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Abstract. Here we present a Generalised Impulse Response (GIR) model for use in probabilistic future climate and sce-

nario exploration, integrated assessment, policy analysis and teaching. This model is based on a set of only six equations,

which correspond to the standard Impulse Response model used for greenhouse gas metric calculations by the IPCC, plus one

physically-motivated additional equation to represent state-dependent feedbacks on the response timescales of each greenhouse

gas cycle. These six equations are simple and transparent enough to be easily understood and implemented in other models5

without reliance on the original source code, but flexible enough to reproduce observed well-mixed greenhouse gas (GHG)

concentrations and atmospheric lifetimes, best-estimate effective radiative forcing, and temperature response. We describe the

assumptions and methods used in selecting the default parameters, but emphasize that other methods would be equally valid:

our focus here is on identifying a minimum level of structural complexity. The tunable nature of the model lends it to use as

a fully transparent emulator of complex Earth System Models, such as those participating in CMIP6, while also reproducing10

the behaviour of other simple climate models. We argue that this GIR model is adequate to reproduce the global temperature

response to global emissions and effective radiative forcing, and that it should be used as a lowest-common denominator to

provide consistency and continuity between different climate assessments. The model design is such that it can be written in

tabular data analysis software, such as Excel, increasing the potential user base considerably.

1 Introduction

Earth System Models (ESMs) are vital tools for providing insight into the drivers behind Earth’s climate system, as well as

projecting impacts of future emissions. Large scale multi-model studies, such as the Coupled Model Intercomparison Projects

(CMIPs), have been used in many reports to produce projections of what the future climate may look like based on a range of
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different emissions scenarios and associated socio-economic narratives quantified by Integrated Assessment Models (IAMs).20

In addition to simulating both the past and possible future climates, these CMIPs extensively use theoretical experiments to try

to constrain some of the key properties of the climate system, such as the equilibrium climate sensitivity [ECS, Collins et al.

(2013)], or the transient climate response to cumulative carbon emissions [TCRE, Allen et al. (2009)].

While ESMs are integral to our current best understanding of the how the climate system responds to GHG emissions, and25

provide the current best predictions for what a future world might look like, they are so computationally expensive that we

are only able to run a limited set of experiments during a CMIP. This constraint on the quantity of experiments and scenar-

ios able to be simulated necessitates the use of simpler emulators to provide probabilistic assessments and explore additional

experiments and scenarios. These emulators are often referred to as simple climate models (SCMs). In general, they are able

to simulate the globally averaged emission → concentration → radiative forcing → temperature response pathway, and can30

be tuned to emulate an individual ESM (or multi-model-mean). In terms of complexity, SCMs are considerably lighter than

ESMs, both in terms of the runtime (most SCMs can run tens of thousands of years of simulation per minute on an “average”

personal computer, whereas ESMs may take several hours to run a single year on hundreds of supercomputer processors), and

the number of lines of code (SCMs tend to be composed on the order of thousands of lines, ESMs can be up to a million lines

(Alexander and Easterbrook, 2015)).35

Several simple climate models are available, such as the two used in the Intergovernmental Panel on Climate Change (IPCC)

Special Report on 1.5°C warming [SR15, IPCC (2018)]: FaIR v1.3 and MAGICC6. However, while these models are “simple"

in comparison to the ESMs they emulate, they are often still not so simple as to allow new users to quickly and easily understand

the equations and processes behind their calculations let alone how to run them. This learning curve behind the use of these40

simple models reduces their usability, and has meant that different research groups tend to use the model they are most familiar

with. This has led to a number of different simple climate models being used in single reports for identical tasks, reducing the

overall consistency of the work and introducing an unnecessary additional level of complexity for non-specialists. We believe

one key step towards a transparent and coherent process in IPCC Assessments would be the use of at least one common SCM

between working groups, allowing results to be directly comparable throughout. Such a model would be a “lowest common45

denominator" model within these reports (likely alongside domain specific models).

An important innovation of the IPCC 5th Assessment Report (Myhre et al., 2013) was the introduction of a fully transpar-

ent set of equations (the AR5-IR model) for use in the calculation of greenhouse gas metrics, but that model was not quite

adequate to reproduce the evolution of the integrated impulse response to emissions over time. The Finite amplitude Impulse50

Response (FaIR) model v1.0 (Millar et al., 2017) generalised the AR5-IR model for non-linearity in the carbon cycle. FaIR

v1.0 uses four equations to model the atmospheric gas cycle and corresponding effective radiative forcing (ERF) impact of

CO2, and a further two (unchanged from the AR5-IRF) to emulate the climate system’s thermal response to changes in ERF.

Subsequently, Smith et al. (2017) added a representation of other greenhouse gases, significantly increasing the structural com-
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plexity of the FaIR model in FaIR v1.3 while Tsutsui (2017) demonstrated that the inclusion of an additional thermal response55

timescale was necessary to reproduce the response to rapid forcing changes such as volcanic eruptions or idealised instanta-

neous CO2-doubling experiments.

Here we show that all of these innovations can be captured in a single set of six equations outlined in figure 1. As such,

we have chosen to call the model GIR, for Generalised Impulse Response. Despite their simplicity, these equations are based60

on parameterisations of physical process such that the model can still be used to assess climate system properties such as the

Equilibrium Climate Sensitivity (ECS) and Transient Climate Response (TCR). We describe the methods behind selecting a

default parameter set and associated uncertainties for the model using some constraints from more complex models and ex-

isting literature, but ultimately chosen to accurately represent historical observations. We demonstrate that this parameter set

can closely replicate inferred properties of the climate system in both historical observations and more complex models. We65

compare GIR’s response with other widely used simple climate models for a subset of the Shared Socioeconomic Pathways,

[SSPs, Riahi et al. (2017)], all using their respective default parameter sets. Previous work (Joos et al., 2013; Tsutsui, 2017)

indicates that the model parameters can be tuned to reproduce the global mean behaviour of ESMs, suggesting that GIR could

act as an emulator for individual CMIP6 ESMs, something we aim to demonstrate when sufficient CMIP6 output is available.

70

GIR is sufficiently simple as to be able to be used in undergraduate and high-school teaching of climate change, and can

illustrate some key properties of the climate system such as the warming impacts of different GHGs, or the implications of un-

certainty in ECS and TCR. To allow students and other users unfamiliar with scientific programming languages (such as GIR’s

native language, Python) access to the model, we also provide a version of GIR written in Excel. We hope that this may open

exploration of the climate system to a large group of potential users who do not have the expertise to run presently-available75

SCMs. The simplicity of GIR additionally means that although we provide model code, users do not need to rely on this,

and would be able to relatively quickly re-create it in whatever language they are familiar with, and whatever format fits their

intended usage. This increases the potential of GIR for use in integrated assessment, as instead of having to adapt existing code

to run within an existing architecture, new code for this model could be written in exactly the format and structure required.
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Figure 1. Schematic showing the full model structure and equations used. Model steps take place from left to right, with thick arrows

indicating the flow of model steps that occur during timestep t, and thin arrows indicating steps that occur in between timesteps t and t+dt.

