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Abstract.
Reduced complexity climate models (RCMs) are critical in the policy and decision making space, and are directly used

within multiple Intergovernmental Panel on Climate Change (IPCC) reports to complement the results of more comprehensive

Earth System Models. To date, evaluation of RCMs has been limited to a few independent studies. Here we introduce a

systematic evaluation of RCMs in the form of the Reduced Complexity Model Intercomparison Project (RCMIP). We expect5

RCMIP will extend over multiple phases, with this Phase 1 being the first. In Phase 1, we focus on the RCMs’ global-mean

temperature responses, comparing them to observations, exploring the extent to which they emulate more complex models

and considering how the relationship between temperature and cumulative emissions of CO2 varies across the RCMs. Our

work uses experiments which mirror those found in the Coupled Model Intercomparison Project (CMIP), which focuses on
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complex earth system and atmosphere-ocean general circulation models. Using both scenario-based and idealised experiments,10

we examine RCMs global-mean temperature response under a range of forcings. We find that the RCMs can all reproduce the

approximately 1�C of warming since pre-industrial times, with varying representations of natural variability, volcanic eruptions

and aerosols. We also find that RCMs can emulate the global-mean temperature response of CMIP models to within a root-

mean square error of 0.2�C over a range of experiments. Furthermore, we find that for the RCP and SSP-based scenario

pairs that share the same AR5-consistent stratospheric-adjusted radiative forcing, the RCMs indicate higher effective radiative15

forcings for the SSP-based scenarios and correspondingly higher temperatures when run with the same climate settings. In our

idealised setup of RCMs with a climate sensitivity of 3�C, the difference for the ssp585 versus rcp85 pair by 2100 is around

0.23�C (±0.12�C) due to a difference in effective radiative forcings between the two scenarios. Phase 1 demonstrates the

utility of RCMIP’s open-source infrastructure, paving the way for further phases of RCMIP to build on the research presented

here and deepen our understanding of RCMs.20

Copyright statement. TEXT

1 Introduction

Sufficient computing power to enable running our most comprehensive, physically complete climate models for every appli-

cation of interest is not available. Thus, for many applications, less computationally demanding approaches are used. One

common approach is the use of reduced complexity climate models (RCMs), also known as simple climate models (SCMs).25

RCMs are designed to be computationally efficient tools, allowing for exploratory research and have smaller spatial, if any,

and temporal resolution than complex models. Typically, they describe highly parameterised macro properties of the climate

system. Usually this means that they simulate the climate system on a global-mean, annual-mean scale although some RCMs

even use coarse resolution spatial grids and monthly time-steps. As a result of their highly parameterised approach, RCMs can

be on the order of a million or more times faster than more complex models (in terms of simulated model years per unit CPU30

time).

The computational efficiency of RCMs means that they can be used where computational constraints would otherwise be

limiting. For example, in the hierarchy of climate models - RCMs, the Earth System Models of intermediate complexity

(EMICs) and Earth System Models (ESMs) - it is only RCMs that are sufficiently efficient for large probabilistic ensembles

for hundreds of scenarios. In addition, some Integrated Assessment Models (IAMs) require iterative climate simulations. In35

such cases, only RCMs are computationally feasible because hundreds to thousands of climate realisations must be integrated

by the IAM for a single scenario to be produced. RCMs also enable the exploration of interacting uncertainties from multiple

parts of the climate system or the constraining of unknown parameters by combining multiple lines of evidence in an internally

consistent setup. In the context of the Assessment Reports of the Intergovernmental Panel on Climate Change (IPCC), a

prominent example is the climate assessment of emission scenarios by IPCC Working Group 3 (WGIII). Hundreds of emission40
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scenarios were assessed in the IPCC’s Fifth Assessment Report (AR5, see Clarke et al. (2014)) as well as its more recent

Special Report on Global Warming of 1.5�C (SR1.5, see Rogelj et al. (2018); Huppmann et al. (2018)). (Scenario data is

available at https://secure.iiasa.ac.at/web-apps/ene/AR5DB and https://data.ene.iiasa.ac.at/iamc-1.5c-explorer/ for AR5 and

SR1.5 respectively, both databases are hosted by the IIASA Energy Program). For the IPCC’s forthcoming Sixth Assessment

Report (AR6), it is anticipated that the number of scenarios will be in the several hundreds to a thousand (for example, see the45

full set of scenarios based on the SSPs at https://tntcat.iiasa.ac.at/SspDb). Both the number of scenarios and the tight timelines

of the IPCC assessments render it infeasible to use the world’s most comprehensive models to estimate the climate implications

of these IAM scenarios.

