaged	 ƒh2osfc	 values	6	
exhibit	 a	 non-linear	 progression	 during	 the	 20th	 century	 (Fig.	 4).	 Mainly	 the	7	
change	 in	 climate	 forcing	 contributes	 to	 this	 trend.	 Analyzing	 the	 CRUNCEP	8	
atmospheric	 forcing	 data	 suggests	 that	 the	 precipitation	 pattern	 over	 the	9	
experiment	 domain	 shows	 a	 sudden	 reduction	 at	 the	 beginning	 of	 1960s	 (Fig.	10	
S4).	 Even	 though	 the	 average	 precipitation	 starts	 increasing	 again,	 the	 lower	11	
values	 contribute	 to	 the	 reduced	 ƒh2osfc	 values.	 Similar	 changes	 occur	with	 the	12	
patterns	 in	 atmospheric	 temperatures	 (Fig.	 S4),	 which	 is	 a	 direct	 forcing	 for	13	
permafrost	 thaw	 and	 ground	 subsidence.	 A	 process-based	 representation	 of	14	
ƒh2osfc	allows	the	model	 to	naturally	represent	the	temporal	changes	 in	climate.	15	
Hence,	our	representation	of	ƒh2osfc	will	improve	the	estimation	of	future	surface	16	
hydrological	states	under	changing	climatic	conditions.	17	

	18	
Fig.	 4:	 Timeseries	 of	 spatially	 averaged	 high	 latitude	 (>50°N)	 σmicro	 and	 annual	19	
maximum	 ƒh2osfc	 variables	 from	 Exice	 and	 Control	 experiments	 together	 with	 the	20	
timeseries	of	Exice-Control	difference	(diff)	for	the	period	1900-2010.	21	
	22	
The	direct	effects	of	the	new	model	parameterization	are	better	analyzed	while	23	
inspecting	point	scale	changes	as	shown	in	Fig.	5.	The	three	selected	points	show	24	
a	 range	 of	 scenarios	 to	 observe	 the	 effects	 of	 subsidence	 on	 microsigma	 and	25	
ƒh2osfc.	Point	1	has	no	change	in	subsidence	during	the	simulation	and	with	lower	26	
microsigma	values	in	Exice	(due	to	prior	subsidence	in	spinup),	the	difference	in	27	
ƒh2osfc	compared	to	Control	simulation	is	always	positive,	meaning	higher	surface	28	
inundated	fractions.	In	Point	2,	Exice	microsigma	decreases	due	to	the	increase	29	
in	 subsidence	 during	 the	 simulation.	 These	 gradual	 changes	 are	 reflected	 in	30	
ƒh2osfc,	where	sudden	increases	are	shown	around	1935	and	1955,	exactly	when	31	
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the	 subsidence	 changes	 occur.	 Similarly	 in	 Point	 3,	 subsidence	 causes	 a	 lower	1	
microsigma	 in	 the	beginning	of	 the	 simulation;	however	 the	 subsidence	values	2	
surpass	 the	0.5m	threshold	around	1920s,	which	causes	 the	 reversed	effect	on	3	
microsigma	 by	 increasing	 it	 compared	 to	 the	 Control	 experiment.	 Severe	4	
subsidence	 causing	 more	 drainage	 is	 represented	 in	 this	 way	 within	 our	5	
parameterization.	The	ƒh2osfc	values	show	this	drainage	with	a	sudden	decrease	6	
at	1920	and	continuing	with	mostly	negative	values	throughout	the	simulation.	7	
These	 scenarios	 support	 the	 validity	 of	 our	 new	 parameterization	 that	 can	 be	8	
used	 for	 any	 future	 climate	 scenario	 for	 a	 better	 representation	 of	 surface	9	
hydrology	and	subsidence	coupling.	10	