Equations are described in full below. The dashed grey line indicates the components identical to AR5-IR (Myhre et al., 2013).

2 Gas cycle model80

GIR models the relationship between emissions and atmospheric concentrations of each gas species (the gas cycle) with three

equations:

dRi(t)
dt

= aiE(t)− Ri(t)
ατi

, (1)

C(t) = C0 +
n∑

i=1

Ri(t) and (2)

α(t) = g0 · sinh
(r0 + ruGu(t) + rTT (t) + raGa(t)

g1

)
; (3)85

where g1 =
n∑

i=1

aiτi
[
1−

(
1 +h/τi

)
e−h/τi

]

and g0 =
[
sinh

(∑3
i=0 aiτi[1− e−h/τi ]

g1

)]−1

.

Equations 1 and 2 describe a gas cycle with an atmospheric burden above the pre-industrial concentration, C0, formed of n

pools: each pool corresponds to a different sink from the atmosphere. Each pool, Ri, has an uptake fraction ai and decay
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timescale τi, which is multiplicatively adjusted by a state dependent factor, α. At each timestep, t, α is computed, and then90

the pool concentrations are updated and summed to determine the new atmospheric burden. α provides feedbacks to the gas

lifetimes based on the current timestep’s levels of accumulated emissions (Gu), global temperature (T ), and atmospheric gas

burden (Ga), with sensitivities encapsulated by the r coefficients. The structural form of α, (3), is an analytic approximation

to the numerical solution of the 100-year integrated Impulse Response Function (iIRF100) from equations 7 and 8 in Millar

et al. (2017). We include an additional term not in FaIR v1.0, dependent on Ga, the atmospheric mass burden, motivated by95

the sensitivities of the CH4 and N2O lifetimes to their own abundances as predicted by atmospheric chemistry and simulated

in chemical transport models (CTMs) (Holmes et al., 2013; Prather et al., 2015). g0 and g1 set the value and gradient of our

analytic approximation equal to the numerical solution at α= 1, but are not independent parameters.

We discuss the adequacy of this analytic form in the Supplementary Information and compare it to the numerical solution100

used in FaIR v1.3 (Smith et al., 2017). While we do not include any lifetime feedbacks beyond those described above to avoid

having to specify additional exogenous variables and to maintain independence of the gas species, other feedbacks could the-

oretically be incorporated in the same framework by adding further r coefficients to the model. We would, however, caution

against adding additional complexity unless it can be shown to be necessary to significantly improve the emulation of more

complex models in a policy-relevant application. For example, we have linearised the band-interaction terms in the calculation105

of ERF due to CH4 and N2O: this approximation has some impact under very high concentration scenarios, but not under

ambitious or moderate mitigation scenarios that are the principal focus of policy.

Observationally consistent parameter selection

Here we discuss default parameter choices for the three greenhouse gases (GHGs) that have contributed the most to global

warming since pre-industrial times: carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). The CO2 gas cycle is sim-110

ilar to those in FaIR v1.0 (Millar et al., 2017) and FaIR v1.3 (Smith et al., 2017): a four carbon pool cycle with a decay timescale

dependence onGu and T . The CH4 gas cycle has a single pool, with lifetime state dependencies on T andGa. While in reality,

CH4 has several sinks (tropospheric OH, tropospheric Cl, stratospheric reactions and soil uptake) and a lifetime dependent on

many more variables (Holmes et al., 2013), we find that a single pool and the sensitivities given above are sufficient for repro-

ducing observed emission to concentration pathways. The N2O gas cycle has a single pool and a lifetime dependent only onGa.115

For CO2 we keep values of ai and τi identical to those in FaIR v1.0 and v1.3 (Millar et al., 2017; Smith et al., 2017), origi-

nally from AR5-IR (Myhre et al., 2013). r0, ru and rT are tuned to reproduce present day concentrations – from the CMIP6

historical concentrations dataset, extended to 2017 with up-to-date measurements from NOAA (Meinshausen et al., 2017;

Battle et al., 1996; Butler et al., 1999) – when GIR is spun up from pre-industrial with bottom-up emission estimates from120

the Global Carbon Project (Quéré et al., 2018) and run with a prescribed temperature pathway of attributable warming to the

present day [calculated as described in Haustein et al. (2017) using best-estimate forcings based on Forster et al. (2013) and the

mean of four temperature datasets (Vose et al., 2012; Cowtan and Way, 2014; Lenssen et al., 2019; Morice et al., 2011)] while
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fixing the ratio of ru and rT to the FaIR v1.0 and v1.3 default. Uncertainties in r0, ru and rT are taken from Millar et al. (2017).

125

The CH4 gas cycle only has a single pool, so ai is zero except for i= 1. We set τ1 to the present-day lifetime of 9.15 years

(Holmes et al., 2013). We fit rT and ra to the sensitivities of the CH4 lifetime to tropospheric air temperature, tropospheric

water vapour and CH4 abundance in Holmes et al. (2013) by linearising GIR and the parametric model in Holmes et al. about

2010 values. We find that a global mean temperature dependence is sufficient to reproduce the sensitivities to both tropospheric

air temperature and water vapour mixing ratio due to the close thermodynamic relationship between these quantities. We then130

fit the specified pre-industrial concentration and r0 in an identical model run to the CO2 parameter fitting procedure, but using

bottom-up emission estimates from PRIMAP-histTP (Gütschow et al., 2016). While the parametric model in Holmes et al.

includes lifetime sensitivities to eight other atmospheric variables such as anthropogenic NOx emissions, many of these have

a small effect and all are scenario-dependent, requiring additional exogenous variables to be specified. Since we wish each gas

cycle model to be independent we do not include any more state dependencies in addition to those described above. Uncer-135

tainties in τ1, rT and ra are derived from the uncertainties given in Holmes et al. (2013). We recommend that when using a

Transient Climate Response (TCR) thermal parameter value that differs from the central estimate of 1.58K, both the CO2 and

CH4 rT parameter values be scaled to match the ratio of the chosen TCR to the central estimate.

The N2O gas cycle only has a single pool, so ai is zero except for i= 1. We set τ1 to the present-day lifetime of 116 years140

(Prather et al., 2015). We fit ra to the sensitivity of the N2O lifetime to its own burden found in Prather et al. (2015) by lin-

earising GIR and the parametric model in Prather et al. about 2010 values. We then fit the specified pre-industrial concentration

and r0 as for CH4. All other variables that affect the N2O lifetime in Prather et al. are discarded to keep the gas cycle model

independent as with CH4. Uncertainties in τ1 and ra are derived from the uncertainties given in Prather et al. (2015).