1.1 Evaluation of reduced complexity climate models

The validity of the RCM approach rests on the premise that RCMs are able to replicate the behaviour of the Earth system and50

response characteristics of our most complete models. Over time, multiple independent efforts have been made to evaluate this

ability. In 1997, an IPCC Technical Paper (Houghton et al., 1997), investigated the simple climate models used in the IPCC

Second Assessment Report and compared their performance with idealised Atmosphere-Ocean General Circulation Model

(AOGCM) results. Later, van Vuuren et al. (2011b) compared the climate components used in IAMs, such as DICE (Nordhaus,

2014) and FUND (Waldhoff et al., 2011). Van Vuuren et al. (2011b) also included the RCM MAGICC (version 4 at the55

time, Wigley and Raper, 2001), which was used in several IAMs. They focused on five CO2-only experiments to quantify the

differences in the behaviour of the RCMs used by each IAM. Harmsen et al. (2015) extended the work of van Vuuren et al.

(2011b) to consider the impact of non-CO2 climate drivers in the RCPs. Recently, Schwarber et al. (2019) proposed a series of

impulse tests for simple climate models in order to isolate differences in model behaviour under idealised conditions.

Despite these efforts, the RCM community does not yet have a systematic, regular intercomparison effort. This led to the60

following statement in SR1.5 (Forster et al., 2018), ‘The veracity of these reduced complexity climate models is a substantial

knowledge gap in the overall assessment of pathways and their temperature thresholds.’ This study provides a first step to fill

this gap via a systematic intercomparison. A systematic intercomparison is also likely to provide other benefits, similar to those

that the AOGCM and ESM modelling communities have gained over multiple iterations of CMIP (Carlson and Eyring, 2017).

Developing a systematic comparison for RCMs will provide similar benefits to the RCM community including building a65

community of reduced complexity modellers, facilitating comparison of model behaviour, improving understanding of RCMs’

strengths and limitations, and ultimately improving RCMs.

An ongoing comprehensive evaluation and assessment of RCMs requires an established protocol. The Reduced Complexity

Model Intercomparison Project (RCMIP) proposed here provides such a protocol (also see rcmip.org). In the RCMIP com-

munity call (available at rcmip.org) RCMs were broadly defined as follows: “[...] RCMIP is aimed at reduced complexity,70

simple climate models and small emulators that are not part of the intermediate complexity EMIC or complex GCM/ESM cat-

egories.” In practice, we encouraged any group in the scientific community who identifies with the label of RCM to participate

in RCMIP, see Table 1 for an overview of the models which participated in RCMIP Phase 1.
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We aim for RCMIP to provide a focal point for further development and an experimental design which allows models to be

readily compared and contrasted, mirroring the regular comparisons which are performed for AOGCMs and ESMs in each of75

CMIP’s iterations. We intend for RCMIP to faciliate more regular and targeted assessment of RCMs.

Thus, while RCMIP mirrors many of the experimental setups developed within CMIP6, RCMIP focuses on RCMs and is

hence not one of the official CMIP6 (Eyring et al., 2016) endorsed intercomparison projects (that are instead targeted at ESMs).

Nonetheless, RCMs are part of the climate model hierarchy so we aim to make comparing the RCMIP results with results from

other modelling communities, specifically CMIP, as simple as possible. Accordingly, RCMIP replicates selected experimental80

designs of many of the CMIP-endorsed MIPs, particularly the DECK (Eyring et al., 2016) and ScenarioMIP (O’Neill et al.,

2016) simulations.

In what follows, we describe RCMIP Phase 1. In section 2, we detail the domain of RCMIP Phase 1 and its research

questions. In section 3, we provide an overview of the participating models and their configuration. In section 4, we describe

the experimental setup. In section 5 we present results from RCMIP Phase 1, before presenting possible extensions in section85

6 and conclusions in section 7.

2 Research questions

The key point of this paper is to introduce RCMIP, its goals and its setup. As a proof of concept, we also include key initial

research questions, the implemented experimental setup and associated results from RCMIP’s first phase.

