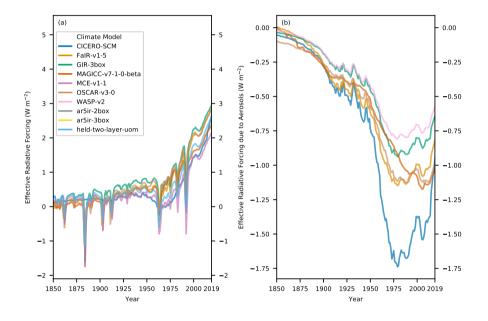
Reduced complexity model intercomparison project phase 1: Protocol, results and initial observations: supplementary information

Zebedee R. J. Nicholls^{1,2}, Malte Meinshausen^{1,2,3}, Jared Lewis¹, Robert Gieseke³, Dietmar Dommenget⁴, Kalyn Dorheim⁵, Chen-Shuo Fan⁴, Jan S. Fuglestvedt⁶, Thomas Gasser⁷, Ulrich Golüke⁸, Philip Goodwin⁹, Elmar Kriegler³, Nicholas J. Leach¹⁰, Davide Marchegiani⁴, Yann Quilcaille⁷, Bjørn H. Samset⁶, Marit Sandstad⁶, Alexey N. Shiklomanov⁵, Ragnhild B. Skeie⁶, Christopher J. Smith¹¹, Katsumasa Tanaka^{12,13}, Junichi Tsutsui¹⁴, and Zhiang Xie⁴

¹Australian–German Climate and Energy College, The University of Melbourne, Parkville, Victoria, Australia
 ²School of Earth Sciences, The University of Melbourne, Parkville, Victoria, Australia
 ³Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, Germany
 ⁴Monash University, School of Earth, Atmosphere and Environment, Clayton, Victoria 3800, Australia
 ⁵Joint Global Change Research Institute, Pacific Northwest National Laboratory, College Park, MD, USA
 ⁶CICERO Center for International Climate Research, Oslo, Norway
 ⁷International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
 ⁸BI Norwegian Business School, Nydalsveien 37, 0484 Oslo, Norway
 ⁹School of Ocean and Earth Science, University of Southampton, Southampton, UK
 ¹⁰Department of Physics, Atmospheric Oceanic and Planetary Physics, University of Oxford, United Kingdom
 ¹¹Priestley International Centre for Climate, University of Leeds, UK
 ¹²National Institute for Environmental Studies (NIES), Tsukuba, Japan
 ¹³Laboratoire des Sciences du Climat et de l'Environnement (LSCE), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Gif sur Yvette, France
 ¹⁴Central Research Institute of Electric Power Industry, Abiko, Japan

Correspondence: Zebedee Nicholls (zebedee.nicholls@climate-energy-college.org)

Model	Development home	License	Approximate release fre- quency	Codebase size (approximate lines of code)	Simulation years per second (ap- proximate for a single core machine)	Language, distribution format and support platforms	Code testing
ACC2	Internal only			50 000	100	GAMS	Manual validation and verification
AR5IR (both variants)	N/A	AGPLv3	N/A	500	5 000	Python 3.7 (https://github. com/openclimatedata/ openscm/blob/ ar5ir-notebooks/notebooks/ ar5ir_rcmip.ipynb)	Manual validation and verification
CICERO-SCM	Internal only			3000			Fortran 90
ESCIMO		GNU GPLv3				Vensim	Manual validation and verification
FalR	GitHub	Apache 2.0	Sub-yearly	3 500	3 500	Python 2.7, 3.5, 3.6, 3.7. Linux, macOS and Win- dows.	Unit tests and con- tinuous integration.
GIR	Github	Creative Commons Attribution 4.0 License		250	200 000	Python 3.6+ (recom- mended), Excel, MatLAB and IDL available upon request. Linux, macOS and Windows.	Manual validation and verification
GREB	GitHub	Creative Commons Attribution 4.0 License	Yearly	1700	_	Fortran 90 (GrADS or Python 3.7 for data pro- cessing)	Fortran 90 code tested by gfor- tran on Mac and ifort on Linux under continuous integration


Table S1. Overview of the technical components of the models participating in RCMIP Phase 1.

Continued.	
e S1.	
Tabl	

Model	Development home	License	Approximate release fre- quency	Codebase size (approximate lines of code)	Simulation years per second (ap- proximate for a single core machine)	Language, distribution format and support platforms	Code testing
Hector		GNU GPLv3				R and Python packages (with C++ backend). Linux, macOS and Windows.	Unit tests and con- tinuous integration
Held et al. two layer model	GitHub	AGPLv3	Yearly	500	5 000	Python 3.7 (https://github. com/openclimatedata/ openscm/blob/ ar5ir-notebooks/notebooks/ held_two_layer_rcmip. ipynb)	Manual validation and verification
MAGICC	Private GitLab repository	Custom Commu- nity non- commercial license	Decadal (internally ap- proximately monthly, moving to ap- proximately annual public releases)	15 000	350	Fortran 90 (Open-source Python wrapper available). Linux, macOS and Win- dows.	Unit tests and con- tinuous integration
MCE	Private GitHub, preparing pub- lic release	n/a	n/a	760 excluding calibration code	500	Python 2.7 and 3.7 on mul- tiple platforms	Comparing results for idealized sce- narios with analyti- cal solutions

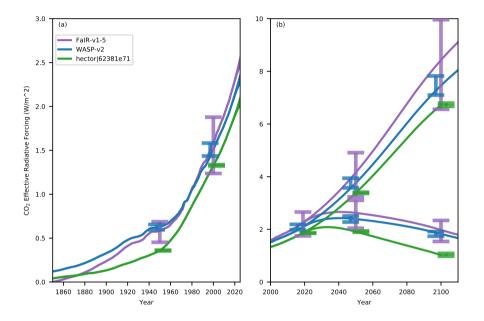
Model	Development	License	Approximate		Simulation	e			distribution Code testing
	home		release fre- quency	(approximate lines of code)	years per second (ap- proximate for	per (ap-	format platforms	and support	
					a single core machine)	core			
OSCAR	Develoment	CeCILL	sub-yearly	5000 excluding			Python 3.7		Manual validation
	internal, with			calibration					and verification
	release on			code					
	GitHub								
	https://github.								
	com/tgasser/								
	OSCAR								
WASP	Internal	Creative			100000		C++ 11		WASP C++ code
		Commons							tested only on GNU
		Attribution							GCC compiler col-
		License							lection

Table S1. Continued.

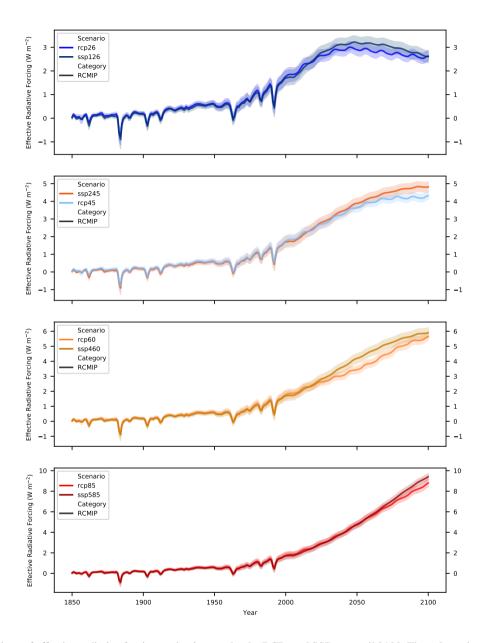
Figure S1. Historical effective radiative forcing for RCMIP models in illustrative configurations. In order to provide timeseries up until 2019, we have used data from the combination of historical and ssp585 simulations. (a) - total effective radiative forcing; (b) - aerosol effective radiative forcing.

Table S2. Emulation scores and equilbrium climate sensitivities (ECSs) for RCMIP model calibrations. In parentheses we show the number of simulations available for each model variant.

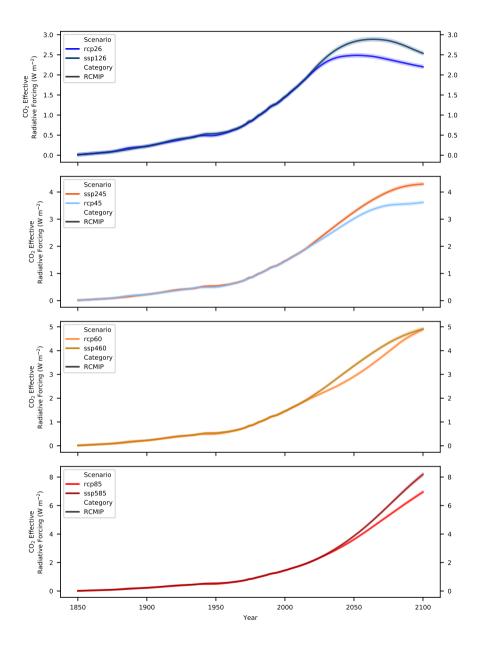
		ECS (K)	RMSE (K)
Target CMIP6 model	RCMIP model		
AWI-CM-1-1-MR_r1i1p1f1 (5)	MAGICC-v7-1-0-beta (5)	3.22	0.16
BCC-CSM2-MR_r1i1p1f1 (6)	MCE-v1-1 (2)	2.90	0.21
	MAGICC-v7-1-0-beta (6)	2.83	0.16
	ar5ir-2box (2)	7.35	0.13
	ar5ir-3box (2)	7.78	0.13
	held-two-layer-uom (2)	2.63	0.13
BCC-ESM1_rli1p1f1 (4)	MCE-v1-1 (2)	2.96	0.12
	MAGICC-v7-1-0-beta (3)	3.13	0.13
	ar5ir-2box (2)	15.30	0.18
	ar5ir-3box (2)	8.06	0.15
	held-two-layer-uom (2)	2.31	0.12
CanESM5_r1i1p1f1 (10)	MCE-v1-1 (2)	5.08	0.13
	hectorl62381e71 (4)	4.79	0.42
	MAGICC-v7-1-0-beta (10)	5.72	0.30
	ar5ir-2box (2)	5.24	0.19
	ar5ir-3box (2)	11.82	0.2
	held-two-layer-uom (2)	3.14	0.30
CanESM5_r1i1p2f1 (7)	MCE-v1-1 (2)	5.08	0.13
	hectorl62381e71 (4)	4.79	0.4.
	MAGICC-v7-1-0-beta (7)	5.64	0.27
CanESM5_r10i1p1f1 (5)	hectorl62381e71 (2)	4.79	0.29
	MAGICC-v7-1-0-beta (5)	6.01	0.1
CESM2-WACCM_r1i1p1f1 (6)	MCE-v1-1 (2)	3.85	0.1:
	hectorl62381e71 (3)	4.17	0.20
	MAGICC-v7-1-0-beta (6)	4.26	0.2
	ar5ir-2box (2)	4.64	0.4
	ar5ir-3box (2)	13.42	0.2
	held-two-layer-uom (2)	2.55	0.13

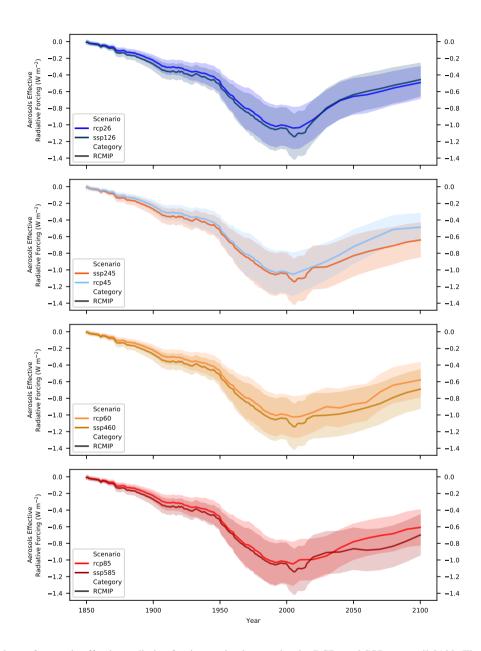

Table S2. Continued.

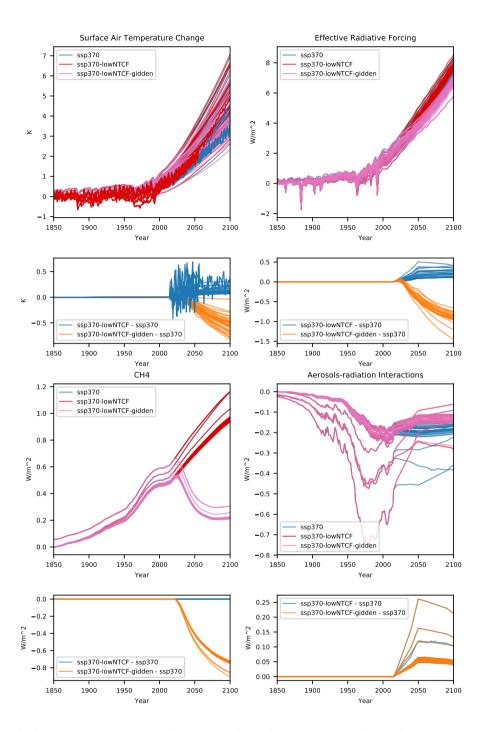
		ECS (K)	RMSE (K
Target CMIP6 model	RCMIP model		
CESM2_rli1p1f1 (6)	MCE-v1-1 (2)	4.20	0.1
	hectorl62381e71 (3)	4.00	0.6
	MAGICC-v7-1-0-beta (6)	5.32	0.2
	ar5ir-2box (2)	5.40	0.2
	ar5ir-3box (2)	8.31	0.2
	held-two-layer-uom (2)	3.63	0.2
CNRM-CM6-1_r1i1p1f2 (8)	MCE-v1-1 (4)	4.06	0.2
	hectorl62381e71 (5)	3.86	0.3
	MAGICC-v7-1-0-beta (8)	4.08	0.1
	ar5ir-2box (4)	8.13	0.4
	ar5ir-3box (4)	9.12	0.4
	held-two-layer-uom (4)	2.91	0.1
CNRM-ESM2-1_r1i1p1f2 (10)	MCE-v1-1 (2)	4.02	0.2
	hectorl62381e71 (4)	3.51	0.2
	MAGICC-v7-1-0-beta (9)	3.71	0.1
	ar5ir-2box (2)	8.22	0.2
	ar5ir-3box (2)	12.18	0.2
	held-two-layer-uom (2)	2.29	0.1
E3SM-1-0_r1i1p1f1 (2)	MCE-v1-1 (2)	5.10	0.1
	MAGICC-v7-1-0-beta (2)	5.69	0.2
EC-Earth3-Veg_r1i1p1f1 (7)	MCE-v1-1 (2)	4.13	0.1
	MAGICC-v7-1-0-beta (7)	4.47	0.2
	ar5ir-2box (2)	15.91	0.2
	ar5ir-3box (2)	8.32	0.2
	held-two-layer-uom (2)	3.50	0.1

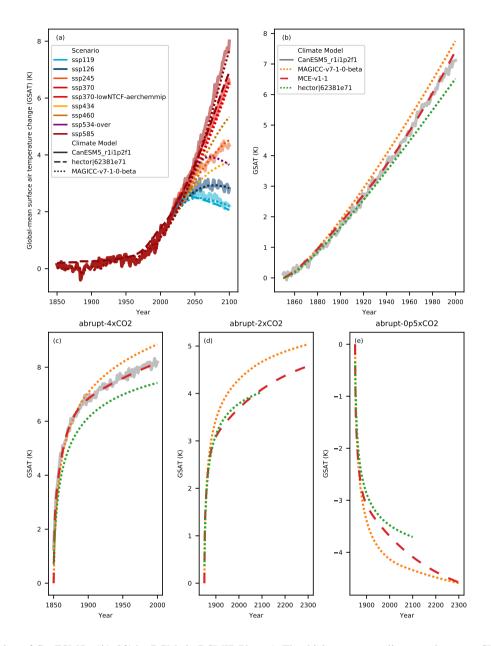

Table S2. Continued.

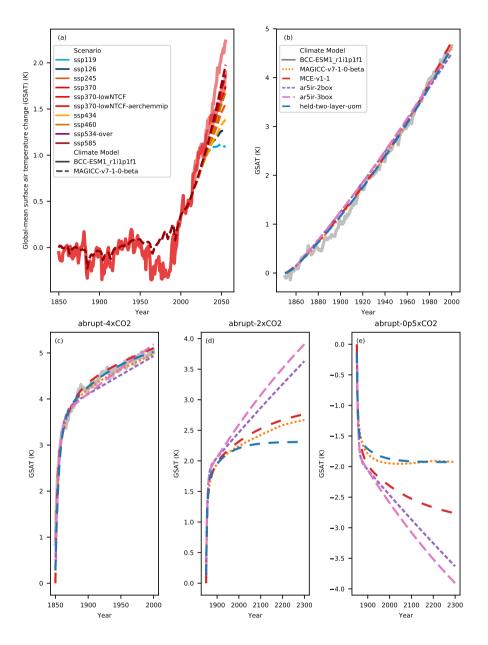
		ECS (K)	RMSE (K)
Target CMIP6 model	RCMIP model		
FGOALS-g3_r1i1p1f1 (4)	MAGICC-v7-1-0-beta (4)	2.77	0.15
GISS-E2-1-G_r1i1p1f1 (4)	MCE-v1-1 (4)	2.69	0.16
	MAGICC-v7-1-0-beta (4)	2.81	0.19
	ar5ir-2box (4)	5.24	0.15
	ar5ir-3box (4)	18.98	0.58
	held-two-layer-uom (4)	2.50	0.15
GISS-E2-1-H_r1i1p1f1 (3)	MCE-v1-1 (3)	3.07	0.15
	MAGICC-v7-1-0-beta (3)	3.20	0.16
	ar5ir-2box (3)	16.68	0.16
	ar5ir-3box (3)	8.05	0.15
	held-two-layer-uom (3)	2.48	0.14
GISS-E2-2-G_r1i1p1f1 (3)	MAGICC-v7-1-0-beta (3)	2.88	0.19
	ar5ir-2box (3)	3.70	0.16
	ar5ir-3box (3)	18.86	0.66
	held-two-layer-uom (3)	1.90	0.14
IPSL-CM6A-LR_rli1p1f1 (9)	MCE-v1-1 (4)	3.83	0.25
	hectorl62381e71 (6)	3.07	0.67
	MAGICC-v7-1-0-beta (9)	4.53	0.25
	ar5ir-2box (4)	13.57	0.34
	ar5ir-3box (4)	5.71	0.26
	held-two-layer-uom (4)	4.57	0.29
IPSL-CM6A-LR_r1i1p1f2 (2)	MAGICC-v7-1-0-beta (2)	4.43	0.21
IPSL-CM6A-LR_r10i1p1f1 (3)	MCE-v1-1 (1)	3.83	0.21
	hectorl62381e71 (1)	3.07	0.40
	MAGICC-v7-1-0-beta (3)	3.77	0.32
MCM-UA-1-0_r1i1p1f2 (4)	MAGICC-v7-1-0-beta (4)	3.45	0.16