145

The resulting tuned default parameters are given below, alongside their values in FaIR v1.0 and v1.3. Note that FaIR v1.3

has effective parameter values of ru, rT , ra = 0 and a value of r0 set such that α= 1, and that FaIR v1.0 does not include CH4

or N2O. We emphasize that many choices have been made in selecting these parameters and different choices would lead to

potentially quite different parameter values. One example of this is given in parentheses, in which we fit the CH4 r0 parameter

by tuning inverse emissions from GIR to the best-estimate top-down anthropogenic emission estimate in the recent Global150

Methane Budget (Saunois et al., 2019), while setting the pre-industrial concentration to the 1500-1800 mean of 720 ppb from

Meinshausen et al. (2017). Since Saunois et al. (2019) represents the most up-to-date assessments of global methane emissions,

we choose this CH4 r0 and C0 tuning as the default in GIR.

Specification of natural emissions

One key difference between GIR and FaIR v1.3 is the treatment of natural emissions of CH4 and N2O. FaIR v1.3 requires155

a quantity of natural emissions to be specified for these gases. Figure 2 in Smith et al. (2017) illustrates the time-dependent

pathway of natural emissions required to reproduce the historical Representative Concentration Pathway (RCP) concentrations

6
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Table 1. Default parameter values for the gas cycle components in different versions of FaIR. Where relevant, uncertainties for GIR are

included as the 1-σ range and are assumed to be normally distributed.

Parameter GIR FaIR v1.3 FaIR v1.0

CO2 CH4 N2O CO2 CH4 N2O CO2 CH4 N2O

a1 0.2173 1 1 0.2173 1 1 0.2173 - -

a2 0.2240 0 0 0.2240 0 0 0.2240 - -

a3 0.2824 0 0 0.2824 0 0 0.2824 - -

a4 0.2763 0 0 0.2763 0 0 0.2763 - -

τ1 1000000 9.15± 10% 116± 8% 1000000 9.3 121 1000000 - -

τ2 394.4 - - 394.4 - - 394.4 - -

τ3 36.54 - - 36.54 - - 36.54 - -

τ4 4.304 - - 4.304 - - 4.304 - -

r0 28.63± 8% 9.079 (8.445) 67.84 35.0 - - 32.4 - -

ru 0.01977± 8% 0 0 0.019 - - 0.019 - -

rT 4.334± 8% −0.2872± 15% 0 4.165 - - 4.165 - -

ra 0 0.0003434± 13% −0.0009993± 16% 0 - - 0 - -

C0 278 733.8 (720.0) 271.3 278 722 273 278 - -

E2C 0.4690 0.3517 0.2010 0.4690 0.3517 0.2010 0.4690 - -

when the corresponding emission timeseries (Meinshausen et al., 2011b) are run through FaIR v1.3. These natural emission

timeseries vary significantly over the recent past: CH4 drops from 209Tg in 1765 to 139Tg in 1900 then rises to 191Tg in 2005,

at which it is fixed thereafter; and N2O remains relatively constant around 11Tg before dropping sharply to 9Tg around 1950;160

it is fixed at 8.99Tg beyond 2005. Another widely used simple climate model, MAGICC (Meinshausen et al., 2011a), does

not do this explicitly, but is almost always run concentration driven until the present-day (an essentially identical procedure).

This is required since the RCP database emission series were created in parallel to the concentration pathways used in CMIP5

using Integrated Assessment Models (Moss et al., 2010), resulting in inconsistent emission and concentration data. There is

little evidence for the high interdecadal trends of these natural emission pathways: Arora et al. (2018) finds the total change165

in natural CH4 fluxes within CLASS-CTEM between the 1850s and 2000-2008 is +17Tg, and other studies assume that there

have been no significant changes (Holmes et al., 2013; Prather et al., 2012). Due to the uncertainties associated with natural

emissions of CH4 and N2O (Turner et al., 2019; Davidson and Kanter, 2014), we have chosen to effectively fix our natural

emissions by specifying a pre-industrial concentration over which anthropogenic emissions sources increase the atmospheric

concentration burden, identical to the CO2 gas cycle in all FaIR versions, and tune our gas cycle parameters to bottom-up170

anthropogenic emissions (Gütschow et al., 2016; Quéré et al., 2018) and observed concentrations (Meinshausen et al., 2017).

For comparison with FaIR v1.3, Figure 2 in the Supplementary Information shows the residual emissions required to reproduce
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the RCP historical concentrations in GIR and the historical RCP emissions dataset. This is closely related to Figure 2 in Smith

et al. (2017), indicating that while GIR and FaIR v1.3 take different approaches to natural emissions, the gas cycle models used

by each are similar.175

We demonstrate below that we are able to reproduce observed historical concentrations from emissions without the need for

specifying unphysical time-varying natural emissions. This avoids possible discontinuities at the present day caused by rapidly

changing natural emissions or switching from concentration-driven to emission-driven modes of running SCMs. Avoiding

such discontinuities is particularly important for the analysis of ambitious mitigation scenarios, where the present-day state180

and trajectory of the climate system are key (Leach et al., 2018).

Emission-driven historical simulations

Here we run GIR with bottom-up emissions timeseries from the Global Carbon Project for CO2 (Quéré et al., 2018) and

PRIMAP-histTP (Gütschow et al., 2016) for CH4 and N2O. All other forcings are best-estimates from Forster et al. (2013).

Figure 2 shows the gas concentrations as simulated in GIR with default parameters and uncertainties as described in both185

the gas cycle and thermal response parameters, plotted alongside observed concentrations from the CMIP6 historical dataset

(Meinshausen et al., 2017). Inset axes show the driving emission series used. We see that in general, GIR does well at matching

the observed values, with the largest difference occurring for pre-1950 concentrations of N2O. However, rather than this

being a fundamental issue with the model, it is clear that the emission timeseries used is not compatible with the observed

concentrations, as while concentration observations start increasing pre-1900, emissions only begin to increase around 1940.190

This discrepancy has occurred in other N2O modelling studies using different methods and data sources (Saikawa et al., 2014).

This is an issue of ongoing research (Tian et al., 2018), and it is possible that future work may provide a firm explanation

for this discrepancy, allowing us to adjust GIR parameters accordingly. Crucially, the model does match the trend in observed

concentrations over the recent period, where we would expect the emission estimates to be most accurate. We find that the pre-

industrial lifetimes of CH4 and N2O are 9.05±0.4 and 119.9±0.2 years; pre-industrial natural emissions are 230±15TgCH4195

and 11.3±0.2TgN2O-N2; and present-day (2016) lifetimes are 10.1±0.9 and 118.5±0.5 years respectively. These quantities

are within the assessed ranges found in more specific studies (Prather et al., 2012, 2015; Holmes et al., 2013; Kirschke et al.,

2013; Davidson and Kanter, 2014; Arora et al., 2018). Note that the CH4 values are calculated using the PRIMAP-hist tuned

CH4 r0 value; if instead we use the value tuned to the Global Methane Budget, the CH4 lifetimes are reduced by roughly 0.8

years.200

Other well-mixed GHGs

While the focus of this study is the three major GHGs, GIR can also be used to simulate gas cycles for 40 other well-mixed

halogenated GHGs found in the CMIP6 historical concentrations (Meinshausen et al., 2017). Figure 3 in the supplementary

information shows GIR inverse emissions from these concentrations and inverse emission estimates from a more complex

atmospheric chemistry model (Cunnold et al., 1994; Rigby et al., 2011, 2014; Engel et al., 2018; Prinn et al., 2018). We note205
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Figure 2. Historical simulations with GIR. Blue solid lines show GIR default concentration response to bottom-up emission data, and light

blue plume shows 5-95% range. Dotted red lines show concentrations from Meinshausen et al.. Inset axes show corresponding bottom-up

emission data, alongside decadal mean GIR inverse emissions diagnosed from Meinshausen et al. concentrations.

that for several gases – HFC-32, HFC-227ea, HFC-245fa, HFC-43-10-mee and C6F14 – GIR deviates significantly from the

RCP database emissions. However, given the disagreement between observationally based estimates (Vollmer et al., 2011; Ivy

et al., 2012; O’doherty et al., 2014) and the RCP emissions we do not regard this as being particularly problematic.

