
Response to Reviewer 1 

General Comments: 

The paper presents a Python-enhanced version of SUEWS model; the original SUEWS model being one of the 
commonly used urban land surface model in the urban climate research community. The enhanced version SuPy 
contains quite substantial technical improvement of the original model, including interfacing and pre- and post-
processing. The interaction with external models, in particular the incorporation of anthropogenic heat, is also a 
plus. Overall, the paper is well presented with adequately detailed model structure, documentation, and tutorial 
demonstration. Minor revisions are needed for some clarification as well as correction of typos and some wordings 
(listed below). The English writing still need a bit more polish; I leave it for the authors and editor to decide. 

Response: We appreciate the recognition of our work. 

Specific Comments: 
1) p5, line 16, “From similarity theory (Monin and Obukhov, 1954) we estimate”, it should be clarified that Eqs. 

(1)-(3) follows Monin-Obukhov Similarity theory that represents one specific class of similarity theory. The 
phrase here sounds like MOST is the only similarity theory. 

Response: We agree with the reviewer but as Reviewer 2 suggest we remove this part from this paper, it no longer 
appears. We will take this suggestion into consideration for future text. 

2) p13, section 4.2, “Impacts of the urban area on urban climate”, the wording is awkward. Consider revision. 

Response: Changed to “Impacts of urban surfaces on local climate” 

3) p15, Figure 5, why the changes of temperature and albedo follow a linear (bi-linear in the case f maximum 
temperature) manner? 

Response: Note it is not necessarily as the range shows (although the mean suggesting that is the case). 

Here the albedo changes K↑ but longwave radiation is not modified because the forcing data are held constant in the 
simulation. The storage heat flux ΔQS is modified (but not linearly). QF is not modified because the forcing data are 
held constant. The surface conductances will be partially modified (but not fully because the forcing data is being 
held constant). There will be a nonlinear variation that changes with time as the soil moisture will be modified 
because of QE variations. Thus, there will be a change in QH which is used to determine the 2 m air temperature. But 
the air density and atmospheric stability are using the local scale values in this simulation so are not responding.  
 
Thus the linear relation only holds in this particular case and we would expect this simple simulation to become 
more non-linear with time. The simulation is holding many things constant at the same time and thus cannot be 
regarded as being a complete “science” simulation to evaluate this. However, with other feedbacks permitted in the 
runs their roles could be explored. Some of this become apparent in the later QF tutorial. 
 
4) p16, line 15, “high dependent” should be “highly dependent”. 

Response: Corrected as suggested. 

5) p17, Figure 7, the notations of threshold temperature T_H and T_C should be made consistent with those in 
Eq. (6): both in either capital H & C or lower case h & c. 

Response: Changed to upper cases for consistency as suggested. 

6) p18, Figure 8, the legend “season” is redundant; “summer” and “winter” alone should suffice. 

Response: Removed as suggested. 



Responses to Reviewer 2 

General Comments: 

This paper describes the development of a F2PY version of the land surface model SUEWS and it demonstrates the 
potential benefits of using F2PY to facilitate usage of the model. It is well written manuscript but some clarifications 
and adjustments would improve the paper further. 

Response: We appreciate the recognition of our work. 

Specific Comments: 
1) It is un-clear what the actual capabilities of SuPy that are available for the user, e.g. is there possibilities for 

data preparation from surface data in SuPy? I recommend to add a list of the available functions (methods) 
that is included in SuPy, maybe not in the actual text but as a appendix, depending on the extent of all 
functions available 

Response: The capacities of SuPy include: 

a. loading existing SUEWS files as SuPy input. 
b. running SUEWS simulations. 
c. saving SuPy results as text files. 
d. visualising SuPy input and output (SUEWS standalone version does not have this capability. Although, the 

UMEP/SUEWS version does). 

A list of supy functions is added in Appendix A as suggested. 

2) On page five new model capabilities area presented where pedestrian model output is added. I recommend 
that this section is removed as this has nothing to do with the SuPy model per se. If the authors still want this 
in they should include evaluation of the new features as well, or have a very good reason why this is included 
here. The three variables (T2, q2 and U10) make use of similarity theory and are estimated within the building 
canopy layer (close to the ground surface) where this theory should be questioned. Therefore, a detailed 
evaluation should be added in conjunction with such a model development. 

Response: Removed as suggested. 

3) There is no reference to the code repository of SuPy in the text. Please add. I found it eventually 
(https://github.com/sunt05/SuPy) and found that the actual SUEWS source code is not included. Why is this 
not available as open source from the repository? Most other similar models (WRF, PALM4U, GFDL AM3, 
SURFEX etc.) have their source code available. Please state why the whole system, both SuPy and SUEWS is 
not available for other users/developers to be able to contribute to the system. One page 7, line 10, the authors 
state that using the Python utilities bug-fixing etc. is available. However, since the source code is close I 
cannot see that this is actually available. Please clarify, or release the full code to the public. 

Response: 

a. Inline citations of supy code have been added as suggested. 

b. We thank the reviewer for their proposal that contribution to SUEWS/SuPy should be allowed, which is 
actually what we’ve been conducting, however, in a different manner from other similar models (e.g., WRF). 
For SuPy, it is fully open source at GitHub; whereas for SUEWS, we are working on the publication of it as an 
open source software as well, but at the moment the collaboration needs to be requested upon contact with SG 
(c.s.grimmond@reading.ac.uk). 

4) Figure 1. Swap around so that it happens in the correct order from a user perspective, i.e. SuPy to the left. 

Response: Changed as suggested. 



5) Page 8, line 25. What dose ‘mobile’ mean in this context, cell phone? Why would anyone like to run SuPy on a 
cell phone? If so, how to use it with other datasets that the one available through SampleData? 

