
Response to reviewer comment 1: 
 
Specific comments 
 
Pg1, L43: In addition to increased temperature, the projected increases in high 
latitude precipitation could also accelerate the release of permafrost carbon (e.g., 
Chang et al., 2019; Grant et al., 2017).  
 

- We thank the reviewer for the suggested references. These new references 
will be added in the revised manuscript. 

 
Pg1, L46-47: Can you give a quantitative description about the release of 
greenhouse gases (e.g., in terms of g CO2-eq/m2)? How about Knoblauch et al. 
(2018) that found strong CH4 production under anoxic conditions?  
 

- We will add the following section in the revised manuscript version: 
 

“However, for a future model estimate, Knoblauch et al (2018) predicts twice as much 
permafrost carbon release in anoxic conditions (241 ±138 g CO2 kgC-1) compared to 
oxic conditions (113 ±58 g CO2 kgC-1) by 2100.”.  
 
Pg2, L1-3: There are many other “detailed processes representations” that can alter 
high latitude CH4 emissions in addition to surface wetland coverage. For example, 
the representations of permafrost thaw stage, surface topography, vegetation and 
microbial community compositions (e.g., Grant et al., 2017; Malhotra & Roulet, 2015; 
McCalley et al., 2014; Olefeldt et al., 2013).  
 

- We thank the reviewer for these suggestions. We agree to include more 
detailed processes that influence the high latitude CH4 emissions in the 
revised version. The following section will be added in the revised manuscript: 

 
“Besides surface wetland conditions, models should also properly estimate 
permafrost thaw stage (Malhotra & Roulet, 2015), changing surface topography 
(Olefeldt et al., 2013), and surface vegetation and microbial conditions (Grant et al., 
2017) in order to improve estimations of surface CH4 emissions.” 
 
Pg7 Fig. 3: It might be a good idea to include the simulated soil temperature map 
here to (1) confirm it aligns reasonably with the simulated ground subsidence; (2) 
give a sense of how much warming leads to this amount of ground subsidence. Also, 
if the blue regions (subsidence<0.1m) are close to 0 degree C, wouldn’t it suggest a 
potentially strong ground subsidence with the projected warming after 2010?  
 

- We thank the reviewer for this suggestion and we want to emphasize that the 
scope of our current work is the connection between subsidence and surface 
water since the relation between subsidence and soil temperature/moisture 
was thoroughly discussed in the previous work: Lee et al. 2014. So for the 
sake of keeping the manuscript concise, we would like to refer to Lee et al. 
(2014) for the soil temperature diagnostics.  
 

- The blue regions with subsidence <0.1m, the reviewer mention here, can 
indeed indicate a strong subsidence in the future where the soil temperatures 
are close to 0. We would like to emphasize that this is one of the motivations 



to use our new parameterization for future simulations and investigate the 
subsidence under warming scenarios. 

 
Pg8, Fig.4: The spatially averaged sigma-micro between the two sets of runs are very 
similar. Can you include the variability along with the mean values? It appears that 
the model is extremely sensitive to a parameter (sigma-micro) that exhibits limited 
temporal variability. How do the author propose to find realistic sigma-micro values 
for contemporary and future simulations? Once the parameterization proposed in this 
study is applied to ESMs, it will trigger significant changes in surface hydrology and 
thereby biogeochemical feedbacks resulting from sigma-micro selection along (not 
including the parameterization uncertainty).  
 

- We understand the reviewer’s concern about the strength of microsigma 
parameter in our model.  The variability of spatially averaged microsigma in 
Exice experiment is quite small indeed (variance: 2.8e-8, standard 
dev.:1.6e-4), so for the figure it doesn’t make sense to add these in the 
manuscript. With the current knowledge, there is no perfect way to optimize 
the microsigma parameter for each gridbox in global simulations, this is why 
we tried to estimate micro-sigma by coupling to other well-known physical 
processes like excess ice melt. Since there is no global dataset to directly 
compare with our model results, one should be cautious interpreting our 
model’s contemporary and future estimates. One avenue to constrain our 
parameterization will be to use the terrestrial greenhouse gas fluxes, once we 
use the biogeochemistry coupled to our parameterization, and this is for the 
next step in our work. 

 



Response to reviewer comment 2: 
 
General Comments 
 
One of my main concerns with the parametrization pertains to the use of the accu- 
mulated subsidence for estimating the changes in microtopography. I see this as 
problematic as subsidence in the model can only increase over time (as the Lee 
scheme does not account for the formation of soil ice) and the authors introduce a 
fixed threshold above which further subsidence increases the microtopographic 
parameter rather than decreasing it. Hence, for the scheme to produce meaningful 
changes in inundated fraction, it does not only need to be initialized with the correct 
microtopography and soil ice content but also with reliable information of how much 
subsidence has happened in the past in any given grid box; in other words one would 
have to know, how close the subsidence is to passing the threshold when it will lead 
to an increase in sigma; and I am not aware of any dataset that could provide this 
information. In their study the authors avoid this initialization problem by starting the 
simulation with zero-subsidence and then having a 100-year spin-up period. But in 
this case, the results will be highly dependant on the selection of the spin up period, 
e.g. if the spin up of the model would have been done for 1000 instead of 100 years 
the results could look very different as in many grid-boxes the subsidence may have 
already passed the 0.5m-threshold meaning that the inundated fraction would 
actually decrease during the simulation.  
 

- We acknowledge the reviewer’s concern. We agree that this is one of the 
largest sources of uncertainty in our work. As the reviewer pointed out, our 
parameterization depends much on the initialization of excess ice and there is 
currently no global scale dataset to parameterize and evaluate the model. 
One feasible proxy for evaluating the surface inundation is to use the 
terrestrial CO2 and CH4 fluxes once we use our parameterization coupled to 
the CLM biogeochemistry module. This is the aim for the next step in our work 
and we hope that our work can motivate the observation community to collect 
such dataset.  
 

- The spin up procedure was sufficiently long enough to bring the physical state 
into equilibrium, since we did not use the biogeochemistry, we did not need a 
longer spin up period than 100 years. Also the excess ice melt comes to an 
equilibrium with the spin up climate state so a longer spin up would not 
change the initial excess ice melt conditions. 

 
Additionally, even though the authors make it clear that this is merely a first step, I 
am not fully convinced by the arguments that are being made in favour of the chosen 
parametrisations/assumptions. On pages 5 (l. 31) - 6 (l. 2) the authors claim that the 
simulated changes in inundated fraction stay within the range that results from 
halving or doubling the reference value of sigma; but I fail to see how that validates 
the coupling assumption? It merely shows that the parametrisation has a certain 
sensitivity, but how sensitive should it actually be?  
 

- We have chosen to double and halve the reference microsigma value in the 
sensitivity analysis to show the upper and lower boundary of the sensitivity in 
fh2osfc with changing microsigma. The behavior of fh2osfc in these sensitivity 
simulations support that the dynamic parameterization in this study does not 



lead to unrealistic fh2osfc values in the simulations under present day climate. 
This test is merely to constrain any extreme sensitivity cases that might have 
originated from our conceptual scheme. Finding the best sensitivity of surface 
inundation to soil subsidence is beyond the scope of this study and currently 
very challenging to estimate with global observational datasets. 

 
Also, while I can see a certain spatial correlation between the simulated subsidence 
and the changes in microtopography, i.e. Fig 3 and Fig 2a, I have a very hard time 
seeing any meaningful correlation between the changes in microtopgraphy (Fig. 2a) 
and changes in inundated fraction (Fig. 2b).  
 