3 Concentrations to effective radiative forcing

GIR uses a simple formula to relate atmospheric gas concentrations to effective radiative forcing. This equation, below, includes210

logarithmic, square-root, and linear terms; motivated by the concentration-forcing relationships in Myhre et al. (2013) of CO2,

CH4 and N2O, and all other well-mixed GHGs respectively; however we allow each gas to be a more complex fit containing

elements of each function if required. Fext is the sum of all forcings requiring to be specified exogenously. We suggest these

may include natural forcing agents, aerosols (if the parameterisation below is not used), forcing due to albedo changes, and

forcing due to contrails.215

F (t) =
agents∑{

f1 · ln
[C(t)
C0

]
+ f2 · [C(t)−C0] + f3 · [

√
C(t)−

√
C0]

}
+Fext, (4)

where the f coefficients are specified parameters, C(t) is the concentration at time t and C0 is the pre-industrial concentration

of the gas species.

Selecting parameters based on Etminan et al. (2016)

GIR is tuned by default to match the concentration-forcing relationships in Etminan et al. (2016). To maintain independence220

of the gases, in line with our core aim of simplicity, no interaction terms between gases are included. We first fit (by ordinary
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Figure 3. Comparison of the effective radiative forcings calculated in GIR versus the simple formulae derived from spectral measurements

given in Etminan et al. (2016).

least-squares regression) the most physically relevant f coefficient (logarithmic for CO2 and square root for N2O and CH4)

to the Oslo line-by-line (OLBL) data from Etminan et al. (2016) Table S1, for each gas selecting data where the other two

gases are at their present day concentrations and excluding data in which the gas is below pre-industrial levels (resulting in

three concentration/forcing data points per gas). This means that interactions between gases are included at their present-day225

levels. We then fit the other two f parameters to the remaining residual. Fitting the most physically relevant parameter before

the others ensures that the resulting fits extrapolate to higher concentrations without issue. Our fit parameters give an effective

radiative forcing under a doubling of CO2, F2×CO2 of 3.84 Wm−2. Figure 3 shows the radiative forcings of CO2, CH4 and

N2O over the RCP database concentrations as computed using our equation in comparison to the simple formulae in Etminan

et al., both with and without interaction terms. We see that our equation very closely resembles the formulae in Etminan et al.,230

only deviating slightly under the very high concentrations in RCP8.5. Figure 4 in the Supplementary Information shows the

percentage error in the GIR equations compared to the simple formulae from Etminan et al.. These errors are less than the ab-

solute error in the line-by-line calculations performed by Etminan et al.. However, we note here that the relatively larger error

in N2O RF calculated for RCP8.5 is due to the very high CH4 concentrations reached, arising from increasing coal production

throughout the 21st century, which has been suggested is unrealistic.235

CH4 concentrations also indirectly affect effective radiative forcing through oxidation to stratospheric water vapour and its

effect on atmospheric ozone (Noël et al., 2018; Owens et al., 1982; Myhre et al., 2013). As well as the default parameters

that do not include these indirect CH4 forcings, we provide an alternative CH4 f2 parameter value including these indirect240

forcings based on Myhre et al. (2013). The default parameters, and alternative CH4 f2 are given below, alongside present-day

(2018) effective (direct) radiative forcings (ERF) and radiative efficiencies (RE) of each gas based on the CMIP6 historical

concentration dataset (Meinshausen et al., 2017) and default GIR pre-industrial concentrations. We note that although the
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Table 2. Default parameter values for the concentration-forcing relationships in GIR. An alternative CH4 f2 parameter value including

indirect forcing effects; and corresponding present day metrics are given in parentheses.

Parameter CO2 CH4 N2O

f1 5.754 0.06174 -0.05441

f2 0.001215 -0.000049 (0.000187) 0.000157

f3 -0.06960 0.03842 0.1062

Present-day ERF (Wm−2) 2.11 0.621 (0.89) 0.181

Present-day RE (Wm−2ppm−1) 0.0136 0.428 (0.664) 2.91

CH4 indirect effect does not account for the full radiative perturbation due to ozone, we can account for the full perturbation

by setting the CH4 f2 parameter to 0.000339, as best-estimate total ozone forcing historically correlates highly with CH4245

concentrations. Hence we can avoid having to model ozone atmospheric chemistry, but still include its impacts on global

climate through CH4 parameterisation.

Aerosol, other well-mixed greenhouse gas and all other forcings

While the main focus of GIR is as a simple emulator to calculate climate impacts of CO2, CH4 and N2O emissions – inluding

other forcings exogenously – the equation set can be adapted to include forcing from aerosol emissions in a similar manner250

to existing simple models. As this is not the main focus of this study, here we outline the other studies from which we derive

our aerosol parameters. Because of their short lifetimes, aerosol emissions are (through setting their lifetime to 1 year and

their emission to concentration conversion factor to 1) converted directly to effective radiative forcings. In the default model

version, linear emission to forcing (f2) parameters for the direct aerosol radiative effect are taken from Aerocom II (Myhre

et al., 2013) for SOx, VOC, NH3, BC, OC and NOx emissions. As in Stevens (2015), effective radiative forcing from aerosol255

cloud interaction is assumed to be a logarithmic function of SOx emissions, which can be incorporated into GIR through setting

the C0 and f1 parameters. By default we use a pre-industrial SOx emission value (analogous to C0 in GIR terminology) of 60

MtSO2 yr−1, and set f1 for SOx such that when CEDS emission data is run through GIR, the AR5 best-estimate aerosol cloud

interaction ERF of -0.45 Wm−2 is returned. All other well-mixed greenhouse gas effective radiative forcings are assumed to

be linear functions of their concentration (f1 and f3 = 0), with f2 values taken as radiative efficiencies from Hodnebrog et al.260

(2013). All other forcings, such as that arising from albedo change or natural forcing changes are required to be inputted by

the user. For a complete list of parameter values, follow the model introduction at https://github.com/njleach/GIR/blob/master/

GIR/GIR_example_notebook.ipynb. To avoid any confusion over the default units required by each species in GIR, we provide

a table listing the default units in the Supplementary Information.
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4 The thermal response model265