Response: Yes, we meant mobile devices (e.g., cell phones, iPad, etc) that have Internet connections to a remote 
server running Jupyter services. Also, we would note this feature is NOT implemented by SuPy per se but allowed 
by the Jupyter environment where python 3 is supported. The reason for running SuPy (and many other python 
applications) on a mobile device (e.g., cell phone) is simple: working seamlessly across different devices is a natural 
need.  

As a discussion on the possibilities allowed by mobile devices is far beyond the scope of this paper, we provide an 
example: often, we would like to answer if-so-then-what questions by changing parameter values inspired by ideas 
(e.g. classroom, planning). With SuPy, this can be quickly done with a mobile phone (e.g. students in a classroom, 
practitioner at a site). 

To import datasets other than the sample one shipped by SuPy on mobile devices, we would suggest users to try out 
the following two options: 

a. Google Colab: a customised free Jupyter notebook service that has coherent integration with google drive, 
which thus allows personal files stored on google drive (i.e., SUEWS input files) to be used by SuPy online. 
Input files other than the sample ones can be uploaded onto Google Drive and thus imported to SuPy under the 
Google Colab environment. 

b. GitHub and other online Jupyter services: setting up a repository with Jupyter Notebooks and data files in 
junction with online Jupyter services (e.g., binder, CoCalc, etc.) provides a more generic approach to integrate 
the desktop and mobile workflows conducting SuPy simulations. Notably on iOS, the app Juno provides 
mobile adaptive interfaces to facilitate the online computing (e.g., SuPy simulations) with Jupyter Notebooks 
and can incorporate personal files via GitHub repos. 

The above comments have been incorporated into the revised manuscript. 

6) Page 8, line 25-30. There is a lot of “up-talk” of the system, e.g. “great shearability”. This is unnecessary. 
You are not selling anything. Please go through the text for similar expressions. 

Response: We have removed these. 

7) All tables need formatting. Use right instead of justify alignment. 

Response: Changed as suggested. 

8) How is SuPy connected to stand-alone Fortran code of SUEWS. Can the same input data be used in both 
system. Can SuPy write out data in the same format as the Fortran version of SUEWS? If not, please add this 
feature so that other systems easily can be used for both Supy and Fortran SUEWS. 

Response: Such functionalities have been added in version 2019.5 and a summary of SuPy functions is provided in 
Appendix A. 
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Abstract. Accurate and agile modelling of cities weather, climate, hydrology and air quality is essential for integrated urban 

climate services. The Surface Urban Energy and Water balance Scheme (SUEWS) is a state-of-the-art, widely used, urban 

land surface model (ULSM) which simulates urban-atmospheric interactions by quantifying the energy, water and mass fluxes. 

Using SUEWS as the computation kernel, SuPy (SUEWS in Python), stands on thewith a Python-based data stack to streamline 10 

the pre-processing, computation and post-processing that are involved in the common modelling-centred urban climate studies. 

This paper documents the development of SuPy, which includesincluding: the SUEWS interface modification, F2PY (Fortran 

to Python) configuration and Python frontend implementation. In addition, the deployment of SuPy via PyPI (Python Package 

Index) is introduced along with the automated workflow for cross-platform compilation. This makes SuPy available for all 

mainstream operating systems (Windows, Linux, and macOS). Furthermore, threeThree online tutorials in Jupyter notebooks 15 

are provided to users of different levels to become familiar with SuPy urban climate modelling. The SuPy package represents 

a significant enhancement that supports existing and new model applications, reproducibility, and enhanced functionality. 

1 Introduction  

Cities need to be resilient to weather, climate, hydrological, and air quality hazards given their large and ever-increasing 

populations (Baklanov et al. 2018). One prerequisite to building resilience is information at various spatio-temporal scales, for 20 

example to understand: energy partitioning over urban surfaces (Li et al., 2015b; Sun et al., 2017; Wang et al., 2015; Ward 

and Grimmond, 2017; Zhao et al., 2014), pedestrian level meteorology to diagnose thermal comfort (Bar et al., 2011; Erell et 

al., 2013; Krayenhoff et al., 2018; Sun et al., 2016; Tan et al., 2009), or ambient radiation and wind conditions to assist building 

design (Chen, 2004; Jentsch et al., 2013; Li et al., 2015a; Lindberg and Grimmond, 2011; Reinhart and Cerezo Davila, 2016; 

Santamouris et al., 2001). To obtain such information, accurate and agile modelling capacity of the urban weather and climate 25 

are essential. 

Urban land surface models (ULSM) are widely used to simulate urban-atmosphericatmosphere interactions by quantifying the 

energy, water and mass fluxes between the surface and urban atmosphere (Best and Grimmond, 2015; Chen et al., 2011; Wang 
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et al., 2012). These models require information on urban morphology (e.g., heights, spacings of buildings, etc) and 

anthropogenic dynamics (e.g., building-operation-related heat release, emissions of heat by traffic) to be included.  

 

One widely used, and tested ULSM, the Surface Urban Energy and Water balance Scheme (SUEWS) (Table 1),) requires basic 

meteorological data and surface information to characterise essential urban features (i.e., urban surface heterogeneity and 5 

anthropogenic dynamics). SUEWS enables long-term urban climate simulations without specialised computing facilities (Järvi 

et al., 2011; 2014a; Ward et al., 2016).(Järvi et al., 2011, 2014; Ward et al., 2016). SUEWS is regularly enhanced (Grimmond 

et al., 1991, 1986; Grimmond and Oke, 1986; 1991; Grimmond et al., 1991; Järvi et al., 2011, 2014, 2019; Offerle et al., 2003; 

Järvi et al., 2011; LoridanWard et al., 2011; Järvi et al., 2014; Ward et al., 2016; Järvi et al., 20192016) and tested in cities 

under a range of climates worldwide (Table 1). Although operationally simple and scientifically robust, SUEWS still requires 10 

some skill for application (e.g., computing environment setup, parameter configuration, etc.), which may limit uptake for 

broader applications in urban planning and design.  