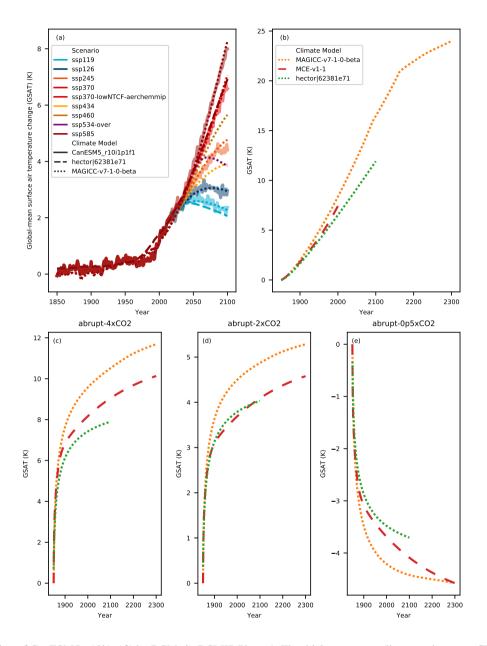

		ECS (K)	RMSE (K)
Target CMIP6 model	RCMIP model		
MIROC6_r1i1p1f1 (14)	MCE-v1-1 (4)	2.44	0.28
	MAGICC-v7-1-0-beta (12)	2.20	0.19
MPI-ESM1-2-HR_r1i1p1f1 (2)	MAGICC-v7-1-0-beta (2)	2.90	0.15
	ar5ir-2box (2)	8.02	0.16
	ar5ir-3box (2)	6.08	0.10
	held-two-layer-uom (2)	2.17	0.12
NorCPM1_r1i1p1f1 (2)	MAGICC-v7-1-0-beta (2)	2.73	0.29
	ar5ir-2box (2)	7.24	0.1
	ar5ir-3box (2)	8.60	0.2
	held-two-layer-uom (2)	4.15	0.1
NorESM2-LM_r1i1p1f1 (3)	MCE-v1-1 (2)	2.19	0.32
	MAGICC-v7-1-0-beta (2)	2.27	0.2
	ar5ir-2box (2)	13.37	0.1
	ar5ir-3box (2)	12.48	0.1
SAM0-UNICON_r1i1p1f1 (2)	MCE-v1-1 (2)	3.80	0.1
	MAGICC-v7-1-0-beta (2)	3.42	0.24
UKESM1-0-LL_r1i1p1f2 (9)	MCE-v1-1 (2)	5.31	0.1
	MAGICC-v7-1-0-beta (9)	6.05	0.3
	ar5ir-2box (2)	16.92	0.2
	ar5ir-3box (2)	7.22	0.1
	held-two-layer-uom (2)	4.11	0.1

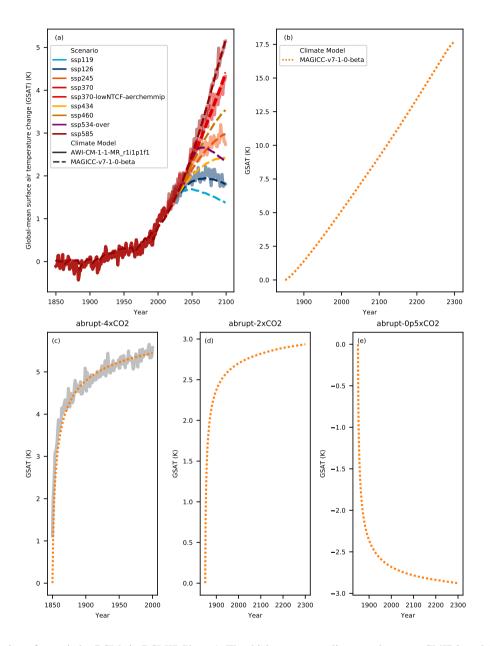

Figure S2. Probabilistic estimate of CO_2 effective radiative forcing for ssp119 and ssp585 (note, for Hector CO_2 radiative forcing is shown as effective radiative forcing is not available). (a) - historical period (1850-2025); (b) - projections (2000-2110).

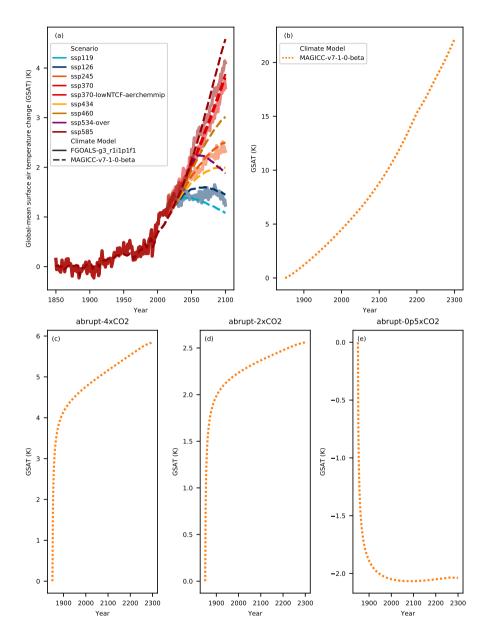

Figure S3. Comparison of effective radiative forcing projections under the RCPs and SSPs up until 2100. The coloured solid lines are RCMIP output where the RCP/SSP pair has been run with the same model in the same configuration. The plumes show the standard deviation of the available model results whilst the lines show the mean.

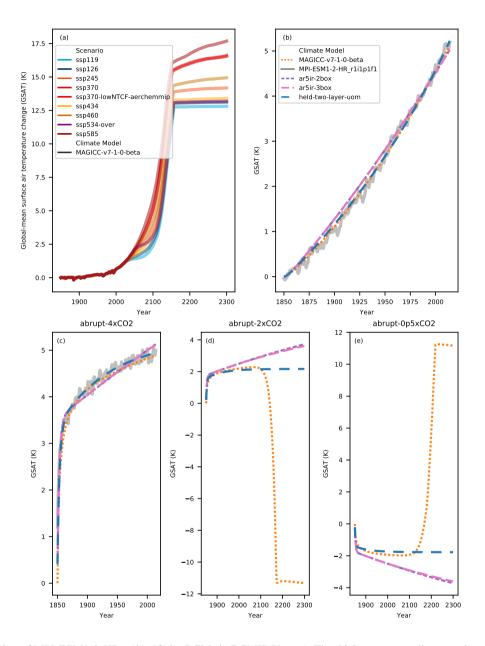

Figure S4. Comparison of CO_2 effective radiative forcing projections under the RCPs and SSPs up until 2100. The coloured solid lines are RCMIP output where the RCP/SSP pair has been run with the same model in the same configuration. The plumes show the standard deviation of the available model results whilst the lines show the mean.

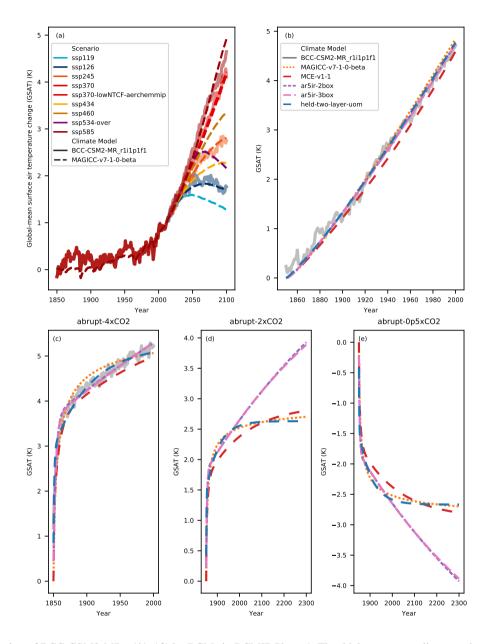

Figure S5. Comparison of aerosols effective radiative forcing projections under the RCPs and SSPs up until 2100. The coloured solid lines are RCMIP output where the RCP/SSP pair has been run with the same model in the same configuration. The plumes show the standard deviation of the available model results whilst the lines show the mean.

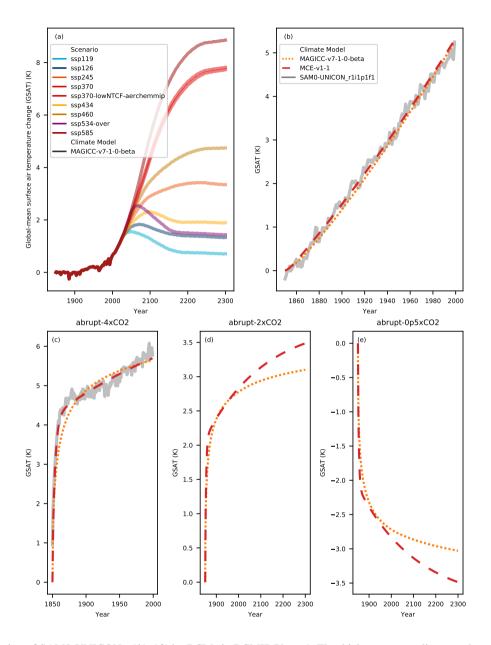

Figure S6. Response of RCMIP models to a reduction in near-term climate forcers. Results are from RCMIP models, except for temperature lines with natural variability which are CMIP6 results. The ssp370-lowNTCF scenario results in a small warming signal relative to ssp370, the magnitude of which varies by RCM. For comparison, we also include ssp370-lowNTCF as quantified by Gidden et al. (2019) (labelled 'ssp370-lowntcf-gidden'). This implementation also includes reductions in methane and so a strong cooling signal is seen instead.

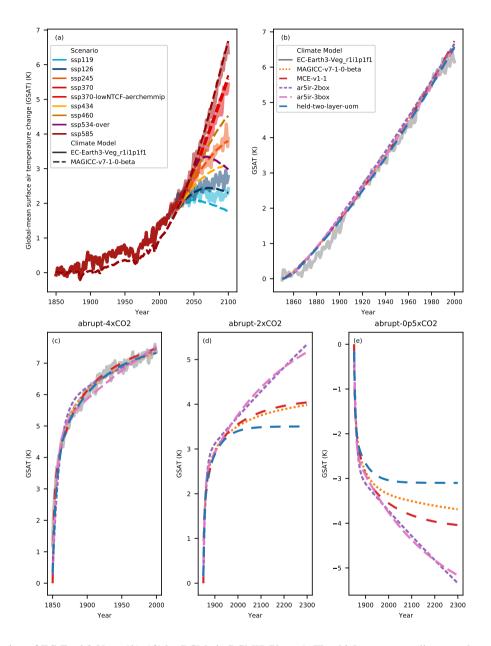

Figure S7. Emulation of CanESM5_r1i1p2f1 by RCMs in RCMIP Phase 1. The thick transparent lines are the target CMIP6 model output (here from CanESM5_r1i1p2f1). The thin lines are emulations from different RCMs. Panel (a) shows results for scenario based experiments while panels (b) - (e) show results for idealised CO2-only experiments (note that panels (b) - (e) share the same legend).

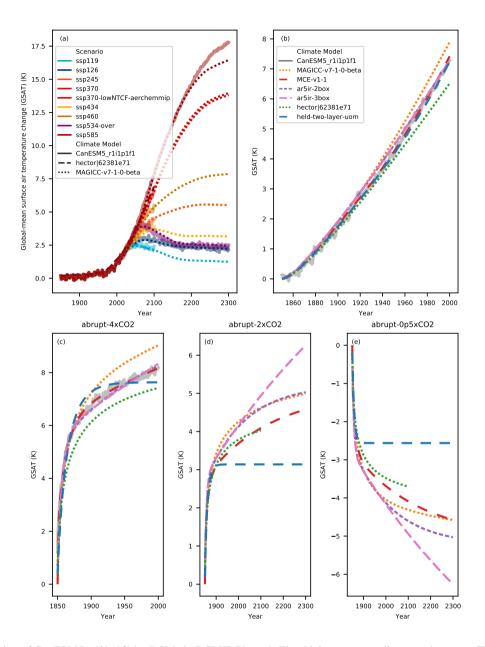

Figure S8. Emulation of BCC-ESM1_r1i1p1f1 by RCMs in RCMIP Phase 1. The thick transparent lines are the target CMIP6 model output (here from BCC-ESM1_r1i1p1f1). The thin lines are emulations from different RCMs. Panel (a) shows results for scenario based experiments while panels (b) - (e) show results for idealised CO2-only experiments (note that panels (b) - (e) share the same legend).

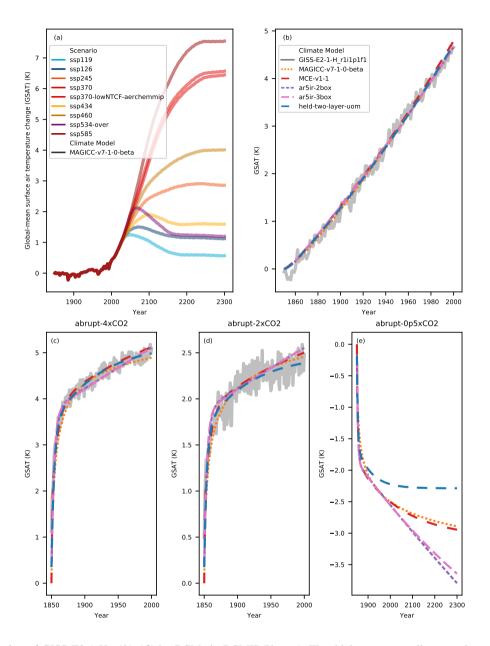

Figure S9. Emulation of CanESM5_r10i1p1f1 by RCMs in RCMIP Phase 1. The thick transparent lines are the target CMIP6 model output (here from CanESM5_r10i1p1f1). The thin lines are emulations from different RCMs. Panel (a) shows results for scenario based experiments while panels (b) - (e) show results for idealised CO2-only experiments (note that panels (b) - (e) share the same legend).

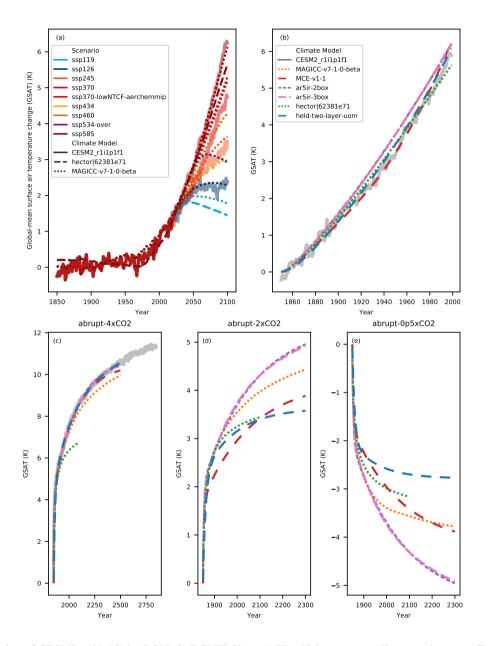

Figure S10. Emulation of generic by RCMs in RCMIP Phase 1. The thick transparent lines are the target CMIP6 model output (here from generic). The thin lines are emulations from different RCMs. Panel (a) shows results for scenario based experiments while panels (b) - (e) show results for idealised CO2-only experiments (note that panels (b) - (e) share the same legend).

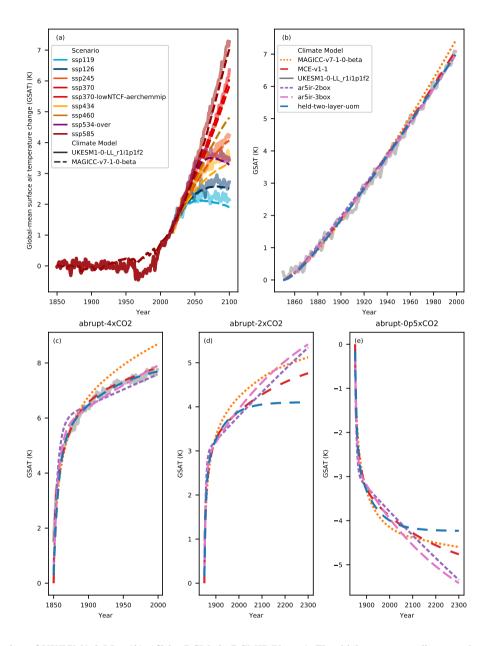

Figure S11. Emulation of FGOALS-g3_r1i1p1f1 by RCMs in RCMIP Phase 1. The thick transparent lines are the target CMIP6 model output (here from FGOALS-g3_r1i1p1f1). The thin lines are emulations from different RCMs. Panel (a) shows results for scenario based experiments while panels (b) - (e) show results for idealised CO2-only experiments (note that panels (b) - (e) share the same legend).

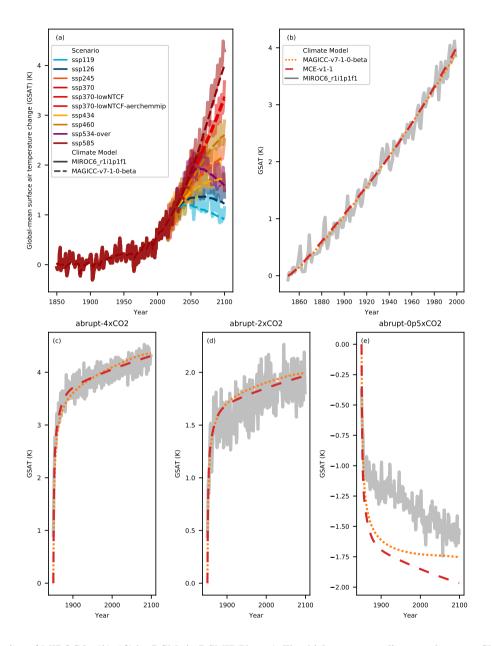

Figure S12. Emulation of MPI-ESM1-2-HR_r1i1p1f1 by RCMs in RCMIP Phase 1. The thick transparent lines are the target CMIP6 model output (here from MPI-ESM1-2-HR_r1i1p1f1). The thin lines are emulations from different RCMs. Panel (a) shows results for scenario based experiments while panels (b) - (e) show results for idealised CO2-only experiments (note that panels (b) - (e) share the same legend).

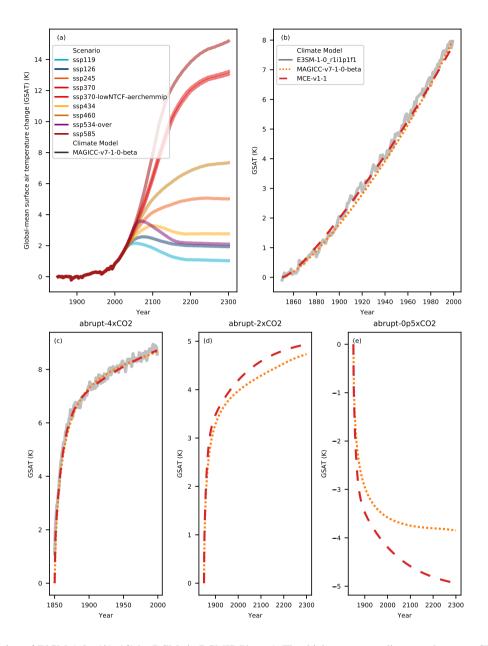

Figure S13. Emulation of BCC-CSM2-MR_r1i1p1f1 by RCMs in RCMIP Phase 1. The thick transparent lines are the target CMIP6 model output (here from BCC-CSM2-MR_r1i1p1f1). The thin lines are emulations from different RCMs. Panel (a) shows results for scenario based experiments while panels (b) - (e) show results for idealised CO2-only experiments (note that panels (b) - (e) share the same legend).