The thermal response model is a simple linear step response model (Good et al., 2011). While previous similar models have

tended to use two thermal boxes (or analogously response timescales), in our GIR framework we leave the number of response

timescales in GIR general, such that if more are desired, e.g. for a faster response to volcanoes or pulse experiments as in

Tsutsui (2017), the user may specify how many to use. The two equations modelling the thermal response are below.

dSi(t)
dt

=
qjF (t)−Si(t)

di
(5)270

and T (t) =
N∑

i

Si(t), (6)

where Si represents the temperature anomaly in box iwith response timescale di at time t,F (t) is the effective radiative forcing,

and T (t) is the global mean surface temperature anomaly. As in Millar et al. (2017) and Tsutsui (2017), these equations can

be solved analytically to relate qi and di to the Transient Climate Response (TCR) and Equilibrium Climate Sensitivity (ECS)

(Collins et al., 2013) as follows:275

ECS = F2×CO2 ·
N∑

i

qi (7)

TCR = F2×CO2 ·
N∑

i

{
qi

(
1− di

70

[
1− e−

70
di

])}
. (8)

Selected default parameters

This thermal response model has been previously studied in detail (Geoffroy et al., 2013b, a; Gregory et al., 2015; Smith et al.,

2017), and we therefore rely on existing studies to provide our default thermal response parameter distributions. While the280

2-box response model has been more widely used in previous literature, we recommend that 3-boxes should be used due to the

improvement seen in the emulation of more complex models (Tsutsui, 2017). Examining the 3-box CMIP6 model parameters

from Tsutsui (2019), and ordering the response timescales longest to shortest (1-3), we sample parameters as follows. We use a

gaussian distribution truncated at±2σ for d1, with [µ,σ] = [283,116]; d2, d3 and q3 are correlated and we sample these using a

gaussian copula fit to the CMIP6 model parameters; the remaining two parameters, q1 and q2 are calculated from distributions285

of the TCR and realised warming fraction (TCR:ECS ratio, RWF) using equations 7 and 8. We specify a distribution for the

RWF rather than the ECS since the RWF is shown to be more statistically independent of the TCR compared to the ECS

(Millar et al., 2015). We assume a lognormally distributed TCR with 5-95 percentiles of 1.0 and 2.5 (Collins et al., 2013);

and a normally distributed realised warming fraction (the TCR:ECS ratio, RWF) N [0.58,0.06], based on inferred CMIP6

RWF values (Tsutsui, 2019). The parameter distributions described above are used to generate a range in the thermal response290

throughout this study. While we focus on the use of GIR as a “stochastic” model to provide a range of possible responses

corresponding to likely parameter distributions, the median thermal response parameters are given below.
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Table 3. Median parameter values for the thermal response model in GIR.

Parameter d1 d2 d3 q1 q2 q3 ECS TCR

3-box 283 9.88 0.85 0.328 0.175 0.242 2.85 1.63

2-box 218 4.15 - 0.325 0.392 - 2.73 1.58

Parameter choice and the thermal response of simple models

One point of contention within the recent Special Report on 1.5°C warming (IPCC, 2018) was the difference in apparent

response between the two simple models used in the report: FaIR v1.3 (henceforth FaIR) and MAGICC6 (MAGICC). The295

FaIR thermal response lies significantly below the MAGICC response in the published model outputs from the IAMC scenarios

(Huppmann et al., 2018). Figures 5 and 6 below include the median total forcings and temperature responses in each model for

three Shared Socioeconomic Pathways (Riahi et al., 2017). This shows that while the total forcings derived from emissions by

each model are relatively similar, with FaIR v1.3 simulating a slightly wider inter-scenario range of forcings than MAGICC, the

temperature response in both FaIR v1.3 and GIR is consistently lower than MAGICC, particularly notable for the high emission300

SSP5-Baseline scenario. This difference in response is likely due to the default parameter choice in each model, with MAGICC

response parameters tuned to output from CMIP3 atmosphere and oceanic general circulation models (AOGCMs) and AR4

best estimates of aerosol radiative forcing (Meinshausen et al., 2011a), while the response in FaIR v1.3 (a 2-box variant of the

GIR thermal model) was tuned to constrain modelled response to the observed temperature changes from Cowtan and Way

(2014) (Smith et al., 2017). Another reason for divergent temperature projections is that FaIR used newer AR5 distributions305

for ECS and TCR, which are lower than the posterior distribution from Meinshausen et al. (2009), as well as the less negative

aerosol radiative forcing, resulting in lower temperature projections. Here we emphasize that the models themselves are not

systematically biased either low or high — it is the parameters used, and how these are selected, that determines the model

response. In GIR we have chosen to use the AR5 synthesis values for our thermal response parameters as above, which will

have a lower default response than both MAGICC and the CMIP3, CMIP5 and CMIP6 AOGCM means, but any user can tune310

parameters based on what they aim for GIR to emulate. For example, we also provide GIR parameters (3-box thermal and

CO2 radiative forcing parameters) tuned to a set of CMIP6 models (Tsutsui, 2019). These parameters correspond to a thermal

response range more similar to MAGICC6 than the default as seen below in Figure 6, illustrating that the choice of model

parameters is more important than the choice of model itself (at least for SCMs).

5 Idealised and scenario experiments in GIR315

In this section we run several standard “benchmark” tests that have been carried out by previous simple modelling groups.

These include simple pulse experiments such as in Joos et al. (2013), and comparing simulations of the SSPs (Riahi et al.,

2017) from other simple models used in SR15 (Huppmann et al., 2018; IPCC, 2018) with that from GIR. We also run the
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standard RCP concentrations backwards and the corresponding but not fully compatible due to their parallel development

(Moss et al., 2010) emission scenarios forwards through GIR in the Supplementary Information.320

Idealised Experiments

First, we run a series of standard pulse experiments. GIR is spun up to present-day (2019) with inverse emissions derived from

historical concentrations (Meinshausen et al., 2017), then concentrations of CO2, CH4 and N2O are fixed at 407.9 ppm, 1867

ppb and 330.8 ppb respectively; updating and approximately replicating the experimental protocol of Joos et al. (2013). All

other forcings are fixed at the 2019 value. One run is carried out with no additional emissions, and the other three have an325

emission pulse of 1Tg of one of the gases added in 2019. A 1Tg pulse is used since unlike in the majority of models in Joos

et al. (2013), GIR has no internal variability, so we do not require a pulse as large as 100Pg to obtain sufficient signal; regard-

less, the results obtained are independent of the pulse size over several orders of magnitude (for N2O and CH4 at least until

the equations begin to break down due to, for example, lifetime feedbacks causing unphysical negative lifetimes). We derive

four metrics for each gas: the instantaneous airborne fraction after 100 years (IRF100) – the proportion of gas from the initial330

pulse remaining in the atmosphere; the integrated Impulse Response Function after 100 years (iIRF100) – the integral of the

instantaneous airborne fraction over the 100 years following the initial pulse; the Absolute Global Warming Potential (AGWP)