- The subsidence directly dictates the microsigma changes in the code, 
therefore, it is more straightforward to diagnose the relation between 
subsidence and microsigma than subsidence and fh2osfc. We agree with the 
reviewer that it is difficult to tease out direct relationship between microsigma 
changes and surface inundation. This is due to the fact that surface 
inundation is not only affected by the subsidence but also by combination of 
factors such as precipitation, air temperature, and soil moisture. Hence, the 
fh2osfc changes in Fig2b is difficult to interpret only from the changes in 
microtopography under excess ice melting. Yet, we would like to draw the 
reviewer’s attention to the extreme subsidence areas (red points in Fig2a) and 
the corresponding changes (even though very small) in the surface inundation 
map (small blue areas inFig 2b), which suggests that our parameterization is 
creating surface inundation at the areas where it should. Figures 4 and 5 are 
added for similar reasons to compare the changes in fh2osfc in global and 
point scale dynamics. The future simulations under climate warming will show 
pronounced subsidence (Lee et al., 2014) and the consequent effects on 
surface inundation will be more visible. 

 
But most importantly, I am not convinced by the comparison to the GIEMS dataset 
(page 9, l.6 - page 10, l.6). In Figure 6. there is almost no difference in the inundated 
fractions simulated with the two model versions. And if there was any difference I do 
not understand how that could demonstrate that it is beneficial to use the new 
scheme. The control simulation uses the present day sigma and should therefore 
also result in the best simulated present day inundated fractions. If the simulations 
with the new scheme give inundated fractions that are closer to the observations 
(which is not visible in the plots) it merely means that the function CLM uses to 
compute the inundated fraction could be improved, but not that the reference 
microtopography is wrong. So at best this comparison shows that the new scheme 
doesn’t change the microtopography so much that it substantially affects the 
simulated present day inundated fraction. As the scheme is used to capture the 
dynamics related to subsidence, it would be key to show a comparison with observed 
trends/changes in the inundated fraction, in order to demonstrate that the scheme 
performs well.  
 

- We thank the reviewer for opening this point to discussion. Fig. 6 indeed does 
not show a large difference between the Control and Exice simulations. 
However, as we pointed out in the discussion, we intended to show that our 
new parameterization does not create unrealistic values compared to the 
Control simulation and this work is merely to increase our confidence to use 
the new dynamic parameterization for future climate change scenarios, where 



the differences due to major subsidence will be more pronounced. So, we do 
not claim the current CLM microsigma parameter is faulty, our new 
parameterization introduces a temporal variability to the microsigma 
parameter and it shouldn’t diverge too much with the present day conditions. 
Hence, the similarity between Control and Exice simulations in Fig 6 supports 
our aim. On the other hand, we use the GIEMS dataset to additionally show 
that the regions where extensive high surface inundation occurs in 
observational dataset and to confirm that the model results correspond well 
with the observations in the spatial patterns of surface inundation. Since the 
GIEMS dataset was not a very long time series, we couldn’t use this dataset 
for direct comparison over time. However, Fig 5 demonstrates model’s 
behaviour in time for different climatic conditions and the deviations from the 
control run are quite distinguishable. 

 
 
Consequently, until the authors demonstrate the scheme’s ability to improve the 
models surface water dynamics and provide a strategy for the initialization and 
spinup of the model, I can not agree with the their conclusion that "the 
parametrization is implemented successfully and can be used for further climate 
scenarios". 
 

- We believe we have answered some of the reviewer’s concerns and we are 
not sure if the reviewer has some other suggestions at this point. We want to 
clarify that one of the points of this manuscript is to show a new 
parameterization that works globally for a land surface scheme. We suggest 
to revise our conclusion points to tone down the implications of this study that 
it is the first step in this kind of parameterization. But more importantly, this 
study really brings out the importance of observational data and we 
encourage observations to take this into account. 

 
  
Specific Comments 

● p.2, l.24-l.27: As the subsidence simulated by the scheme is a key input to 
your model it would be very helpful if you could provide some more details on 
the scheme by Lee et al..  

- we are adding some details of Lee et al. scheme in the methods section in the 
revised manuscript. 

● P.3, l.32: Why preliminary?  
- wrong choice of word, changed ‘preliminary’ to ‘conceptual’ 
● P.3, l.35: Here, it would be very helpful if you could clarify whether s is indeed 

the accumulated subsidence since the beginning of the simulation. 
- yes we added clarification in the text  
● P.4, l.12ff: Is there a specific reason why you do the spinup using the forcing 

from 1901-1930 while you start your simulation in the year 1860? Wouldn’t it 
make more sense to use the climate forcing from the beginning?.  

- it was just a standard procedure for CLM to use the 1901-1930 block for the 
spinup and we wanted to stay consistent. 

● P.4, l.18ff: Could you also indicate how the microtopography was initialized in 
the Exice experiments. I just assumed you use the same index that is used for 
the control simulation (Fig. S1).  



- yes it was using the same reference microsigma. This information is now 
added in the text 

● Fig. 1: I find it quite difficult to judge the differences in fh2osfc between the 
simulations. Maybe you could show the differences between sigma-0.5 and 
sigma-2 as a sub-figure? Or maybe you could also provide a graph with 
sigma and d on the x and y axes and fh2osfc as a colour to give a more 
systematic overview? 

- we are adding the difference map sigma-0.5 - sigma-2 in the supplements  

 
● P.6, l.1f: I fail to see how this supports your coupling assumption. It merely 

says something about the sensitivity of your parametrization. Without knowing 
which sensitivity should be expected it is very hard to use this in support for 
the assumption.  

- discussed this above in the main points 
● Fig. 2: I was quite surprised to see so little spatial correlation between the 

change in microtopography and the change in inundated fraction (could you 
maybe calculate a correlation coefficient). While sigma is almost exclusively 
lower in Exise, there is actually quite a number places where the inundated 
fraction is also smaller. Additionally, most of the areas in which you find the 
strongest changes in microtopography show now substantial increase in the 
inundated fraction. Thus I would not say that the patterns are similar. Here I 
think more information, especially on the changes in the surface water level, 
is required for the reader to better understand the plots.  

- this point is also discussed above in the main points 
● P.6, l.8-l.13f: I find this formulation problematic. The connection between 

melting ground ice and surface hydrology is not suggested by the correlations 
between Figs2 and 3, but because the connections where directly 
implemented with Lee et al.’s and your scheme. But, while I do see a 
correlation between Figs 2a and 3, I do not see the same patterns in Fig 2b.  



- this point is also discussed above in the main points 
● P.7, l.7ff: If you initialize your simulation with the present day sigma and the 

present day ice content, and then run it for 240 years (spinup + 1860 - 2000) 
during which time the ice content can only decrease, wouldn’t you necessary 
end up with a worse microtopography for present day?. I presume that the 
initialisation/ spinup procedure was carried out because there is no data to 
consistently initialize the model either at 1860 or at present day? But what 
would be the strategy to initialize/ spin up the model for future simulations?  

- yes it is true that the microtopography is expected to be different in 
accordance to the subsidence levels occurred during the spin up and 
transient simulation, but the idea here is to constrain the dynamic 
parameterization and to avoid any major extreme sensitivity from the 
conceptual method. since there is no way to properly initialize the soil 
subsidence, we will use other biogeochemical variables (co2/ch4 fluxes) to 
constrain the surface inundation in our future work, but it is out of scope of 
this merely model development manuscript.  

● Fig. 4 and Fig 5.: Why is the difference in fh2osfc so variable even if there are 
no pronounced changes in sigma and the two experiments use the same 
forcing?. 

- In the CLM, fh2osfc is also affected by soil and atmospheric changes, 
however, Fig 5 shows that the changes in microsigma influence fh2osfc on a 
point scale. This change is difficult to point out in larger spatial scale as in Fig 
4, where the spatial averages are used. 