 
Table 1: Recent studies using SUEWS. D&E – development and evaluation 

Topic City Reference 

Impact of haze on the urban water balance Beijing, China Kokkonen et al. (2019) 

CO2 emissionemissions module development: D&E Helsinki, Finland Järvi et al. (2019) 

Impact of precipitation forcing on the urban water balance London Ward et al. (2018) 

Impacts of anthropogenic heat and irrigation on surface energy balance Shanghai, China Ao et al. (2018) 

Sensitivity of SUEWS to forcing variables Vancouver, London Kokkonen et al. (2018) 

SUEWS a core processor of the UMEP system (N/A) Lindberg et al. (2018) 

Impacts of changes in surface cover, human behaviour and climate on 

energy partitioning 

London, UK Ward and Grimmond 

(2017) 

Offline evaluation of SUEWS driven by WRF output Porto, Portugal Rafael et al. (2017) 

Implications of warming to cold climate cities High latitudes cities Järvi et al. (2017) 

Evaluation in Singapore and comparison with other urban land surface 

models 

Singapore Demuzere et al. (2017) 

Evaluation in four cities with different climates Dublin, Ireland 

Hamburg, Germany 

Melbourne, Australia 

Phoenix, USA 

Alexander et al. (2016) 

Evaluation of SUEWS in two UK cities London, UK Ward et al. (2016) 
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Swindon, UK 

Evaluation of radiation flux in Shanghai Shanghai, China Ao et al. (2016) 

Boundary layer modelling and coupling with SUEWS Sacramento, USA Onomura et al. (2015) 

Evaluation with Local Climate Zone information as surface 

characteristics 

Dublin, Ireland Alexander et al. (2015) 

Model inter-comparison for sensible and latent heat fluxes Helsinki, Finland Karsisto et al. (2015) 

Snow melt model D&E Helsinki, Finland 

Montreal, Canada 

Järvi et al. (2014) 

SUEWS D&E Vancouver, Canada 

Los Angeles, USA 

Järvi et al. (2011) 

Reproducibility and open science principles are increasingly important (Peng, 2011). Although climate scientists by 

convention publish detailed model configurations used in their research, minor inconsistencies or lack of transparency of code 

often hampers efforts to reproduce simulation results. In addition, new users may lack prerequisite knowledge in low-level 

compilation and scripting to undertake initial model runs and interpretation of simulation results (Lin, 2012). 

Today Python is used extensively by the atmospheric sciences community for data analyses and numerical modelling (Lin, 5 

2012; Perkel, 2015) thanks to its simplicity and the large scientific Python ecosystem (e.g., PyData community: 

https://pydata.org). Recent Python-based endeavours include global climate system models (Monteiro et al., 2018), stochastic 

geological models (Varga et al., 2019), hydrological models (Hamman et al., 2018), to cite just a few. 

In this paper, we present a Python-enhanced urban climate system based on the popular Fortran-coded SUEWS - SuPy 

(SUEWS in Python). The development of SuPy (Section 2), the essential workflow in its cross-platform deployment (Section 10 

3), and three demonstrations tutorials for users of different levels (Section 4) are presented. 

2 Development 

The following are considered within the design process of SuPy: 

1) Data preparation: Climate simulations typically require extensive pre-processing of data (loading input data, 

reformatting to conform with standards, etc.) and post-processing (conversion of output, graphical and cartographic 15 

plotting, etc.). Python has a vast array of utilities to support this; notably, NumPy (the fundamental package for scientific 

computing with Python, https://www.numpy.org) and pandas (a tabular-format-centred data analysis tool) are two 

cornerstone libraries in Python-based scientific computing. 

2) Performance: Python, as a scripting language, has poorer performance than compiled languages (e.g., C, Fortran) 

(Kouatchou, 2018). For this reason, Fortran is used extensively for weather and climate related software (e.g., WRF 20 
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(Skamarock and Klemp, 2008), GFDL AM3 (Donner et al., 2011), etc). Therefore, by using different languages their 

strengths can be utilised. 

3) Cross-platform ability: Given the range of computer environments, it is important that software can be easily used across 

operating systems (OS) with ease. Python and Fortran both are easily used on most OS. However, for performance 

reasons as noted, it is preferable to have a compiled backend for intensive simulations, where platform specific 5 

compilations are mandatory. Thus, we adopt the Microsoft Azure Pipelines to allow cross-platform ability for SuPy 

(Section 3.1). 

4) Extendibility: It is desirable, possibly even essential, for the scientific model to interact with other models and data 

sources to extend the overall capacity and to explore urban climate related questions beyond the climate science. 

To address these four considerations, SuPy’s architecture uses Python’s data processing and Fortran’s computational efficiency. 10 

SuPy consist of three parts (Figure 1): 

1) SuPy: a Python-based frontend processor based on the pandas DataFrame with functionality for data analysis and 

simulation management (Appendix A). 

2) SuPy_driver: calculation kernel compiled by F2PY (Fortran to Python, part of the NumPy package) (Peterson, 2009) to 

facilitate the transfer of SUEWS Fortran modelling ability to Python and guarantee the computational performance. 15 

3) SUEWS: a Fortran-coded local scale urban land surface model of moderate complexity that can simulate the urban 

surface energy balance in combination with the complete urban hydrological cycle, considering irrigation and runoff 

processes (Grimmond and Oke, 1986, 1991; Järvi et al., 2011, 2014; Offerle et al., 2003; Ward et al., 2016). 