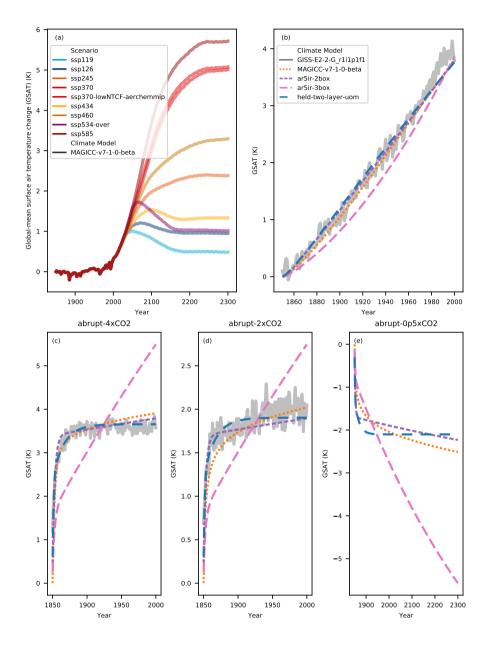

Figure S14. Emulation of SAM0-UNICON_r1i1p1f1 by RCMs in RCMIP Phase 1. The thick transparent lines are the target CMIP6 model output (here from SAM0-UNICON_r1i1p1f1). The thin lines are emulations from different RCMs. Panel (a) shows results for scenario based experiments while panels (b) - (e) show results for idealised CO2-only experiments (note that panels (b) - (e) share the same legend).

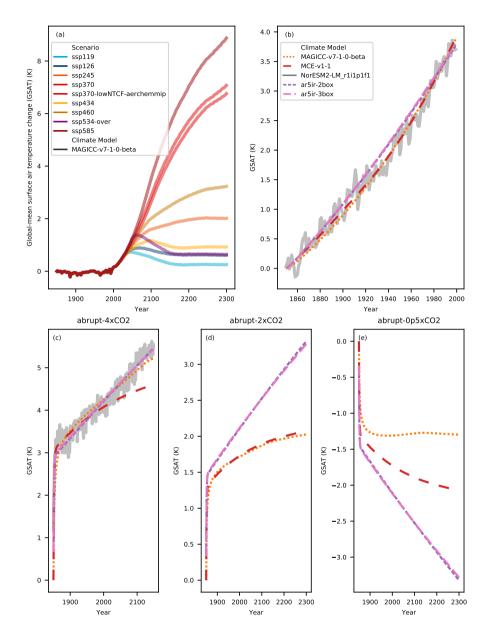

Figure S15. Emulation of EC-Earth3-Veg_r1i1p1f1 by RCMs in RCMIP Phase 1. The thick transparent lines are the target CMIP6 model output (here from EC-Earth3-Veg_r1i1p1f1). The thin lines are emulations from different RCMs. Panel (a) shows results for scenario based experiments while panels (b) - (e) show results for idealised CO2-only experiments (note that panels (b) - (e) share the same legend).

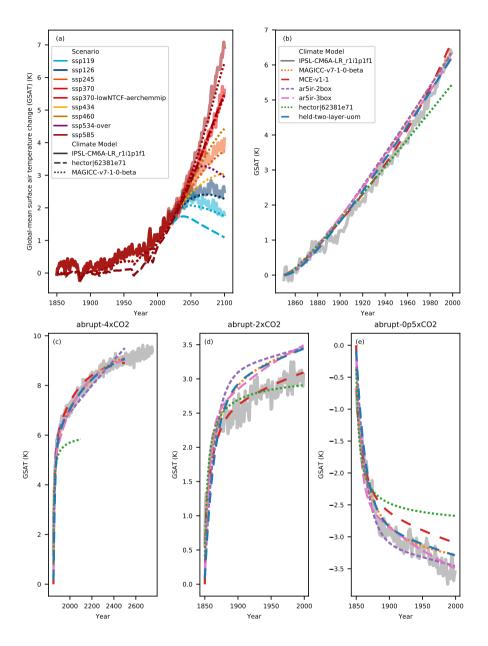

Figure S16. Emulation of CanESM5_r1i1p1f1 by RCMs in RCMIP Phase 1. The thick transparent lines are the target CMIP6 model output (here from CanESM5_r1i1p1f1). The thin lines are emulations from different RCMs. Panel (a) shows results for scenario based experiments while panels (b) - (e) show results for idealised CO2-only experiments (note that panels (b) - (e) share the same legend).

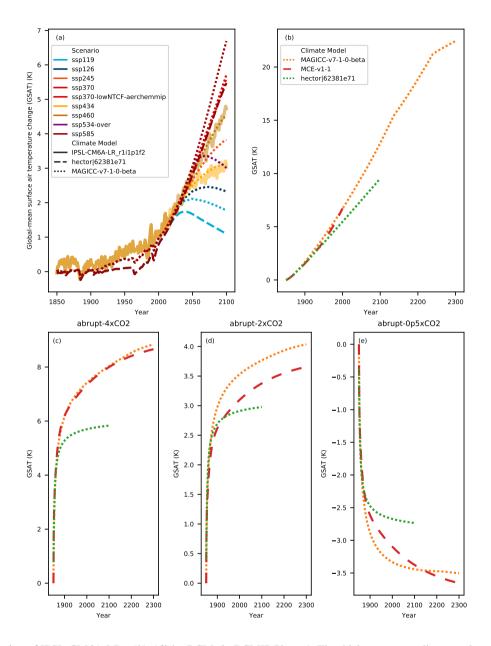

Figure S17. Emulation of GISS-E2-1-H_r1i1p1f1 by RCMs in RCMIP Phase 1. The thick transparent lines are the target CMIP6 model output (here from GISS-E2-1-H_r1i1p1f1). The thin lines are emulations from different RCMs. Panel (a) shows results for scenario based experiments while panels (b) - (e) show results for idealised CO2-only experiments (note that panels (b) - (e) share the same legend).

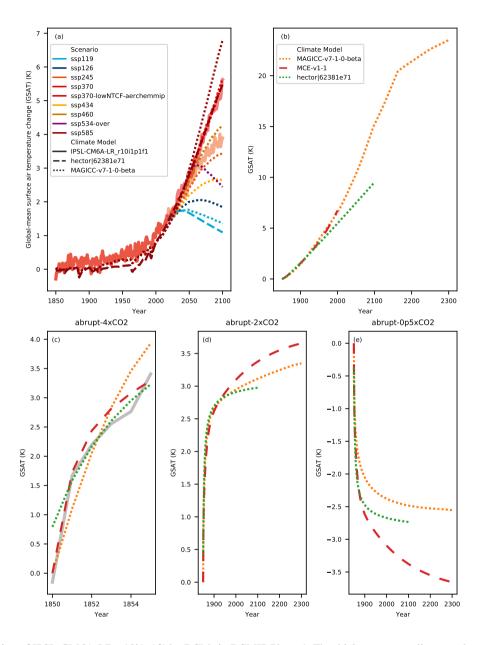

Figure S18. Emulation of CESM2_r1i1p1f1 by RCMs in RCMIP Phase 1. The thick transparent lines are the target CMIP6 model output (here from CESM2_r1i1p1f1). The thin lines are emulations from different RCMs. Panel (a) shows results for scenario based experiments while panels (b) - (e) show results for idealised CO2-only experiments (note that panels (b) - (e) share the same legend).

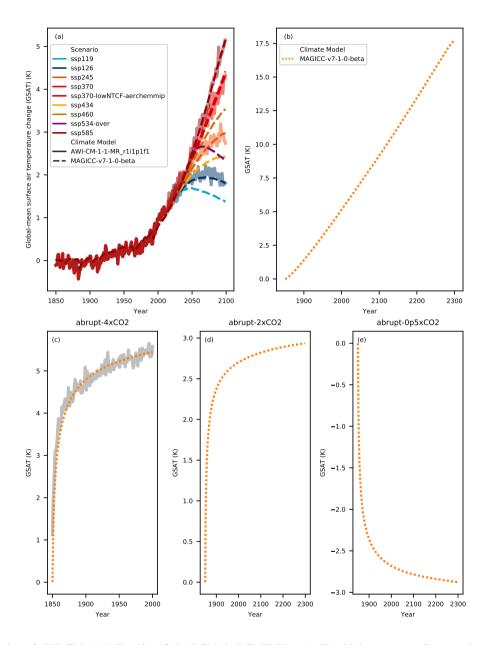

Figure S19. Emulation of UKESM1-0-LL_r1i1p1f2 by RCMs in RCMIP Phase 1. The thick transparent lines are the target CMIP6 model output (here from UKESM1-0-LL_r1i1p1f2). The thin lines are emulations from different RCMs. Panel (a) shows results for scenario based experiments while panels (b) - (e) show results for idealised CO2-only experiments (note that panels (b) - (e) share the same legend).

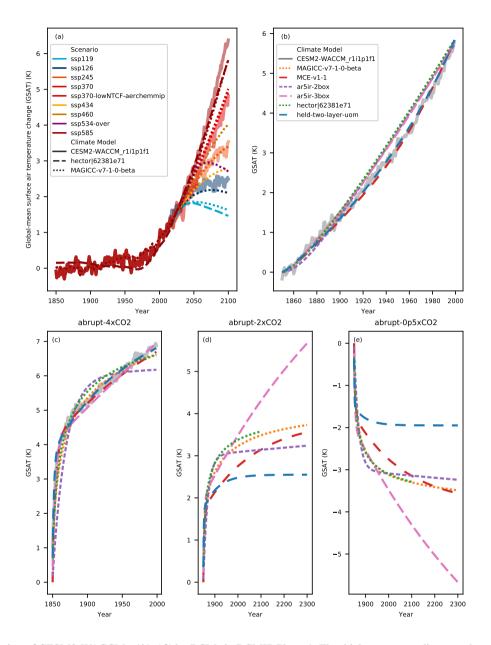

Figure S20. Emulation of MIROC6_r1i1p1f1 by RCMs in RCMIP Phase 1. The thick transparent lines are the target CMIP6 model output (here from MIROC6_r1i1p1f1). The thin lines are emulations from different RCMs. Panel (a) shows results for scenario based experiments while panels (b) - (e) show results for idealised CO2-only experiments (note that panels (b) - (e) share the same legend).

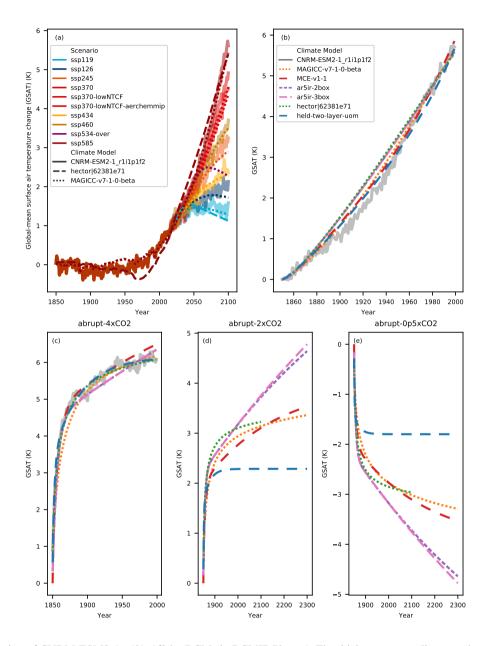

Figure S21. Emulation of E3SM-1-0_r1i1p1f1 by RCMs in RCMIP Phase 1. The thick transparent lines are the target CMIP6 model output (here from E3SM-1-0_r1i1p1f1). The thin lines are emulations from different RCMs. Panel (a) shows results for scenario based experiments while panels (b) - (e) show results for idealised CO2-only experiments (note that panels (b) - (e) share the same legend).

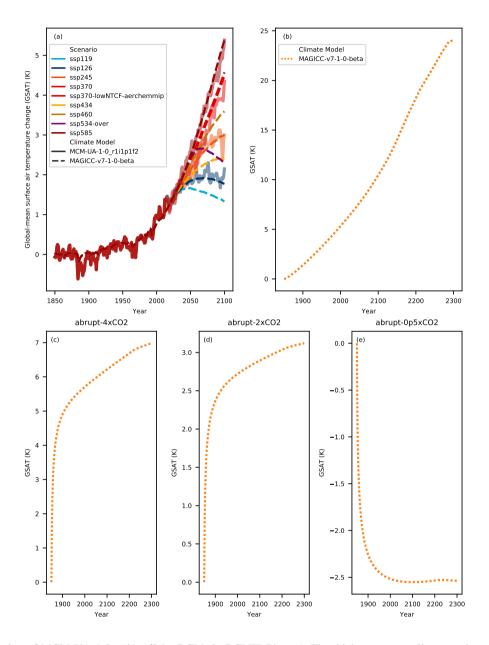

Figure S22. Emulation of GISS-E2-2-G_r1i1p1f1 by RCMs in RCMIP Phase 1. The thick transparent lines are the target CMIP6 model output (here from GISS-E2-2-G_r1i1p1f1). The thin lines are emulations from different RCMs. Panel (a) shows results for scenario based experiments while panels (b) - (e) show results for idealised CO2-only experiments (note that panels (b) - (e) share the same legend).

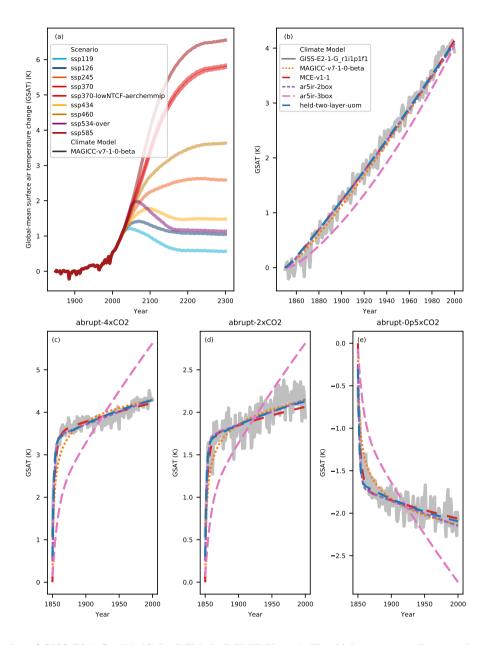

Figure S23. Emulation of NorESM2-LM_r1i1p1f1 by RCMs in RCMIP Phase 1. The thick transparent lines are the target CMIP6 model output (here from NorESM2-LM_r1i1p1f1). The thin lines are emulations from different RCMs. Panel (a) shows results for scenario based experiments while panels (b) - (e) show results for idealised CO2-only experiments (note that panels (b) - (e) share the same legend).

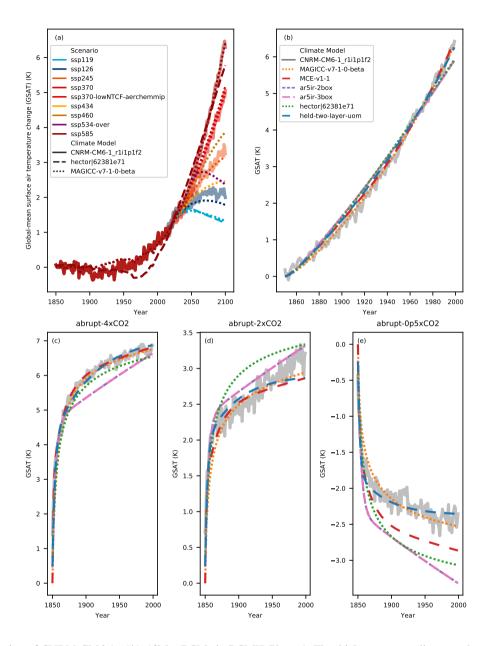

Figure S24. Emulation of IPSL-CM6A-LR_r1i1p1f1 by RCMs in RCMIP Phase 1. The thick transparent lines are the target CMIP6 model output (here from IPSL-CM6A-LR_r1i1p1f1). The thin lines are emulations from different RCMs. Panel (a) shows results for scenario based experiments while panels (b) - (e) show results for idealised CO2-only experiments (note that panels (b) - (e) share the same legend).


Figure S25. Emulation of IPSL-CM6A-LR_r1i1p1f2 by RCMs in RCMIP Phase 1. The thick transparent lines are the target CMIP6 model output (here from IPSL-CM6A-LR_r1i1p1f2). The thin lines are emulations from different RCMs. Panel (a) shows results for scenario based experiments while panels (b) - (e) show results for idealised CO2-only experiments (note that panels (b) - (e) share the same legend).


Figure S26. Emulation of IPSL-CM6A-LR_r10i1p1f1 by RCMs in RCMIP Phase 1. The thick transparent lines are the target CMIP6 model output (here from IPSL-CM6A-LR_r10i1p1f1). The thin lines are emulations from different RCMs. Panel (a) shows results for scenario based experiments while panels (b) - (e) show results for idealised CO2-only experiments (note that panels (b) - (e) share the same legend).


Figure S27. Emulation of AWI-CM-1-1-MR_r1i1p1f1 by RCMs in RCMIP Phase 1. The thick transparent lines are the target CMIP6 model output (here from AWI-CM-1-1-MR_r1i1p1f1). The thin lines are emulations from different RCMs. Panel (a) shows results for scenario based experiments while panels (b) - (e) show results for idealised CO2-only experiments (note that panels (b) - (e) share the same legend).


Figure S28. Emulation of CESM2-WACCM_r1i1p1f1 by RCMs in RCMIP Phase 1. The thick transparent lines are the target CMIP6 model output (here from CESM2-WACCM_r1i1p1f1). The thin lines are emulations from different RCMs. Panel (a) shows results for scenario based experiments while panels (b) - (e) show results for idealised CO2-only experiments (note that panels (b) - (e) share the same legend).


Figure S29. Emulation of CNRM-ESM2-1_r1i1p1f2 by RCMs in RCMIP Phase 1. The thick transparent lines are the target CMIP6 model output (here from CNRM-ESM2-1_r1i1p1f2). The thin lines are emulations from different RCMs. Panel (a) shows results for scenario based experiments while panels (b) - (e) show results for idealised CO2-only experiments (note that panels (b) - (e) share the same legend).

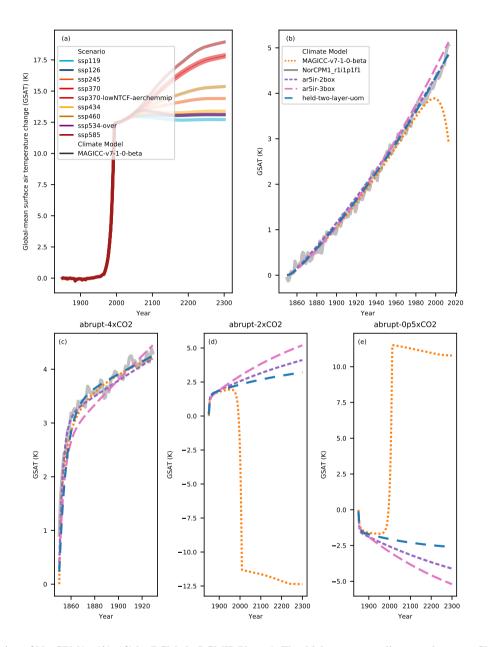

Figure S30. Emulation of MCM-UA-1-0_r1i1p1f2 by RCMs in RCMIP Phase 1. The thick transparent lines are the target CMIP6 model output (here from MCM-UA-1-0_r1i1p1f2). The thin lines are emulations from different RCMs. Panel (a) shows results for scenario based experiments while panels (b) - (e) show results for idealised CO2-only experiments (note that panels (b) - (e) share the same legend).

Figure S31. Emulation of GISS-E2-1-G_r1i1p1f1 by RCMs in RCMIP Phase 1. The thick transparent lines are the target CMIP6 model output (here from GISS-E2-1-G_r1i1p1f1). The thin lines are emulations from different RCMs. Panel (a) shows results for scenario based experiments while panels (b) - (e) show results for idealised CO2-only experiments (note that panels (b) - (e) share the same legend).

