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Abstract. Accurate and agile modelling of the climate of cities is essential for urban climate services. The Surface Urban 

Energy and Water balance Scheme (SUEWS) is a state-of-the-art, widely used, urban land surface model (ULSM) which 

simulates urban-atmospheric interactions by quantifying the energy, water and mass fluxes. Using SUEWS as the computation 

kernel, SuPy (SUEWS in Python), stands on the Python-based data stack to streamline the pre-processing, computation and 10 

post-processing that are involved in the common modelling-centred urban climate studies. This paper documents the 

development of SuPy, which includes the SUEWS interface modification, F2PY (Fortran to Python) configuration and Python 

frontend implementation. In addition, the deployment of SuPy via PyPI (Python Package Index) is introduced along with the 

automated workflow for cross-platform compilation. This makes SuPy available for all mainstream operating systems 

(Windows, Linux, and macOS). Furthermore, three online tutorials in Jupyter notebooks are provided to users of different 15 

levels to become familiar with SuPy urban climate modelling. The SuPy package represents a significant enhancement that 

supports existing and new model applications, reproducibility, and enhanced functionality. 

1 Introduction  

Cities have the highest need for climate-resilient environments given their large and ever-increasing populations. One 

prerequisite to building climate resilience is climate information at various spatio-temporal scales, for example to understand: 20 

energy partitioning over urban surfaces (Li et al., 2015b; Sun et al., 2017; Wang et al., 2015; Ward and Grimmond, 2017; Zhao 

et al., 2014), pedestrian level meteorology to diagnose thermal comfort (Bar et al., 2011; Erell et al., 2013; Krayenhoff et al., 

2018; Sun et al., 2016; Tan et al., 2009), or ambient radiation and wind conditions to assist building design (Chen, 2004; 

Jentsch et al., 2013; Li et al., 2015a; Lindberg and Grimmond, 2011; Reinhart and Cerezo Davila, 2016; Santamouris et al., 

2001). To obtain such climate information, accurate and agile modelling capacity of the urban climate is essential.  25 

 

Urban land surface models (ULSM) are widely used to simulate urban-atmospheric interactions by quantifying the energy, 

water and mass fluxes between the surface and urban atmosphere (Best and Grimmond, 2015; Chen et al., 2011; Wang et al., 
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2012). These models require information on urban morphology (e.g., heights, spacings of buildings, etc) and anthropogenic 

dynamics (e.g., building-operation-related heat release, emissions of heat by traffic) to be included.  

 

One widely used and tested ULSM, the Surface Urban Energy and Water balance Scheme (SUEWS) (Table 1), requires basic 

meteorological data and surface information to characterise essential urban features (i.e., urban surface heterogeneity and 5 

anthropogenic dynamics). SUEWS enables long-term urban climate simulations without specialised computing facilities (Järvi 

et al., 2011; 2014a; Ward et al., 2016). SUEWS is regularly enhanced (Grimmond and Oke, 1986; 1991; Grimmond et al., 

1991; Offerle et al., 2003; Järvi et al., 2011; Loridan et al., 2011; Järvi et al., 2014; Ward et al., 2016; Järvi et al., 2019) and 

tested in cities under a range of climates worldwide (Table 1). Although operationally simple and scientifically robust, SUEWS 

still requires some skill for application (e.g., computing environment setup, parameter configuration, etc.), which may limit 10 

uptake for broader applications in urban planning and design.  

 
Table 1: Recent studies using SUEWS. 

Topic City Reference 

CO2 emission module development Helsinki, Finland Järvi et al. (2019) 

Impacts of anthropogenic heat and irrigation on surface 

energy balance 

Shanghai, China Ao et al. (2018) 

Sensitivity of SUEWS to forcing variables Vancouver, London Kokkonen et al. (2018) 

Description of SUEWS as the core processor of the UMEP 

system 

(N/A) Lindberg et al. (2018) 

Impacts of changes in surface cover, human behaviour and 

climate on energy partitioning 

London, UK Ward and Grimmond (2017) 

Offline evaluation of SUEWS driven by WRF output Porto, Portugal Rafael et al. (2017) 

Implications of warming to cold climate cities.  High latitudes cities Järvi et al. (2017) 

Evaluation in Singapore and comparison with other urban 

land surface models 

Singapore Demuzere et al. (2017) 

Evaluation in four cities under different background 

climates 

Dublin, Ireland; 

Hamburg, Germany; 

Melbourne, Australia; 

Phoenix, USA 

Alexander et al. (2016) 

Evaluation of SUEWS in two UK cities London and Swindon, UK Ward et al. (2016) 

Evaluation of radiation flux in Shanghai Shanghai, China Ao et al. (2016) 