 



Response to reviewer comment 3: 
 
Special comments 
 
p.3 l.1: Cound you explain the effect of the modified parameters (e.g. microtpography 
distribution and surface inundated fraction) on the entire model? Those descriotions 
would be helpful to understand the proposed parameterization is crucial to assess 
the biogeochemical feedbacks.  
 

- We thank the reviewer for this suggestion and the following text will be added 
to the revised manuscript: 

 
“Surface water is defined by spatial scale elevation variations that is the 
microtopography. The microtopography is normally distributed around the grid cell 
mean elevation. The fractional area of the grid cell that is inundated (fh2osfc) can be 
calculated with the standard deviation of this microtopographic distribution. The 
surface inundated fraction, in turn, affects the soil heat/water/carbon fluxes with the 
atmosphere.” 
 
 
p.3 l.24-33: The delineation of the actual relathinship between ground subsidence 
and microtopography is necessary to understand the relevance of modeling instead 
of a required parameterization by governing equations in CLM.  
 

- We are not sure if the reviewer is requesting us to show the relationship 
between ground subsidence and microtopography in reality, which is hard to 
assess due to the lack of observational data. As a result, we used existing 
parameterization in the CLM surface hydrology based on TOP model. We 
acknowledge that this is only the first step in this kind of parameterization and 
hope that our study can bring attention to observational community for such 
observational data. 

 
 
p.3 l.35: Related to the previous comment, if you could calculate more realistic value 
of microsigma with finer-resolution topographic data and subsidence information, 
does it improve the model applicability? It would be helpful if you explain the limitation 
of "modeling (conceptulization)" and "parameterization" respectively.  
 

- The parameterization in models such as CLM should focus more on 
functionality and that this is a very conceptual step in the parameterization. 
Next step will be subgrid-scale representation of this process but this is not 
within the scope of our study. We refer to Aas et al. (2019) for the subgrid 
scale process representation in the revised manuscript.  

 
p.10 fig.6: As the authors pointed out, it is difficult to directly compare inundated area 
between GIEMS dataset and simulated results due to the gap of definitions of water 
surface. However, I think some other variables relating water budget (e.g. river 
discharge) are modified by the proposed parameterization and can be compared with 
observation data. I apologize if I misunderstand the numerical implementation in 
CLM.  
 



- We thank the reviewer for the question. It is correct that other water budget 
variables are affected from our parameterization, however for river discharge, 
the direct effects from the surface subsidence are minor compared to 
permafrost thaw related spring river discharge increases, hence not useful to 
validate the new model.  

 
 
References: 
 
Aas, Kjetil S., et al. "Thaw processes in ice-rich permafrost landscapes represented with 
laterally coupled tiles in a land surface model." The Cryosphere  13.2 (2019): 591-609. 



Response to reviewer comment 4: 
 
Major issues  
 

1. The assumption for the proposed equation may not be correct. The authors 

assumed that decreased micro topography distribution (microsigma) represents 

increased surface inundation (fh2osfc). However, from equation 1, it seems that the 

assumption is true only when surface water level d is greater than 0, hence fh2osfc is 

greater than 0.5.  
 

- We are not sure if the reviewer is asking about negative water level 

conditions, but the model does not allow negative surface water levels (d), so 

the Eq. 1 does indeed show an inverse relation between microsigma and 

fh2osfc. We hope this clarifies the reviewer’s concern. 

 

2. When the subsidence value surpasses the 0.5 m threshold, microsigma suddenly 

increases as shown in the lower middle panel of figure 5. Does this sudden change 

represent any physical processes?  

 

- Yes it does actually. The increase in microsigma represents the extreme 

cases where soil subsidence leads to drying of the surface  (Liljedahl et al. 

2016), which is explained in the text (P3: last paragraph, P6: last paragraph). 

 

3. Is there any feedback from surface water fraction to other hydrology variables (e.g. 

soil moisture) in the model?  

 

- The surface water fraction does affect the evapotranspiration and soil 

moisture but the effects are small when compared to other factors such as 

precipitation and permafrost thaw. So, yes, there are feedbacks between 

surface water fraction and other hydrological variables, but not big enough 

compared to our new parameterization. 

 

4. The initial conditions seem to be important for the simulations. How was the spin 

up period determined? Is 100-years enough for spin up?  

 

- The spinup period of 100 years is chosen to make sure the soil physical 

variables (soil temperature/moisture) are equilibrated. And it was long enough 

to avoid any big drifts in these variables. However, for the soil subsidence it is 

hard to determine an optimum spin up period since the contemporary or past 

soil excess ice data is very uncertain and hard to constrain the initial 

conditions. However, the soil excess ice melt also stabilizes with the spin up 

climate so the spin up period was long enough to have an initial condition for 

our simulations. 

 

 

5. There are not enough validations performed. It is not clear for me which simulation 

is better when comparing with the observation. Is it possible to validate time series of 

surface water fraction using GIEMS dataset?  

 

- Unfortunately it was not possible to use GIEMS dataset to compare the 

temporal dynamics, since the dataset period was too short to see any major 



differences. Also as discussed in response to other reviewers’ comments, this 

paper merely aims to show that the new parameterization is in line with the 

current model and does not create extreme conditions. We did not expect big 

changes compared to the Control simulation, but we do plan to use this for 

future climate warming scenarios, where higher subsidence levels (Lee et al., 

2014) will certainly create more distinguished results to Control simulation. 

 

Minor issues 

 
P1 L28-31: Is this true? The authors say “The largest increases in fh2osfc are 

observed in central Siberia and southeastern Russia” on line 27 of page 6.  

 

- The text in abstract is about the general increases in fh2osfc, whereas the 

text in P6:L27 is related to the difference between Exice and Control 

simulations and more about the direct effects of dynamic parameterization. In 

the end, Fig6 shows that the higher inundated fractions are actually around 

western Siberia and around the Hudson Bay. 

 

P3 Equation 2: What is eta?  

 

-  “eta” here is just an adjustable parameter. 

 

P5 L11-15: This is confusing. sigma_micro is defined as microtopography distribution 

on line 9 of page 3. Why does lower sigma_micro represent increased variability in 

surface microtopography?  

 

- This is related to the distribution of surface microtopography. There is 

increased variability on surface of gridbox but the distribution of different 

levels is lowered, hence a lower microsigma. 

 

P8 L10: “higher microsigma” should be “lower microsigma”?  

 