 
Figure 1: SuPy’s three major components (left to right): a) SuPy, a Python-based frontend processor; b) SuPy_driver, the calculation 20 
kernel compiled by F2PY; c) SUEWS, a Fortran-coded local scale urban land surface model Note not all physics are listed. 

Development of SuPy (Sun, 2019) started with SUEWS v2017b (Ward and Grimmond, 2017). SUEWS has three distinct 

group of subroutines: model physics, input and output (I/O). To help generalize coupling, the use of Fortran modules to pass 
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variables and parameters has been reduced there has been a return to more use of Fortran subroutine arguments with explicitly 

stated intent (e.g. in, out). The modified physics subroutines are called from two subroutines suews_cal_main and 

suews_cal_multistep (Figure 1a) depending on the model timestep (single or multi). This structure constitutes the 

SUEWS v2018bv2018c calculation kernel (Figure 1a) and enables efficient communication between SUEWS and other 

models (e.g., WRF) through an explicit and unified interface. 5 

 

Enhancements to SUEWS modelling capability in v2018b includes the surface diagnostics module to produce pedestrian level 

meteorological variables (𝑇": air temperature at 2 m above ground level (agl), 𝑞": specific humidity at 2 m agl, and 𝑈%&: wind 

speed at 10 agl). These variables are particularly useful for urban climate service applications given their widespread use for 

indicating climate state (Tan et al., 2009). From similarity theory (Monin and Obukhov, 1954) we estimate: 10 

𝑇" = 𝑇( −
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(1)  

(2)  

(3)  

where 𝑇( (𝑞() is surface temperature (humidity), 𝑄+ (𝑄B) the sensible (latent) heat flux, 𝑘 the von Karman constant (0.4), 𝑢∗ 

the friction velocity, 𝜌 the air density, 𝐶1 the air heat capacity, 𝐿C the latent heat of vapourization, 𝑧 the diagnostic height, 𝑧& 

(𝑧&8/𝑧&C) the surface roughness length for momentum (heat/vapour), 𝑑& the zero-plane displacement, and ΨE (Ψ;/ΨD) the 

integral form of stability correction function for momentum (heat/vapour), the chosen forms are the same as in previous 

versions of SUEWS (Järvi et al., 2011). 15 

 

The SUEWS v2018b kernelThe SUEWS kernel (v2018c) is compiled by F2PY to generate the Python-compliant 

SuPy_driver package. Using the two subroutines allows better computational performance. The SuPy_driver calls the 

two subroutines depending on timestep simulation type: single (sd_cal_tstep) or multi-timestep (sd_cal_multitstep, 

Figure  1b). The former is useful in flexible manipulation of SuPy runtime behaviours (application in Section 4.3), while the 20 

latter has much better performance because of the much lower computational overheads with the F2PY wrapper. Therefore, 

sd_cal_multitstep is the default executer in run_supy, the SuPy core processor performing simulations, for regular runs 

without runtime manipulation.  

 

In addition to run_supy, SuPy uses pandas DataFrame as the central data structure to simplify the pre- and post-processing 25 

as required by the original SUEWS. The overall data structures used in SuPy are described in the documentation 



6 
 

(https://supy.readthedocs.io/en/latest/data-structure/supy-io.html). The pre-processor is designed to load existing SUEWS input files, 

which consists of: (Appendix A): 

1) init_supy: This loads surface characteristics (e.g., albedo, emissivity, land cover fractions; full details given in the 

SUEWS documentation: https://suews-docs.readthedocs.io/en/latest/input_files/SUEWS_SiteInfo/SUEWS_SiteInfo.html) and 

model configurations (e.g., stability correction option chosen;  https://suews-5 

docs.readthedocs.io/en/latest/input_files/RunControl/RunControl.html). The data go into df_state_init (a pandas 

DataFrame, https://supy.readthedocs.io/en/latest/data-structure/df_state.html). Two auxiliary json files are used with the 

look-up hierarchies for loading this information from SUEWS library files (https://suews-

docs.readthedocs.io/en/latest/input_files/input_files.html) in a consistent file-code-variable way. 

2) load_forcing: Meteorological and other external forcing information are loaded into df_forcing (a pandas 10 

DataFrame, https://supy.readthedocs.io/en/latest/data-structure/df_forcing.html) to drive the SuPy simulations with timestep 

size inferred from its DatetimeIndex (i.e., the freq attribute). SUEWS should be run at short timesteps (e.g. 5 mins) as 

precipitation or irrigation runoff from impervious surfaces becomes too large if the water arrives as one large hourly (or 

longer) amount (Grimmond and Oke, 1991; Ward et al., 2018). As such, load_forcing is implemented with the ability to 

downscale the raw forcing data to finer timesteps (5 min by default). The temporal resolution of raw forcing data can be 15 

between 5 and 360 min, with 30-60 being the most common. 

Detailed guidance is provided in SUEWS documentation for preparing input files (https://suews-

docs.readthedocs.io/en/latest/input_files/input_files.html) and in the UMEP documentation (https://umep-

docs.readthedocs.io/en/latest/pre-processor/SUEWS%20Prepare.html). SUEWS uses multiple ascii text and namelist files 

(https://suews-docs.readthedocs.io/en/latest/input_files/input_files.html), and UMEP (Lindberg et al. 2018) provides a QGIS/Python 20 

interface that is designed to aid the derivation of the spatial parameters from geo-data. As SuPy can use the files prepared 

properly, in particular forby the other two approaches, existing SUEWS files are usable via the init_supy and 

load_forcing functions for SuPy.  