Boundary layer modelling and coupling with SUEWS Sacramento, USA Onomura et al. (2015) 
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Evaluation with Local Climate Zone information as surface 

characteristics 

Dublin, Ireland Alexander et al. (2015) 

Model inter-comparison for sensible and latent heat fluxes Helsinki, Finland Karsisto et al. (2015) 

Snow melt model development and evaluation Helsinki, Finland; 

Montreal, Canada 

Järvi et al. (2014b) 

SUEWS development and initial evaluation Vancouver, Canada; 

Los Angeles, USA 

Järvi et al. (2011) 

 

Reproducibility and open science principles are more increasingly important (Peng, 2011).  Although climate scientists by 

convention publish detailed model configurations used in their research, minor inconsistencies or lack of transparency of code 

often hampers efforts to reproduce simulation results. In addition, new users may lack prerequisite knowledge in low-level 

compilation and scripting to undertake initial model runs and interpretation of simulation results (Lin, 2012).  5 

 

Python is now extensively by the atmospheric sciences community for data analyses and numerical modelling (Lin, 2012; 

Perkel, 2015) thanks to its simplicity and the large scientific Python ecosystem (e.g., PyData community: https://pydata.org). 

Recent Python-based endeavours include global climate system models (Monteiro et al., 2018), stochastic geological models 

(Varga et al., 2019), hydrological models (Hamman et al., 2018), to cite just a few.  10 

 

In this paper, we present a Python-enhanced urban climate system based on the popular Fortran-coded SUEWS - SuPy 

(SUEWS in Python). The development of SuPy (Section 2), the essential workflow in its cross-platform deployment (Section 

3), and three demonstrations tutorials for users of different levels (Section 4) are presented. 

 15 

2 Development 

The following are considered within the design process of SuPy: 

1) Data preparation: Climate simulations typically require extensive pre-processing of data (loading input data, reformatting 

to conform with standards, etc.) and post-processing (conversion of output, graphical and cartographic plotting, etc.). 

Python has a vast array of utilities to support this; notably, NumPy (the fundamental package for scientific computing 20 

with Python, https://www.numpy.org) and pandas (a tabular-format-centred data analysis tool) are two cornerstone 

libraries in Python-based scientific computing. 

2) Performance: Python, as a scripting language, has poorer performance than compiled languages (e.g., C, Fortran) 

(Kouatchou, 2018). For this reason, Fortran is used extensively for weather and climate related software (e.g., WRF 
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(Skamarock and Klemp, 2008), GFDL AM3 (Donner et al., 2011), etc). Therefore, by using different languages their 

strengths can be utilised. 

3) Cross-platform ability: Given the range of computer environments, it is important that software can be easily used across 

operating systems (OS) with ease. Python and Fortran both are easily used on most OS. However, for performance reasons 

as noted, it is preferable to have a compiled backend for intensive simulations, where platform specific compilations are 5 

mandatory. Thus, we adopt the Microsoft Azure Pipelines to allow cross-platform ability for SuPy (Section 3.1).  

4) Extendibility: It is desirable, possibly even essential, for the scientific model to interact with other models and data sources 

to extend the overall capacity and to explore urban climate related questions beyond the climate science. 

 

To address these four considerations, SuPy’s architecture uses Python’s data processing and Fortran’s computational efficiency. 10 

SuPy consist of three parts (Figure 1): 

1) SUEWS: a Fortran-coded local scale urban land surface model of moderate complexity that can simulate the urban surface 

energy balance in combination with the complete urban hydrological cycle, considering irrigation and runoff processes 

(Grimmond and Oke, 1986, Grimmond and Oke 1991, Grimmond et al. 1991, Offerle et al. 2003, Järvi et al. 2011, Jarvi 

et al. 2014, Ward et al. 2016).  15 

2) SuPy_driver: calculation kernel compiled by F2PY (Fortran to Python, part of the NumPy package) (Peterson, 2009) to 

facilitate the transfer of SUEWS Fortran modelling ability to Python and guarantee the computational performance.  

3) SuPy: a Python-based frontend processor using pandas DataFrame and derived functionality for data analysis and 

simulation management. 

 20 

 
Figure 1: SuPy’s three major components (left to right): a) SUEWS, a Fortran-coded local scale urban land surface model; b) 
SuPy_driver, the calculation kernel compiled by F2PY; c) SuPy, a Python-based frontend processor. 
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Development of SuPy started with SUEWS v2017b (Ward and Grimmond, 2017). As SUEWS has mostly been operated as a 

stand-alone land surface scheme, there have been few demands for the model code to interact with other models in a coupled 

environment. Thus, to develop SuPy significant reconfiguration of the model interfaces was required. Although the physical 

modules were already separated, the first step was to explicitly separate the model physics from the input/output (I/O) modules 

of SUEWS.  5 

 

Key structural changes involved reducing the use of Fortran modules to pass variables and parameters and return to more use 

of Fortran subroutine arguments with intent (e.g. in, out) explicitly stated. The modified physics subroutines are called from 

two subroutines suews_cal_main and suews_cal_multistep (Fig. 1a) depending on the model timestep (single or multi-). 