- We thank the reviewer for the correction, the mistake is corrected now. 
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Abstract	17	
Simulating	 surface	 inundation	 is	 particularly	 challenging	 for	 the	 high	 latitude	18	
permafrost	regions.	Ice-rich	permafrost	thaw	can	create	expanding	thermokarst	19	
lakes	 as	 well	 as	 shrinking	 large	 wetlands.	 Such	 processes	 can	 have	 major	20	
biogeochemical	implications	and	feedbacks	to	the	climate	system	by	altering	the	21	
pathways	 and	 rates	 of	 permafrost	 carbon	 release.	 However,	 the	 processes	22	
associated	 with	 it	 have	 not	 yet	 been	 properly	 represented	 in	 Earth	 system	23	
models.	 We	 show	 a	 new	 model	 parameterization	 that	 allows	 direct	24	
representation	of	surface	water	dynamics	in	CLM	(Community	Land	Model),	the	25	
land	 surface	 model	 of	 several	 Earth	 System	 Models.	 Specifically,	 we	 coupled	26	
permafrost-thaw	 induced	 ground	 subsidence	 and	 surface	 microtopography	27	
distribution	 to	 represent	 surface	 water	 dynamics	 in	 the	 high	 latitudes.	 Our	28	
results	 show	 increased	 surface	water	 fractions	 around	western	 Siberian	plains	29	
and	 northeastern	 territories	 of	 Canada.	 Additionally,	 localized	 drainage	 events	30	
correspond	 well	 to	 severe	 ground	 subsidence	 events.	 Our	 parameterization	 is	31	
one	 of	 the	 first	 steps	 towards	 a	 process-oriented	 representation	 of	 surface	32	
hydrology,	which	is	crucial	to	assess	the	biogeochemical	feedbacks	between	land	33	
and	the	atmosphere	under	changing	climate.		34	
	35	
1.	Introduction	36	
Northern	 high	 latitudes	 experience	 pronounced	 warming	 due	 to	 Arctic	37	
amplification	(Serreze	and	Francis,	2006).	Within	the	last	decades,	temperature	38	
increase	in	the	Arctic	has	been	twice	the	amount	of	that	in	the	tropics	(Solomon	39	
et	al.,	2007).	The	abrupt	increase	in	Arctic	temperatures	threatens	to	destabilize	40	
the	global	permafrost	areas	and	can	alter	land	surface	structures,	which	can	lead	41	
to	releasing	considerable	amounts	of	permafrost	carbon	as	greenhouse	gases	to	42	
the	 climate	 system	 (Schuur	 et	 al.,	 2008).	 Similarly,	 increased	 precipitation	 can	43	
accelerate	the	release	of	permafrost	carbon	in	high	latitudes	(Chang	et	al.,	2019;	44	
Grant	et	 al.,	2017).	The	balance	between	CO2	and	CH4	 release	 from	permafrost	45	
depends	largely	on	the	organic	matter	decomposition	pathway;	larger	inundated	46	
areas	release	more	CH4	than	CO2	using	the	anaerobic	pathway	but	overall	release	47	
of	greenhouse	gases	is	greater	under	aerobic	conditions	(Lee	et	al.	2014;	Treat	et	48	
al.	2015).	However,	for	a	future	model	estimate,	Knoblauch	et	al	(2018)	predicts	49	
twice	as	much	permafrost	carbon	release	 in	anoxic	conditions	(241±138	g	CO2	50	
kgC-1)	 compared	 to	 oxic	 conditions	 (113±58	 g	 CO2	 kgC-1)	 by	 2100.	 The	main	51	
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natural	 sources	 of	 CH4	 emissions	 are	 from	 tropical	 wetlands,	 however	 the	1	
contributions	from	high	latitude	wetlands	are	 increasing	each	decade	 	(Saunois	2	
et	al.,	2016)	with	further	thawing	of	permafrost.	3	
	4	
With	high	percentage	of	surface	wetland	coverage	(Grosse	et	al.,	2013;	Muster	et	5	
al.,	 2017),	 characterizing	 high	 latitude	 CH4	 emissions	 require	 detailed	 process	6	
representations	 in	models.	 Besides	 surface	 wetland	 conditions,	 models	 should	7	
also	 properly	 estimate	 permafrost	 thaw	 stage	 (Malhotra	 &	 Roulet,	 2015),	8	
changing	surface	 topography	(Olefeldt	et	al.,	2013),	and	surface	vegetation	and	9	
microbial	 conditions	 (Grant	 et	 al.,	 2017)	 in	 order	 to	 improve	 estimations	 of	10	
surface	CH4	emissions.		11	
However,	 Earth	 system	 models	 (ESMs)	 used	 in	 the	 future	 climate	 projections	12	
struggle	 to	 represent	 the	 complex	 physical/hydrological	 changes	 in	 the	13	
permafrost	covered	high	 latitude	regions.	Therefore,	 it	 is	necessary	 to	 improve	14	
model	representation	of	surface	hydrology	processes	within	the	ESMs.		15	
	16	
Permafrost	 processes	 have	 now	 been	 represented	 commonly	 within	 the	 land	17	
surface	models	(Lawrence	et	al.,	2008;	Gouttevin	et	al.,	2012;	Ekici	et	al.,	2014;	18	
Chadburn	 et	 al.,	 2015),	 however,	 the	 complex	 hydrological	 feedbacks	 between	19	
degrading	 permafrost	 and	 thermokarst	 lake	 formations	 have	 been	 a	 major	20	
challenge.	 An	 extensive	 review	 of	 wetland	 modeling	 activities	 and	 an	21	
intercomparison	effort	of	evaluating	methane-modeling	approaches	are	given	in	22	
Wania	 et	 al.	 (2013)	 and	 Melton	 et	 al.	 (2013).	 These	 studies,	 however,	 do	 not	23	
include	permafrost	specific	features	such	as	excess	ice	in	frozen	soils,	therefore	24	
they	have	 tendency	 to	under-represent	key	processes	associated	 to	permafrost	25	
thaw.	Excess	 ice	melt	within	 the	 frozen	soils	 can	 lead	 to	abrupt	 changes	 in	 the	26	
surface	 topography,	 creating	 subsided	 ground	 levels,	which	 can	 enhance	 pond	27	
formation	 often	 recognized	 as	 thermokarst	 formation.	 Such	 changes	 in	 surface	28	
microtopography	 can	 be	 very	 effective	 in	 altering	 the	 soil	 thermal	 and	29	
hydrological	conditions	(Zona	et	al.,	2011).		30	
	31	
Lee	et	al.	 (2014)	 implemented	surface	subsidence	processes	 in	 the	Community	32	
Land	 Model	 (CLM:	 Oleson	 et	 al.,	 2013;	 Lawrence	 et	 al.,	 2011;	 Swenson	 et	 al.,	33	
2012)	to	overcome	some	of	the	limitations	in	representing	processes	associated	34	
with	 permafrost	 thaw	 and	 subsequent	 land	 surface	 subsidence.	 The	 surface	35	
conditions	altered	by	the	subsidence	events	change	the	microtopography	of	the	36	
area,	which	can	further	modify	the	surface	hydrological	conditions	in	reality.	Lee	37	
et	al.	(2014)	did	not	further	couple	the	land	surface	subsidence	with	hydrological	38	
processes	 to	 represent	 subsequent	 changes	 in	 local	 hydrology	 created	 under	39	
permafrost	 thawing.	 Here	 we	 developed	 a	 conceptual	 coupling	 of	 excess	 ice	40	
melting	and	subsequent	land	surface	subsidence	with	hydrology	and	show	how	41	
implementing	 permafrost	 thaw	 induced	 subsidence	 affects	 surface	42	
microtopography	distribution	and	surface	inundation	in	the	CLM	model.		43	
	44	
2.	Methods	45	
Simulating	the	effects	of	permafrost	thaw	on	surface	water	dynamics	requires	a	46	
complex	 interaction	of	 thermodynamics	 and	hydrology	within	 the	model.	Here	47	
we	use	the	1°	spatial	resolution	simulations	of	CLM5	(Lawrence	et	al.,	submitted	48	
2018)	 to	represent	such	dynamics.	CLM	 is	a	complex,	process	based	 terrestrial	49	
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ecosystem	 model	 simulating	 biogeophysical	 and	 biogeochemical	 processes	1	
within	the	soil	and	vegetation	level.	Lee	et	al.	(2014)	have	presented	the	excess	2	
ice	 implementation	 into	 CLM.	 The	 ground	 excess	 ice	 data	 from	 International	3	
Circum-Arctic	Map	of	Permafrost	and	Ground-Ice	Conditions	(Brown	et	al.,	1997)	4	
are	used	to	create	an	initial	soil	ice	dataset	to	be	prescribed	into	the	model.	This	5	
excess	 ice	 is	 added	 between	 0.8	 and	 3.8	 meters	 in	 CLM	 soil	 scheme	 where	6	
permafrost	exists	and	increases	the	relevant	soil	 layer	thicknesses.	The	amount	7	
of	 excess	 ice	 for	 each	 gridcell	 is	 estimated	 by	 multiplying	 percent	 permafrost	8	
area	with	 amount	 of	 excess	 ice	 from	 the	 Brown	 et	 al.	 (1997)	 dataset.	 The	 soil	9	
physical	 parameters	 (heat	 capacity	 and	 conductivity)	 are	 updated	 with	 the	10	
addition	 of	 excess	 ice.	 The	 excess	 ice	 in	 the	 model	 undergoes	 physical	 phase	11	
change	but	most	 importantly	melting	ice	allows	a	first-order	estimation	of	 land	12	
surface	 subsidence	under	permafrost	 thaw.	First	 the	 soil	 ice	 is	allowed	 to	melt	13	
and	then	the	excess	ice	is	subjected	to	phase	change.	Ice	melt	water	is	then	added	14	
the	 soil	 hydrology	 scheme	 in	 CLM	 and	 can	 be	 directed	 as	 runoff	 if	 it	 exceeds	15	
saturation.	 The	 soil	 layer	 thicknesses	 are	 then	 updated	 with	 the	 disappearing	16	
amount	 of	 excess	 ice.	 Lee	 et	 al.	 (2014)’s	 scheme	 does	 not	 allow	 formation	 of	17	
excess	ice	after	initialization.	18	
	19	
In	 CLM,	 surface	 inundated	 fraction	 (ƒh2osfc)	 of	 each	 grid	 cell	 is	 calculated	 by	20	
using	the	microtopography	distribution	(σmicro)	and	the	surface	water	level	(d)	of	21	
the	 grid	 cell	 (Eq.	 1	 -	 3).	 	 Surface	 water	 is	 defined	 by	 a	 spatial	 scale	 elevation	22	
variation	 that	 is	 the	 microtopography.	 The	 microtopography	 is	 normally	23	
distributed	around	 the	grid	 cell	mean	elevation.	The	 fractional	 area	of	 the	grid	24	
cell	that	is	inundated	(fh2osfc)	can	be	calculated	with	the	standard	deviation	of	this	25	
microtopographic	 distribution.	 The	 surface	 inundated	 fraction,	 in	 turn,	 affects	26	
the	soil	heat/water/carbon	fluxes	with	the	atmosphere.		27	
	28	
	29	
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	31	
Eq.1:	Parameterization	of	 surface	 inundated	 fraction	 ‘ƒh2osfc’	 using	an	error	 function	of	32	
surface	 water	 level	 ‘d’	 (height	 in	 m	 relative	 to	 the	 gridcell	 mean	 elevation)	 and	33	
microtopography	distribution	‘σmicro’	(m).		34	
	35	