For new users. To ease the preparation of the input file without experience of other versions, a helper function 

load_SampleData is provided in SuPy to get the sample input DataFrames (i.e., df_state_init and df_forcing) ready 25 

for runningto run simulations. These Once users  understand the SUEWS/SuPy variables, the sample DataFrames can also be 

used as templates to prepare input data for SuPy without wrestlingprovide a template to work with multiple input files, which 

can be useful for both existing and new users to SUEWS/SuPy.to meet their next specific needs. Examples for using the sample 

datasets are provided as tutorials (sectionSection 4). 

 30 
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As the F2PY-compiled kernel SuPy_driver relies on NumPy ndarray for data input and output, two SuPy post-processors 

pack_state and pack_output are embedded in run_supy to pack the (1) ndarray output of model final states and 

simulation results tointo df_state_final (a pandas DataFrame, https://supy.readthedocs.io/en/latest/data-structure/df_state.html) 

and (2) simulation results to df_output (a pandas DataFrame, https://supy.readthedocs.io/en/latest/data-structure/df_output.html). 

To facilitate reuse of model runs (e.g. for model spinup)  df_state_final is designed to havehas the same data structure as 5 

df_state_init to allow its reuse as the initial conditions for other SuPy simulations (dashed line, SuPy panel Figure  1). 

 

3 Deployment 

To achieve cross-platform compatibility, SuPy has two parts: 

1) SuPy_driver (calculation kernel): the F2PY generated binaries of SUEWS are platform-dependent because of 10 

compilation being necessary for assurance of performance. 

2)1) SuPy (frontend processor): this platform-independent Python code allows rapid iteration in functionality enhancement 

and bug-fixing thanks to the powerful ecosystem of Python utilities.  

 

As software compilation can be frustrating and/or prone to operator errors, this procedure is automated using two online 15 

services: Microsoft Azure Pipeline (https://azure.microsoft.com/en-us/services/devops/pipelines/) for continuous integration 

(CI) and PyPI (https://pypi.org) for distribution. Microsoft Azure Pipeline has good cross-platform support 

(https://docs.microsoft.com/en-gb/azure/devops/pipelines/agents/) and easy connection with code repositories (e.g., GitHub: 

https://github.com, Bitbucket: https://bitbucket.com) and supports automated compilation for different platforms. The Azure 

Pipeline build workflow permits a variety of functionalities to facilitate compilation and publishing to other online services 20 

(e.g., PyPI, GitHub pages, etc.). Currently, this is setupset up for three major platforms (Windows, macOS and Linux) with 

three Python 3 configurations (3.5, 3.6 and 3.7) to conduct automated compilation of SuPy backend files: SUEWS binaries 

and SuPy_driver, the product of which is directly pushed to PyPI and released in real time. 

 

To build the SuPy_driver two crucial steps to allow cross-platform deployment (full details refer to configuration file 25 

setup.py in SuPy_driver) are: 

1) Static linking: to eliminate the issue of missing dynamic libraries the calculation kernels are pre-built using static linking 

and therefore run directly after downloading. 
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2) manylinux tagging: Given the many Linux distributions and their different runtime libraries that often require 

distribution-specific compilation, we use the manylinux docker image (for details refer to 

https://github.com/pypa/manylinux) to compile SuPy_driver. 

In addition to the cross-platform compilation, to guarantee delivery quality we perform automatic code tests of four pre-set 

configurations for every build: 5 

1) Connectivity between SuPy and SuPy_driver: checks if the frontend processor and backend calculation core can 

communicate with correct input and output. 

2) Success in single-timestep mode: checks SuPy can produce correct simulation results in the single-timestep mode. 

3) Success in multi-timestep mode: checks SuPy can produce correct simulation results in the multi-timestep mode and does 

a quick benchmark of computation speed. 10 

4) Compare simulation results between single- and multi-timesteps modes: checks SuPy can produce identical simulation 

results as designed. 

All build and test output is logged in detail (see all logs here: https://dev.azure.com/sunt05/SuPy/_build) and the results are reported 

to developers in real time. This feature is used for all code and underpins a commitment for timely support to SuPy development. 

The Python Package Index (PyPI: https://pypi.org) is the official third-party software repository for Python. As it is supported 15 

by the pip toolchain it provides Python users easy worldwide access to packages and frees Python developers from maintaining 

indexing and distribution servers. By using the PyPI channel, SuPy can be easily installed by users with a one-line input in 

command line tool on any desktop/server system (Listing 1). 

Listing 1: Command line code for SuPy installation using pip. Note 64 bit Python 3.5+ is required for SuPy installation. 

python3 -m pip install supy -U 20 

4 Demonstration: SuPy Tutorials 

To familiarise users with SuPy urban climate modelling and to demonstrate the functionality of SuPy, we provide three tutorials 

(Table 2, access at: https://supy.readthedocs.io/en/latest/tutorial/tutorial.html) in Jupyter notebooks (https://jupyter.org/). 

Table 2: Three SuPy tutorials. Note the website links are directed to online Jupyter notebooks for SuPy simulation without any 
configuration by users. 25 

Name Aim Audience 

Quickstart of SuPy Essential workflow to conduct SuPy simulations New users, students 

Impact studies using SuPy in 

parallel mode 
Impacts on urban climate from varying surface 

characteristics and forcing conditions 

Urban climate researchers with 

experience in land surface simulations 
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Interaction between SuPy 

and external models 
Couple SuPy and external models for agile 

development 

Model developers with background in 

climate modelling 

They can run in browsers (e.g. desktop, mobiletablet) either by easy local configuration or on remote servers with pre-set 

environments (e.g., Google Colaboratory: https://colab.research.google.com, Microsoft Azure Notebooks: 

https://notebooks.azure.com). As Jupyter notebooks allow source code to be incorporated with detailed notes, users can organise 

their analyses (Shen, 2014). Jupyter notebooks can be installed with pip on any desktop/server system and open .ipynb 

notebook files locally (Listing 2). We note running SuPy in browsers is NOT implemented by SuPy per se but allowed by the 5 

Jupyter environment where python 3 is supported. The reason for running SuPy (and many other python applications) on 

mobile devices (e.g., cell phone, tablet) is simple: working seamlessly across different devices is a natural need. 