This structure constitutes the SUEWS v2018b (Sun et al., 2018) calculation kernel (Figure 1a) and enables efficient 10 

communication between SUEWS and other models (e.g., WRF) through an explicit and unified interface.  

 

Enhancements to SUEWS modelling capability in v2018b includes the surface diagnostics module to produce pedestrian level 

meteorological variables (𝑇": air temperature at 2 m above ground level (agl), 𝑞": specific humidity at 2 m agl, and 𝑈%&: wind 

speed at 10 agl). These variables are particularly useful for urban climate service applications given their widespread use for 15 

indicating climate state (Tan et al., 2009). From similarity theory (Monin and Obukhov, 1954) we estimate: 
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(2)  

(3)  

where 𝑇( (𝑞() is surface temperature (humidity), 𝑄+ (𝑄B) the sensible (latent) heat flux, 𝑘 the von Karman constant (0.4), 𝑢∗ 

the friction velocity, 𝜌 the air density, 𝐶1 the air heat capacity, 𝐿C the latent heat of vapourization, 𝑧 the diagnostic height, 𝑧& 

(𝑧&8/𝑧&C) the surface roughness length for momentum (heat/vapour), 𝑑& the zero-plane displacement, and ΨE (Ψ;/ΨD) the 

integral form of stability correction function for momentum (heat/vapour), the chosen forms are the same as in previous 20 

versions of SUEWS (Järvi et al., 2011). 

 

The SUEWS v2018b kernel is compiled by F2PY to generate the Python-compliant SuPy_driver package. Using the two 

subroutines allows better computational performance. The SuPy_driver calls the two subroutines depending on timestep 

simulation type: single (sd_cal_tstep) or multi-timestep (sd_cal_multitstep,Figure 1b). The former is useful in 25 

flexible manipulation of SuPy runtime behaviours (application in Section 4.3), while the latter has much better performance 

because of the much lower computational overheads with the F2PY wrapper. Therefore, sd_cal_multitstep is the 
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default executer in run_supy, the SuPy core processor performing simulations, for regular runs without runtime 

manipulation.  

 

In addition to run_supy, SuPy uses pandas DataFrame as the central data structure to simplify the pre- and post-processing 

as required by the original SUEWS. The pre-processor is designed to load existing SUEWS input files, which consists of: 5 

1) init_supy: This loads surface characteristics (e.g., albedo, emissivity, land cover fractions, etc.; for full details refer to 

SUEWS documentation at: https://suews-

docs.readthedocs.io/en/latest/input_files/SUEWS_SiteInfo/SUEWS_SiteInfo.html) and model configurations 

(e.g., stability correction function; for full details refer to SUEWS documentation at: https://suews-

docs.readthedocs.io/en/latest/input_files/RunControl/RunControl.html) into df_state_init (a pandas 10 

DataFrame, for full details refer to SuPy documentation at: https://supy.readthedocs.io/en/latest/data-

structure/df_state.html). Two auxiliary json files are used with the look-up hierarchies for loading this information 

from SUEWS library files (details refer to SUEWS documentation at: https://suews-

docs.readthedocs.io/en/latest/input_files/input_files.html) in a consistent file-code-variable way. 

2) load_forcing: Meteorological and other external forcing information are loaded into df_forcing (a pandas 15 

DataFrame, for full details refer to SuPy documentation at: https://supy.readthedocs.io/en/latest/data-

structure/df_forcing.html) to drive the SuPy simulations with timestep size inferred from its DatetimeIndex (i.e., the 

freq attribute). SUEWS should be run at short timesteps (e.g. 5 mins) as precipitation or irrigation runoff from 

impervious surfaces becomes too large if the water arrives as one large hourly (or longer) amount (Grimmond and Oke, 

1991; Ward et al., 2018). As such, load_forcing is implemented with the ability to downscale the raw forcing data to 20 

finer timesteps (5 min by default). 

 

Although detailed guidance is provided in SUEWS documentation for preparing input files (see https://suews-

docs.readthedocs.io/en/latest/input_files/input_files.html), it is often very time intensive to get these files prepared 

properly, in particular for new users. To ease the preparation of the input file, a helper function load_SampleData is provided 25 

in SuPy to get the sample input DataFrames (i.e., df_state_init and df_forcing) ready for running simulations. These 

DataFrames can also be used as templates to prepare input data for SuPy without wrestling with multiple input files, which 

can be useful for both existing and new users to SUEWS/SuPy. Examples for using the sample datasets are provided as tutorials 

(section 4). 