	     

€ 

σmicro = β + β0( )
η
	36	

	37	
Eq.	 2:	 Microtopography	 distribution	 ‘σmicro’	 as	 a	 function	 of	 slope,	 where	 β	 is	 the	38	
prescribed	topographic	slope	and	“η”	is	an	adjustable	parameter.	39	
	40	

	   

€ 

β0 = σmax( )
1
η 	 	41	

	42	
Eq.	 3:	 Adjustable	 coefficient	 β0	 as	 a	 function	 of	 maximum	 topographical	 distribution	43	
‘σmax’.	Original	value	for	σmax	is	0.4	while	η	is	-3.		44	
	45	
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This	parameterization	is	similar	to	the	TOPMODEL	approach	(Beven	and	Kirkby,	1	
1979),	 where	 a	 hypsometric	 function	 is	 used	 to	 define	 the	 height	 of	 standing	2	
water	 (d)	 within	 the	 gridbox	 by	 assuming	 a	 normal	 statistical	 distribution	 of	3	
ground	 level	 microtopography.	 In	 this	 study,	 the	 subsidence	 levels	 from	4	
permafrost	 thaw	 induced	 excess	 ice	 melt	 are	 coupled	 with	 σmicro	 in	 order	 to	5	
represent	 the	 naturally	 occurring	 subsided	 landscapes	 within	 the	 permafrost-6	
affected	areas.	With	increasing	excess	ice	melt,	more	subsidence	occurs	and	the	7	
amount	of	 subsidence	redefines	 the	surface	σmicro,	which	 is	 inversely	related	 to	8	
ƒh2osfc	(Eq.	1).	Therefore,	to	represent	increased	ƒh2osfc,	σmicro	has	to	be	decreased	9	
in	 value.	 However,	 σmicro	 is	 the	 statistical	 distribution	 of	 surface	10	
microtopography,	hence	cannot	be	directly	related	to	physical	subsidence	levels.	11	
Therefore,	a	conceptual	method	of	relating	σmicro	to	an	order	of	magnitude	lower	12	
ground	subsidence	levels	is	used	(Eq.	4).	This	first	step	of	conceptualization	can	13	
be	 improved	 with	 subgrid	 scale	 parameterization	 (Aas	 et	 al.,	 2019)	 in	 future	14	
studies.	15	
	16	
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ʹ σ micro =
σmicro − s ÷ b,s < 0.5
σmicro + s ÷ b,s ≥ 0.5
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⎩ 

	17	

	18	
Eq.	 4:	 New	 microsigma	 parameterization	 ‘σ’micro’	 where	 ‘s’	 is	 the	 accumulated	19	
subsidence	in	meters	and	‘b’	is	the	adjustable	parameter	set	to	10.	20	
	21	
We	implemented	a	conditional	formulation	regarding	the	severity	of	subsidence.	22	
In	general,	the	surface	is	forced	to	allow	more	ponding	of	water	with	moderate	23	
levels	of	subsidence.	However,	advance	levels	of	excess	ice	melt	can	degrade	the	24	
surface	levels	so	much	that	the	small	troughs	created	from	the	initial	degradation	25	
can	connect	to	create	a	drainage	system	that	the	grid	box	can	no	longer	support	26	
any	 ponding	 (Liljedahl	 et	 al.,	 2016).	 For	 this	 reason,	 the	 excess	 ice	melt	 has	 a	27	
reversed	 effect	 on	 σmicro	 after	 a	 threshold	 value	 of	 0.5	m	 (Eq.4).	 Choice	 of	 this	28	
threshold	value	is	discussed	in	the	following	section.	29	
				30	
We	performed	several	experiments	using	CLM5	to	assess	the	general	response	of	31	
surface	 hydrology	 to	 changing	 microsigma	 parameter	 values.	 First,	 the	32	
dependence	 of	 ƒh2osfc	 to	 σmicro	 is	 investigated	 by	 doubling	 σmicro	 (experiment:	33	
Sigma-2)	and	reducing	it	by	half	(experiment:	Sigma-0.5).	Afterwards,	initialized	34	
with	 the	 default	 microsigma	 distribution	 (Fig.	 S1),	 results	 of	 the	 new	 σmicro	35	
parameterization	(experiment:	Exice)	 is	compared	to	the	default	model	version	36	
(experiment:	Control),	where	subsidence	does	not	alter	σmicro	or	ƒh2osfc	and	to	a	37	
satellite	driven	data	product	(GIEMS,	the	Global	Inundation	Extent	from	Multiple	38	
Satellites,	 Prigent	 et	 al.,	 2012).	 All	 experiments	 include	 155-year	 transient	39	
simulations	 following	 a	 spin	 up	 procedure	 of	 repeating	 1901-1930	 climate	40	
forcing	 for	 100	 years.	 The	 transient	 155-year	 simulation	 represents	 the	 time	41	
period	 from	 1860	 till	 2015.	 CRU-NCEP	 (Viovy,	 2009),	 a	 combined	 dataset	 of	42	
Climate	Research	Unit	(CRU)	and	National	Center	for	Environmental	Protection	43	
(NCEP)	 reanalysis	 datasets,	 is	 used	 as	 the	 atmospheric	 forcing	 for	 these	44	
experiments.	45	
	46	
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The	GIEMS	surface	inundation	dataset	from	Prigent	et	al.	(2007,	2012)	is	used	to	1	
compare	 the	 simulated	 inundated	 fractions.	 GIEMS	 uses	 a	 combination	 of	2	
satellite	 observations	 to	 derive	 the	 distribution	 and	 dynamics	 of	 the	 global	3	
surface	 water	 extent.	 The	 inundated	 areas	 are	 calculated	 using	 passive	4	
microwave	 observations	 from	Special	 Sensor	 Microwave/Imager	 (SSM/I),	5	
active	microwave	 observations	 from	 the	 scatterometer	 on	 board	the	European	6	
Remote	 Sensing	 (ERS)	 satellite	 and	 the	normalized	 difference	 vegetation	 index	7	
(NDVI)	 from	 the	Advanced	 Very	 High	 resolution	 Radiometer	 (AVHRR).	 The	8	
dataset	 provides	 monthly-mean	 values	 of	surface	 water	 area	 from	 1993	 to	9	
2007,	with	a	spatial	resolution	of	0.25°.		The	dataset	is	spatially	projected	onto	a	10	
1°	resolution	grid	for	comparison	with	the	model	results.	11	
	12	
3.	Results	and	Discussion	13	
In	 our	 experiments,	 surface	 inundation	 (ƒh2osfc)	 increases	 where	 surface	14	
microtopography	 distribution	 (σmicro)	 decreases	 (Fig.	 1)	 as	 expected	 from	 the	15	
CLM	 parameterization.	 When	 σmicro	 decreases	 (Sigma-0.5)	 compared	 to	 the	16	
original	value	(shown	in	Supplementary	Figure	S1),	it	results	in	very	high	ƒh2osfc	17	
over	 western	 Siberia	 and	 Hudson	 Bay	 area,	 while	 increasing	 σmicro	 (Sigma-2)	18	
results	in	lower	ƒh2osfc	in	general.	In	the	original	CLM	parameterization,	ƒh2osfc	is	19	
calculated	 with	 a	 static	 microtopography	 index	 (Fig.	 S1)	 derived	 from	 a	20	
prescribed	topographic	slope	dataset	(Oleson	et	al.,	2013).	21	