– the integrated radiative forcing over a specified number of years following the pulse, normalized per kg of gas; the Global

Warming Potential (GWP) after 20 and 100 years – a very widely used metric of the potency of a GHG equal to the AGWP of

the GHG divided by the AGWP of CO2 over the given time period; and the initial pulse-adjustment timescale (IPT) – the time335

between the initial pulse and peak warming. Both CH4 and N2O also contribute indirectly to radiative forcing through their

atmospheric chemistry, hence GWP values are given for direct-only forcings and full forcings, for N2O taking the absolute

differences as calculated in Myhre et al. (2013), and for CH4 using the alternative CH4 f2 parameter including indirect forc-

ings. We find values comparable to the current literature (Joos et al., 2013; Ricke and Caldeira, 2014; Collins et al., 2019). Our

central calculated IPT value for CO2 agrees well with Zickfeld and Herrington (2015); Ricke and Caldeira (2014), however we340

find that while the IPT does increase with the pulse size, it does not to the extent in Zickfeld and Herrington; only by 2 – 5 years

for a pulse of 1000PgC. However, we note that unlike a 2-box thermal model (Ricke and Caldeira, 2014), the 3-box model

does not bound the IPT significantly; we believe that this metric could therefore be used to further constrain the 3-box thermal

parameter distributions in future work. This will require ensemble simulations with ESMs, possibly supported by observed

responses to volcanic eruptions. A related, but distinct metric that may be used to constrain both the 3-box thermal parameters345

and IPT based on ESM ensembles is the initial rate of warming in response to a step change in forcing – the Step Response

Timescale (SRT). This is likely more suitable since the IPT is potentially an unstable definition of the time to peak warming

(since the IPT can be vastly different even if two responses realise nearly all their warming in the same time). It is possible that

a better definition of the IPT would be the time to realise 90% of the peak warming. While most metrics given below do not

change significantly if calculated with a more “real-world” baseline scenario, the iIRF100 and instantaneous airborne fraction350

for CO2 do, thus we also give values for these metrics under an RCP4.5 baseline (the diagnosed inverse emissions that return
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Table 4. Gas metric values from present-day pulse experiments. Uncertainties are provided as 5-95% ranges.

Metric CO2 CH4 N2O

iIRF100 (yr) 49.2 [44.9 , 54.1] 10.8 [9.5 , 12.7] 67.3± 0.15

iIRF100 (yr) – RCP4.5 56.6 [51.3 , 63.1] 10.2 [9.15 , 11.8] 67.5± 0.2

IRF100 (%) 42.2 [38.4 , 46.5] 0.0± 0.0 42.5± 0.25

IRF100 (%) – RCP4.5 52.9 [47.2 , 60.5] 0.0± 0.0 41.9± 0.4

AGWP100 (10−13 W m−2 yr kg−1) 0.852 [0.7799 , 0.914] 16.3 [14.8 , 18.5] 250± 0.5

GWP100 (direct-only) 1.0± 0.0 19.1 [16.8 , 22.3] 294 [274 , 314]

GWP100 (full) 1.0± 0.0 30.2 [25.2 , 35.3] 273 [253 , 293]

AGWP20 (10−13 W m−2 yr kg−1) 0.221 [0.209 , 0.231] 13.8 [13.0 , 14.7] 68.7± 0.0

GWP20 (direct-only) 1.0± 0.0 62.5 [57.7 , 68.5] 312 [297 , 330]

GWP20 (full) 1.0± 0.0 96.7 [87.8 , 106] 291 [276 , 309]

IPT (years) 11.0 [2.0 , >100] 3.5 [2.0 , 6.0] 20.1 [7.1 , 32.0]

the RCP database concentrations when run through GIR).

We also diagnose the Transient Response to Cumulative Carbon Emissions (TCRE) within GIR. This is the emergent linear

relationship between global temperature anomalies and cumulative CO2 emissions, attributed to a balance between the increas-355

ing airborne CO2 fraction as atmospheric concentrations are raised and the approximately logarithmic concentration-forcing

relationship for CO2. Here it is calculated in two ways: once following Smith et al., in which the temperature anomaly at

1000PgC was calculated when RCP8.5 was simulated by FaIR v1.3 (here we carry out this method using RCP4.5, 6 and 8.5,

running GIR with concentrations and diagnosing both inverse CO2 emissions and temperature anomalies). This method allows

both the CO2-only TCRE and effective-TCRE (when all forcing agents are included in the temperature response) to be deter-360

mined. The effective-TCRE is not a strict relationship (unlike the CO2-only TCRE), and depends considerably on the non-CO2

forcing pathway taken. For this reason, the effective-TCRE varies considerably between RCPs. The second method used to di-

agnose the TCRE (CO2-only) follows Gillett et al. (2013), in which we prescribe a 1% per year increase in CO2 concentrations

starting from pre-industrial levels, and determine the ratio of global-mean warming to cumulative CO2 emissions at the point of

CO2 concentration doubling. The results are summarised in table 5 below. The result using the RCP 8.5 scenario is very similar365

to FaIR v1.3, though with a marginally higher median value, and is within the AR5 assessed range (Collins et al., 2013). The

1% experiment result of 1.45 [0.91 , 2.21] K (EgC)−1 is consistent with a recent study (Millar and Friedlingstein, 2018) that

utilised both the historic record and ESMs, though our result lowers the upper end of the TCRE distribution and raises the me-

dian. GIR is consistent with the best-estimate effective TCRE in Millar and Friedlingstein. A third method for calculating the

TCRE is to convert total anthropogenic forcing into CO2-forcing-equivalent emissions (Jenkins et al., 2018), and regress this370

against corresponding attributable wwarming (Haustein et al., 2017). While we have not carried out this calculation here, one
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Table 5. Diagnosed TCRE values in GIR.

Method Result [K (EgC)−1]

Effective-TCRE

RCP8.5 1.91 [1.20 , 2.90]

RCP6 1.76 [1.11 , 2.71]

RCP4.5 1.81 [1.14 , 2.79]

CO2-only TCRE

RCP8.5 1.46 [0.94 , 2.19]

RCP6 1.46 [0.93 , 2.22]

RCP4.5 1.46 [0.93 , 2.22]

1% experiment 1.45 [0.91 , 2.21]

potential application of GIR would be the calculation of CO2-forcing-equivalent emissions (and other diagnosed emissions),

due to the ease of inversion of the gas cycles.

Simulations of the Shared Socioeconomic Pathways

Although we include RCP simulations with GIR in the Supplementary Information to allow comparison with the majority of375

the literature used, they have now been superseded by the SSP scenarios used in SR15 (Riahi et al., 2017; IPCC, 2018). Here

we explore emission-driven simulations of three of the SSPs (each using the assigned integrated assessment model): SSP1-19,

SSP2-45 and SSP5-Baseline. These three pathways span the range of possible future emissions and corresponding climates.