 30 

As the F2PY-compiled kernel SuPy_driver relies on NumPy ndarray for data input and output, two SuPy post-processors 

pack_state and pack_output are embedded in run_supy to pack the ndarray output of model final states and simulation 

results to df_state_final (a pandas DataFrame, full details refer to SuPy documentation at: 

Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-39
Manuscript under review for journal Geosci. Model Dev.
Discussion started: 21 March 2019
c© Author(s) 2019. CC BY 4.0 License.



7 
 

https://supy.readthedocs.io/en/latest/data-structure/df_state.html) and df_output (a pandas DataFrame, full details 

refer to SuPy documentation at: https://supy.readthedocs.io/en/latest/data-structure/df_output.html), respectively. We 

note df_state_final is designed to have the same data structure as df_state_init to allow its reuse as the initial 

conditions for other SuPy simulations (dashed line, SuPy panel Figure 1). 

 5 

3 Deployment 

To achieve cross-platform compatibility, SuPy has two parts: 

1) SuPy_driver (calculation kernel): the F2PY generated binaries of SUEWS are platform-dependent because of 

compilation being necessary for assurance of performance. 

2) SuPy (frontend processor): this platform-independent Python code allows rapid iteration in functionality enhancement 10 

and bug-fixing thanks to the powerful ecosystem of Python utilities.  

 

As software compilation can be frustrating and/or prone to operator errors, this procedure is automated using two online 

services: Microsoft Azure Pipeline (https://azure.microsoft.com/en-us/services/devops/pipelines/) for continuous integration 

(CI) and PyPI (https://pypi.org) for distribution. Microsoft Azure Pipeline has good cross-platform support 15 

(https://docs.microsoft.com/en-gb/azure/devops/pipelines/agents/) and easy connection with code repositories (e.g., 

GitHub: https://github.com, Bitbucket: https://bitbucket.com) and supports automated compilation for different platforms. 

 

The Azure Pipeline build workflow permits a variety of functionalities to facilitate compilation and publishing to other online 

services (e.g., PyPI, GitHub pages, etc.). Currently, this is setup for three major platforms (Windows, macOS and Linux) with 20 

three Python 3 configurations (3.5, 3.6 and 3.7) to conduct automated compilation of SuPy backend files: SUEWS binaries 

and SuPy_driver, the product of which is directly pushed to PyPI and released in real time. 

 

To build the SuPy_driver two crucial steps to allow cross-platform deployment (full details refer to configuration file 

setup.py in SuPy_driver) are: 25 

1) Static linking: to eliminate the issue of missing dynamic libraries the calculation kernels are pre-built using static linking 

and therefore run directly after downloading. 

2) manylinux tagging: Given the many Linux distributions and their different runtime libraries that often require 

distribution-specific compilation, we use the manylinux docker image (for details refer to 

https://github.com/pypa/manylinux) to compile SuPy_driver.  30 
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In addition to the cross-platform compilation, to guarantee delivery quality we perform automatic code tests of four pre-set 

configurations for every build: 

1) Connectivity between SuPy and SuPy_driver: checks if the frontend processor and backend calculation core can 

communicate with correct input and output. 

2) Success in single-timestep mode: checks SuPy can produce correct simulation results in the single-timestep mode. 5 

3) Success in multi-timestep mode: checks SuPy can produce correct simulation results in the multi-timestep mode and does 

a quick benchmark of computation speed. 

4) Compare simulation results between single- and multi-timesteps modes: checks SuPy can produce identical simulation 

results as designed. 

 10 

All build and test output is logged in detail (see all logs here: https://dev.azure.com/sunt05/SuPy/_build) and the results 

are reported to developers in real time. This feature is used for all code and underpins a commitment for timely examination 

of SuPy development. 

 

The Python Package Index (PyPI: https://pypi.org) is the official third-party software repository for Python. As it is supported 15 

by the pip toolchain it provides Python users easy worldwide access to packages and frees Python developers from 

maintaining indexing and distribution servers. By using the PyPI channel, SuPy can be easily installed by users with a one-

line input in command line tool on any desktop/server system (Listing 1). 
 