	22	
Fig.	 1:	 High	 latitude	 (>50°N)	maps	 of	 simulated	 surface	water	 fractions	 (ƒh2osfc)	 from	23	
Control,	Sigma-0.5,	and	Sigma-2.0	experiments	with	different	microsigma	distributions	24	
averaged	for	the	period	2000-2010.	25	

	26	
Our	results	illustrate	the	dependence	of	ƒh2osfc	on	σmicro	and	how	certain	range	of	27	
σmicro	values	can	result	in	very	high	ƒh2osfc,	and	differences	in	ƒh2osfc	can	be	quite	28	
regional	(Fig.	S2).		This	relation	emphasize	the	need	for	a	dynamic	circum-Arctic	29	
σmicro	 value	 to	 capture	 the	 natural	 variability	 of	 surface	 conditions	 when	30	
representing	 permafrost	 thaw	 associated	 hydrological	 changes.	 In	 the	 Exice	31	
experiment,	 coupling	excess	 ice	melt	 induced	ground	subsidence	 to	σmicro	 leads	32	
to	significant	changes	 in	surface	hydrology	 (Fig.	2).	 In	our	simulations,	σmicro	 is	33	
consistently	 lower	 in	Exice	compared	to	Control	at	 the	end	of	 the	20th	century	34	
(Fig.	 2a).	 This	 is	 the	 model	 representation	 of	 increased	 variability	 in	 surface	35	
microtopography	 due	 to	 uneven	 subsidence	 events	 within	 the	 gridcell.	36	
Particularly	larger	inundated	fractions	are	simulated	around	western	Siberia	and	37	
northeast	Canada,	which	conform	well	to	the	observational	datasets	of	peatland	38	
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distribution	(Tarnocai	et	al.,	2007;	2009).		Several	other	observational	estimates	1	
agree	 on	 the	 spatial	 distribution	 of	 high	 latitude	 peatlands,	where	most	 of	 the	2	
wetland	 formations	are	expected	 in	 the	 future	 (Melton	et	al.,	2013).	Therefore,	3	
the	 new	 parameterization	 of	 surface	 inundated	 fraction	 is	 a	 stepping-stone	4	
towards	 a	 more	 realistic	 representation	 of	 surface	 hydrology	 in	 permafrost-5	
affected	areas.	Other	modeling	studies	support	these	results	with	similar	spatial	6	
patterns	of	surface	wetland	distributions	(Wania	et	al.,	2013;	Melton	et	al.,	2013).	7	
In	 the	 previous	 version	 of	 CLM,	 simulated	 inundated	 area	 shows	 slightly	8	
different	 patterns	 (Riley	 et	 al.,	 2011),	 mainly	 due	 to	 non-process	 based	9	
description	 of	 inundated	 fractions.	 We	 emphasize	 that	 although	 our	10	
parameterization	 is	 only	 conceptual,	 this	 is	 the	 first	 attempt	 towards	 coupling	11	
permafrost	 thaw	associated	 land	 surface	 subsidence	with	hydrological	 changes	12	
in	a	land	surface	model	within	an	ESM.		13	
	14	
By	 introducing	 the	effects	of	ground	subsidence	on	σmicro,	a	dynamic	 inundated	15	
fraction	 is	 calculated.	 However,	 there	 is	 no	 observed	 dataset	 to	 evaluate	 the	16	
relation	 between	 subsidence	 and	 ground	 topography,	 therefore	 an	 assumption	17	
had	 to	 be	 made	 regarding	 this	 coupling.	 In	 this	 study,	 changes	 in	 σmicro	 are	18	
proportional	to	the	changes	in	ground	subsidence	with	the	difference	in	an	order	19	
of	magnitude.		This	assumption	is	put	to	test	by	doubling	and	halving	the	initial	20	
σmicro	 values	 and	 the	 results	 show	 10	 to	 20	 %	 change	 in	 surface	 inundated	21	
fractions	(Fig.	1).	The	difference	 in	dynamic	parameterization	(Fig.	2b)	stays	 in	22	
between	 these	 values	 and	 on	 average	 shows	 a	 10	 –	 15	 %	 increase,	 thus	23	
supporting	the	coupling	assumption.	24	