Figure S32. Emulation of CNRM-CM6-1_r1i1p1f2 by RCMs in RCMIP Phase 1. The thick transparent lines are the target CMIP6 model output (here from CNRM-CM6-1_r1i1p1f2). The thin lines are emulations from different RCMs. Panel (a) shows results for scenario based experiments while panels (b) - (e) show results for idealised CO2-only experiments (note that panels (b) - (e) share the same legend).

Figure S33. Emulation of NorCPM1_r1i1p1f1 by RCMs in RCMIP Phase 1. The thick transparent lines are the target CMIP6 model output (here from NorCPM1_r1i1p1f1). The thin lines are emulations from different RCMs. Panel (a) shows results for scenario based experiments while panels (b) - (e) show results for idealised CO2-only experiments (note that panels (b) - (e) share the same legend).

Table S3. RCMIP Phase 1 experiment overview (also available at rcmip.org). In the 'drivers' column, the acronyms show the inputs which are provided to the models in order to perform the run. CC: CO_2 concentrations; CO: non- CO_2 WMGHG concentrations; EC: CO_2 emissions; EO: non- CO_2 WMGHG emissions; A: aerosol emissions; S: solar effective radiative forcing; V: volcanic effective radiative forcing. ESDOC refers to the Earth System Documentation service (https://search.es-doc.org/).

ID	Drivers	Summary	Further information	Tier
piControl	CC, CO, A, S, V	Pre-industrial control simulation.	ESDOC	1
esm-piControl	EC, CO, A, S, V	Pre-industrial control simulation with zero anthropogenic perturbation to CO2 emis- sions.	ESDOC	1
esm-piControl- allGHG	EC, EO, A, S, V	Pre-industrial control simulation with zero anthropogenic perturbation to GHG emis- sions.	RCMIP specific experiment	2
1pctCO2	CC	1 % per year increase in atmospheric CO2 concentrations.	ESDOC	1
1pctCO2-4xext	CC	1 % per year increase in atmospheric CO2 concentrations until atmospheric CO2 con- centrations quadruple, constant CO2 con- centrations thereafter.	ESDOC	1
1pctCO2-cdr	CC	1 % per year increase in atmospheric CO2 concentrations until atmospheric CO2 con- centrations quadruple and then 1% per year decrease in atmospheric CO2 concentra- tions until CO2 returns to pre-industrial lev- els, constant thereafter.	ESDOC	2
abrupt-4xCO2	CC	Abrupt quadrupling of atmospheric CO2 concentrations.	ESDOC	1
abrupt-2xCO2	CC	Abrupt doubling of atmospheric CO2 con- centrations.	ESDOC	1
abrupt- 0p5xCO2	CC	Abrupt halving of atmospheric CO2 con- centrations.	ESDOC	1
esm-pi-cdr- pulse	EC	Removal of 100 GtC in a single year from pre-industrial atmosphere, zero CO2 emis- sions thereafter.	ESDOC	2

ID	Drivers	Summary	Further information	Tier
esm-pi- CO2pulse	EC	Addition of 100 GtC in a single year from pre-industrial atmosphere, zero CO2 emis- sions thereafter.	ESDOC	2
esm-bell- 1000PgC	EC	Cumulative addition of 1000 PgC following a bell-curved shaped emissions timeseries.	ESDOC	3
esm-bell- 2000PgC	EC	Cumulative addition of 2000 PgC following a bell-curved shaped emissions timeseries.	ESDOC	3
esm-bell- 750PgC	EC	Cumulative addition of 750 PgC following a bell-curved shaped emissions timeseries.	ESDOC	3
historical	CC, CO, A, S, V	Simulation of 1850-2014.	ESDOC	1
historical- cmip5	CC, CO, A, S, V	Simulation of 1850-2004, matching forc- ings as estimated in CMIP5.	http://www.pik-potsdam.de/ ~mmalte/rcps/	2
hist-aer	А	Simulation of 1850-2014 with aerosol emissions only.	ESDOC	3
hist-CO2	CC	Simulation of 1850-2014 with changing CO2 concentrations only.	ESDOC	3
hist-GHG	CC, CO	Simulation of 1850-2014 with changing GHG concentrations only.	ESDOC	3
hist-nat	S, V	Simulation of 1850-2014 with changing natural forcings only.	ESDOC	3
hist-sol	S	Simulation of 1850-2014 with changing so- lar forcing only.	ESDOC	3
hist-volc	V	Simulation of 1850-2014 with changing volcanic forcing only.	ESDOC	3
ssp119	CC, CO, A, S, V	Low-end scenario reaching radiative forc- ing $\sim 1.9 \text{ Wm}^{-2}$ in 2100 (using the SSP1 socioeconomic storyline).	ESDOC	1
esm-ssp119	EC, CO, A, S, V	As above except CO2 emissions driven.	ESDOC	1
esm-ssp119- allGHG	EC, EO, A, S, V	As above except all GHG emissions driven.	ESDOC	2

ID	Drivers	Summary	Further information	Tier
ssp126	CC, CO, A, S, V	Update of RCP2.6 based on the SSP1 so- cioeconomic storyline.	ESDOC	2
esm-ssp126	EC, CO, A, S, V	As above except CO2 emissions driven.	ESDOC	3
esm-ssp126- allGHG	EC, EO, A, S, V	As above except all GHG emissions driven.	ESDOC	3
ssp245	CC, CO, A, S, V	Update of RCP4.5 based on the SSP2 so- cioeconomic storyline.	ESDOC	2
esm-ssp245	EC, CO, A, S, V	As above except CO2 emissions driven. ESDOC		3
esm-ssp245- allGHG	EC, EO, A, S, V	As above except all GHG emissions driven. ESDOC		3
ssp370	CC, CO, A, S, V	Gap-filling scenario reaching radiative forc- ing \sim 7.0 Wm ⁻² in 2100 (using the SSP3 socioeconomic storyline).	ESDOC	2
esm-ssp370	EC, CO, A, S, V	As above except CO2 emissions driven.	ESDOC	3
esm-ssp370- allGHG	EC, EO, A, S, V	As above except all GHG emissions driven.	•	
ssp370- lowNTCF	CC, CO, A, S, V	Gap-filling scenario reaching radiative forc- ing \sim 7.0 Wm ⁻² in 2100 with low near- term climate forcers (using the SSP3 so- cioeconomic storyline).	ESDOC	2
esm-ssp370- lowNTCF	EC, CO, A, S, V	As above except CO2 emissions driven.	ESDOC	3
esm-ssp370- lowNTCF- allGHG	EC, EO, A, S, V	As above except all GHG emissions driven.	ESDOC	3
ssp370- lowNTCF- gidden	CC, CO, A, S, V	Comparison scenario, follows the ssp370- lowNTCF quantification presented in Gid- den et al. (2019).	RCMIP specific	3

ID	Drivers	Summary	Further information	Tier
esm-ssp370- lowNTCF- gidden	EC, CO, A, S, V	As above except CO2 emissions driven.	RCMIP specific	3
esm-ssp370- lowNTCF- gidden-allGHG	EC, EO, A, S, V	As above except all GHG emissions driven.	RCMIP specific	3
ssp434	CC, CO, A, S, V	Gap-filling scenario reaching radiative forc- ing $\sim 3.4 \text{ Wm}^{-2}$ in 2100 with low near- term climate forcers (using the SSP4 so- cioeconomic storyline).	ESDOC	2
esm-ssp434	EC, CO, A, S, V	As above except CO2 emissions driven.	ESDOC	3
esm-ssp434- allGHG	EC, EO, A, S, V	As above except all GHG emissions driven.	ESDOC	3
ssp460	CC, CO, A, S, V	Update of RCP6.0 based on the SSP4 so- cioeconomic storyline.	ESDOC	2
esm-ssp460	EC, CO, A, S, V	As above except CO2 emissions driven.	ESDOC	3
esm-ssp460- allGHG	EC, EO, A, S, V	As above except all GHG emissions driven.	ESDOC	3
ssp534-over	CC, CO, A, S, V	Overshoot scenario reaching radiative forc- ing \sim 3.4 Wm ⁻² in 2100 having followed the ssp585 pathway until 2030 (using the SSP5 socioeconomic storyline).	ESDOC	2
esm-ssp534- over	EC, CO, A, S, V	As above except CO2 emissions driven.	ESDOC	3
esm-ssp534- over-allGHG	EC, EO, A, S, V	As above except all GHG emissions driven.	ESDOC	3
ssp585	CC, CO, A, S, V	Update of RCP8.5 based on the SSP5 so- cioeconomic storyline.	ESDOC	1
esm-ssp585	EC, CO, A, S, V	As above except CO2 emissions driven.	ESDOC	1

Table S3. Continued.

ID	Drivers	Summary	Further information	Tier
esm-ssp585- allGHG	EC, EO, A, S, V	As above except all GHG emissions driven.	ESDOC	2
rcp26	CC, CO, A, S, V	RCP2.6 (from CMIP5).	http://www.pik-potsdam.de/ ~mmalte/rcps/	3
esm-rcp26	EC, CO, A, S, V	As above except CO2 emissions driven.	http://www.pik-potsdam.de/ ~mmalte/rcps/	3
esm-rcp26- allGHG	EC, EO, A, S, V	As above except all GHG emissions driven.	http://www.pik-potsdam.de/ ~mmalte/rcps/	3
rcp45	CC, CO, A, S, V	RCP4.5 (from CMIP5).	http://www.pik-potsdam.de/ ~mmalte/rcps/	3
esm-rcp45	EC, CO, A, S, V	As above except CO2 emissions driven.	http://www.pik-potsdam.de/ ~mmalte/rcps/	3
esm-rcp45- allGHG	EC, EO, A, S, V	As above except all GHG emissions driven.	http://www.pik-potsdam.de/ ~mmalte/rcps/	3
rcp60	CC, CO, A, S, V	RCP6.0 (from CMIP5).	http://www.pik-potsdam.de/ ~mmalte/rcps/	3
esm-rcp60	EC, CO, A, S, V	As above except CO2 emissions driven.	http://www.pik-potsdam.de/ ~mmalte/rcps/	3
esm-rcp60- allGHG	EC, EO, A, S, V	As above except all GHG emissions driven.	http://www.pik-potsdam.de/ ~mmalte/rcps/	3
rcp85	CC, CO, A, S, V	RCP8.5 (from CMIP5).	http://www.pik-potsdam.de/ ~mmalte/rcps/	3
esm-rcp85	EC, CO, A, S, V	As above except CO2 emissions driven.	http://www.pik-potsdam.de/ ~mmalte/rcps/	3
esm-rcp85- allGHG	EC, EO, A, S, V	As above except all GHG emissions driven.	http://www.pik-potsdam.de/ ~mmalte/rcps/	3

Table S4. RCMIP Phase 1 variable overview (also available at rcmip.org).

Category	Variable	Unit	Definition	Tier
Atmospheric Concentrations	Atmospheric ConcentrationslCH4	ppb	atmospheric concentrations of CH ₄	1
Atmospheric Concentrations	Atmospheric ConcentrationslCO2	ppm	atmospheric concentrations of CO ₂	1
Atmospheric Concentrations	Atmospheric ConcentrationslF-Gases	ppm	equivalent species atmospheric concentrations of F-gases, expressed as CO ₂ -equivalent	3
Atmospheric Concentrations	Atmospheric ConcentrationslF- GaseslHFC	ppm	equivalent species atmospheric concentrations of hydrofluorocarbons (HFCs and HCFCs), provided as aggregate CO ₂ -equivalent	3
Atmospheric Concentrations	Atmospheric Concentrations F- Gases HFC HFC125	ppt	atmospheric concentrations of HFC125	2
Atmospheric Concentrations	Atmospheric Concentrations F- Gases HFC HFC134a	ppt	atmospheric concentrations of HFC134a	2
Atmospheric Concentrations	Atmospheric ConcentrationsIF- GasesIHFCIHFC143a	ppt	atmospheric concentrations of HFC143a	2
Atmospheric Concentrations	Atmospheric ConcentrationsIF- GasesIHFCIHFC152a	ppt	atmospheric concentrations of HFC152a	2
Atmospheric Concentrations	Atmospheric Concentrations F- Gases HFC HFC227ea	ppt	atmospheric concentrations of HFC227ea	2
Atmospheric Concentrations	AtmosphericConcentrationsIF-GasesIHFCIHFC23	ppt	atmospheric concentrations of HFC23	2
Atmospheric Concentrations	Atmospheric Concentrations F- Gases HFC HFC236fa	ppt	atmospheric concentrations of HFC236fa	2

Category	Variable		Unit	Definition	Tier
Atmospheric Concentrations	Atmospheric Gases HFC HFC24:	ConcentrationslF- 5fa	ppt	atmospheric concentrations of HFC245fa	2
Atmospheric Concentrations	Atmospheric Gases HFC HFC32	ConcentrationslF-	ppt	atmospheric concentrations of HFC32	2
Atmospheric Concentrations	Atmospheric Gases HFC HFC365	ConcentrationslF- 5mfc	ppt	atmospheric concentrations of HFC365mfc	2
Atmospheric Concentrations	Atmospheric Gases HFC HFC43	ConcentrationslF- 10mee	ppt	atmospheric concentrations of HFC43-10mee	2
Atmospheric Concentrations	Atmospheric GasesINF3	ConcentrationslF-	ppt	atmospheric concentrations of nitrogen trifluo- ride (NF ₃)	2
Atmospheric Concentrations	Atmospheric GaseslPFC	Concentrations F-	ppt	equivalent species atmospheric concentrations of perfluorocarbons (PFCs, as defined by Ta- ble 8.A.1 of AR5), provided as aggregate CO ₂ - equivalents	3
Atmospheric Concentrations	Atmospheric GasesIPFCIC2F6	ConcentrationslF-	ppt	atmospheric concentrations of C_2F_6	2
Atmospheric Concentrations	Atmospheric GasesIPFCIC3F8	Concentrations F-	ppt	atmospheric concentrations of $\mathrm{C}_3\mathrm{F}_8$	2
Atmospheric Concentrations	Atmospheric GaseslPFClC4F10	ConcentrationslF-	ppt	atmospheric concentrations of C_4F_10	2
Atmospheric Concentrations	Atmospheric GasesIPFCIC5F12	Concentrations F-	ppt	atmospheric concentrations of $\mathrm{C}_5\mathrm{F}_12$	2
Atmospheric Concentrations	Atmospheric GaseslPFClC6F14	ConcentrationsIF-	ppt	atmospheric concentrations of $\mathrm{C}_{6}\mathrm{F}_{1}4$	2

Category	Variable	Unit	Definition	Tier
Atmospheric Concentrations	AtmosphericConcentrationslF-GaseslPFClC7F16	ppt	atmospheric concentrations of C_7F_16	2
Atmospheric Concentrations	Atmospheric ConcentrationsIF- GasesIPFCIC8F18	ppt	atmospheric concentrations of C_8F_18	2
Atmospheric Concentrations	AtmosphericConcentrationslF-GaseslPFClcC4F8	ppt	atmospheric concentrations of $\mathrm{c-C_4F_8}$	2
Atmospheric Concentrations	Atmospheric ConcentrationslF- GaseslPFClCF4	ppt	atmospheric concentrations of CF_4	2
Atmospheric Concentrations	Atmospheric ConcentrationsIF- GasesISF6	ppt	atmospheric concentrations of sulfur hexafluoride (SF_6)	2
Atmospheric Concentrations	AtmosphericConcentrationslF-GaseslSO2F2	ppt	atmospheric concentrations of sulfuryl fluoride $(\mathrm{SO}_2\mathrm{F}_2)$	2
Atmospheric Concentrations	Atmospheric ConcentrationslMontreal Gases	ppm	equivalent species atmospheric concentrations of Montreal gases, expressed as CO ₂ equiva- lent	3
Atmospheric Concentrations	Atmospheric Concentrations Montreal Gases CCl4	ppt	atmospheric concentrations of CCl_4	2
Atmospheric Concentrations	Atmospheric Concentrations Montreal Gases CFC	ppm	atmospheric concentrations of CFC gases, expressed as CO_2 equivalent	3
Atmospheric Concentrations	Atmospheric ConcentrationslMontreal GaseslCFClCFC11	ppt	atmospheric concentrations of CFC11	2
Atmospheric Concentrations	Atmospheric Concentrations Montreal Gases CFC CFC113	ppt	atmospheric concentrations of CFC113	2

Category	Variable	Unit	Definition	Tier
Atmospheric Concentrations	Atmospheric ConcentrationslMontreal GaseslCFClCFC114	ppt	atmospheric concentrations of CFC114	2
Atmospheric Concentrations	Atmospheric ConcentrationslMontreal GaseslCFClCFC115	ppt	atmospheric concentrations of CFC115	2
Atmospheric Concentrations	Atmospheric ConcentrationslMontreal GaseslCFClCFC12	ppt	atmospheric concentrations of CFC12	2
Atmospheric Concentrations	Atmospheric Concentrations Montreal Gases CH2Cl2	ppt	atmospheric concentrations of $\mathrm{CH}_2\mathrm{Cl}_2$	2
Atmospheric Concentrations	Atmospheric Concentrations Montreal Gases CH3Br	ppt	atmospheric concentrations of CH_3Br	2
Atmospheric Concentrations	Atmospheric ConcentrationslMontreal GaseslCH3CCl3	ppt	atmospheric concentrations of $\mathrm{CH}_3\mathrm{CCl}_3$	2
Atmospheric Concentrations	Atmospheric Concentrations Montreal Gases CH3Cl	ppt	atmospheric concentrations of $\rm CH_3Cl$	2
Atmospheric Concentrations	Atmospheric ConcentrationslMontreal GaseslCHCl3	ppt	atmospheric concentrations of CHCl_3	2
Atmospheric Concentrations	Atmospheric ConcentrationslMontreal GaseslHalon1202	ppt	atmospheric concentrations of Halon-1202	2
Atmospheric Concentrations	Atmospheric ConcentrationslMontreal GaseslHalon1211	ppt	atmospheric concentrations of Halon-1211	2

Table S4. Continued.

Category	Variable	Unit	Definition	Tier
Atmospheric Concentrations	Atmospheric Concentrations Montreal Gases Halon1301	ppt	atmospheric concentrations of Halon-1301	2
Atmospheric Concentrations	Atmospheric Concentrations Montreal Gases Halon2402	ppt	atmospheric concentrations of Halon-2402	2
Atmospheric Concentrations	Atmospheric ConcentrationslMontreal GaseslHCFC141b	ppt	atmospheric concentrations of HCFC141b	2
Atmospheric Concentrations	Atmospheric Concentrations Montreal Gases HCFC142b	ppt	atmospheric concentrations of HCFC22	2
Atmospheric Concentrations	Atmospheric Concentrations Montreal Gases HCFC22	ppt	atmospheric concentrations of HCFC22	2
Atmospheric Concentrations	Atmospheric ConcentrationsIN2O	ppb	atmospheric concentrations of $\mathrm{N}_2\mathrm{O}$	2
Carbon Cycle	Net Land to Atmosphere FluxICH4	${ m MtCH_4yr^{-1}}$	net flux of CH_4 from the land to the atmosphere (not including AFOLU and other anthropogenic emissions). A positive value indicates release of CH_4 from the land, a negative value indicates a net land uptake.	2
Carbon Cycle	Net Land to Atmosphere FluxlCH4lEarth System Feedbacks	${ m MtCH_4yr^{-1}}$	net flux of CH_4 from the land to the atmosphere (not including AFOLU and other anthropogenic emissions) due to Earth System Feedbacks. A positive value indicates release of CH_4 from the land, a negative value indicates a net land up- take.	2
Carbon Cycle	Net Land to Atmosphere FluxlCH4lEarth System Feed- backslOther	${ m MtCH_4yr^{-1}}$	net flux of CH_4 from the land to the atmosphere (not including AFOLU and other anthropogenic emissions) due to non-permafrost feedbacks. A positive value indicates release of CH_4 from the land, a negative value indicates a net land up- take. Please specify in a comment on the com- ments sheet, which feedbacks are included here.	2

Table S4. Continued.