Listing 1: Command line code for SuPy installation using pip. Note Python 3.5+ is required for SuPy installation. 20 

 python3 -m pip install supy -U 
 

4 Demonstration: SuPy Tutorials 

To familiarise users with SuPy urban climate modelling and to demonstrate the functionality of SuPy, we provide three 

tutorials (Table 2, access at: https://supy.readthedocs.io/en/latest/tutorial/tutorial.html) in Jupyter notebooks 

(https://jupyter.org/). They can run in browsers (desktop, mobile) either by easy local configuration or on remote servers 25 

with pre-set environments (e.g., Google Colaboratory: https://colab.research.google.com, Microsoft Azure Notebooks: 

https://notebooks.azure.com). In addition, Jupyter notebooks allow great shareability by incorporating source code and 

detailed notes in one place, which helps users to organise their computation work (Shen, 2014). Jupyter notebooks can be 

installed with pip on any desktop/server system and open .ipynb notebook files locally (Listing 2). 

 30 
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Listing 2: Command line code for installing Jupyter notebook with pip and open an existing local .ipynb notebook file (i.e., 
path_to_your_notebook). 

 python3 -m pip install jupyter -U 
jupyter-notebook path_to_your_notebook 

 
Table 2: Three SuPy tutorials. Note the website links are directed to online Jupyter notebooks for SuPy simulation without any 
configuration by users. 5 

Name Aim Audience Website Link 

Quickstart of SuPy Essential workflow to 

conduct SuPy simulations 

New users, students https://mybinder.org/v2/gh/s

unt05/SuPy/2019.2?filepath

=docs%2Fsource%2Ftutorial

%2Fquick-start.ipynb 

Impact studies using SuPy in 

Parallel Mode 

Impacts on urban climate 

from varying surface 

characteristics and forcing 

conditions 

Urban climate researchers 

with experience in land 

surface simulations 

https://mybinder.org/v2/gh/s

unt05/SuPy/2019.2?filepath

=docs%2Fsource%2Ftutorial

%2Fimpact-studies-

parallel.ipynb  

Interaction between SuPy 

and external models 

Couple SuPy and external 

models for agile development 

Model developers with 

background in climate 

modelling 

https://mybinder.org/v2/gh/s

unt05/SuPy/2019.2?filepath

=docs%2Fsource%2Ftutorial

%2Fexternal-

interaction.ipynb 

 

To help beginners (e.g., classroom students) run SuPy we provide a forcing dataset (Figure 2) with meteorological data for 

London in 2012 (Kotthaus and Grimmond, 2014) and an initial model conditions (Table 3) for SuPy. These are made available 

to SUEWS by calling the load_SampleData function. This produces pandas DataFrames with the initial model state 

(df_state_init) and the forcing variables (df_forcing). These are used in all the three tutorials. 10 
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Figure 2: Intra-annual (2012) variation of forcing variables in the sample dataset (from top to bottom): incoming solar radiation, 
air temperature, relative humidity, air pressure, rainfall and wind speed in central London All variables are hourly averages except 
for total hourly rainfall (source of data: Kotthaus and Grimmond 2014, gap filled: Ward et al. 2016). 

 5 
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Table 3: Default settings in the sample dataset provided with SuPy for a) physics scheme and b) basic site characteristics. Full SuPy 
variable setting details refer to online documentation: https://supy.readthedocs.io/en/latest/data-structure/df_state.html 

a) Physics scheme SuPy variable Code Remark 

Radiation radiationmethod 3 Net all-wave radiation modelled with incoming 

longwave radiation modelled using air 

temperature and relative humidity (Loridan et 

al., 2011) 

Heat storage storageheatmethod 1 OHM model (Grimmond et al., 1991) 

Anthropogenic heat emissionsmethod 2 Anthropogenic heat model responding to 

temperature, population density, time of day and 

day of week (Järvi et al., 2011) 

Snow snowuse 1 A snow module for modelling snow pack and 

related thermal and hydrological dynamics 

(Järvi et al., 2014) 

Roughness length for 

momentum 

roughlenmommethod 2 Momentum roughness length determined using 

Grimmond and Oke (1999)  

Roughness length for heat roughlenheatmethod 2 Thermal roughness length determined using 

(Kawai et al., 2009) 

Atmospheric stability stabilitymethod 3 Atmospheric stability correction function 

(Campbell and Norman, 1998)  

b) Basic site characteristics SuPy variable (unit) Value 

Land cover fractions for surfaces: building, 

 paved, evergreen tree, deciduous tree, grass, 

 bare soil and water 

Sfr [0.43,  

0.38, 0.001, 0.019, 0.029,  

0.001, 0.14] 

Building height bldgh (m) 22.0 

Evergreen tree height evetreeh (m) 13.1 

Deciduous tree height dectreeh (m) 13.1 

4.1 SuPy Quickstart  

In this tutorial, we demonstrate the key steps in using SuPy to undertake the core task of SUEWS to simulate energy and water 

balance in an urban context. Here the runs are for a central London area in 2012. 5 