	25	
Fig.	2:	Effects	of	coupled	subsidence-microsigma	parameterization	on	‘σmicro’	and	‘ƒh2osfc’	26	
from	>50°N	difference	maps	of	Exice-Control	experiments	for	the	period	2000-2010.	27	
	28	
As	expected,	 the	ƒh2osfc	and	σmicro	changes	are	related	to	 the	ground	subsidence	29	
processes	 in	most	cases.	Exice	experiment	produces	 land	surface	subsidence	 in	30	
some	gridcells	(Fig.	3)	similar	to	the	spatial	patterns	exhibited	in	σmicro	and	ƒh2osfc	31	
in	 Fig.	 2,	 suggesting	 that	 melting	 of	 excess	 ice	 affects	 changes	 in	 surface	32	
hydrology.	 This	 is	most	 pronounced	 around	western	 Siberia,	 south	 of	 Hudson	33	
Bay	and	around	northwestern	Canada	and	central	Alaska,	where	initial	excess	ice	34	
was	 large	 (Lee	 et	 al.	 2014).	 Simulated	 ground	 subsidence	 is	 associated	 to	35	
changes	in	surface	inundated	fraction	(ƒh2osfc)	described	in	Fig.	2.		36	
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	1	
As	 a	 result	 of	 subsidence	 threshold	 parameterization	 (see	 Methods),	 reversed	2	
effect	of	excess	ice	melting	is	shown	in	the	σmicro	plots	(Fig.	2a),	where	red	points	3	
are	 directly	 related	 to	 the	 severe	 ground	 subsidence	 locations	 (Fig.	 3).	 These	4	
areas	consistently	exhibit	abrupt	melting	of	excess	ice	leading	to	increased	σmicro.	5	
Larger	 negative	 deviations	 of	σmicro	 from	 the	 original	 values	were	 observed	 in	6	
central	 Alaska,	 northwestern	 Canada,	 south	 of	 Hudson	 Bay,	 southwest	 Russia,	7	
central	Siberia,	and	northern	Yakutia	regions	of	Russia	(areas	with	dark	blue	in	8	
Fig2a).	 In	 reality,	 different	 landscapes	 should	 have	 a	 different	 threshold	 value,	9	
yet	our	work	is	aimed	to	capture	the	overall	changes	and	general	patterns	rather	10	
than	local	conditions,	so	a	preliminary	choice	of	a	single	threshold	value	is	used.	11	
Same	 areas	 show	 increased	 ƒh2osfc	 compared	 to	 Control	 (Fig.	 2b).	 The	 largest	12	
increases	in	ƒh2osfc	are	observed	in	central	Siberia	and	southeastern	Russia,	while	13	
some	minor	 decreases	 in	 ƒh2osfc	 values	 are	 present	 in	 an	 unevenly	 distributed	14	
pattern.	It	is	important	to	add	that	the	choice	of	0.5	m	threshold	is	arbitrary	and	15	
can	be	modified	according	to	the	surface	dataset	of	excess	ice.	16	

	17	
Fig.	 3:	 High	 latitude	 (>50°N)	 map	 of	 ground	 subsidence	 simulated	 from	 the	 Exice	18	
experiment	averaged	for	the	period	2000-2010.	19	
	20	
Spatially	 averaged	 timeseries	 of	 σmicro	 and	 ƒh2osfc	 show	 that	 in	 the	 Exice	21	
experiment	σmicro	decreases	over	time	and	ƒh2osfc	shows	a	more	dynamic	change	22	
during	 the	 simulation	 (Fig.	 4).	 The	 discrepancy	 in	 σmicro	 between	 Exice	 and	23	
Control	 in	 the	 beginning	 of	 the	 simulation	 is	 due	 to	 prior	 excess	 ice	 melting	24	
during	 the	 spin-up	 period	 (Fig.	 S3)	 and	 the	 values	 continue	 to	 decrease	25	
throughout	the	20th	century,	while	the	decrease	halts	temporarily	during	1960-	26	
1990	 (microsigma-diff	 plot	 in	 Fig.	 4).	 Higher	 ƒh2osfc	 are	 observed	 in	 Exice	27	
experiment,	however,	the	differences	between	Exice	and	Control	show	a	general	28	
increase	 throughout	 the	simulation	except	 the	period	between	1960-1990.	The	29	
spatially	averaged	ƒh2osfc	values	exhibit	a	non-linear	progression	during	the	20th	30	
century	 (Fig.	4).	Mainly	 the	change	 in	 climate	 forcing	contributes	 to	 this	 trend.	31	
Analyzing	the	CRUNCEP	atmospheric	forcing	data	suggests	that	the	precipitation	32	
pattern	over	the	experiment	domain	shows	a	sudden	reduction	at	the	beginning	33	
of	1960s	(Fig.	S4).	Even	though	the	average	precipitation	starts	increasing	again,	34	 Altug Ekici � 13.8.19 07:50
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the	 lower	values	contribute	 to	 the	reduced	ƒh2osfc	values.	Similar	changes	occur	1	
with	the	patterns	in	atmospheric	temperatures	(Fig.	S4),	which	is	a	direct	forcing	2	
for	permafrost	thaw	and	ground	subsidence.	A	process-based	representation	of	3	
ƒh2osfc	allows	the	model	 to	naturally	represent	the	temporal	changes	 in	climate.	4	
Hence,	our	representation	of	ƒh2osfc	will	improve	the	estimation	of	future	surface	5	
hydrological	states	under	changing	climatic	conditions.	6	

	7	
Fig.	 4:	 Timeseries	 of	 spatially	 averaged	 high	 latitude	 (>50°N)	 σmicro	 and	 annual	8	
maximum	 ƒh2osfc	 variables	 from	 Exice	 and	 Control	 experiments	 together	 with	 the	9	
timeseries	of	Exice-Control	difference	(diff)	for	the	period	1900-2010.	10	
	11	
The	direct	effects	of	the	new	model	parameterization	are	better	analyzed	while	12	
inspecting	point	scale	changes	as	shown	in	Fig.	5.	The	three	selected	points	show	13	
a	 range	 of	 scenarios	 to	 observe	 the	 effects	 of	 subsidence	 on	 microsigma	 and	14	
ƒh2osfc.	Point	1	has	no	change	in	subsidence	during	the	simulation	and	with	lower	15	
microsigma	values	in	Exice	(due	to	prior	subsidence	in	spinup),	the	difference	in	16	
ƒh2osfc	compared	to	Control	simulation	is	always	positive,	meaning	higher	surface	17	
inundated	fractions.	In	Point	2,	Exice	microsigma	decreases	due	to	the	increase	18	
in	 subsidence	 during	 the	 simulation.	 These	 gradual	 changes	 are	 reflected	 in	19	
ƒh2osfc,	where	sudden	increases	are	shown	around	1935	and	1955,	exactly	when	20	
the	 subsidence	 changes	 occur.	 Similarly	 in	 Point	 3,	 subsidence	 causes	 a	 lower	21	
microsigma	 in	 the	beginning	of	 the	 simulation;	however	 the	 subsidence	values	22	
surpass	 the	0.5m	threshold	around	1920s,	which	causes	 the	 reversed	effect	on	23	
microsigma	 by	 increasing	 it	 compared	 to	 the	 Control	 experiment.	 Severe	24	
subsidence	 causing	 more	 drainage	 is	 represented	 in	 this	 way	 within	 our	25	
parameterization.	The	ƒh2osfc	values	show	this	drainage	with	a	sudden	decrease	26	
at	1920	and	continuing	with	mostly	negative	values	throughout	the	simulation.	27	
These	 scenarios	 support	 the	 validity	 of	 our	 new	 parameterization	 that	 can	 be	28	
used	 for	 any	 future	 climate	 scenario	 for	 a	 better	 representation	 of	 surface	29	
hydrology	and	subsidence	coupling.	30	
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	1	
Fig.	 5:	 Timeseries	 of	 subsidence,	 σmicro,	 and	 ƒh2osfc	 variables	 from	 Exice	 and	 Control	2	
experiments	at	three	selected	sites.	Point	1:	lat	54	N	lon	272	E,	Point	2:	lat	64	N	lon	80	E,	3	
Point	3:	lat	65	N	lon	70	E.	4	
	5	
GIEMS dataset (Prigent et al., 2012) provides the surface area of wetlands for each 6	
gridbox. Fraction of wetland-covered gridbox is calculated to compare with the model 7	
results (Fig. 6). The range of estimated surface wetland fraction is different in the 8	
satellite dataset and model outputs; however, spatial distribution of surface inundated 9	
area is fairly comparable between the model and the satellite dataset. They both 10	
exhibit larger inundated fractions in western Siberia and around Hudson Bay. The	11	
ranges	 of	 estimated	 surface	wetland	 fraction	between	 the	 satellite	 dataset	 and	12	
model	 outputs	 are	 different	 due	 to	 differences	 in	 the	 definitions	 of	 inundated	13	
areas.	 However,	 spatial	 distribution	 of	 surface	 inundated	 area	 is	 comparable	14	
between	the	model	and	the	satellite	dataset,	where	both	exhibit	larger	inundated	15	
fractions	 in	 western	 Siberia	 and	 Hudson	 Bay.	 Since	 our	 model	 provides	 the	16	
fraction	 of	 gridbox	 that	 is	 inundated,	 the	 satellite	 dataset	 had	 to	 be	 converted	17	
from	 actual	 wetland	 area	 to	 fractions.	 The	 GIEMS	 dataset	 assumes	 773	 km2	18	
gridboxes	 all	 over	 the	 globe	 (Prigent	 et	 al.,	 2007),	 which	 creates	 grid-size	19	
problems	 comparing	 to	 model	 gridbox	 area.	 	 Another	 issue	 with	 such	20	
comparison	 stems	 from	 the	 differences	 in	 the	 definition	 of	 inundated	 fraction.	21	
GIEMS	dataset	uses	satellite	observations	at	different	wavelengths	to	derive	the	22	
wetland	area,	while	the	CLM	creates	the	surface	inundation	with	the	topography	23	
index	and	water	 inputs	 to	 the	gridbox.	Within	 the	model	parameterization,	 the	24	
height	of	the	surface	water	level	is	calculated	by	a	hypsometric	function	and	the	25	
gridbox	 fraction	 is	 further	 derived	 from	 the	 grid	 size.	 This	 allows	 an	 ever-26	
existing	 surface	 inundated	 fraction	 even	 in	 very	 dry	 gridboxes,	 whereas	 the	27	
GIEMS	method	underestimates	the	small	wetlands	comprising	less	than	10%	of	28	
the	gridbox	area	(Prigent	et	al.,	2007);	hence	a	model	overestimation	of	satellite	29	
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dataset	 is	 expected.	 Definition	 of	 modelled	 and	 satellite	 derived	 inundated	1	
fraction	 is	 not	 the	 same.	 Unfortunately	 there	 is	 no	 standard	 definition	2	
(Reichhardt,	1995),	which	produces	the	struggle	 to	 find	a	proper	observational	3	
dataset	 to	 evaluate	 model	 results.	 What	 we	 emphasize	 from	 our	 findings	 is,	4	
nevertheless,	 the	 spatial	 patterns	 of	 higher	 inundated	 fractions	 occurring	 at	5	
similar	locations	in	model	and	satellite	dataset	(Fig.	6).	6	
	7	