Research question 1: Is the reduced complexity modelling community ready to run an intercomparison and how long90

would such an intercomparison take to run?
Model intercomparisons require significant effort on the part of the organising community and each of the modelling teams

involved. The reduced complexity modelling community has not undertaken such an effort previously, hence the first question

is whether the community is ready to perform an intercomparison.

In addition to whether an intercomparison is possible, the second question is how long and how much effort is required to95

perform the intercomparison. The most successful intercomparisons are built on standardised protocols for experiment design,

model setup and data handling. To date, no such standards exist for the reduced complexity modelling community.

Here we investigate how easily the benefits of systematic intercomparison can be brought to the reduced complexity mod-

elling community by performing the first of many envisaged rounds of intercomparison. In the process, we gain vital insights

into the effort, timelines and scope which can reasonably be managed by the participating modelling teams. Such knowledge100

is vital for planning future efforts.

Research question 2: Can reduced complexity climate models capture observed historical global-mean surface air
temperature (GSAT) trends?

The second research question focuses on a key metric for evaluating RCMs against observations. This research question eval-

uates the extent to which each RCM’s approximations and parameterisations cause its response to deviate from observational105

data.
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However, given the limited amount of observations available, comparing only with observations leaves us with little un-

derstanding of how RCMs perform in scenarios apart from a historical one in which anthropogenic emissions are heating the

climate. Recognising that there are a range of possible futures, it is vital to also assess RCMs in other scenarios. Prominent

examples include stabilising or falling anthropogenic emissions, strong mitigation of non-CO2 climate forcers and scenarios110

with CO2 removal. The limited observational set motivates RCMIP’s third research question: evaluation against more complex

models.

Research question 3: To what extent can reduced complexity models emulate the global-mean temperature response
of more complex models?

Whilst the response of more comprehensive models may not represent the behaviour of the actual Earth System, they are115

the best available representation of our understanding of the Earth System’s physical processes. By evaluating RCMs against

more complex models, we can quantify the extent to which the simplifications made in RCMs limit their ability to capture

physically-based model responses. For example, the extent to which the approximation of a constant climate feedback in

some RCMs limits the RCM’s ability to replicate ESMs’ longer-term response under either higher forcing or lower overshoot

scenarios (Rohrschneider et al., 2019).120

Research question 4: What can a multi-model ensemble of RCMs tell us about the difference between the SSP-based
and RCP scenarios?

The SSP-based scenarios (O’Neill et al., 2016; Riahi et al., 2017) are the cornerstone of CMIP6’s ScenarioMIP and are an

update of CMIP5’s RCP scenarios (van Vuuren et al., 2011a). One of the key intents behind some of the SSP-based scenarios

is that they share the same nameplate 2100 radiative forcing level as the RCPs (e.g. ssp126 and rcp26, ssp245 and rcp45), the125

idea being that they would have similar climatic outcomes despite their different atmospheric concentration inputs. However,

the nameplate radiative forcing comparisons between RCPs and SSPs were undertaken on the basis of IPCC AR5-consistent

stratospheric-adjusted radiative forcings (Myhre et al., 2013). Taking into account new insights into respective CO2 and CH4

forcings, as well as effective radiative forcings, different climate responses can be expected. In fact, Wyser et al. (2020) suggest

that the difference in atmospheric concentrations results in non-trivial differences in climate projections.130

Unfortunately, evaluating the scenario differences between RCPs and SSP-based scenarios with a large, identical set of CMIP

models is difficult because of the computational cost (many CMIP6 modelling groups will not perform all CMIP6 ScenarioMIP

experiments, let alone performing extra CMIP5 experiments). With an ensemble of RCMs, we can provide further insight into

how much the change in emissions pathways affects climate projections using identical models, building on the insights from

the CMIP groups which can afford to run the required experiments. In addition, RCMs also offer one other benefit: they135

can diagnose effective radiative forcing directly. As a result, RCMs can provide more detailed insights into the reasons for

differences because they provide a more detailed breakdown of the emissions-climate change cause-effect chain. In contrast,

diagnosing effective radiative forcing from CMIP models is a difficult task which requires a number of extra experiments, all

of which come at additional computational cost (Smith et al., 2020).

Research question 5: How does the relationship between cumulative CO2 emissions and global-mean temperature140

vary both between RCMs and within a parameter ensemble of an RCM?
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The relationship between cumulative CO2 emissions and global-mean temperature is key to deriving the transient climate

response to emissions (Matthews, 2018), a key metric in the calculation of our remaining carbon budget (Rogelj et al., 2019).