 

The surface energy balance (SEB) can be expressed as: 
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𝑄∗ + 𝑄G = 𝑄+ + 𝑄B + Δ𝑄I (4)  

where the flux densities (W m-2) are 𝑄∗ net all-wave radiation, 𝑄G anthropogenic heat, 𝑄+ turbulent sensible heat, 𝑄B latent 

heat, and Δ𝑄I the net storage heat flux. Through 𝑄B, the SEB characteristics can be linked to the water balance: 

𝑃 + 𝐼 = 𝐸 + 𝑅 + Δ𝑆 (5)  

where each term is a depth of water per unit of time (e.g. mm d-1). 𝑃 is precipitation, 𝐼 irrigation, 𝐸 evapotranspiration (=

𝑄B/𝐿C where 𝐿C is the latent heat of vaporisation), 𝑅 runoff, and Δ𝑆 the net change in water storage. 

 5 

The fundamental steps to use SuPy after the software environment has been installed (see listing 1 and 2) are: (1) load input, 

(2) run a simulation and (3) examine the results. With everything ready, three lines of python code are needed (listing 3). 

 
Listing 3: Python code for a minimal example of SuPy simulation with comments (green). 

1 # import supy package 

2 Import supy as sp 

3 # import sample data 

4 df_state_init, df_forcing = sp.load_SampleData() 

5 # run supy simulation 

6 df_output, df_state_final = sp.run_supy(df_forcing, df_state_init)  

 10 

SuPy is run by calling run_supy after df_state_init and df_forcing have been loaded. After the simulation the two 

DataFrames provide major SUEWS outputs (df_output) and the model state (df_state_final) at the end of the run. The 

latter can be used as initial conditions for other SuPy runs. 

 

The post-processing uses pandas functions to resample, plot and write out the model output. The default output DataFrame 15 

of 5 min resolution can be upscaled to the month for an overview of intra-annual dynamics of surface energy and water balances 

(Figure 3).  
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Figure 3: SuPy simulated monthly (top) surface energy and (bottom) water balance for London 2012. Assuming no irrigation. 

 

This workflow using SuPy for urban climate modelling can be easily adapted to existing SUEWS tutorials under the UMEP 

framework (https://tutorial-docs.readthedocs.io) by replacing the conventional SUEWS binary executable with the python 5 

SuPy package. Given the central role of Python in the UMEP framework, it is expected the adoption of SuPy will further 

streamline the workflows for urban climate simulations in UMEP.  

4.2 Impacts of the urban area on urban climate 

A major application of urban climate models is to study the impacts on urban climate from design scenarios that change surface 

characteristics or the climate (atmospheric forcing). In this tutorial both scenario types are explored: we provide one example 10 

of modification of albedo for surface characteristics, while another of air temperature alteration for climate conditions. 

 

Technically, this requires several configuration files to be prepared for a suite of independent model runs. These could be run 

consecutively (i.e. no interactions between runs are needed) or in parallel, so-called “embarrassingly parallel computation” 

(Bailey et al., 1991), with multiple independent runs with sufficient CPUs. In this tutorial, we first demonstrate how SuPy can 15 

be easily setup to efficiently complete multiple simulations in parallel. 
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We use dask (https://dask.org) to parallelise the SuPy simulations given its close coherence with numpy and pandas, in 

particular its almost identical DataFrame interfaces as pandas. Specifically, we use the apply method of dask.DataFrame 

to improve the simulation performance by distributing the SuPy computations across different configurations. Compared with 

the serial mode, the dask-based parallel mode takes only ~30% of the execution time of the serial mode for simulations longer 

than 1000 days for 12 grids (Figure 4). The parallel configuration for running SuPy, run_supy_mgrids, is then used in the 5 

following two cases for more efficient parallel simulations. 

 

 
Figure 4: Comparison of execution times (s) between serial and parallel modes when 12 grids are simulated for different periods 
(days): 30, 90, 120, 150, 180, 270, 365, 730 and 1095. Simulations performed with macOS 10.14.3 running on 2.9 GHz Intel Core i9 10 
with 32 GB memory. The model configuration is the same as Tutorial 1 (Table 2).  

 

To explore the effect of changes to surface properties, the DataFrame df_state_init needs to be modified. The surface 

albedo of different materials impacts the outgoing shortwave (solar) radiation and thus the surface energy balance fluxes and 

other atmospheric variables. Modifying roof albedo has been suggested extensively as a method to cool urban areas (e.g. Li et 15 

al., 2014; Ramamurthy et al., 2015; Santamouris et al., 2011). In the example, we conduct simulations from January 2012 to 

July 2012 with the first 6 months as the spin-up period. The building roof albedo is incrementally increased from 0.1 to 0.8 

(e.g. a change of very dark to very light surface). The near surface temperature 𝑇", an indicator of thermal state at pedestrian 

level, are analysed using the monthly maximum, mean and minimum (Figure 5). It would be expected that the maximum and 
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mean values of 𝑇" are greatly reduced as they are directly influenced by the altered net solar radiation while impacts on the 

minimum 𝑇" might be expected to be minimal.  