 
Listing 2: Command line code for installing Jupyter notebook with pip and open an existing local .ipynb notebook file 
(i.e.,path_to_your_notebook) 10 

python3 -m pip install jupyter -U 

jupyter-notebook path_to_your_notebook 

These are made available to SUEWS by calling the load_SampleData function. This produces pandas DataFrames with the 

initial model state (df_state_init) and the forcing variables (df_forcing). These are used in all the three tutorials. 
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Figure 2: Intra-annual (2012) variation of forcing variables in the sample dataset (from top to bottom): incoming solar radiation, 
air temperature, relative humidity, air pressure, rainfall and wind speed in central London All variables are hourly averages except 
for total hourly rainfall (source of data: Kotthaus and Grimmond (2014), gap filled: Ward et al. (2016)). 

Table 3: Default settings in the sample dataset provided with SuPy for a) physics scheme and b) basic site characteristics. Full SuPy 5 
variable setting details refer to online documentation: https://supy.readthedocs.io/en/latest/data-structure/df_state.html 

a) Basic site characteristics SuPy variable (unit) Value 
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Land cover fractions for surfaces: building, 

paved, evergreen tree, deciduous tree, grass, 

bare soil and water 

sfr (-) [0.43,  
0.38, 0.001, 0.019, 0.029, 
0.001, 0.14] 

Building height bldgh (m) 22.0 

Evergreen tree height evetreeh (m) 13.1 

Deciduous tree height dectreeh (m) 13.1 

 

b) Physics scheme SuPy variable Code Remark 

Radiation radiationmethod 3 Net all-wave radiation modelled with incoming longwave 

radiation modelled using air temperature and relative humidity 

(Loridan et al., 2011) 

Heat storage storageheatmethod 1 OHM model (Grimmond et al., 1991) 

Anthropogenic heat emissionsmethod 2 Anthropogenic heat model responding to temperature, 

population density, time of day and day of week (Järvi et al., 

2011) 

Snow snowuse 1 Snow module to model snowpack and related thermal and 

hydrological dynamics (Järvi et al., 2014) 

Roughness length for 

momentum 

roughlenmommethod 2 Momentum roughness length determined using Grimmond and 

Oke (1999) 

Roughness length for 

heat 

roughlenheatmethod 2 Thermal roughness length determined using Kawai et al. 

(2009) 

Atmospheric stability stabilitymethod 3 Atmospheric stability correction function (Campbell and 

Norman, 1998) 

4.1 SuPy Quickstart 

In this tutorial, we demonstrate the key steps in using SuPy to undertake the core task to simulate energy and water balance in 

an urban context using SUEWS. Here the runs are for a central London area in 2012. 

The urban surface energy balance (SEB) can be expressed as: 5 

𝑄∗ + 𝑄G = 𝑄+ + 𝑄B + 𝛥𝑄I  (1) 

where the flux densities (W m-2) are 𝑄∗ net all-wave radiation, 𝑄G anthropogenic heat, 𝑄+ turbulent sensible heat, 𝑄B latent 

heat, and Δ𝑄I the net storage heat flux. Through 𝑄B, the SEB characteristics can be linked to the water balance: 

𝑃 + 𝐼 = 𝐸 + 𝑅 + 𝛥𝑆  (2) 
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where each term is a depth of water per unit of time (e.g. mm d-1). 𝑃 is precipitation, 𝐼 irrigation, 𝐸 evapotranspiration (=

𝑄B/𝐿C where 𝐿C is the latent heat of vaporisation), 𝑅 runoff, and Δ𝑆 the net change in water storage. 

 

The fundamental steps to use SuPy after the software environment has been installed (see Listing 1, 2) are: (1) load input, (2) 

run a simulation and (3) examine the results. With everything ready, three lines of python code are needed. 5 

Listing 3: Python code for a minimal example of SuPy simulation with comments (green) 

# import supy package 

import supy as sp 

# import sample data 

df_state_init, df_forcing = sp.load_SampleData() 10 

# run supy simulation 

df_output, df_state_final = sp.run_supy(df_forcing, df_state_init) 

SuPy is run by calling run_supy after df_state_init and df_forcing have been loaded. After the simulation the two 

DataFrames provide major SUEWS outputs (df_output) and the model state (df_state_final) at the end of the run. The 

latter can be used as initial conditions for other SuPy runs. 15 

The post-processing uses pandas functions to resample, plot and write out the model output. The default output DataFrame of 

5 min resolution can be upscaled to the month for an overview of intra-annual dynamics of surface energy and water balances 

(Figure 3). 
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Figure 3: SuPy simulated monthly (top) surface energy and (bottom) water balance for London 2012. Assuming no irrigation. 

This workflow using SuPy for urban climate modelling can be easily adapted to existing SUEWS tutorials under the UMEP 

framework (https://tutorial-docs.readthedocs.io) by replacing the conventional SUEWS binary executable with the python SuPy 

package. Given the central role of Python in the UMEP framework, it is expected the adoption of SuPy will further streamline 5 

the workflows for urban climate simulations in UMEP. 