Category	Variable	Unit	Definition	Tier
Carbon Cycle	Net Land to Atmosphere Flux CH4 Earth System Feed- backs Permafrost	${ m MtCH_4yr^{-1}}$	net flux of CH_4 from the land to the atmosphere (not including AFOLU and other anthropogenic emissions) due to the permafrost feedback. A positive value indicates release of CH_4 from the land, a negative value indicates a net land up- take.	2
Carbon Cycle	Net Land to Atmosphere Flux/CO2	${\rm MtCO_2yr^{-1}}$	net flux of CO_2 from the land to the atmosphere (not including AFOLU and other anthropogenic emissions). A positive value indicates release of CO_2 from the land, a negative value indicates a net land uptake.	2
Carbon Cycle	Net Land to Atmosphere Flux CO2 Earth System Feedbacks	${\rm MtCO_2yr^{-1}}$	net flux of CO_2 from the land to the atmosphere (not including AFOLU and other anthropogenic emissions) due to Earth System Feedbacks. A positive value indicates release of CO_2 from the land, a negative value indicates a net land up- take.	2
Carbon Cycle	Net Land to Atmosphere FluxICO2lEarth System Feed- backslOther	${\rm MtCO_2yr}^{-1}$	net flux of CO_2 from the land to the atmosphere (not including AFOLU and other anthropogenic emissions) due to non-permafrost feedbacks. A positive value indicates release of CO_2 from the land, a negative value indicates a net land up- take. Please specify in a comment on the com- ments sheet, which feedbacks are included here.	2

Table S4. Continued.

Category	Variable	Unit	Definition	Tier
Carbon Cycle	Net Land to Atmosphere Flux CO2 Earth System Feed- backs Permafrost	${\rm MtCO_2yr^{-1}}$	net flux of CO_2 from the land to the atmosphere (not including AFOLU and other anthropogenic emissions) due to the permafrost feedback. A positive value indicates release of CO_2 from the land, a negative value indicates a net land up- take.	2
Carbon Cycle	Net Ocean to Atmosphere FluxICH4	${ m MtCH_4yr^{-1}}$	net flux of CH_4 from the ocean to the at- mosphere (not including anthropogenic emis- sions). A positive value indicates release of CH_4 from the ocean, a negative value indicates a net ocean uptake.	2
Carbon Cycle	Net Ocean to Atmosphere FluxICO2	${\rm MtCO_2yr^{-1}}$	cumulative net flux of CO_2 from the ocean to the atmosphere (not including anthropogenic emissions). A positive value indicates release of CO_2 from the ocean, a negative value indicates a net ocean uptake.	2
Carbon Cycle	Cumulative Net Land to Atmosphere FluxICH4	MtCH ₄	cumulative net flux of CH_4 from the land to the atmosphere (not including AFOLU and other anthropogenic emissions). A positive value in- dicates release of CH_4 from the land, a negative value indicates a net land uptake.	2
Carbon Cycle	Cumulative Net Land to Atmosphere FluxICH4 Earth System Feedbacks	MtCH ₄	cumulative net flux of CH_4 from the land to the atmosphere (not including AFOLU and other anthropogenic emissions) due to Earth System Feedbacks. A positive value indicates release of CH_4 from the land, a negative value indicates a net land uptake.	2

Table S	4. Continued.
---------	----------------------

Category	Variable	Unit	Definition	Tier
Carbon Cycle	Cumulative Net Land to Atmo- sphere FluxlCH4lEarth System Feed- backslOther	MtCH ₄	cumulative net flux of CH_4 from the land to the atmosphere (not including AFOLU and other anthropogenic emissions) due to non- permafrost feedbacks. A positive value indi- cates release of CH_4 from the land, a negative value indicates a net land uptake. Please spec- ify in a comment on the comments sheet, which feedbacks are included here.	2
Carbon Cycle	Cumulative Net Land to Atmo- sphere FluxICH4lEarth System Feed- backslPermafrost	MtCH ₄	cumulative net flux of CH_4 from the land to the atmosphere (not including AFOLU and other anthropogenic emissions) due to the permafrost feedback. A positive value indicates release of CH_4 from the land, a negative value indicates a net land uptake.	2
Carbon Cycle	Cumulative Net Land to Atmosphere FluxICO2	MtCO ₂	cumulative net flux of CO_2 from the land to the atmosphere (not including AFOLU and other anthropogenic emissions). A positive value in- dicates release of CO_2 from the land, a negative value indicates a net land uptake.	2
Carbon Cycle	Cumulative Net Land to Atmosphere Flux CO2 Earth System Feedbacks	MtCO ₂	cumulative net flux of CO_2 from the land to the atmosphere (not including AFOLU and other anthropogenic emissions) due to Earth System Feedbacks. A positive value indicates release of CO_2 from the land, a negative value indicates a net land uptake.	2

Table S4. Continued.

Category	Variable	Unit	Definition	Tier
Carbon Cycle	Cumulative Net Land to Atmo- sphere FluxlCO2lEarth System Feed- backslOther	MtCO ₂	cumulative net flux of CO_2 from the land to the atmosphere (not including AFOLU and other anthropogenic emissions) due to non- permafrost feedbacks. A positive value indi- cates release of CO_2 from the land, a negative value indicates a net land uptake. Please spec- ify in a comment on the comments sheet, which feedbacks are included here.	2
Carbon Cycle	Cumulative Net Land to Atmo- sphere Flux/CO2/Earth System Feed- backs/Permafrost	MtCO ₂	cumulative net flux of CO_2 from the land to the atmosphere (not including AFOLU and other anthropogenic emissions) due to the permafrost feedback. A positive value indicates release of CO_2 from the land, a negative value indicates a net land uptake.	2
Carbon Cycle	Cumulative Net Ocean to Atmosphere FluxICH4	MtCH ₄	cumulative net flux of CH_4 from the ocean to the atmosphere (not including anthropogenic emissions). A positive value indicates release of CH_4 from the ocean, a negative value indicates a net ocean uptake.	2
Carbon Cycle	Cumulative Net Ocean to Atmosphere FluxICO2	MtCO ₂	cumulative net flux of CO_2 from the ocean to the atmosphere (not including anthropogenic emissions). A positive value indicates release of CO_2 from the ocean, a negative value indicates a net ocean uptake.	2

Table S4. Continued.

Category	Variable	Unit	Definition	Tie
Carbon Cycle	Carbon PoollAtmosphere	$MtCO_2$	total amount of CO_2 in the atmospheric carbon pool	2
Carbon Cycle	Carbon PoollSoil	$MtCO_2$	total amount of CO_2 in the soil carbon pool	2
Carbon Cycle	Carbon PoollDetritus	$MtCO_2$	total amount of CO_2 in the detritus carbon pool	2
Carbon Cycle	Carbon PoollPlant	$MtCO_2$	total amount of CO_2 in the plant carbon pool	2
Carbon Cycle	Net Primary Productivity	${\rm MtCO_2yr^{-1}}$	global total net primary productivity	2
CCS	Carbon Sequestration	${\rm MtCO_2 yr^{-1}}$	total carbon dioxide emissions captured and stored	1
CCS	Carbon Sequestration CCS	${\rm MtCO_2yr^{-1}}$	total carbon dioxide emissions captured and stored in geological deposits (e.g. in depleted oil and gas fields, unmined coal seams, saline aquifers) and the deep ocean, stored amounts should be reported as positive numbers	2
CCS	Carbon Sequestration CCS Biomass	${ m MtCO_2yr^{-1}}$	total carbon dioxide emissions captured from bioenergy use and stored in geological deposits (e.g. in depleted oil and gas fields, unmined coal seams, saline aquifers) and the deep ocean, stored amounts should be reported as positive numbers	2
CCS	Carbon Sequestration CCS Fossil	${\rm MtCO_2yr}^{-1}$	total carbon dioxide emissions captured from fossil fuel use and stored in geological deposits (e.g. in depleted oil and gas fields, unmined coal seams, saline aquifers) and the deep ocean, stored amounts should be reported as positive numbers	2

Category	Variable	Unit	Definition	Tier
CCS	Carbon SequestrationlDirect Air Cap- ture	${\rm MtCO_2yr^{-1}}$	total carbon dioxide sequestered through direct air capture	2
CCS	Carbon Sequestration Enhanced Weath- ering	${ m MtCO_2yr^{-1}}$	total carbon dioxide sequestered through en- hanced weathering	2
CCS	Carbon SequestrationlFeedstocks	${\rm MtCO_2yr^{-1}}$	total carbon dioxide sequestered in feedstocks (e.g., lubricants, asphalt, plastics)	2
CCS	Carbon Sequestration Land Use	${ m MtCO_2yr^{-1}}$	total carbon dioxide sequestered through land- based sinks (e.g., afforestation, soil carbon en- hancement, biochar)	2
CCS	Carbon Sequestration Land UselAfforestation	${ m MtCO_2yr^{-1}}$	total carbon dioxide sequestered through af- forestation	2
CCS	Carbon Sequestration Land UselBiochar	${ m MtCO_2yr^{-1}}$	total carbon dioxide sequestered through biochar	2
CCS	Carbon Sequestration Land UselOther	${ m MtCO_2yr^{-1}}$	total carbon dioxide sequestered through other land-based mitigation techniques	2
CCS	Carbon Sequestration Land Use Soil Carbon Management	${ m MtCO_2yr^{-1}}$	total carbon dioxide sequestered through soil carbon management techniques	2
CCS	Carbon Sequestration Other	$MtCO_2 yr^{-1}$	total carbon dioxide sequestered through other techniques (please provide a definition of other sources in this category in the 'comments' tab)	2
Climate	Airborne FractionICO2	Dimensionless	fraction of (cumulative) emitted CO_2 which is still in the atmosphere	2
Climate	Effective Climate Sensitivity	К	effective climate sensitivity over time, here de- fined as ECS_eff(t) = Delta T(t) * RF2x / (RF(t) - dH/dt) where ECS_eff is effective climate sensitivity, Delta T(t) is Surface Air Tempera- ture Change, RF2x is radiative forcing due to a doubling of atmospheric CO ₂ concentrations, RF(t) is radiative forcing and dH/dt is the en- ergy imbalance at the top of the atmosphere (likely equal to ocean heat uptake in most of our reduced complexity models)	2

Table S4. Continued.

Category	Variable	Unit	Definition	Tier
Climate	Effective Climate Feedback	$\mathrm{Wm}^{-2}\mathrm{K}^{-1}$	effective climate feedback over time, here de- fined as lambda_eff(t) = $(RF(t) - dH/dt) / Delta$ T(t) where lambda_eff is effective climate feed- back, Delta T(t) is Surface Air Temperature Change, RF(t) is radiative forcing and dH/dt is the energy imbalance at the top of the at- mosphere (likely equal to ocean heat uptake in most of our reduced complexity models)	2
Climate	Heat Uptake	$ m ZJyr^{-1}$	total Heat Uptake of the Earth System (ZJ is zetta joules i.e. 10^{21} J), equivalent to the the energy imbalance at the top of the atmosphere.	1
Climate	Heat UptakelIce	ZJyr^{-1}	ice Heat Uptake (ZJ is zetta joules i.e. 10 ²¹ J)	2
Climate	Heat UptakelLand	$\mathrm{Z}\mathrm{Jyr}^{-1}$	land Heat Uptake (ZJ is zetta joules i.e. 10^{21} J)	2
Climate	Heat UptakelOcean	$\rm ZJyr^{-1}$	ocean Heat Uptake through surface layer of the ocean (ZJ is zetta joules i.e. 10^{21} J)	1
Climate	Heat UptakelOther	ZJyr^{-1}	other Heat Uptake (ZJ is zetta joules i.e. 10^{21} J). Please specify what "other" is in the Comments sheet.	2
Climate	Heat ContentlOcean	ZJ	total ocean heat content	2
Climate	Heat ContentlOceanl0-700m	ZJ	ocean heat content between 0 and 700m	2
Climate	Heat ContentlOceanl700-2000m	ZJ	ocean heat content between 700 and 2000m	2

Category	Variable	Unit	Definition	Tier
Climate	Instantaneous TCRE	K/MtCO ₂	warming per unit cumulative CO_2 (this should simply be your 'Surface Air Tem- perature Change' divided by 'Cumulative EmissionslCO ₂ ')	2
Climate	Surface Air Ocean Blended Tempera- ture Change	К	change in blended surface air/ocean temper- taure (i.e. quantity which is directly compara- ble with observational datasets e.g. HadCRUT4 or best proxy thereof). Please note reference pe- riod in comment sheet.	2
Climate	Surface Air Temperature Change	К	change in surface air tempertaure (i.e. 2m air temperature or best proxy thereof). Please note reference period in comment sheet.	1
Climate	Surface Ocean Temperature Change	K	change in surface layer ocean tempertaure. Please note reference period in comment sheet.	1
Cumulative Emissions	Cumulative EmissionslCO2	MtCO ₂	cumulative carbon dioxide emissions	1
Cumulative Emissions	Cumulative Emissions CO2 MAGICC AFOLU	MtCO ₂	cumulative carbon dioxide emissions from agri- culture, forestry and other land use (IPCC cat- egory 3), excluding any fossil-fuel based emis- sions in the Agricultural sector (hence not iden- tical to WG3 AFOLU)	2
Cumulative Emissions	Cumulative Emissions CO2 MAGICC Fossil and Industrial	MtCO ₂	cumulative carbon dioxide emissions from en- ergy use on supply and demand side (IPCC cat- egory 1A, 1B), industrial processes (IPCC cat- egory 2), waste (IPCC category 4) and other (IPCC category 5)	2
Cumulative Emissions	Cumulative Emissions CO2 Other	MtCO ₂	cumulative carbon dioxide emissions from other sources (please provide a definition of other sources in this category in the 'comments' tab)	2

Category	Variable Ur	nit	Definition	Tier
Effective Ra- diative Forcing	Effective Radiative Forcing W	m ⁻²	effective radiative forcing from all anthro- pogenic and natural sources (after stratospheric temperature adjustments and rapid adjustments)	1
Effective Ra- diative Forcing	Effective Radiative Forc- W inglAnthropogenic	m ⁻²	effective radiative forcing from all anthro- pogenic sources (after stratospheric tempera- ture adjustments and rapid adjustments)	1
Effective Ra- diative Forcing	Effective Radiative Forc- W inglAnthropogeniclAerosols	m ⁻²	effective radiative forcing from aerosols (after stratospheric temperature adjustments and rapid adjustments)	1
Effective Ra- diative Forcing	Effective Radiative W ForcinglAnthropogeniclAerosolslAerosols- cloud Interactions	m ⁻²	effective radiative forcing from indirect effects of aerosols on clouds (after stratospheric tem- perature adjustments and rapid adjustments)	2
Effective Ra- diative Forcing	Effective Radiative W ForcinglAnthropogeniclAerosolslAerosols- radiation Interactions	m ⁻²	effective radiative forcing from aerosol- radiative effects (after stratospheric tempera- ture adjustments and rapid adjustments), note that the breakdown of this variable can come in multiple different forms	2
Effective Ra- diative Forcing	Effective Radiative W ForcinglAnthropogeniclAerosolslAerosols- radiation InteractionslBC and OClBC	m ⁻²	effective radiative forcing from aerosol- radiative effects from black carbon emissions (after stratospheric temperature adjustments and rapid adjustments)	2
Effective Ra- diative Forcing	Effective Radiative W ForcinglAnthropogeniclAerosolslAerosols- radiation InteractionslBC and OClBClBiomass Burning	m ⁻²	effective radiative forcing from aerosol- radiative effects from black carbon biomass burning emissions (after stratospheric tempera- ture adjustments and rapid adjustments)	2

Category	Variable	Unit	Definition	Tier
Effective Ra- diative Forcing	Effective Radiative ForcinglAnthropogeniclAerosolslAerosols radiation InteractionslBC and OClBClFossil and Industrial	Wm ⁻²	effective radiative forcing from aerosol- radiative effects from black carbon fossil and industrial emissions (after stratospheric temperature adjustments and rapid adjustments)	2
Effective Ra- diative Forcing	Effective Radiative ForcinglAnthropogeniclAerosolslAerosols radiation InteractionslBC and OClOC	Wm ⁻²	effective radiative forcing from aerosol- radiative effects from organic carbon emissions (after stratospheric temperature adjustments and rapid adjustments)	2
Effective Ra- diative Forcing	Effective Radiative ForcinglAnthropogeniclAerosolslAerosols radiation InteractionslBC and OClOClBiomass Burning	Wm ⁻²	effective radiative forcing from aerosol- radiative effects from organic carbon biomass burning emissions (after stratospheric tempera- ture adjustments and rapid adjustments)	2
Effective Ra- diative Forcing	Effective Radiative Forcing Anthropogenic Aerosols Aerosols radiation Interactions BC and OC OC Fossil and Industrial	Wm ⁻²	effective radiative forcing from aerosol- radiative effects from organic carbon fossil and industrial emissions (after stratospheric temperature adjustments and rapid adjustments)	2
Effective Ra- diative Forcing	Effective Radiative Forcing Anthropogenic Aerosols Aerosols radiation Interactions Biomass Burning	Wm ⁻²	effective radiative forcing from aerosol- radiative effects from biomass burning emissions (after stratospheric temperature adjustments and rapid adjustments)	2

Category	Variable	Unit	Definition	Tier
Effective Ra- diative Forcing	Effective Radiative ForcinglAnthropogeniclAerosolslAerosols radiation InteractionslBiomass Burn- inglBC and OC	Wm ⁻²	effective radiative forcing from aerosol- radiative effects from black and organic carbon biomass burning emissions (after stratospheric temperature adjustments and rapid adjustments)	2
Effective Ra- diative Forcing	Effective Radiative Forcing Anthropogenic Aerosols Aerosols radiation Interactions Biomass Burn- ing BC and OC BC	Wm ⁻²	effective radiative forcing from aerosol- radiative effects from black carbon biomass burning emissions (after stratospheric tempera- ture adjustments and rapid adjustments)	2
Effective Ra- diative Forcing	Effective Radiative Forcing Anthropogenic Aerosols Aerosols radiation Interactions Biomass Burn- ing BC and OC OC	Wm ⁻²	effective radiative forcing from aerosol- radiative effects from organic carbon biomass burning emissions (after stratospheric tempera- ture adjustments and rapid adjustments)	2
Effective Ra- diative Forcing	Effective Radiative Forcing Anthropogenic Aerosols Aerosols radiation Interactions Biomass Burn- ing NH3	Wm ⁻²	effective radiative forcing from aerosol- radiative effects from ammonia biomass burning emissions (after stratospheric tempera- ture adjustments and rapid adjustments)	2
Effective Ra- diative Forcing	Effective Radiative Forcing Anthropogenic Aerosols Aerosols radiation Interactions Biomass Burn- ing Nitrate	Wm ⁻²	effective radiative forcing from aerosol- radiative effects from nitrate precursor biomass burning emissions (after stratospheric tempera- ture adjustments and rapid adjustments)	2

Table S4. Continued.