	11	
Fig.	 5:	 Timeseries	 of	 subsidence,	 σmicro,	 and	 ƒh2osfc	 variables	 from	 Exice	 and	 Control	12	
experiments	at	three	selected	sites.	Point	1:	lat	54	N	lon	272	E,	Point	2:	lat	64	N	lon	80	E,	13	
Point	3:	lat	65	N	lon	70	E.	14	
	15	
GIEMS dataset (Prigent et al., 2012) provides the surface area of wetlands for each 16	
gridbox. Fraction of wetland-covered gridbox is calculated to compare with the model 17	
results (Fig. 6). The range of estimated surface wetland fraction is different in the 18	
satellite dataset and model outputs; however, spatial distribution of surface inundated 19	
area is fairly comparable between the model and the satellite dataset. They both 20	
exhibit larger inundated fractions in western Siberia and around Hudson Bay. The	21	
ranges	 of	 estimated	 surface	wetland	 fraction	between	 the	 satellite	 dataset	 and	22	
model	 outputs	 are	 different	 due	 to	 differences	 in	 the	 definitions	 of	 inundated	23	
areas.	 However,	 spatial	 distribution	 of	 surface	 inundated	 area	 is	 comparable	24	
between	the	model	and	the	satellite	dataset,	where	both	exhibit	larger	inundated	25	
fractions	 in	 western	 Siberia	 and	 Hudson	 Bay.	 Since	 our	 model	 provides	 the	26	
fraction	 of	 gridbox	 that	 is	 inundated,	 the	 satellite	 dataset	 had	 to	 be	 converted	27	
from	 actual	 wetland	 area	 to	 fractions.	 The	 GIEMS	 dataset	 assumes	 773	 km2	28	
gridboxes	 all	 over	 the	 globe	 (Prigent	 et	 al.,	 2007),	 which	 creates	 grid-size	29	
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problems	 comparing	 to	 model	 gridbox	 area.	 	 Another	 issue	 with	 such	1	
comparison	 stems	 from	 the	 differences	 in	 the	 definition	 of	 inundated	 fraction.	2	
GIEMS	dataset	uses	satellite	observations	at	different	wavelengths	to	derive	the	3	
wetland	area,	while	the	CLM	creates	the	surface	inundation	with	the	topography	4	
index	and	water	 inputs	 to	 the	gridbox.	Within	 the	model	parameterization,	 the	5	
height	of	the	surface	water	level	is	calculated	by	a	hypsometric	function	and	the	6	
gridbox	 fraction	 is	 further	 derived	 from	 the	 grid	 size.	 This	 allows	 an	 ever-7	
existing	 surface	 inundated	 fraction	 even	 in	 very	 dry	 gridboxes,	 whereas	 the	8	
GIEMS	method	underestimates	the	small	wetlands	comprising	less	than	10%	of	9	
the	gridbox	area	(Prigent	et	al.,	2007);	hence	a	model	overestimation	of	satellite	10	
dataset	 is	 expected.	 Definition	 of	 modelled	 and	 satellite	 derived	 inundated	11	
fraction	 is	 not	 the	 same.	 Unfortunately	 there	 is	 no	 standard	 definition	12	
(Reichhardt,	1995),	which	produces	the	struggle	 to	 find	a	proper	observational	13	
dataset	 to	 evaluate	 model	 results.	 What	 we	 emphasize	 from	 our	 findings	 is,	14	
nevertheless,	 the	 spatial	 patterns	 of	 higher	 inundated	 fractions	 occurring	 at	15	
similar	locations	in	model	and	satellite	dataset	(Fig.	6).	16	
	17	