Since the emissions series provided in the IAMC 1.5C database (Huppmann et al., 2018) only begin in 2005, we must har-

monize these to historical series to spin up GIR. We do this by diagnosing historical emissions for CO2, CH4 and N2O from380

the CMIP6 historical concentrations (Meinshausen et al., 2017) between 1750 and 2015 in GIR, then joining these to each

SSP scenario in 2015, multiplying the SSP scenario by a linearly time dependent scaling factor – such that the SSP scenario

emissions are equal to the diagnosed emissions in 2015 – that reaches a value of 1 by 2025. All other SSP forcings are harmo-

nized identically, using best-estimate historical forcings from Forster et al. (2013). While this harmonization procedure may

not exactly match the one used in the database scenarios, present-day CO2 concentrations and total forcing is similar, and this385

should therefore be a representative comparison (though we hope that emissions projections will also publish their historical

estimates in future to avoid the need for re-harmonisation by other users). The GIR simulated concentrations are shown in

figure 4. Concentration data from other SCMs (FaIR v1.3 and MAGICC6) is only publicly available for CO2. We see that GIR

simulates slightly lower CO2 concentrations than the other SCMs, but that they generally lie within GIR 5-95% ranges. The

small N2O spread is due to its long lifetime and single atmospheric sink as modelled in GIR.390

Median radiative forcing for each gas is available for both FaIR v1.3 and MAGICC6 in the IAMC database, so here we may
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Figure 4. CO2, CH4 and N2O concentrations for a range of SSP scenarios. Solid lines show concentrations simulated in GIR from har-

monized emissions data as described above. Dashed lines show CO2 concentrations in FaIR v1.3; and dotted lines show concentrations in

MAGICC6, from Huppmann et al. (2018).

do a more complete comparison between the three SCMs. Figure 5 shows that GIR has very similar CO2 forcing to the other

SCMs over the 21st century, lying between them for SSP5-Baseline and SSP1-19, and slightly below for SSP2-45. The other

two SCMs lie within the GIR 5-95% ranges for all time. The CH4 forcing highlights the difference in the CH4 concentration-

forcing relationship between the models. Both GIR and FaIR v1.3 are based on the more recent study by Etminan et al. (2016),395

which revised present-day CH4 forcing upwards by 25%, while MAGICC6 is based on Myhre et al. (2013). The difference

between GIR and FaIR v1.3 is largely due to the different gas cycles: GIR has an interactive CH4 lifetime with a positive

self-abundance feedback and negative temperature feedback, while FaIR v1.3 keeps the CH4 lifetime constant at 9.3 years

throughout (Smith et al., 2017). GIR displays more similar N2O forcing to MAGICC6, while FaIR v1.3 lies somewhat below.

This discrepancy lies with the N2O gas cycle in FaIR v1.3, since the concentration-forcing relations in FaIR v1.3 and v2.0 are400

extremely similar, and is likely due to its relatively low estimate of natural N2O emissions at the present-day of 9.1 TgN2O-N2

(the value at which future natural emissions are fixed at). This value is taken from Prather et al. (2012), but a constant lifetime of

121 years is used, rather than the present-day lifetime estimate from that study of 131 years. This combination of low lifetime

and natural emission estimate is likely the cause of the lowered future concentrations and corresponding forcing. The evolution

of total forcing in each scenario is highly comparable between the models, with GIR lying marginally above the other two for405

the SSP5-Baseline scenario – due to its higher CH4 forcing – and in between for the two lower emission scenarios.

Finally, we compare the probabilistic temperature anomaly in each model. Figure 6 shows the median and 5-95% temperature

response (min/max for CMIP6 GIR) in default GIR, FaIR v1.3, MAGICC6, and GIR tuned to 22 CMIP6 models (3-timescale

thermal response, parameters following Tsutsui (2019)). Both GIR responses are relative to an anomaly of 0.61K in 1986:2005

(Kirtman et al., 2013), and the FaIR v1.3 and MAGICC6 responses are taken directly from the database (median 2010 anoma-410

lies are 0.93, 0.86, 0.89 and 1.09 in GIR, FaIR v1.3, MAGICC6 and CMIP6 GIR respectively). We see that the default GIR

response is very similar, if marginally higher than the response of FaIR v1.3. Both FaIR v1.3 and GIR under default parameters

have a significantly lower median response than MAGICC6, as well as a lower 5-95% spread for all scenarios. The CMIP6-
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Figure 5. CO2, CH4 and N2O effective radiative forcing for a range of SSP scenarios. Solid lines show ERF simulated in GIR from

harmonized emissions data as described above. Dashed lines show ERF in FaIR v1.3; and dotted lines show concentrations in MAGICC6,

from Huppmann et al. (2018).
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for GIR simulations show distribution of temperatures in 2100.

tuned GIR has a higher median response and lower spread than MAGICC6 for all scenarios, demonstrating the importance of

thermal parameter choice in SCMs, since this is fundamentally the same model as default GIR, but simulates a very different415

response.

6 Use of GIR

We envisage that GIR will primarily be used for similar assessments as are carried out with the current SCMs, such as pro-

viding probabilistic projections of atmospheric concentrations, radiative forcings and temperature anomalies for wide ranges

of scenarios, such as was carried out to provide the SR15 scenario explorer (Huppmann et al., 2018). GIR could also easily be420

coupled to integrated assessment models (IAMs) to explore impacts of climate policy options. One advantage that GIR has over

the other SCMs discussed here, MAGICC6 (which is already used in several IAMs) and FaIR v1.3, is its relative computational

efficiency and simple equation set. Due to its independent treatment of all the gas species and analytic approximations, it can be

parallelised in a programming language designed for array operations (such as Fortran, MATLAB, or the NumPy Python mod-

ule) and hence GIR is extremely quick to run. For example, using its present Python implementation, GIR can compute around425
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2 million years per second for a three gas emission→ concentration→ radiative forcing→ temperature pathway 1. This speed

provides significant advantages when computing large probabilistic ensembles, or when optimizing parameters dependent

on the climate system. An important consideration for users computing probabilistic ensembles will be the memory required

by GIR output, as this is significantly more likely to be the limiting factor on a modern computer, rather than the model runtime.

430

The six simple equations used by GIR also provide advantages for integration into IAMs, as rather than having to integrate

the original SCM code into an existing architecture, the GIR equations set could be written up using a language and format

consistent with the IAM codebase with limited effort. Their simplicity means that GIR can be run in programs for analysis

of tabular data, including (but not limited to) Excel. This opens up climate system exploration to a large group of potential

new users who are familiar with spreadsheets, but not formal scientific programming languages. Finally, their simplicity adds435

considerably to the overall transparency of GIR; if it displays unexpected behaviour, it should be easy to determine where

exactly this behaviour originates and explain it.

We suggest that the speed, simplicity and transparency of GIR lends it to use in undergraduate and high-school education

in addition to scientific research. It can be used to explain (and demonstrate) various aspects of both the carbon (or methane /440

nitrous oxide) cycle and Earth’s thermal response to radiative forcing, and is simple enough to use that students could them-

selves carry out experiments (such as a CO2 doubling) easily without prior experience and only basic computing skills.