Here we investigate how this relationship varies between RCMs and within a parameter ensemble from a given RCM. While a

multi-model ensemble demonstrates variance due to model structure, the parameter ensemble demonstrates variance that arises145

solely as a result of changes in the strength of the response of individual components. These insights build on results from

experiments with more complex models (see e.g. Arora et al., 2020), which cannot perform such large perturbed parameter

ensembles because of computational cost.

3 Participating models and their configuration

15 models have participated in RCMIP Phase 1 (see Table 1 for an overview and links to key description papers). We encourage150

any other interested groups to join further phases of the project.

Even within the reduced complexity category, there is considerable variation in both model complexity and the number of

climate components (Table 1). At the simplest end, we have the radiative forcing-driven (see Section 4) impulse response mod-

els, represented by the AR5IR model variants. These models project global-mean temperature only and, in the setup submitted

here, provide only annual-mean values (although they can be run at higher temporal resolution if desired). At the other end of155

the spectrum, we have MAGICC, which includes representations of 43 greenhouse gas cycles, includes parameterisations of

the relationship between aerosol emissions and aerosol effective radiative forcing, distinguishes between different hemispheres

and land/ocean regions of the globe, has 50 ocean layers in each hemisphere, and runs on a monthly time step internally (al-

though all output is annual-mean only). Some models take a more hybrid approach, increasing complexity in only a single

component whilst retaining simplicity elsewhere. Examples of increased complexity in specific domains include OSCAR’s160

regionalised land carbon cycle and EMGC’s representation of natural variability.

An in-depth description of these models and their differences is beyond the scope of this paper (but is planned for future

research). For readers interested in the details of all the participating models, we refer to the references provided in Table 1.

3.1 Model configuration

RCMs are usually highly flexible. Their response to anthropogenic and natural drivers strongly depends on the configuration165

in which they are run (i.e. their parameter values). In RCMIP Phase 1, we have requested that all models provide one set of

simulations in which their equilibrium climate sensitivity is equal to 3�C. While this does not define the entirety of a model’s

behaviour, it removes a major cause of difference between model output which is not related to model structure. Within Phase

1 of RCMIP, we have given modelling groups the freedom to choose whether they apply any additional constraints or not.

On top of the 3�C climate sensitivity configuration, we have also invited groups to submit two other configuration cate-170

gories. The first is any other best-guess or default configurations, where each participating modelling group is free to choose

their own best-guess (the details of which can be found in the references provided in Table 1). The second is configurations

deliberately designed to emulate specific ESMs from CMIP5 and CMIP6. Given the complexities involved in calibration (see
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e.g. Meinshausen et al., 2011a; Tsutsui, 2020), not all modelling groups submitted such CMIP5- and CMIP6-specific configu-

rations. However, for those groups that do, these emulation setups provide valuable insight into the extent to which the model’s175

structure limits its ability to reproduce the behaviour of more complex models. Given the complexity of the topic, we leave

decisions about how to calibrate their model up to the individual modelling teams (details of each group’s approach can be

found in the references provided in Table 1). A more top-down approach will be undertaken in a future phase of RCMIP (see

Section 6).

4 Experimental design180

RCMs generally model multiple steps in the emissions-climate change cause-effect chain including gas cycles (emissions to

concentration step), radiative forcing parameterisations (concentrations to radiative forcing step) and temperature response

(radiative forcing to warming step). Here, effective radiative forcing and radiative forcing are defined following Myhre et al.

(2013). In contrast to radiative forcing, effective radiative forcing includes rapid adjustments beyond stratospheric temperature

adjustments thus is a better indicator of long-term climate change.185

Each point in the chain can be used as the starting point for simulations i.e. the simulation might be defined in terms of

prescribed concentrations, emissions or radiative forcing. In Phase 1 of RCMIP, we focus on experiments which are defined in

terms of concentrations to facilitate a direct comparison with CMIP experiments, most of which are also defined in terms of

concentrations.

RCMIP Phase 1 focuses on 19 experiments, which can be broken down into two categories: scenario-based and idealised. We190

provided all inputs following, and requested all outputs follow, a standard format to facilitate ease of data analysis and re-use

(Supplementary Section S1). This common data format was developed for RCMIP and combines elements of the integrated

assessment community standard (Gidden and Huppmann, 2019) and the CMIP6 definitions of variables and scenarios.