Category	Variable Unit	Definition	Tier
Effective Ra- diative Forcing	Effective Radiative Wm ForcinglAnthropogeniclAerosolslAerosols- radiation InteractionslBiomass Burn- inglSulfate	⁻² effective radiative forcing from aerosol- radiative effects from sulfate precursor biomass burning emissions (after stratospheric tempera- ture adjustments and rapid adjustments)	2
Effective Ra- diative Forcing	Effective Radiative Wm ForcinglAnthropogeniclAerosolslAerosols- radiation InteractionslFossil and Industrial	² effective radiative forcing from aerosol- radiative effects from fossil and industrial emissions (after stratospheric temperature adjustments and rapid adjustments)	2
Effective Ra- diative Forcing	Effective Radiative Wm ForcinglAnthropogeniclAerosolslAerosols- radiation InteractionslFossil and IndustriallBC and OC	² effective radiative forcing from aerosol- radiative effects from black and organic carbon fossil and industrial emissions (after strato- spheric temperature adjustments and rapid adjustments)	2
Effective Ra- diative Forcing	Effective Radiative Wm ForcinglAnthropogeniclAerosolslAerosols- radiation InteractionslFossil and IndustriallBC and OCIBC	⁻² effective radiative forcing from aerosol- radiative effects from black carbon fossil and industrial emissions (after stratospheric temperature adjustments and rapid adjustments)	2
Effective Ra- diative Forcing	Effective Radiative Wm ForcinglAnthropogeniclAerosolslAerosols- radiation InteractionslFossil and IndustriallBC and OClOC	effective radiative forcing from aerosol- radiative effects from organic carbon fossil and industrial emissions (after stratospheric temperature adjustments and rapid adjustments)	2

Category	Variable	Unit	Definition	Tier
Effective Ra- diative Forcing	Effective Radiative ForcinglAnthropogeniclAerosolslAerosols radiation InteractionslFossil and IndustriallNH3	Wm ⁻²	effective radiative forcing from aerosol- radiative effects from ammonia fossil and industrial emissions (after stratospheric tem- perature adjustments and rapid adjustments)	2
Effective Ra- diative Forcing	Effective Radiative Forcing Anthropogenic Aerosols Aerosols radiation Interactions Fossil and Industrial Nitrate	Wm ⁻²	effective radiative forcing from aerosol- radiative effects from nitrate precursor fossil and industrial emissions (after stratospheric temperature adjustments and rapid adjustments)	2
Effective Ra- diative Forcing	Effective Radiative ForcinglAnthropogeniclAerosolslAerosols radiation InteractionslFossil and IndustriallSulfate	Wm ⁻²	effective radiative forcing from aerosol- radiative effects from sulfate precursor fossil and industrial emissions (after stratospheric temperature adjustments and rapid adjustments)	2
Effective Ra- diative Forcing	Effective Radiative Forcing Anthropogenic Aerosols Aerosols radiation Interactions Mineral Dust	Wm ⁻²	effective radiative forcing from aerosol- radiative effects from mineral dust emissions (after stratospheric temperature adjustments and rapid adjustments)	2
Effective Ra- diative Forcing	Effective Radiative Forcing Anthropogenic Aerosols Aerosols radiation Interactions NH3	Wm ⁻²	effective radiative forcing from aerosol- radiative effects from ammonia emissions (after stratospheric temperature adjustments and rapid adjustments)	2

Category	Variable	Unit	Definition	Tier
Effective Ra- diative Forcing	Effective Radiative Forcing Anthropogenic Aerosols Aerosols- radiation Interactions NH3 Biomass Burning	Wm^{-2}	effective radiative forcing from aerosol- radiative effects from ammonia biomass burning emissions (after stratospheric tempera- ture adjustments and rapid adjustments)	2
Effective Ra- diative Forcing	Effective Radiative Forcing Anthropogenic Aerosols Aerosols- radiation Interactions NH3 Fossil and Industrial	Wm ⁻²	effective radiative forcing from aerosol- radiative effects from ammonia fossil and industrial emissions (after stratospheric tem- perature adjustments and rapid adjustments)	2
Effective Ra- diative Forcing	Effective Radiative ForcinglAnthropogeniclAerosolslAerosols- radiation InteractionslNitrate	Wm^{-2}	effective radiative forcing from aerosol- radiative effects from nitrate precursor emissions (after stratospheric temperature adjustments and rapid adjustments)	2
Effective Ra- diative Forcing	Effective Radiative ForcinglAnthropogeniclAerosolslAerosols- radiation InteractionslNitratelBiomass Burning	Wm ⁻²	effective radiative forcing from aerosol- radiative effects from nitrate precursor biomass burning emissions (after stratospheric tempera- ture adjustments and rapid adjustments)	2
Effective Ra- diative Forcing	Effective Radiative ForcinglAnthropogeniclAerosolslAerosols- radiation InteractionslNitratelFossil and Industrial	Wm ⁻²	effective radiative forcing from aerosol- radiative effects from nitrate fossil and indus- trial emissions (after stratospheric temperature adjustments and rapid adjustments)	2

Category	Variable	Unit	Definition	Tier
Effective Ra- diative Forcing	Effective Radiative ForcinglAnthropogeniclAerosolslAerosols radiation InteractionslOther	Wm ⁻²	effective radiative forcing from aerosol- radiative effects not covered in the other categories (after stratospheric temperature adjustments and rapid adjustments) (please specify in comments)	2
Effective Ra- diative Forcing	Effective Radiative Forcing Anthropogenic Aerosols Aerosols radiation Interactions Sulfate	Wm ⁻²	effective radiative forcing from aerosol- radiative effects from sulfate precursor emissions (after stratospheric temperature adjustments and rapid adjustments)	2
Effective Ra- diative Forcing	Effective Radiative Forcing Anthropogenic Aerosols Aerosols radiation Interactions Sulfate Biomass Burning	Wm ⁻²	effective radiative forcing from aerosol- radiative effects from sulfate precursor biomass burning emissions (after stratospheric tempera- ture adjustments and rapid adjustments)	2
Effective Ra- diative Forcing	Effective Radiative Forcing Anthropogenic Aerosols Aerosols radiation Interactions Sulfate Fossil and Industrial	Wm ⁻²	effective radiative forcing from aerosol- radiative effects from sulfate precursor fossil and industrial emissions (after stratospheric temperature adjustments and rapid adjustments)	2
Effective Ra- diative Forcing	Effective Radiative Forc- ing Anthropogenic Albedo Change	Wm^{-2}	effective radiative forcing from albedo change (after stratospheric temperature adjustments and rapid adjustments)	2

Category	Variable	Unit	Definition	Tier
Effective Ra- diative Forcing	Effective Radiative Forc- inglAnthropogeniclCH4	${\rm Wm^{-2}}$	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of CH_4	2
Effective Ra- diative Forcing	Effective Radiative Forc- inglAnthropogeniclCO2	${\rm Wm^{-2}}$	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of CO ₂	1
Effective Ra- diative Forcing	Effective Radiative ForcinglAnthropogeniclF-Gases	${\rm Wm^{-2}}$	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of F-gases	2
Effective Ra- diative Forcing	Effective Radiative ForcinglAnthropogeniclF-GaseslHFC	Wm ⁻²	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of hydrofluorocarbons (HFCs, as defined by Ta- ble 8.A.1 of AR5) not controlled under the Montreal protocol	2
Effective Ra- diative Forcing	Effective Radiative ForcinglAnthropogeniclF- GaseslHFClHFC125	${\rm Wm^{-2}}$	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of HFC125	2
Effective Ra- diative Forcing	Effective Radiative ForcinglAnthropogeniclF- GaseslHFClHFC134a	${\rm Wm^{-2}}$	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of HFC134a	2
Effective Ra- diative Forcing	EffectiveRadiativeForcinglAnthropogeniclF-GaseslHFClHFC143a	${\rm Wm^{-2}}$	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of HFC143a	2
Effective Ra- diative Forcing	EffectiveRadiativeForcinglAnthropogeniclF-GaseslHFClHFC152a	${\rm Wm^{-2}}$	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of HFC152a	2
Effective Ra- diative Forcing	Effective Radiative ForcinglAnthropogeniclF- GaseslHFClHFC227ea	${\rm Wm^{-2}}$	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of HFC227ea	2

Category	Variable		Unit	Definition	Tier
Effective Ra- diative Forcing	Effective Rad ForcinglAnthropogeniclF- GaseslHFClHFC23	diative	Wm^{-2}	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of HFC23	2
Effective Ra- diative Forcing	Effective Rad ForcinglAnthropogeniclF- GaseslHFClHFC236fa	diative	Wm^{-2}	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of HFC236fa	2
Effective Ra- diative Forcing	Effective Rad ForcinglAnthropogeniclF- GaseslHFClHFC245fa	diative	Wm^{-2}	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of HFC245fa	2
Effective Ra- diative Forcing	Effective Rad ForcinglAnthropogeniclF- GaseslHFClHFC32	diative	Wm^{-2}	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of HFC32	2
Effective Ra- diative Forcing	Effective Rad ForcinglAnthropogeniclF- GaseslHFClHFC365mfc	diative	Wm^{-2}	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of HFC365mfc	2
Effective Ra- diative Forcing	Effective Rad ForcinglAnthropogeniclF- GaseslHFClHFC4310mee	diative	Wm^{-2}	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of HFC43-10mee	2
Effective Ra- diative Forcing	Effective Rad ForcinglAnthropogeniclF-GasesIN	diative NF3	Wm^{-2}	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of nitrogen trifluoride (NF_3)	2
Effective Ra- diative Forcing	Effective Rad ForcinglAnthropogeniclF-GaseslP	diative PFC	${ m Wm^{-2}}$	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of perfluorocarbons (PFCs, as defined by Table 8.A.1 of AR5)	2

Category	Variable		Unit	Definition	Tier
Effective Ra- diative Forcing	Effective ForcinglAnthropogeniclF- GaseslPFClC2F6	Radiative	${ m Wm^{-2}}$	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of C_2F_6	2
Effective Ra- diative Forcing	Effective ForcinglAnthropogeniclF- GaseslPFClC3F8	Radiative	Wm^{-2}	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of $\rm C_3F_8$	2
Effective Ra- diative Forcing	Effective ForcinglAnthropogeniclF- GaseslPFClC4F10	Radiative	${\rm Wm^{-2}}$	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of C_4F_10	2
Effective Ra- diative Forcing	Effective ForcinglAnthropogeniclF- GaseslPFClC5F12	Radiative	Wm^{-2}	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of C_5F_12	2
Effective Ra- diative Forcing	Effective ForcinglAnthropogeniclF- GaseslPFClC6F14	Radiative	${ m Wm^{-2}}$	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of C_6F_14	2
Effective Ra- diative Forcing	Effective ForcinglAnthropogeniclF- GaseslPFClC7F16	Radiative	Wm^{-2}	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of C_7F_16	2
Effective Ra- diative Forcing	Effective ForcinglAnthropogeniclF- GaseslPFClC8F18	Radiative	Wm^{-2}	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of $\rm C_8F_{1}8$	2
Effective Ra- diative Forcing	Effective Forcing Anthropogenic F- Gases PFClcC4F8	Radiative	${ m Wm^{-2}}$	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of $\rm c-C_4F_8$	2

Category	Variable	Unit	Definition	Tier
Effective Ra- diative Forcing	Effective Radiative ForcinglAnthropogeniclF- GaseslPFClCF4	${ m Wm^{-2}}$	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of ${\rm CF}_4$	2
Effective Ra- diative Forcing	Effective Radiative ForcinglAnthropogeniclF-GaseslSF6	${\rm Wm^{-2}}$	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of sulfur hexafluoride (SF_6)	2
Effective Ra- diative Forcing	Effective Radiative ForcinglAnthropogeniclF-GaseslSO2F2	${ m Wm^{-2}}$	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of sulfuryl fluoride (SO_2F_2)	2
Effective Ra- diative Forcing	Effective Radiative Forc- inglAnthropogeniclMontreal Gases	${ m Wm^{-2}}$	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of Montreal gases	2
Effective Ra- diative Forcing	Effective Radiative Forc- inglAnthropogeniclMontreal GaseslCCl4	Wm^{-2}	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of ${\rm CCl}_4$	2
Effective Ra- diative Forcing	Effective Radiative Forc- inglAnthropogeniclMontreal GaseslCFC	${\rm Wm^{-2}}$	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of CFC gases (as defined by Table 8.A.1 of AR5)	2
Effective Ra- diative Forcing	Effective Radiative Forc- inglAnthropogeniclMontreal GaseslCFClCFC11	Wm^{-2}	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of CFC11	2
Effective Ra- diative Forcing	Effective Radiative Forc- inglAnthropogeniclMontreal GaseslCFClCFC113	${\rm Wm^{-2}}$	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of CFC113	2

Category	Variable		Unit	Definition	Tier
Effective Ra- diative Forcing	Effective Radiative inglAnthropogeniclMontreal GaseslCFClCFC114	Forc-	${ m Wm^{-2}}$	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of CFC114	2
Effective Ra- diative Forcing	Effective Radiative inglAnthropogeniclMontreal GaseslCFClCFC115	Forc-	${ m Wm^{-2}}$	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of CFC115	2
Effective Ra- diative Forcing	Effective Radiative inglAnthropogeniclMontreal GaseslCFClCFC12	Forc-	${\rm Wm^{-2}}$	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of CFC12	2
Effective Ra- diative Forcing	Effective Radiative I inglAnthropogeniclMontreal GaseslCH2Cl2	Forc-	${ m Wm^{-2}}$	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of CH ₂ Cl ₂	2
Effective Ra- diative Forcing	Effective Radiative inglAnthropogeniclMontreal GaseslCH3Br	Forc-	${\rm Wm^{-2}}$	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of CH_3Br	2
Effective Ra- diative Forcing	Effective Radiative inglAnthropogeniclMontreal GaseslCH3CCl3	Forc-	Wm^{-2}	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of $\rm CH_3 \rm CCl_3$	2
Effective Ra- diative Forcing	Effective Radiative inglAnthropogeniclMontreal GaseslCH3Cl	Forc-	${\rm Wm^{-2}}$	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of CH_3Cl	2

Category	Variable		Unit	Definition	Tier
Effective Ra- diative Forcing	Effective Radiative inglAnthropogeniclMontreal GaseslCHCl3	Forc-	${\rm Wm^{-2}}$	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of $\rm CHCl_3$	2
Effective Ra- diative Forcing	Effective Radiative inglAnthropogeniclMontreal GaseslHalon1202	Forc-	${\rm Wm^{-2}}$	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of Halon-1202	2
Effective Ra- diative Forcing	Effective Radiative inglAnthropogeniclMontreal GaseslHalon1211	Forc-	${\rm Wm^{-2}}$	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of Halon-1211	2
Effective Ra- diative Forcing	Effective Radiative inglAnthropogeniclMontreal GaseslHalon1301	Forc-	${\rm Wm^{-2}}$	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of Halon-1301	2
Effective Ra- diative Forcing	Effective Radiative inglAnthropogeniclMontreal GaseslHalon2402	Forc-	${\rm Wm^{-2}}$	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of Halon-2402	2
Effective Ra- diative Forcing	Effective Radiative inglAnthropogeniclMontreal GaseslHCFC141b	Forc-	$\rm Wm^{-2}$	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of HCFC141b	2
Effective Ra- diative Forcing	Effective Radiative inglAnthropogeniclMontreal GaseslHCFC142b	Forc-	${\rm Wm^{-2}}$	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of HCFC22	2

Category	Variable		Unit	Definition	Tier
Effective Ra- diative Forcing	Effective Radiative inglAnthropogeniclMontreal GaseslHCFC22	Forc-	Wm ⁻²	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of HCFC22	2
Effective Ra- diative Forcing	Effective Radiative inglAnthropogeniclN2O	Forc-	Wm ⁻²	effective radiative forcing (after stratospheric temperature adjustments and rapid adjustments) of $\rm N_2O$	2
Effective Ra- diative Forcing	Effective Radiative inglAnthropogeniclOther	Forc-	Wm ⁻²	effective radiative forcing from factors not cov- ered in other categories (after stratospheric tem- perature adjustments and rapid adjustments)	2
Effective Ra- diative Forcing	Effective Radiative inglAnthropogeniclOtherlBC Snow	Forc- on	${ m Wm^{-2}}$	effective radiative forcing from black carbon on snow (after stratospheric temperature adjust- ments and rapid adjustments)	2
Effective Ra- diative Forcing	Effective Radiative inglAnthropogeniclOtherlContrails and Contrail-induced Cirrus	Forc- s	Wm ⁻²	effective radiative forcing from contrails and contrail-induced cirrus (after stratospheric tem- perature adjustments and rapid adjustments)	2
Effective Ra- diative Forcing	Effective Radiative inglAnthropogeniclOtherlCH4 dation Stratospheric H2O	Forc- Oxi-	Wm ⁻²	effective radiative forcing from methane oxi- dation of stratospheric H2O (after stratospheric temperature adjustments and rapid adjustments)	2
Effective Ra- diative Forcing	Effective Radiative inglAnthropogeniclOtherlOther WMGHGs	Forc-	Wm ⁻²	effective radiative forcing from WMGHG not covered in other categories (after stratospheric temperature adjustments and rapid adjustments)	2
Effective Ra- diative Forcing	Effective Radiative inglAnthropogeniclStratospheric Ozone	Forc-	Wm^{-2}	effective radiative forcing from stratospheric ozone (after stratospheric temperature adjust- ments and rapid adjustments)	2

Table S4. Continued.