4.2 Impacts of the urban area on urbanlocal climate 

A major application of urban climate models is to study the impacts on urban climate from design scenarios that change surface 

characteristics or the climate (atmospheric forcing). In this tutorial both scenario types are explored: we provide one example 

of modification of albedo for surface characteristics, while another of air temperature alteration for climate conditions. 10 

Technically, this requires several configuration files to be prepared for a suite of independent model runs. These could be run 

consecutively (i.e. no interactions between runs are needed) or in parallel, so-called “embarrassingly parallel computation” 

(Bailey et al., 1991), with multiple independent runs with sufficient CPUs. In this tutorial, we first demonstrate how SuPy can 

be easily setup to efficiently complete multiple simulations in parallel. 
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We use dask (https://dask.org) to parallelise the SuPy simulations given its close coherence with numpy and pandas, in 

particular its almost identical DataFrame interfaces as pandas. Specifically, we use the apply method of dask.DataFrame to 

improve the simulation performance by distributing the SuPy computations across different configurations. Compared with 

the serial mode, the dask-based parallel mode takes only ~30% of the execution time of the serial mode for simulations longer 

than 1000 days for 12 grids (Figure 4). The parallel configuration for running SuPy, run_supy_mgrids, is then used in the 5 

following two cases for more efficient parallel simulations. 

 
Figure 4: Comparison of execution times (s) between serial and parallel modes when 12 grids are simulated for different periods 
(days): 30, 90, 120, 150, 180, 270, 365, 730 and 1095. Simulations performed with macOS 10.14.3 running on 2.9 GHz Intel Core i9 
with 32 GB memory. The model configuration is the same as Tutorial 1 (Table 2). 10 

To explore the effect of changes to surface properties, the DataFrame df_state_init needs to be modified. The surface 

albedo of different materials impacts the outgoing shortwave (solar) radiation and thus the surface energy balance fluxes and 

other atmospheric variables. Modifying roof albedo has been suggested extensively as a method to cool urban areas (e.g., 

Santamouris et al., 2011; Li et al., 2014; Ramamurthy et al., 2015). In the example, we conduct simulations from January 2012 

to July 2012 with the first 6 months as the spin-up period. The building roof albedo is incrementally increased from 0.1 to 0.8 15 

(e.g. a change from a very dark to a very light surface). The near surface temperature 𝑇", an indicator of thermal state at 

pedestrian level, are analysed using the monthly maximum, mean and minimum (Figure 5). It would be expected that the 

maximum and mean values of 𝑇" are greatly reduced as they are directly influenced by the altered net solar radiation while 

impacts on the minimum 𝑇" might be expected to be minimal.  
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In this tutorial we demonstrate some starting cases rather than a complete research cycle. Notably, limitations are imposed in 

the configuration used (e.g. length of the model run, spin-up period, feedbacks permitted) and thus the relations shown should 

be interpreted with caution.  

 
Figure 5: Impacts of increasing building roof albedo 𝜶 (from 0.1) on near surface temperature 𝑻𝟐 considering monthly maximum, 5 
mean and minimum temperatures at 2 m for July 2012 based on 5 min output. 

To explore changes in atmospheric forcing, the DataFrame df_forcing is modified. In this example, we investigate the 

impact of increased local-scale (constant flux layer) air temperature 𝑇X on the near surface air temperature 𝑇". Air temperature 

𝑇X is increased over 24 runs from 0 (no change) to +2	∘C. The upper limit ( +2	∘C) represents a highly possible average global 

warming scenario for the near future (IPCC, 2014). The SuPy simulations are conducted January to July 2012 and July data 10 

analysed. The 𝑇" results indicate the increased 𝑇X has different impacts on the 𝑇" metrics (minimum, mean and maximum) but 

all increase linearly with 𝑇X. The maximum 𝑇" has the stronger response compared to the other metrics (Figure 6).  

 

This tutorial demonstrates the simplicity of using SuPy to conduct impact studies of both surface characteristics and 

background climates. These can be easily adapted by users to their specific application interests. Thus, as various effects are 15 

combined the net impacts becomes more realistic. 
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Figure 6: Impacts of increasing background (constant flux layer) air temperature 𝑻𝒂 on near surface maximum, mean and minimum 
(same methods as Figure 5) temperatures at 2 m 𝑻𝟐.	Albedo is 0.1 and land cover characteristics are as Table 2b. Note in this example 
only one variable is modified. 

4.3 Interaction between SuPy and external models 5 

SUEWS can be coupled to other models that provide or require forcing data using the SuPy single timestep running mode 

(Section 2). We demonstrate this feature with a simple online anthropogenic heat flux model. 

Anthropogenic heat flux (𝑄G) is an additional term to the surface energy balance in urban areas associated with human activities 

(Gabey et al., 2018; Grimmond, 1992; Nie et al., 2014, 2016; Sailor, 2011). In most cities, the largest emission source is from 

buildings (Hamilton et al., 2009; Iamarino et al., 2011; Sailor, 2011) and is highly dependent on outdoor ambient air 10 

temperature. For demonstration purposes we have created a very simple model instead of using the SUEWS 𝑄G (Järvi et al., 

2011) with feedback from outdoor air temperature (Figure 7). The simple 𝑄G  model considers only building heating and 

cooling: 

𝑄G = ]
(𝑇" − 𝑇 ) × 𝐶`, 𝑇" > 𝑇
(𝑇+ − 𝑇") × 𝐻`, 𝑇" < 𝑇+

𝑄G&
,  (3) 

where 𝑇  (𝑇+) is the cooling (heating) threshold temperature of buildings, 𝐶` (𝐻`) is the building cooling (heating) rate, and 15 

𝑄G& is the baseline anthropogenic heat. The parameters used are: 𝑇  (𝑇+) set as 20	∘C (10	∘C), 𝐶` (𝐻`) set as 1.5	W	mj"	Kj% 
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(3	W	mj"	Kj%) and 𝑄G& is set as 0	W	mj", implying other building activities (e.g. lightning, water heating, computers) are 

zero and therefore do not change the temperature or change with temperature. 