	18	
Fig.	 6:	 Surface	water	 fraction	 comparison	 from	 high	 latitude	 (>50°N)	maps	 of	 annual	19	
maximum	 surface	 wetlands	 from	 GIEMS	 dataset	 (Prigent	 et	 al.,	 2012)	 and	 annual	20	
maximum	ƒh2osfc	values	of	Exice	and	Control	experiments	for	the	period	1993-2007.	21	
	22	
4.	Conclusion	23	
A	warming	 climate	 affects	 the	Arctic	more	 severely	 than	 the	 rest	 of	 the	 globe.	24	
Increasing	surface	temperatures	pose	an	important	threat	to	the	vulnerable	high	25	
latitude	 ecosystems.	 Degradation	 of	 Arctic	 permafrost	 due	 to	 increased	 soil	26	
temperatures	 leads	 to	 the	release	of	permafrost	 carbon	 to	 the	atmosphere	and	27	
further	 strengthens	 the	greenhouse	warming	 (IPCC,	2013;	Schuur	et	al.,	2008).	28	
For	 future	 climate	 predictions,	 it	 is	 necessary	 to	 properly	 simulate	 the	 Arctic	29	
surface	inundated	areas	due	to	their	physical	and	biogeochemical	coupling	with	30	
the	atmosphere.		31	
	32	
This	 study	 summarizes	 a	 new	 parameterization	 within	 the	 CLM	 to	 represent	33	
prognostic	 surface	 inundated	 fractions	 under	 permafrost	 thawing	 using	 a	34	
conceptual	approach	that	can	lead	to	implementation	of	a	physical	process-based	35	
parameterization.	 Coupling	 ground	 subsidence	 to	 surface	 microtopography	36	
distribution,	 hence	 allowing	 a	 natural	 link	 between	 surface	 hydrological	37	
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conditions	 and	 soil	 thermodynamics,	 resulted	 in	 generally	 increased	 surface	1	
inundated	 fractions	 over	 the	 northern	 high	 latitudes,	 with	 larger	 surface	2	
inundated	 fractions	 around	 western	 and	 far-east	 Siberian	 plains	 and	3	
northeastern	 Canada.	 Projected	 increase	 in	 global	 temperatures	will	 inevitably	4	
cause	more	excess	 ice	melting	and	subsequent	ground	subsidence,	 therefore,	 it	5	
will	be	necessary	to	incorporate	a	process-based	parameterization	to	accurately	6	
account	for	future	ground	subsidence	effects	on	surface	hydrological	states.		7	
		8	
Our	 results	 confirm	 the	 enhancements	 of	 coupling	 ground	 subsidence	 and	9	
surface	 inundation	 to	 represent	 the	 temporal	 changes	 in	 surface	 hydrology	10	
reflected	 by	 soil	 physical	 states	 and	 the	 atmospheric	 forcing,	 which	 is	 much	11	
needed	 for	 a	 future	 scenario	 experiment.	 Here	 we	 conclude	 that	 our	 new	12	
parameterization	is	implemented	successfully	and	functions	globally	for	the	CLM	13	
model,	that	the	inundated	areas	exist	at	the	same	areas	as	the	observational	data.	14	
It	 can	 be	 used	 for	 future	 climate	 scenarios	 such	 as	 shown	 in	 Lee	 et	 al.	 (2014)	15	
with	 major	 subsidence	 events	 during	 the	 21st	 century	 under	 a	 high	 warming	16	
scenario.		17	
	18	
This	 new	 parameterization	 represents	 the	 first	 step	 into	 a	 process-based	19	
representation	 of	 such	 hydrological	 processes	 in	 CLM.	 Using	 this	20	
parameterization,	 further	 work	 can	 proceed	 to	 investigate	 the	 biogeochemical	21	
feedbacks	of	permafrost	greenhouse	gas	fluxes	between	land	and	atmosphere.	22	
	23	
Code	and	data	availability	24	
The	code	modifications	to	CLM	model	in	accordance	to	this	paper	are	accessible	25	
through	the	Zenodo	archive	with	the	following	link:		26	
https://zenodo.org/badge/latestdoi/183611414	27	
	The	 overall	 CLM	 model	 code	 can	 be	 obtained	 from	 the	 NCAR	 archives,	 the	28	
instructions	on	accessing	the	model	code	is	given	through	this	website:	29	
http://www.cesm.ucar.edu/models/cesm2/land/	30	
The	full	set	of	model	data	will	be	made	publicly	available	through	the	Norwegian	31	
Research	Data	Archive	at	https://archive.norstore.no	upon	publication.	32	
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Supplementary	1	
	2	

	3	
Fig.	S1:	High	latitude	(>50°N)	map	of	default	microsigma	distribution.	4	
	5	

	6	
Fig.	S2:	Fh2osfc	difference	between	Sigma-0.5	and	Sigma-2	experiments.	7	
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	1	
Fig.	S3:	100	year	spin	up	timeseries	of	spatially	averaged	soil	physical	variables	related	2	
to	the	new	parameterization.		3	

	4	
	5	

	6	
Fig.	S4:	Timeseries	of	high	 latitude	(>50°N	average	 -land	only)	CRUNCEP	precipitation	7	
and	air	temperature	forcing	for	the	period	1900-2010.	Dotted	lines	show	1900	value.	8	

	9	
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