4.1 Scenario based experiments

Scenario based experiments examine model responses to historical transient forcing as well as a range of future scenarios.195

The historical experiments provide a way to compare RCM output against observational data records (Research Question 2),

and are complementary to the idealised experiments (Section 4.2) which provide a cleaner assessment of model response to

forcing. The future scenarios probe RCM responses to a range of possible climate futures, both continued warming as well as

stabilisation or overshoots in forcing. The variety of scenarios is a key test of model behaviour, evaluating them over a range

of conditions rather than only over the historical period. Direct comparison with CMIP output then provides information about200

the extent to which the simplifications involved in RCM modelling are able to reproduce the response of the most advanced,

physically-based ESMs (Research Question 3).

RCMIP Phase 1’s scenario experiments are: historical, ssp119, ssp126, ssp245, ssp370, ssp434, ssp460, ssp534-over, ssp585,

rcp26, rcp45, rcp60 and rcp85. We focus on simulations (historical plus future) which cover the range in forcing scenarios from

the CMIP6 ScenarioMIP exercise (O’Neill et al., 2016; Riahi et al., 2017) and CMIP5 RCP scenarios (van Vuuren et al., 2011a).205
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These quickly reveal differences in model projections over the widest available scenario range which can also be compared

to CMIP6 output. The CMIP5 experiments are particularly useful as they provide a direct comparison between CMIP5 and

CMIP6 scenarios (Research Question 4), something which has only been done to a limited extent with more complex models

(Wyser et al., 2019).

All of these experiments are defined in terms of concentrations of well-mixed greenhouse gases. Here, ‘well-mixed green-210

house gases’ refers to CO2, CH4, N2O, hydrofluorocarbons (HFCs), perfluorocarbons (PFCs) and hydrochlorofluorocarbons

(HCFCs). However, scenario experiments include more than just well-mixed greenhouse gases so these concentrations are sup-

plemented by aerosol precursor species emissions, ozone-relevant emissions and natural effective radiative forcing variations.

Here, ‘aerosol precursor species emissions’ refers to emissions of sulfur, nitrates, black carbon, organic carbon and ammonia.

‘Ozone-relevant emissions’ refers to emissions of carbon monoxide and non-methane volatile organic compounds (NMVOCs).215

For models which do not include the aerosol emissions to effective radiative forcing or ozone-relevant emissions to ozone

effective radiative forcing steps, prescribed effective radiative forcings can instead be used. Here ‘natural effective radiative

forcing variations’ refers to effective radiative forcing due to natural volcanic eruptions and changes in solar irradiance. All

data sources are described in Supplementary Section S2.

The key difference between the RCMIP experiments and the CMIP experiments is that some RCMs include more anthro-220

pogenic drivers than CMIP models. Specifically, CMIP models do not include the full range of HFC, PFC and HCFC species,

instead using equivalent concentrations (Meinshausen et al., 2017, 2020). In addition, some CMIP models will not include the

effect of aerosol precursors such as nitrates, ammonia and organic carbon (McCoy et al., 2017).

4.2 Idealised experiments

In addition to the scenario-based experiments, RCMIP Phase 1 also includes a number of idealised experiments. All of these225

experiments are defined in terms of CO2 concentrations alone. These experiments provide an easy point of comparison with

output from other models, particularly CMIP output, as well as information about basic model behaviour and dynamics which

can be useful for understanding the differences between models.

RCMIP Phase 1’s idealised experiments are: 1pctCO2, 1pctCO2-4xext, abrupt-4xCO2, abrupt-2xCO2 and abrupt-0p5xCO2.

These examine the RCMs’ response to a one percent per year increase in atmospheric CO2 concentrations (1pctCO2), 1pctCO2230

followed by constant CO2 concentrations once atmospheric CO2 concentrations quadruple (1pctCO2-4xext) and abrupt changes

in atmospheric CO2 to four times pre-industrial levels (abrupt-4xCO2), double pre-industrial levels (abrupt-2xCO2) and half

pre-industrial levels (abrupt-0p5xCO2) - mirroring the respective CMIP experiments (Eyring et al., 2016).