 

 
Figure 5: Impacts of increasing building roof albedo 𝜶  (from 0.1) on near surface temperature 𝑻𝟐 considering maximum, mean and 5 
minimum daily temperatures at 2 m.  

 

To explore changes in atmospheric forcing, the DataFrame df_forcing is modified. In this example, we investigate the 

impact of increased local-scale (constant flux layer) air temperature 𝑇R on the near surface air temperature 𝑇". Air temperature 

𝑇R is increased over 24 runs from 0 (no change) to +2 °C. The upper limit (+2 °C) represents a highly possible average global 10 

warming scenario for the near future (IPCC 2018). The SuPy simulations are conducted January to July 2012 and July data 

analysed. The 𝑇" results indicate the increased 𝑇R has different impacts on the 𝑇" metrics (minimum, mean and maximum) but 

all increase linearly with 𝑇R. The maximum 𝑇" has the stronger response compared to the other metrics (Figure 6).  
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Figure 6: Impacts of increasing background (constant flux layer) air temperature 𝑻𝒂 on near surface maximum, mean and minimum 
temperatures at 2 m 𝑻𝟐. Albedo is 0.1 and land cover characteristics are as Table 2b. Note in this example only one variable is 
modified. 

 5 

This tutorial demonstrates the simplicity of using SuPy to conduct impact studies of both surface characteristics and 

background climates. These can be easily adapted by users to their specific application interests.  

 

4.3 Interaction between SuPy and external models 

SUEWS can be coupled to other models that provide or require forcing data using the SuPy single timestep running mode 10 

(Section 2). We demonstrate this feature with a simple online anthropogenic heat flux model. 

 

Anthropogenic heat flux (QF) is an additional term to the surface energy balance in urban areas associated with human activities 

(Gabey et al., 2018; Grimmond, 1992; Nie et al., 2014; 2016; Sailor, 2011). In most cities, the largest emission source is from 

buildings (Hamilton et al., 2009; Iamarino et al., 2011; Sailor, 2011) and is high dependent on outdoor ambient air temperature. 15 

For demonstration purposes we have created a very simple model instead of using the SUEWS 𝑄G (Järvi et al. 2011) with 

feedback from outdoor air temperature (Figure 7). The simple 𝑄G model considers only building heating and cooling: 
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𝑄G = W
(𝑇" − 𝑇Y) × 𝐶\ , 	𝑇" > 𝑇Y
(𝑇+ − 𝑇") × 𝐻\ , 𝑇" < 𝑇+

𝑄G& 	
 (6)  

where 𝑇Y (𝑇+) is the cooling (heating) threshold temperature of buildings, 𝐶\ (𝐻\) is the building cooling (heating) rate, and 

𝑄G& is the baseline anthropogenic heat. The parameters used are:  𝑇Y (𝑇+) set as 20	°C (10	°C), 𝐶\ (𝐻\) set as 1.5	W	mg"	Kg% 

(3	W	mg"	Kg%) and 𝑄G& is set as 0	W	mg", implying other building activities (e.g. lightning, water heating, computers) are 

zero and therefore do not change the temperature or change with temperature. 

 5 
Figure 7: A simple anthropogenic heat flux (𝑸𝑭) model as a linear function of air temperature 𝑻𝟐. 

 

The coupling between the simple 𝑄G model and SuPy is done via the low-level function suews_cal_tstep, which is an 

interface function in charge of communications between SuPy frontend and the calculation kernel. By setting SuPy to receive 

external 𝑄G as forcing, at each timestep, the simple 𝑄G model is driven by the SuPy output 𝑇" and provides SuPy with 𝑄G, 10 

which thus forms a two-way coupled loop. 

 

Here we replace the SUEWS 𝑄G (Table 2) with the simpler 𝑄G model (Fig. 7, eqn 6) to explore the question of the impact of 

𝑄G on 𝑇" and its feedback on 𝑄G. The simulation using SuPy coupled is performed for London 2012. The data analysed are a 

summer (July) and a winter (December) month. Initially 𝑄G is 0 W m-2 the T2 is determined and used to determine 𝑄G[%] which 15 

in turn modifies 𝑇"[%]  and therefore modifies 𝑄G["]  and the diagnosed 𝑇"["] . Results indicate a positive feedback, as 𝑄G  is 
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increased there is an elevated 𝑇" but with different magnitudes (Figure 8). Of particular note is the positive feedback loop 

under warm air temperatures: the anthropogenic heat emissions increase which in turn elevates the outdoor air temperature 

causing yet more anthropogenic heat release (Figure 8). Note that London is relatively cool (Figure 2) so the enhancement is 

much less than it would be in warmer cities. 