 
Figure 7: A simple anthropogenic heat flux (𝑸𝑭) model as a linear function of air temperature 𝑻𝟐. 

The coupling between the simple 𝑄G model and SuPy is done via the low-level function suews_cal_tstep, which is an 5 

interface function in charge of communications between SuPy frontend and the calculation kernel. By setting SuPy to receive 

external 𝑄G as forcing, at each timestep, the simple 𝑄G model is driven by the SuPy output 𝑇" and provides SuPy with 𝑄G, 

which thus forms a two-way coupled loop. 

Here we replace the SUEWS 𝑄G (Table 2) with the simpler 𝑄G model (Figure 7, Equation 3) to explore the question of the 

impact of 𝑄G  on 𝑇" and its feedback on 𝑄G . The simulation using SuPy coupled is performed for London 2012. The data 10 

analysed are a summer (July) and a winter (December) month. Initially, 𝑄G  is 0	W	mj" the 𝑇" is determined and used to 

determine 𝑄G[%] which in turn modifies 𝑇"[%] and therefore modifies 𝑄G["] and the diagnosed 𝑇"["]. Results indicate a positive 

feedback, as 𝑄G is increases 𝑇" is elevated but with different magnitudes (Figure 8). Of particular note is the positive feedback 

loop under warm air temperatures: the anthropogenic heat emissions increase which in turn elevates the outdoor air temperature 

causing yet more anthropogenic heat release (Figure 8). Note that London is relatively cool (cf. air temperature in Figure 2) so 15 

the enhancement is much less than it would be in warmer cities. 
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In this case the anthropogenic heat flux model is simple, but a more complex model could be coupled to SUEWS in the same 

way. This can facilitate development of climate services tools that are both agile and responsive. 

 
Figure 8: Impacts of 𝑸𝑭 produced by an external simple anthropogenic heat model on the near surface air temperature 𝑻𝟐 for two 
months: summer (July 2012, orange) and winter (December 2012, blue). Linear regression lines (dashed lines) show the overall 5 
seasonal trends. 𝜟𝑸𝑭 = 𝑸𝑭[𝟐] − 𝑸𝑭[𝟏] see text for definitions and the corresponding temperatures 𝜟𝑻𝟐 = 𝑻𝟐[𝟐] − 𝑻𝟐[𝟏]. 

5 Concluding remarks 

The development and delivery of a Python-enhanced urban climate model SuPy is introduced, with tutorials (Table 2) to 

demonstrate typical applications and some new SUEWS features (e.g., surface diagnostics calculation). The Python code and 

tutorials are freely and openly available online (see Appendix B). Users are encouraged to explore more intriguing urban 10 

climate related questions with the enhanced functionalitiesSuPy. Notable features of SuPy (e.g., flexible configurations, fine 

control of simulations, etc.).include: 

1) version consistency via PyPI: SuPy is distributed via the well managed Python package repository PyPI with all history 

versions stored. This allows for clear version consistency for reproducing simulation results. 

2) simplicity in input/output sharing: SuPy uses pandas DataFrame as its core data structure and thus draws on a powerful 15 

data analysis toolchain, which can facilitate the ease with which urban climate research outcomes can be communicated. 



19 
 

3) ease of scientific development: Given the importance of meteorological forcing data in running climate simulations, 

SuPy will shortly be equipped with the ability to retrieve forcing variables from global reanalysis datasets. We anticipate 

data analyses and model development will be added more conveniently within the Python data ecosystem. 

4) an open source tool: We welcome all kinds of contributions, for example, incorporation of new feature (pull requests), 

submission of issues, development of new tutorials. 5 

In addition to the SuPy in data analysis and communication features, the computation kernel is SUEWS, so all physics schemes 

development will remain in the Fortran stack for computational performance and compatibility with a large cohort of scientific 

code. In one application software, UMEP (Lindberg et al. 2018) written in Python, the SUEWS binary executable will shortly 

be updated to SuPy for better connectivity to other UMEP components. 

We expect SuPy will help guide future development of SUEWS (and similar urban climate models) and enable new 10 

applications of the model. For example, the parallel set up of SuPy will allow large scale simulations of urban climate across 

larger domains with greater surface heterogeneity. Moreover, the improvement in SUEWS model structure and deployment 

process introduced by the development of SuPy paved the way to a more robust workflow of SUEWS for its sustainable 

success. 

Appendix A: SuPy functions 15 

The utility of the six SuPy functions are: 

• init_supy: Initialise SuPy by loading initial model states. 

• load_forcing_grid: Load forcing data for a specific grid included in the index of df_state_init. 

• run_supy: Perform SuPy simulation. 

• save_supy: Save SuPy run results to files 20 

• load_SampleData: Load sample data for quickly starting a demo run. 

• show_version: print supy and supy_driver version information. 

For detailed usage of the included functions see: https://supy.readthedocs.io/en/latest/api.html#top-level-functions. 

Appendix B: SuPy model source code and documentation 

Code repository 25 

• Name: GitHub 

• Identifier: https://github.com/sunt05/SuPy 
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• License: GNU GPL v3.0 

• Date published: 10 February 2019 

Versioned documentation 

-• Name: ReadTheDocs 

-• Identifier: https://supy.readthedocs.io 5 

-• License: GNU GPL v3.0 

-• Date published: 10 February 2019 

Code availability 

Appendix B describes the locations and license information for the SuPy source code and documentation. The source code of 

calculation kernel SUEWS is available upon request from SG (c.s.grimmond@reading.ac.uk). 10 
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