Category	Variable	Unit	Definition	Tier
Effective Ra- diative Forcing	Effective Radiative Forc- inglAnthropogeniclTropospheric Ozone	${ m Wm^{-2}}$	effective radiative forcing from tropospheric ozone (after stratospheric temperature adjust- ments and rapid adjustments)	2
Effective Ra- diative Forcing	Effective Radiative ForcinglNatural	${ m Wm^{-2}}$	effective radiative forcing from all natural drivers, i.e. solar and volcanic forcing (after stratospheric temperature adjustments and rapid adjustments)	2
Effective Ra- diative Forcing	Effective Radiative Forc- inglNaturallSolar	${\rm Wm^{-2}}$	effective radiative forcing from variations in so- lar irradience (after stratospheric temperature adjustments and rapid adjustments)	2
Effective Ra- diative Forcing	Effective Radiative Forc- inglNaturallVolcanic	${ m Wm^{-2}}$	effective radiative forcing due to volcanic erup- tions (after stratospheric temperature adjust- ments and rapid adjustments)	2
Emissions	EmissionslBC	${\rm MtBCyr}^{-1}$	total black carbon emissions	1
Emissions	EmissionslBClMAGICC AFOLU	MtBCyr ⁻¹	black carbon emissions from agriculture, forestry and other land use (IPCC category 3), excluding any fossil-fuel based emissions in the Agricultural sector (hence not identical to WG3 AFOLU)	2
Emissions	Emissions/BCIMAGICC Fossil and In- dustrial	$MtBCyr^{-1}$	black carbon emissions from energy use on sup- ply and demand side (IPCC category 1A, 1B), industrial processes (IPCC category 2), waste (IPCC category 4) and other (IPCC category 5)	2
Emissions	EmissionslBClOther	MtBCyr ⁻¹	black carbon emissions from other sources (please provide a definition of other sources in this category in the 'comments' tab)	2
Emissions	EmissionslCH4	${ m MtCH_4yr^{-1}}$	total methane emissions	1
Emissions	EmissionslCH4lMAGICC AFOLU	${ m MtCH_4yr^{-1}}$	methane emissions from agriculture, forestry and other land use (IPCC category 3), exclud- ing any fossil-fuel based emissions in the Agri- cultural sector (hence not identical to WG3 AFOLU)	2

Table S4. Continued.	Table	S4.	Continued.
----------------------	-------	-----	------------

Category	Variable	Unit	Definition	Tier
Emissions	EmissionslCH4lMAGICC Fossil and Industrial	${ m MtCH_4yr^{-1}}$	methane emissions from energy use on sup- ply and demand side (IPCC category 1A, 1B), industrial processes (IPCC category 2), waste (IPCC category 4) and other (IPCC category 5)	2
Emissions	EmissionslCH4lOther	${ m MtCH_4yr^{-1}}$	methane emissions from other sources (please provide a definition of other sources in this cat- egory in the 'comments' tab)	2
Emissions	EmissionslCO	${\rm MtCOyr}^{-1}$	total carbon monoxide emissions	1
Emissions	EmissionslCOIMAGICC AFOLU	MtCOyr ⁻¹	carbon monoxide emissions from agriculture, forestry and other land use (IPCC category 3), excluding any fossil-fuel based emissions in the Agricultural sector (hence not identical to WG3 AFOLU)	2
Emissions	EmissionslCOlMAGICC Fossil and In- dustrial	MtCOyr ⁻¹	carbon monoxide emissions from energy use on supply and demand side (IPCC category 1A, 1B), industrial processes (IPCC category 2), waste (IPCC category 4) and other (IPCC cat- egory 5)	2
Emissions	EmissionslCOlOther	MtCOyr ⁻¹	carbon monoxide emissions from other sources (please provide a definition of other sources in this category in the 'comments' tab)	2
Emissions	EmissionslCO2	${\rm MtCO_2yr^{-1}}$	total carbon dioxide emissions	1
Emissions	EmissionslCO2lMAGICC AFOLU	$MtCO_2yr^{-1}$	carbon dioxide emissions from agriculture, forestry and other land use (IPCC category 3), excluding any fossil-fuel based emissions in the Agricultural sector (hence not identical to WG3 AFOLU)	2

Category	Variable	Unit	Definition	Tier
Emissions	EmissionslCO2lMAGICC Fossil and Industrial	${\rm MtCO_2yr^{-1}}$	carbon dioxide emissions from energy use on supply and demand side (IPCC category 1A, 1B), industrial processes (IPCC category 2), waste (IPCC category 4) and other (IPCC cat- egory 5)	2
Emissions	Emissions CO2 Other	${ m MtCO_2yr^{-1}}$	carbon dioxide emissions from other sources (please provide a definition of other sources in this category in the 'comments' tab)	2
Emissions	EmissionslF-Gases	${\rm MtCO_2yr^{-1}}$	total F-gas emissions, including sulfur hexaflu- oride (SF ₆), nitrogen trifluoride (NF ₃), sulfuryl fluoride (SO ₂ F ₂), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs)	3
Emissions	EmissionslF-GaseslHFC	${\rm MtCO_2yr^{-1}}$	equivalent species total emissions of hydrofluo- rocarbons (HFCs and HCFCs), provided as ag- gregate CO ₂ -equivalents	3
Emissions	EmissionslF-GaseslHFClHFC125	$ktHFC125yr^{-1}$	total emissions of HFC125	2
Emissions	EmissionslF-GaseslHFClHFC134a	$ktHFC134ayr^{-1}$	total emissions of HFC134a	2
Emissions	EmissionslF-GaseslHFClHFC143a	$ktHFC143ayr^{-1}$	total emissions of HFC143a	2
Emissions	EmissionslF-GaseslHFClHFC152a	$ktHFC152ayr^{-1}$	total emissions of HFC152a	2
Emissions	EmissionslF-GaseslHFClHFC227ea	ktHFC227eayr ⁻	¹ total emissions of HFC227ea	2
Emissions	EmissionslF-GaseslHFClHFC23	$ktHFC23yr^{-1}$	total emissions of HFC23	2
Emissions	EmissionslF-GaseslHFClHFC236fa	ktHFC236fayr	¹ total emissions of HFC236fa	2
Emissions	EmissionslF-GaseslHFClHFC245fa	ktHFC245fayr ⁻	¹ total emissions of HFC245fa	2
Emissions	EmissionslF-GaseslHFClHFC32	$ktHFC32yr^{-1}$	total emissions of HFC32	2
Emissions	EmissionslF-GaseslHFClHFC365mfc	ktHFC365mfcyr	-total emissions of HFC365mfc	2
Emissions	EmissionslF-GaseslHFClHFC4310mee	ktHFC4310meey	yntōlal emissions of HFC43-10mee	2
Emissions	EmissionslF-GaseslNF3	$\rm ktNF_3yr^{-1}$	total emissions of nitrogen trifluoride (NF ₃)	2
Emissions	EmissionslF-GaseslPFC	$\rm ktCF_4 yr^{-1}$	equivalent species total emissions of perfluoro- carbons (PFCs, as defined by Table 8.A.1 of AR5), provided as aggregate CF_4 -equivalents	3

Category	Variable	Unit	Definition	Tier
Emissions	EmissionslF-GaseslPFClC2F6	$\rm ktC_2F_6yr^{-1}$	total emissions of C_2F_6	2
Emissions	EmissionslF-GaseslPFClC3F8	$\rm ktC_3F_8yr^{-1}$	total emissions of C_3F_8	2
Emissions	EmissionslF-GaseslPFClC4F10	$\rm ktC_4F_10yr^{-1}$	total emissions of C_4F_10	2
Emissions	EmissionslF-GaseslPFClC5F12	$\rm ktC_5F_12yr^{-1}$	total emissions of C_5F_12	2
Emissions	EmissionslF-GaseslPFClC6F14	$\rm ktC_6F_14yr^{-1}$	total emissions of C_6F_14	2
Emissions	EmissionslF-GaseslPFClC7F16	$\rm ktC_7F_16yr^{-1}$	total emissions of C_7F_16	2
Emissions	EmissionslF-GaseslPFClC8F18	$\rm ktC_8F_18yr^{-1}$	total emissions of C ₈ F ₁ 8	2
Emissions	EmissionslF-GaseslPFClcC4F8	$\rm ktcC4F8yr^{-1}$	total emissions of $c-C_4F_8$	2
Emissions	Emissions/F-Gases/PFC/CF4	$\rm ktCF_4 yr^{-1}$	total emissions of CF_4	2
Emissions	EmissionslF-GaseslSF6	$\rm ktSF_{6}yr^{-1}$	total emissions of sulfur hexafluoride (SF_6)	2
Emissions	EmissionslF-GaseslSO2F2	$\rm ktSO_2F_2yr^{-1}$	total emissions of sulfuryl fluoride (SO_2F_2)	2
Emissions	EmissionslMontreal Gases	${\rm MtCO_2yr^{-1}}$	equivalent species total Montreal gas emissions, provided as CFC-11 equivalents	3
Emissions	EmissionslMontreal GaseslCCl4	$\rm ktCCl_4 yr^{-1}$	total emissions of CCl ₄	2
Emissions	EmissionslMontreal GaseslCFC	${ m MtCO_2yr^{-1}}$	equivalent species total CFC emissions, pro- vided as CFC-11 equivalents	3
Emissions	EmissionslMontreal GaseslCFClCFC11	$\rm ktCFC11yr^{-1}$	total emissions of CFC11	2
Emissions	EmissionslMontreal GaseslCFClCFC113	$ktCFC113yr^{-1}$	total emissions of CFC113	2
Emissions	EmissionslMontreal GaseslCFClCFC114	$ktCFC114yr^{-1}$	total emissions of CFC114	2

Category	Variable	Unit	Definition	Tier
Emissions	EmissionslMontreal GaseslCFClCFC115	$ktCFC115yr^{-1}$	total emissions of CFC115	2
Emissions	EmissionslMontreal GaseslCFClCFC12	$\rm ktCFC12yr^{-1}$	total emissions of CFC12	2
Emissions	EmissionslMontreal GaseslCH2Cl2	$\rm ktCH_2Cl_2yr^{-1}$	total emissions of CH ₂ Cl ₂	2
Emissions	EmissionslMontreal GaseslCH3Br	$\rm ktCH_3Bryr^{-1}$	total emissions of CH ₃ Br	2
Emissions	EmissionslMontreal GaseslCH3CCl3	ktCH ₃ CCl ₃ yr ⁻¹	¹ total emissions of CH ₃ CCl ₃	2
Emissions	EmissionslMontreal GaseslCH3Cl	$\rm ktCH_3 Clyr^{-1}$	total emissions of CH ₃ Cl	2
Emissions	EmissionslMontreal GaseslCHCl3	$\rm ktCHCl_{3} yr^{-1}$	total emissions of CHCl ₃	2
Emissions	EmissionslMontreal GaseslHalon1202	ktHalon1202yr	⁻¹ total emissions of Halon-1202	2
Emissions	EmissionslMontreal GaseslHalon1211	ktHalon1211yr	⁻¹ total emissions of Halon-1211	2
Emissions	EmissionslMontreal GaseslHalon1301	ktHalon1301yr	⁻¹ total emissions of Halon-1301	2
Emissions	EmissionslMontreal GaseslHalon2402	ktHalon2402yr	⁻¹ total emissions of Halon-2402	2
Emissions	EmissionslMontreal GaseslHCFC141b	ktHCFC141byr	⁻ total emissions of HCFC141b	2
Emissions	EmissionslMontreal GaseslHCFC142b	ktHCFC142byr	⁻ total emissions of HCFC22	2
Emissions	EmissionslMontreal GaseslHCFC22	$ktHCFC22yr^{-1}$	total emissions of HCFC22	2
-				

Category	Variable	Unit	Definition	Tier
Emissions	EmissionslN2O	$\rm ktN_2Oyr^{-1}$	total nitrogen emissions	1
Emissions	EmissionslN2OlMAGICC AFOLU	$\rm ktN_2Oyr^{-1}$	nitrogen emissions from agriculture, forestry and other land use (IPCC category 3), exclud- ing any fossil-fuel based emissions in the Agri- cultural sector (hence not identical to WG3 AFOLU)	2
Emissions	EmissionslN2OlMAGICC Fossil and Industrial	$\rm ktN_2Oyr^{-1}$	nitrogen emissions from energy use on sup- ply and demand side (IPCC category 1A, 1B), industrial processes (IPCC category 2), waste (IPCC category 4) and other (IPCC category 5)	2
Emissions	EmissionslN2OlOther	$\rm ktN_2Oyr^{-1}$	nitrogen emissions from other sources (please provide a definition of other sources in this cat- egory in the 'comments' tab)	2
Emissions	Emissions/NH3	$MtNH3yr^{-1}$	total ammonia emissions	1
Emissions	EmissionslNH3lMAGICC AFOLU	MtNH3yr ⁻¹	ammonia emissions from agriculture, forestry and other land use (IPCC category 3), exclud- ing any fossil-fuel based emissions in the Agri- cultural sector (hence not identical to WG3 AFOLU)	2
Emissions	EmissionslNH3lMAGICC Fossil and Industrial	MtNH3yr ⁻¹	ammonia emissions from energy use on sup- ply and demand side (IPCC category 1A, 1B), industrial processes (IPCC category 2), waste (IPCC category 4) and other (IPCC category 5)	2
Emissions	Emissions NH3 Other	${ m MtNH3yr^{-1}}$	ammonia emissions from other sources (please provide a definition of other sources in this cat- egory in the 'comments' tab)	2

Category	Variable	Unit	Definition	Tier
Emissions	EmissionslNOx	${ m MtNOxyr^{-1}}$	total nitrous oxide emissions	1
Emissions	Emissions NOx MAGICC AFOLU	MtNOxyr ⁻¹	nitrous oxide emissions from agriculture, forestry and other land use (IPCC category 3), excluding any fossil-fuel based emissions in the Agricultural sector (hence not identical to WG3 AFOLU)	2
Emissions	EmissionslNOxlMAGICC Fossil and Industrial	${ m MtNOxyr^{-1}}$	nitrous oxide emissions from energy use on supply and demand side (IPCC category 1A, 1B), industrial processes (IPCC category 2), waste (IPCC category 4) and other (IPCC cat- egory 5)	2
Emissions	EmissionslNOxlOther	MtNOxyr ⁻¹	nitrous oxide emissions from other sources (please provide a definition of other sources in this category in the 'comments' tab)	2
Emissions	EmissionslOC	$MtOCyr^{-1}$	total organic carbon emissions	1
Emissions	EmissionslOCIMAGICC AFOLU	MtOCyr ⁻¹	organic carbon emissions from agriculture, forestry and other land use (IPCC category 3), excluding any fossil-fuel based emissions in the Agricultural sector (hence not identical to WG3 AFOLU)	2
Emissions	EmissionslOCIMAGICC Fossil and In- dustrial	MtOCyr ⁻¹	organic carbon emissions from energy use on supply and demand side (IPCC category 1A, 1B), industrial processes (IPCC category 2), waste (IPCC category 4) and other (IPCC cat- egory 5)	2
Emissions	EmissionslOClOther	MtOCyr ⁻¹	organic carbon emissions from other sources (please provide a definition of other sources in this category in the 'comments' tab)	2

Table S4. Continued.

Category	Variable	Unit	Definition	Tier
Emissions	EmissionslSulfur	${ m MtSO_2yr^{-1}}$	total sulfur (as a precursor for sulfates) emis- sions	1
Emissions	EmissionslSulfurlMAGICC AFOLU	${ m MtSO_2yr^{-1}}$	sulfur (as a precursor for sulfates) emissions from agriculture, forestry and other land use (IPCC category 3), excluding any fossil-fuel based emissions in the Agricultural sector (hence not identical to WG3 AFOLU)	2
Emissions	EmissionslSulfurlMAGICC Fossil and Industrial	${ m MtSO_2yr^{-1}}$	sulfur (as a precursor for sulfates) emissions from energy use on supply and demand side (IPCC category 1A, 1B), industrial processes (IPCC category 2), waste (IPCC category 4) and other (IPCC category 5)	2
Emissions	EmissionslSulfurlOther	${ m MtSO_2yr^{-1}}$	sulfur (as a precursor for sulfates) emissions from other sources (please provide a definition of other sources in this category in the 'com- ments' tab)	2
Emissions	EmissionslVOC	$MtVOCyr^{-1}$	total (non-methane) volatile organic com- pounds emissions	1
Emissions	Emissions/VOC/MAGICC AFOLU	$MtVOCyr^{-1}$	(non-methane) volatile organic compounds emissions from agriculture, forestry and other land use (IPCC category 3), excluding any fossil-fuel based emissions in the Agricultural sector (hence not identical to WG3 AFOLU)	2
Emissions	Emissions VOC MAGICC Fossil and Industrial	$MtVOCyr^{-1}$	(non-methane) volatile organic compounds emissions from energy use on supply and de- mand side (IPCC category 1A, 1B), industrial processes (IPCC category 2), waste (IPCC cat- egory 4) and other (IPCC category 5)	2

Category	Variable	Unit	Definition	Tier
Emissions	EmissionslVOClOther	$MtVOCyr^{-1}$	(non-methane) volatile organic compounds emissions from other sources (please provide a definition of other sources in this category in the 'comments' tab)	2
Methane Cycle	Atmospheric LifetimelCH4	yr	total atmospheric lifetime of methane	3
Nitrogen Cycle	Atmospheric LifetimelN2O	yr	total atmospheric lifetime of nitrogen	3
Ocean	Ocean pH	Dimensionless	pH of the ocean's surface layer	3
Radiative Forc- ing	Radiative Forcing	${ m Wm^{-2}}$	radiative forcing from all anthropogenic and natural sources (after stratospheric temperature adjustments)	1
Radiative Forc- ing	Radiative Forcing Anthropogenic	${\rm Wm}^{-2}$	radiative forcing from all anthropogenic sources (after stratospheric temperature adjustments)	1
Radiative Forc- ing	Radiative Forc- inglAnthropogeniclAerosols	${\rm Wm}^{-2}$	radiative forcing from aerosols (after strato- spheric temperature adjustments)	1
Radiative Forc- ing	Radiative Forcing Anthropogenic Aerosols Aerosol cloud Interactions	Wm ⁻² s-	radiative forcing from indirect effects of aerosols on clouds (after stratospheric temper- ature adjustments)	2
Radiative Forc- ing	Radiative ForcinglAnthropogeniclAerosolslAerosol radiation Interactions	Wm ⁻² s-	radiative forcing from aerosol-radiative effects (after stratospheric temperature adjustments), note that the breakdown of this variable can come in multiple different forms	2
Radiative Forc- ing	Radiative Forcing Anthropogenic Aerosols Aerosol radiation Interactions BC and OC BC	Wm ⁻² s-	radiative forcing from aerosol-radiative effects from black carbon emissions (after strato- spheric temperature adjustments)	2
Radiative Forc- ing	Radiative ForcinglAnthropogeniclAerosolslAerosol radiation InteractionslBC and OClBClBiomass Burning	Wm ⁻² s-	radiative forcing from aerosol-radiative effects from black carbon biomass burning emissions (after stratospheric temperature adjustments)	2

Category	Variable	Unit	Definition	Tier
Radiative Forc- ing	Radiative ForcinglAnthropogeniclAerosolslAerosol radiation InteractionslBC and OClBClFossil and Industrial	Wm ⁻² s-	radiative forcing from aerosol-radiative effects from black carbon fossil and industrial emis- sions (after stratospheric temperature adjust- ments)	2
Radiative Forc- ing	Radiative ForcinglAnthropogeniclAerosolslAerosol radiation InteractionslBC and OClOC	Wm ⁻² s-	radiative forcing from aerosol-radiative effects from organic carbon emissions (after strato- spheric temperature adjustments)	2
Radiative Forc- ing	Radiative ForcinglAnthropogeniclAerosolslAerosol radiation InteractionslBC and OClOClBiomass Burning	Wm ⁻² s-	radiative forcing from aerosol-radiative effects from organic carbon biomass burning emissions (after stratospheric temperature adjustments)	2
Radiative Forc- ing	Radiative ForcinglAnthropogeniclAerosolslAerosol radiation InteractionslBC and OClOClFossil and Industrial	Wm ⁻² s-	radiative forcing from aerosol-radiative effects from organic carbon fossil and industrial emis- sions (after stratospheric temperature adjust- ments)	2
Radiative Forc- ing	Radiative ForcinglAnthropogeniclAerosolslAerosol radiation InteractionslBiomass Burning	Wm ⁻² s-	radiative forcing from aerosol-radiative effects from biomass burning emissions (after strato- spheric temperature adjustments)	2

Category	Variable	Unit	Definition	Tier
Radiative Forc- ing	Radiative ForcinglAnthropogeniclAerosolslAeroso radiation InteractionslBiomass Burn- inglBC and OC	Wm ⁻²	radiative forcing from aerosol-radiative effects from black and organic carbon biomass burn- ing emissions (after stratospheric temperature adjustments)	2
Radiative Forc- ing	Radiative ForcinglAnthropogeniclAerosolslAeroso radiation InteractionslBiomass Burn- inglBC and OCIBC	Wm ⁻²	radiative forcing from aerosol-radiative effects from black carbon biomass burning emissions (after stratospheric temperature adjustments)	2
Radiative Forc-	Radiative ForcinglAnthropogeniclAerosolslAeroso radiation InteractionslBiomass Burn- inglBC and OClOC	Wm ⁻²	radiative forcing from aerosol-radiative effects from organic carbon biomass burning emissions (after stratospheric temperature adjustments)	2
Radiative Forc-	Radiative ForcinglAnthropogeniclAerosolslAeroso radiation InteractionslBiomass Burn- inglNH3	Wm ⁻²	radiative forcing from aerosol-radiative effects from ammonia biomass burning emissions (af- ter stratospheric temperature adjustments)	2
Radiative Forc-	Radiative ForcinglAnthropogeniclAerosolslAeroso radiation InteractionslBiomass Burn- inglNitrate	Wm ⁻²	radiative forcing from aerosol-radiative effects from nitrate biomass burning emissions (after stratospheric temperature adjustments)	2