GIR can also be used to rapidly investigate differences between ESMs, tuning GIR to emulate different full models and

comparing differences between the tuned parameter sets to identify which aspects of the models differ most, as was done with445

MAGICC in Meinshausen et al. (2011a). While CMIP6 emulation thermal response parameters are already available (Tsutsui,

2019), in order to fully emulate the CMIP6 ensemble, we will need to tune GIR to the gas cycles in individual ESMs as well,

such that the range of carbon cycles responses is simulated. The ability to tune GIR (Tsutsui, 2017; Joos et al., 2013; Millar

et al., 2017) to more complex models also allows estimation of complex model response to a particular scenario or experi-

ment without having to expend computer power to run the model itself; which could allow climate system uncertainties to be450

introduced more fully into integrated assessment studies by emulating the full CMIP6 ensemble within IAMs (providing the

same capability as demonstrated by Meinshausen et al. (2011a) with an even faster model – though this remains to be properly

demonstrated).

455
1on a laptop with 31GB RAM and an Intel(R) Core(TM) i7-8750H@2.2GHz
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7 Conclusions

In this paper we have presented a simple gas-cycle impulse-response model. This represents a significant modification to the

FaIR v1.0 SCM, removing the requirement for a non-linear equation to be numerically solved thanks to an analytic approx-

imation, and adding a term in the state-dependence that depends on the atmospheric mass burden of the gas hence allowing

CH4 and N2O to be modelled by the same equations as CO2. This state-dependence allows important properties of CH4 and460

N2O atmospheric chemistry to be included. Inclusion of these physically justified feedbacks should provide a more accurate

emission-concentration relationship, particularly for scenarios in which feedbacks are significant such as high-emission sce-

narios, than models using a constant lifetime. The default gas-cycle parameters are tuned based on best-estimate observations

of atmospheric concentrations and bottom-up emission estimates (Meinshausen et al., 2017; Gütschow et al., 2016; Saunois

et al., 2019), or are derived from literature (Prather et al., 2015; Holmes et al., 2013; Joos et al., 2013). We use a generalised465

equation to model the concentration-forcing relationships of CO2, CH4 and N2O, demonstrating that with the calculated de-

fault parameters we can reproduce the equations derived from spectral measurements in Etminan et al. (2016). However, as it

significantly simplifies the interpretation of model output for policy, we fix the interaction terms in the Etminan et al. (2016)

equations at the present-day value. This does not affect results significantly except for scenarios with extreme-high emissions

of CH4, such as RCP8.5. The thermal response model is identical to that investigated in many previous studies (Millar et al.,470

2017; Smith et al., 2017; Good et al., 2011; Geoffroy et al., 2013b, a; Tsutsui, 2017), so we do not focus on this component

of GIR. However, we do recommend that users of GIR take care when tuning or selecting the parameters used in the thermal

response component, as this has been a historically contentious issue when comparing the results of different SCMs. As such,

we emphasize that GIR itself (as with most other SCMs) has neither a high nor a low response, since this is dependent entirely

on the parameters chosen. We give default parameters consistent with the assessed quantities of ECS and TCR in AR5 (Myhre475

et al., 2013), but other parameter choices would be equally valid.

We find that we are able to reproduce atmospheric concentrations from bottom-up emission estimates accurately, without

the need for specifying time-dependent natural emissions (which have very high associated uncertainties). Some discrepancies

between observed concentrations and emissions estimates cannot be explained by GIR, most notably pre-1980 N2O concen-480

trations, but this is due to the chosen emission estimate, and future research may reconcile the two. Calculations of standard

gas-cycle model comparison metrics agree well with values from the literature using methods following Joos et al. (2013).

Most notably, we find that the GWP100 of CH4 is increased to 35.9 [31.2 , 42.5], due to compounding increases in both its

lifetime and radiative forcing impact (Etminan et al., 2016; Holmes et al., 2013). We find policy significant differences in the

timing of peak warming following pulses of CO2, CH4 and N2O: a pulse of N2O will cause a peak in attributed warming485

approximately 10 years after a pulse of CO2 of equal size. We find that the GIR gas cycle, combined with AR5 estimates of

ECS and TCR (Myhre et al., 2013) (assuming log-normal distributions), implies a TCRE of 1.45 [0.91 , 2.21] K (EgC)−1, very

similar to previous estimates (Millar and Friedlingstein, 2018). In order to more robustly assess relevant uncertainties in the

carbon cycle, we will need to repeat this experiment with gas cycle parameters which emulate the CMIP6 ESM responses.
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490

A comparison of simulations of selected SSPs within GIR against other widely used SCMs, FaIR v1.3 and MAGICC6, high-

lights differences between the three models. These can almost entirely be explained by parameter selection in each model, and

is caused by differences in the studies or data sources which each model has been tuned to reproduce; such as the concentration-

forcing relationships in MAGICC6 following the simple relations in Myhre et al. (2013) while in FaIR v1.3 and this model they

follow the updated relations in Etminan et al. (2016). Crucially, we demonstrate that differences between the thermal response495

in these models is almost entirely dependent on the parameter selection, demonstrating this using two different parameter sets

within our single model: one tuned to individual GCMs in the CMIP6 ensemble (Tsutsui, 2017), and one using the assessed

range in AR5 (Collins et al., 2013). All three models are contributing to RCMIP Nicholls et al., in which their differences will

be fully explored.

500

There are many potential uses for GIR as a result of its simplicity and transparency. In addition to being used for the same

probabilistic scenario assessment as is carried out by SCMs in reports such as SR15 (IPCC, 2018), it could be very easily

implemented into IAMs; and may provide some improvements in terms of computational efficiency due to its extremely rapid

runtime. We also encourage GIR to be used by policy-makers in order to directly assess whether warming implications are

aligned with the intended outcomes of mitigation policies; since GHG accounting metrics used at present such as GWP do505

not provide accurate results for targets such as Net-Zero CO2 due to the short life of some GHGs (Allen et al., 2018). To aid

this use of GIR, we provide an Excel file containing the model with its default parameter set to give access to GIR for users

unfamiliar with scientific programming languages. This version of the model could also be used to assist teaching of climate

change and climate processes; and could even allow students access to an easy-to-understand model that they could use them-

selves to explore future scenarios and the relative impacts of future emissions of CO2, CH4 and N2O; or the importance of510

climate sensitivity.

We aim to be able to provide gas-cycle parameter sets tuned to each of the CMIP6 ESMs in the near future, such that GIR

is able to be used to emulate the full CMIP6 ensemble and to improve understanding of how these models differ in a single

consistent framework. We hope that such parameter sets may also provide users in other related fields such as climate policy515

who do not have experience with climate models access to a robust emulation of complex climate models with little learning

curve.

Code and data availability. The model and code used to produce the figures is publicly available at https://github.com/njleach/GIR, and will

be cleaned up and release ready prior to acceptance. All data used in this study is publicly available at the relevant cited sources.
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