 5 

 
Figure 8: Impacts of 𝑸𝑭 produced by an external simple anthropogenic heat model on the near surface air temperature 𝑻𝟐 for two 
months: summer (July 2012, orange) and winter (December 2012, blue). Linear regression lines (dashed lines) show the overall 
seasonal trends. 𝚫𝑸𝑭 = 𝑸𝑭[𝟐] − 𝑸𝑭[𝟏] see text for definitions and the corresponding temperatures 𝚫𝑻𝟐 = 𝑻𝟐[𝟐] − 𝑻𝟐[𝟏].  

 10 

In this case the anthropogenic heat flux model is simple, but a more complex model could be coupled to SUEWS in the same 

way. This can facilitate development of climate services tools that are both agile and responsive. 

 

5 Concluding remarks 

The development and delivery of a Python-enhanced urban climate model SuPy is introduced, with tutorials (Table 2) to 15 

demonstrate typical applications and some new SUEWS features (e.g., surface diagnostics calculation). The Python code and 
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tutorials are freely and openly available online (see Appendix). Users are encouraged to explore more intriguing urban climate 

related questions with the enhanced functionalities of SuPy (e.g., flexible configurations, fine control of simulations, etc.). 

 

Notable features of SuPy include: 

1) version consistency via PyPI: SuPy is distributed via the well managed Python package repository PyPI with all history 5 

versions stored. This allows for clear version consistency for reproducing simulation results. 

2) simplicity in input/output sharing: SuPy uses pandas DataFrame as its core data structure and thus draws on a powerful 

data analysis toolchain, which can facilitate the ease with which urban climate research outcomes can be communicated. 

3) ease of scientific development: Given the importance of meteorological forcing data in running climate simulations, SuPy 

will shortly be equipped with the ability to retrieve forcing variables from global reanalysis datasets. We anticipate data 10 

analyses and model development will be added more conveniently within the Python data ecosystem. 

4) an open source tool: We welcome all kinds of contributions, for example, incorporation of new feature (pull requests), 

submission of issues, development of new tutorials. 

 

In addition to the SuPy in data analysis and communication features, the computation kernel is SUEWS, so all physics schemes 15 

development will remain in the Fortran stack for computational performance and compatibility with a large cohort of scientific 

code. In one application software, UMEP (Lindberg et al. 2018) written in Python, the SUEWS binary executable will shortly 

be updated to SuPy for better connectivity to other UMEP components. 

 

We expect SuPy will help guide future development of SUEWS (and similar urban climate models) and enable new 20 

applications of the model. For example, the parallel set up of SuPy will allow large scale simulations of urban climate across 

larger domains with greater surface heterogeneity. Moreover, the improvement in SUEWS model structure and deployment 

process introduced by the development of SuPy paved the way to a more robust workflow of SUEWS for its sustainable 

success. 

Appendix A: SuPy model source code and documentation 25 

Code repository: 

- Name: GitHub 

- Identifier: https://github.com/sunt05/SuPy 

- License: GNU GPL v3.0 

- Date first published: 10 February 2019 30 

- DOI: 10.5281/zenodo.2574404 
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Versioned documentation (tutorials inclusive): 

- Name: ReadTheDocs 

- Identifier: https://supy.readthedocs.io 

- License: GNU GPL v3.0 

- Date first published: 10 February 2019 5 

- DOI: 10.5281/zenodo.2599982 

 

Appendix B: SUEWS software and documentation 

Software: 

- Name: zenodo 10 

- Identifier: https://zenodo.org/record/2274254 

- Available versions: 2018b and newer 

- DOI: 10.5281/zenodo.2274254 

 

Versioned documentation: 15 

- Name: ReadTheDocs 

- Identifier: https://suews-docs.readthedocs.io 

- License: GNU GPL v3.0 

- Available versions: 2018b and newer 

- DOI: 10.5281/zenodo.2284986 20 

 

Code availability: 

Appendix A describes the locations and license information for the SuPy source code and documentation. The source code of 

calculation kernel SUEWS is available upon request from SG (c.s.grimmond@reading.ac.uk), and its software and 

documentation are publicly available at locations provided in Appendix B. 25 

Author contributions: 

TS led the development of SuPy and core enhancements of SUEWS since v2017b. SG provided overall oversight of the 

SUEWS development. TS and SG wrote the paper. 
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