Category	Variable	Unit	Definition	Tier
Radiative Forc- ing	Radiative ForcinglAnthropogeniclAerosolslAeroso radiation InteractionslBiomass Burn- inglSulfate	Wm ⁻²	radiative forcing from aerosol-radiative effects from sulfate biomass burning emissions (after stratospheric temperature adjustments)	2
Radiative Forc- ing	Radiative ForcinglAnthropogeniclAerosolslAeroso radiation InteractionslFossil and Industrial	Wm ⁻²	radiative forcing from aerosol-radiative effects from fossil and industrial emissions (after stratospheric temperature adjustments)	2
Radiative Forc- ing	Radiative ForcinglAnthropogeniclAerosolslAeroso radiation InteractionslFossil and IndustriallBC and OC	Wm ⁻²	radiative forcing from aerosol-radiative effects from black and organic carbon fossil and indus- trial emissions (after stratospheric temperature adjustments)	2
Radiative Forc- ing	Radiative ForcinglAnthropogeniclAerosolslAeroso radiation InteractionslFossil and IndustriallBC and OClBC	Wm ⁻²	radiative forcing from aerosol-radiative effects from black carbon fossil and industrial emis- sions (after stratospheric temperature adjust- ments)	2
Radiative Forc- ing	Radiative ForcinglAnthropogeniclAerosolslAeroso radiation InteractionslFossil and IndustriallBC and OClOC	Wm ⁻²	radiative forcing from aerosol-radiative effects from organic carbon fossil and industrial emis- sions (after stratospheric temperature adjust- ments)	2

Category	Variable	Unit	Definition	Tier
Radiative Forc-	Radiative	${\rm Wm}^{-2}$	radiative forcing from aerosol-radiative effects	2
ing	ForcinglAnthropogeniclAerosolslAeroso	ols-	from ammonia fossil and industrial emissions	
	radiation Interactions Fossil and		(after stratospheric temperature adjustments)	
	IndustriallNH3			
Radiative Forc-	Radiative	${\rm Wm^{-2}}$	radiative forcing from aerosol-radiative effects	2
ing	ForcinglAnthropogeniclAerosolslAeroso	ols-	from nitrate fossil and industrial emissions (af-	
	radiation Interactions Fossil and		ter stratospheric temperature adjustments)	
	Industrial Nitrate			
Radiative Forc-	Radiative	${\rm Wm^{-2}}$	radiative forcing from aerosol-radiative effects	2
ing	ForcinglAnthropogeniclAerosolslAeroso	ols-	from sulfate fossil and industrial emissions (af-	
	radiation Interactions Fossil and		ter stratospheric temperature adjustments)	
	Industrial Sulfate			
Radiative Forc-	Radiative	${\rm Wm^{-2}}$	radiative forcing from aerosol-radiative effects	2
ing	ForcinglAnthropogeniclAerosolslAeroso	ols-	from mineral dust emissions (after stratospheric	
	radiation Interactions Mineral Dust		temperature adjustments)	
Radiative Forc-	Radiative	${\rm Wm^{-2}}$	radiative forcing from aerosol-radiative effects	2
ing	ForcinglAnthropogeniclAerosolslAeroso	ols-	from ammonia emissions (after stratospheric	
	radiation Interactions/NH3		temperature adjustments)	

Table S4. Continued.

Category	Variable	Unit	Definition	Tier
Radiative Forc- ing	Radiative ForcinglAnthropogeniclAerosolslAeroso radiation InteractionslNH3lBiomass Burning	Wm ⁻²	radiative forcing from aerosol-radiative effects from ammonia biomass burning emissions (af- ter stratospheric temperature adjustments)	2
Radiative Forc- ing	Radiative ForcinglAnthropogeniclAerosolslAeroso radiation InteractionslNH3lFossil and Industrial	Wm ⁻²	radiative forcing from aerosol-radiative effects from ammonia fossil and industrial emissions (after stratospheric temperature adjustments)	2
Radiative Forc- ing	Radiative ForcinglAnthropogeniclAerosolslAeroso radiation InteractionslNitrate	Wm ⁻²	radiative forcing from aerosol-radiative effects from nitrate emissions (after stratospheric tem- perature adjustments)	2
Radiative Forc- ing	Radiative ForcinglAnthropogeniclAerosolslAeroso radiation InteractionslNitratelBiomass Burning	Wm ⁻²	radiative forcing from aerosol-radiative effects from nitrate biomass burning emissions (after stratospheric temperature adjustments)	2
Radiative Forc- ing	Radiative Forcing Anthropogenic Aerosols Aerosol radiation Interactions Nitrate Fossil and Industrial	Wm ⁻²	radiative forcing from aerosol-radiative effects from nitrate fossil and industrial emissions (af- ter stratospheric temperature adjustments)	2

Category	Variable	Unit	Definition	Tier
Radiative Forc- ing	Radiative ForcinglAnthropogeniclAerosolslAeroso radiation InteractionslOther	Wm ⁻²	radiative forcing from aerosol-radiative effects not covered in the other categories (after strato- spheric temperature adjustments) (please spec- ify in comments)	2
Radiative Forc- ing	Radiative ForcinglAnthropogeniclAerosolslAeroso radiation InteractionslSulfate	Wm ⁻² ls-	radiative forcing from aerosol-radiative effects from sulfate emissions (after stratospheric tem- perature adjustments)	2
Radiative Forc- ing	Radiative ForcinglAnthropogeniclAerosolslAeroso radiation InteractionslSulfatelBiomass Burning	Wm ⁻²	radiative forcing from aerosol-radiative effects from sulfate biomass burning emissions (after stratospheric temperature adjustments)	2
Radiative Forc- ing	Radiative ForcinglAnthropogeniclAerosolslAeroso radiation InteractionslSulfatelFossil and Industrial	Wm ⁻²	radiative forcing from aerosol-radiative effects from sulfate fossil and industrial emissions (af- ter stratospheric temperature adjustments)	2
Radiative Forc- ing	Radiative Forc- inglAnthropogeniclAlbedo Change	Wm^{-2}	radiative forcing from albedo change (after stratospheric temperature adjustments)	2
Radiative Forc- ing	Radiative ForcinglAnthropogeniclCH4	Wm^{-2}	radiative forcing (after stratospheric tempera- ture adjustments) of CH_4	2
Radiative Forc-	Radiative ForcinglAnthropogeniclCO2	Wm^{-2}	radiative forcing (after stratospheric tempera- ture adjustments) of $\rm CO_2$	1

Table S4. Continued.

Category	Variable	Unit	Definition	Tier
Radiative Forc- ing	Radiative ForcinglAnthropogeniclF Gases	- Wm ⁻²	radiative forcing (after stratospheric tempera- ture adjustments) of F-gases	2
Radiative Forc- ing	Radiative ForcinglAnthropogeniclF GaseslHFC	- Wm ⁻²	radiative forcing (after stratospheric tem- perature adjustments) of hydrofluorocarbons (HFCs, as defined by Table 8.A.1 of AR5) not controlled under the Montreal protocol	2
Radiative Forc- ing	Radiative Forcing Anthropogenic F Gases HFC HFC125	- Wm ⁻²	radiative forcing (after stratospheric tempera- ture adjustments) of HFC125	2
Radiative Forc- ing	Radiative Forcing Anthropogenic F Gases HFC HFC134a	- Wm ⁻²	radiative forcing (after stratospheric tempera- ture adjustments) of HFC134a	2
Radiative Forc- ing	Radiative ForcinglAnthropogeniclF GaseslHFClHFC143a	- Wm ⁻²	radiative forcing (after stratospheric tempera- ture adjustments) of HFC143a	2
Radiative Forc- ing	Radiative ForcinglAnthropogeniclF GaseslHFClHFC152a	- Wm ⁻²	radiative forcing (after stratospheric tempera- ture adjustments) of HFC152a	2
Radiative Forc- ing	Radiative ForcinglAnthropogeniclF GaseslHFClHFC227ea	- Wm ⁻²	radiative forcing (after stratospheric tempera- ture adjustments) of HFC227ea	2
Radiative Forc- ing	Radiative ForcinglAnthropogeniclF GaseslHFClHFC23	- Wm ⁻²	radiative forcing (after stratospheric tempera- ture adjustments) of HFC23	2
Radiative Forc- ing	Radiative Forcing Anthropogenic F Gases HFC HFC236fa	- Wm ⁻²	radiative forcing (after stratospheric tempera- ture adjustments) of HFC236fa	2
Radiative Forc- ing	Radiative ForcinglAnthropogeniclF GaseslHFClHFC245fa	- Wm ⁻²	radiative forcing (after stratospheric tempera- ture adjustments) of HFC245fa	2

Table S4. Continued.

Category	Variable	Unit	Definition	Tier
Radiative Forc- ing	Radiative ForcinglAnthropogeniclF- GaseslHFClHFC32	${\rm Wm^{-2}}$	radiative forcing (after stratospheric tempera- ture adjustments) of HFC32	2
Radiative Forc- ing	Radiative Forcing Anthropogenic F- Gases HFC HFC365mfc	${\rm Wm^{-2}}$	radiative forcing (after stratospheric tempera- ture adjustments) of HFC365mfc	2
Radiative Forc- ing	Radiative ForcinglAnthropogeniclF- GaseslHFClHFC4310mee	${\rm Wm^{-2}}$	radiative forcing (after stratospheric tempera- ture adjustments) of HFC43-10mee	2
Radiative Forc- ing	Radiative ForcinglAnthropogeniclF- GaseslNF3	${\rm Wm^{-2}}$	radiative forcing (after stratospheric tempera- ture adjustments) of nitrogen trifluoride (NF_3)	2
Radiative Forc- ing	Radiative ForcinglAnthropogeniclF- GaseslPFC	Wm^{-2}	radiative forcing (after stratospheric tempera- ture adjustments) of perfluorocarbons (PFCs, as defined by Table 8.A.1 of AR5)	2
Radiative Forc- ing	Radiative ForcinglAnthropogeniclF- GaseslPFClC2F6	${\rm Wm^{-2}}$	radiative forcing (after stratospheric temperature adjustments) of ${\rm C}_2{\rm F}_6$	2
Radiative Forc- ing	Radiative ForcinglAnthropogeniclF- GaseslPFClC3F8	${\rm Wm^{-2}}$	radiative forcing (after stratospheric temperature adjustments) of $\mathrm{C}_3\mathrm{F}_8$	2
Radiative Forc- ing	Radiative ForcinglAnthropogeniclF- GaseslPFClC4F10	${\rm Wm}^{-2}$	radiative forcing (after stratospheric temperature adjustments) of C_4F_10	2
Radiative Forc-	Radiative ForcinglAnthropogeniclF- GaseslPFClC5F12	Wm^{-2}	radiative forcing (after stratospheric temperature adjustments) of C_5F_12	2
Radiative Forc-	Radiative Forcing Anthropogenic F- Gases PFC C6F14	${\rm Wm^{-2}}$	radiative forcing (after stratospheric tempera- ture adjustments) of C_6F_14	2

Table S4. Continued.

Category	Variable	Unit	Definition	Tier
Radiative Forc- ing	Radiative ForcinglAnthropogeniclF- GaseslPFClC7F16	Wm^{-2}	radiative forcing (after stratospheric temperature adjustments) of C_7F_16	2
Radiative Forc- ing	Radiative ForcinglAnthropogeniclF- GaseslPFClC8F18	${\rm Wm}^{-2}$	radiative forcing (after stratospheric temperature adjustments) of C_8F_18	2
Radiative Forc- ing	Radiative ForcinglAnthropogeniclF- GaseslPFClcC4F8	Wm^{-2}	radiative forcing (after stratospheric temperature adjustments) of $\rm c{-}C_4F_8$	2
Radiative Forc- ing	Radiative ForcinglAnthropogeniclF- GaseslPFClCF4	Wm^{-2}	radiative forcing (after stratospheric temperature adjustments) of CF_4	2
Radiative Forc- ing	Radiative ForcinglAnthropogeniclF- GaseslSF6	Wm^{-2}	radiative forcing (after stratospheric tempera- ture adjustments) of sulfur hexafluoride (SF_6)	2
Radiative Forc- ing	Radiative ForcinglAnthropogeniclF- GaseslSO2F2	Wm^{-2}	radiative forcing (after stratospheric tempera- ture adjustments) of sulfuryl fluoride (SO_2F_2)	2
Radiative Forc- ing	Radiative Forc- inglAnthropogeniclMontreal Gases	${\rm Wm}^{-2}$	radiative forcing (after stratospheric tempera- ture adjustments) of Montreal gases	2
Radiative Forc- ing	RadiativeForc-inglAnthropogeniclMontrealGaseslCCl4	Wm ⁻²	radiative forcing (after stratospheric temperature adjustments) of ${\rm CCl}_4$	2
Radiative Forc- ing	RadiativeForc-inglAnthropogeniclMontrealGaseslCFC	Wm ⁻²	radiative forcing (after stratospheric tempera- ture adjustments) of CFC gases (as defined by Table 8.A.1 of AR5)	2
Radiative Forc- ing	RadiativeForc-inglAnthropogeniclMontrealGaseslCFClCFC11	Wm ⁻²	radiative forcing (after stratospheric tempera- ture adjustments) of CFC11	2

Table S4. Continued.

Category	Variable		Unit	Definition	Tie
Radiative Forc- ing	Radiative inglAnthropogeniclMontreal GaseslCFClCFC113	Forc-	Wm^{-2}	radiative forcing (after stratospheric tempera- ture adjustments) of CFC113	2
Radiative Forc- ing	Radiative inglAnthropogeniclMontreal GaseslCFClCFC114	Forc-	${\rm Wm}^{-2}$	radiative forcing (after stratospheric tempera- ture adjustments) of CFC114	2
Radiative Forc- ing	Radiative inglAnthropogeniclMontreal GaseslCFClCFC115	Forc-	Wm^{-2}	radiative forcing (after stratospheric tempera- ture adjustments) of CFC115	2
Radiative Forc-	Radiative inglAnthropogeniclMontreal GaseslCFClCFC12	Forc-	${\rm Wm^{-2}}$	radiative forcing (after stratospheric tempera- ture adjustments) of CFC12	2
Radiative Forc- ing	Radiative inglAnthropogeniclMontreal GaseslCH2Cl2	Forc-	$\rm Wm^{-2}$	radiative forcing (after stratospheric temperature adjustments) of $\rm CH_2Cl_2$	2
Radiative Forc- ing	Radiative inglAnthropogeniclMontreal GaseslCH3Br	Forc-	Wm^{-2}	radiative forcing (after stratospheric tempera- ture adjustments) of $\rm CH_3Br$	2
Radiative Forc- ing	Radiative inglAnthropogeniclMontreal GaseslCH3CCl3	Forc-	Wm^{-2}	radiative forcing (after stratospheric tempera- ture adjustments) of $\rm CH_3\rm CCl_3$	2
Radiative Forc- ing	Radiative inglAnthropogeniclMontreal GaseslCH3Cl	Forc-	${ m Wm^{-2}}$	radiative forcing (after stratospheric temperature adjustments) of $\rm CH_3Cl$	2
Radiative Forc- ing	Radiative inglAnthropogeniclMontreal GaseslCHCl3	Forc-	${\rm Wm}^{-2}$	radiative forcing (after stratospheric temperature adjustments) of ${\rm CHCl}_3$	2

Table 54. Commucu.	Table	S4.	Continued.
--------------------	-------	-----	------------

Category	Variable	Unit	Definition	Tier
Radiative Forc- ing	RadiativeForc-inglAnthropogeniclMontrealGaseslHalon1202	${ m Wm^{-2}}$	radiative forcing (after stratospheric tempera- ture adjustments) of Halon-1202	2
Radiative Forc- ing	RadiativeForc-ing Anthropogenic MontrealGases Halon1211	${\rm Wm^{-2}}$	radiative forcing (after stratospheric tempera- ture adjustments) of Halon-1211	2
Radiative Forc- ing	RadiativeForc-inglAnthropogeniclMontrealGaseslHalon1301	${ m Wm^{-2}}$	radiative forcing (after stratospheric tempera- ture adjustments) of Halon-1301	2
Radiative Forc- ing	RadiativeForc-inglAnthropogeniclMontrealGaseslHalon2402	${\rm Wm^{-2}}$	radiative forcing (after stratospheric tempera- ture adjustments) of Halon-2402	2
Radiative Forc- ing	RadiativeForc-inglAnthropogeniclMontrealGaseslHCFC141b	Wm^{-2}	radiative forcing (after stratospheric tempera- ture adjustments) of HCFC141b	2
Radiative Forc- ing	RadiativeForceinglAnthropogeniclMontrealGaseslHCFC142b	${ m Wm^{-2}}$	radiative forcing (after stratospheric tempera- ture adjustments) of HCFC22	2
Radiative Forc- ing	Radiative Forc- inglAnthropogeniclMontreal GaseslHCFC22	${ m Wm^{-2}}$	radiative forcing (after stratospheric tempera- ture adjustments) of HCFC22	2
Radiative Forc- ing	Radiative ForcinglAnthropogeniclN2O	Wm^{-2}	radiative forcing (after stratospheric temperature adjustments) of N_2O	2
Radiative Forc- ing	Radiative Forcing Anthropogenic Other	Wm ⁻²	radiative forcing from factors not covered in other categories (after stratospheric temperature adjustments)	2

Category	Variable		Unit	Definition	Tier
Radiative Forc-	Radiative inglAnthropogeniclStratospheric Ozone	Forc-	Wm^{-2}	radiative forcing from stratospheric ozone (after stratospheric temperature adjustments)	2
Radiative Forc- ing	Radiative inglAnthropogeniclTropospheric Ozone	Forc-	Wm^{-2}	radiative forcing from tropospheric ozone (after stratospheric temperature adjustments)	2
Radiative Forc-	Radiative Forcing Natural		${\rm Wm^{-2}}$	radiative forcing from all natural drivers, i.e. solar and volcanic forcing (after stratospheric temperature adjustments)	2
Radiative Forc- ing	Radiative Forcing Natural Solar		Wm^{-2}	radiative forcing from variations in solar irra- dience (after stratospheric temperature adjust- ments)	2
Radiative Forc- ing	Radiative ForcinglNaturallVolcani	с	${\rm Wm^{-2}}$	radiative forcing due to volcanic eruptions (after stratospheric temperature adjustments)	2

References

Gidden, M. J., Riahi, K., Smith, S. J., Fujimori, S., Luderer, G., Kriegler, E., van Vuuren, D. P., van den Berg, M., Feng, L., Klein, D., Calvin, K., Doelman, J. C., Frank, S., Fricko, O., Harmsen, M., Hasegawa, T., Havlik, P., Hilaire, J., Hoesly, R., Horing, J., Popp, A., Stehfest, E., and Takahashi, K.: Global emissions pathways under different socioeconomic scenarios for use in CMIP6: a dataset of harmonized

5

emissions trajectories through the end of the century, Geoscientific Model Development, 12, 1443–1475, https://doi.org/10.5194/gmd-12-1443-2019, 2019.