	8	
Fig.	 6:	 Surface	water	 fraction	 comparison	 from	 high	 latitude	 (>50°N)	maps	 of	 annual	9	
maximum	 surface	 wetlands	 from	 GIEMS	 dataset	 (Prigent	 et	 al.,	 2012)	 and	 annual	10	
maximum	ƒh2osfc	values	of	Exice	and	Control	experiments	for	the	period	1993-2007.	11	
	12	
4.	Conclusion	13	
A	warming	 climate	 affects	 the	Arctic	more	 severely	 than	 the	 rest	 of	 the	 globe.	14	
Increasing	surface	temperatures	pose	an	important	threat	to	the	vulnerable	high	15	
latitude	 ecosystems.	 Degradation	 of	 Arctic	 permafrost	 due	 to	 increased	 soil	16	
temperatures	 leads	 to	 the	release	of	permafrost	 carbon	 to	 the	atmosphere	and	17	
further	 strengthens	 the	greenhouse	warming	 (IPCC,	2013;	Schuur	et	al.,	2008).	18	
For	 future	 climate	 predictions,	 it	 is	 necessary	 to	 properly	 simulate	 the	 Arctic	19	
surface	inundated	areas	due	to	their	physical	and	biogeochemical	coupling	with	20	
the	atmosphere.		21	
	22	
This	 study	 summarizes	 a	 new	 parameterization	 within	 the	 CLM	 to	 represent	23	
prognostic	 surface	 inundated	 fractions	 under	 permafrost	 thawing	 using	 a	24	
conceptual	approach	that	can	lead	to	implementation	of	a	physical	process-based	25	
parameterization.	 Coupling	 ground	 subsidence	 to	 surface	 microtopography	26	
distribution,	 hence	 allowing	 a	 natural	 link	 between	 surface	 hydrological	27	
conditions	 and	 soil	 thermodynamics,	 resulted	 in	 generally	 increased	 surface	28	
inundated	 fractions	 over	 the	 northern	 high	 latitudes,	 with	 larger	 surface	29	
inundated	 fractions	 around	 western	 and	 far-east	 Siberian	 plains	 and	30	
northeastern	 Canada.	 Projected	 increase	 in	 global	 temperatures	will	 inevitably	31	
cause	more	excess	 ice	melting	and	subsequent	ground	subsidence,	 therefore,	 it	32	
will	be	necessary	to	incorporate	a	process-based	parameterization	to	accurately	33	
account	for	future	ground	subsidence	effects	on	surface	hydrological	states.		34	
		35	
Our	 results	 confirm	 the	 enhancements	 of	 coupling	 ground	 subsidence	 and	36	
surface	 inundation	 to	 represent	 the	 temporal	 changes	 in	 surface	 hydrology	37	
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reflected	 by	 soil	 physical	 states	 and	 the	 atmospheric	 forcing,	 which	 is	 much	1	
needed	 for	 a	 future	 scenario	 experiment.	 Here	 we	 conclude	 that	 our	 new	2	
parameterization	is	implemented	successfully	and	functions	globally	for	the	CLM	3	
model,	that	the	inundated	areas	exist	at	the	same	areas	as	the	observational	data.	4	
It	 can	 be	 used	 for	 future	 climate	 scenarios	 such	 as	 shown	 in	 Lee	 et	 al.	 (2014)	5	
with	 major	 subsidence	 events	 during	 the	 21st	 century	 under	 a	 high	 warming	6	
scenario.		7	
	8	
This	 new	 parameterization	 represents	 the	 first	 step	 into	 a	 process-based	9	
representation	 of	 such	 hydrological	 processes	 in	 CLM.	 Using	 this	10	
parameterization,	 further	 work	 can	 proceed	 to	 investigate	 the	 biogeochemical	11	
feedbacks	of	permafrost	greenhouse	gas	fluxes	between	land	and	atmosphere.	12	
	13	
Code	and	data	availability	14	
The	code	modifications	to	CLM	model	in	accordance	to	this	paper	are	accessible	15	
through	the	Zenodo	archive	with	the	following	link:		16	
https://zenodo.org/badge/latestdoi/183611414	17	
	The	 overall	 CLM	 model	 code	 can	 be	 obtained	 from	 the	 NCAR	 archives,	 the	18	
instructions	on	accessing	the	model	code	is	given	through	this	website:	19	
http://www.cesm.ucar.edu/models/cesm2/land/	20	
The	full	set	of	model	data	will	be	made	publicly	available	through	the	Norwegian	21	
Research	Data	Archive	at	https://archive.norstore.no	upon	publication.	22	
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	1	
	2	
Supplementary	3	

	4	

	5	
Fig.	S1:	High	latitude	(>50°N)	map	of	default	microsigma	distribution.	6	
	7	

	8	
Fig.	S2:	Fh2osfc	difference	between	Sigma-0.5	and	Sigma-2	experiments.	9	
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	1	
Fig.	S3:	100	year	spin	up	timeseries	of	spatially	averaged	soil	physical	variables	related	2	
to	the	new	parameterization.		3	

	4	
	5	

	6	
Fig.	S4:	Timeseries	of	high	 latitude	(>50°N	average	 -land	only)	CRUNCEP	precipitation	7	
and	air	temperature	forcing	for	the	period	1900-2010.	Dotted	lines	show	1900	value.	8	

	9	
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