The experiments reveal differences in model response to forcing, particularly whether the RCM response to forcing includes

non-linearities. In addition, these experiments also provide a direct comparison with CMIP experiments (i.e. more complex235

model behaviour) and are a key benchmark when examining an RCM’s ability to emulate more complex models (Research

Question 3). In these concentration-driven experiments, RCMs report emissions (often referred to as ‘inverse emissions’) and

carbon cycle behaviour consistent with the prescribed CO2 pathway. These inverse emissions are key to exploring the variation

in the relationship between surface air temperature change and cumulative emissions of CO2 (Allen et al., 2009; Matthews
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et al., 2009; Meinshausen et al., 2009; Zickfeld et al., 2009) over a range of models and parameter values (Research Question240

5).

4.3 Output Variables

Phase 1 of RCMIP focuses on five key output variables. The focus on a limited set allows us to discern major differences be-

tween RCMs and provides insights into the reasons for such differences. The first variable of interest is surface air temperature

change. We choose this variable because it is comparable to available observations and CMIP output and is also policy-relevant.245

In addition to surface air temperature change, we request total, anthropogenic, CO2 and aerosol effective radiative forcing.

These forcing variables are key indicators of the long-term drivers of climate change within each model as well as being key

metrics for the IAMC community. In particular, aerosol effective radiative forcing is highly uncertain and a key source of

difference between RCMs.

The final variable we request is CO2 emissions. Given that all our experiments are defined in terms of concentrations, we250

request CO2 emissions compatible with the prescribed CO2 pathways.

5 Results

Within three months of beginning RCMIP and publishing the protocols, 15 different RCMs submitted data. Given that this

is the first phase of RCMIP, we expect even shorter turnarounds in future. The submitted results demonstrate that the RCM

community, via RCMIP, now has the capacity to run multi-model studies, and to run them comparatively quickly. In addition,255

the number of participating modelling groups demonstrates that the RCMIP infrastructure is accessible to a wide range of

modelling teams.

All the RCMs are able to capture the approximately 1�C of warming seen in the historical observations (Figure 1), compared

to a pre-industrial reference period (Richardson et al., 2016; Rogelj et al., 2019). However, the RCMs vary in the detail which

they represent. Most of the RCMs include some representation of the impact of volcanic eruptions, most notably the drop260

in global-mean temperatures after the eruption of Mount Agung in 1963. In addition, most of the RCMs do not capture

natural variability driven by processes such as the El Niño Southern Oscillation (Wolter and Timlin, 2011), the Pacific Decadal

Oscillation (Zhang et al., 1997) and the Indian Ocean Dipole (Saji et al., 1999). The exception to this is the EMGC model,

which includes representations of the impact of all of these processes. At the other end of the complexity spectrum, we have

the CO2-only model, GREB. Unlike the other RCMs, GREB lacks the volcanic and aerosol induced cooling signals of the 19th265

and 20th Centuries.

RCMIP also facilitates a comparison of model calibrations and CMIP output (Figure 2). Examining multiple emulation

setups, we see that RCMs can reproduce the temperature response of CMIP models to forcing changes to within a root-mean

square error of 0.2�C (Table 2). A detailed comparison of RCMs with 24 CMIP6 ESM ensemble members is available in

the Supplementary (Table S1 and Supplementary Figures S1 to S24). In scenario-based experiments, it appears to be harder270

for RCMs to emulate CMIP output than in idealised experiments. We suggest two key explanations. The first is that effective
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radiative forcing cannot be easily diagnosed in SSP-based scenarios hence it is hard to know how best to force the RCM during

calibration. The second is that the forcing in these scenarios includes periods of increase, sudden decrease due to volcanoes

as well as longer term stabilisation rather than the simpler changes seen in the idealised experiments. Fitting all three of these

regimes is a more difficult challenge than fitting the idealised experiments alone.275

Only 6 models (Table 2) have been able to submit emulation configurations. Furthermore, each RCM is calibrated to a

different number of CMIP models, with some modeling teams unable to provide any calibrations at all. The reason is that

there is to-date no common resource of calibration data from the CMIP6 repositories. The technical challenge of diagnosing,

stitching together, creating area-weighted averages and de-drifting a large amount of CMIP6 output data within a short time

period has turned out to be a hurdle for many modelling teams. As an off-spring from RCMIP, we attempt to address this280

challenge for the future by providing a unifying data portal (see cmip6.science.unimelb.edu.au, Nicholls et al., 2020b).

The ensemble of RCMs also provides insights into the differences between CMIP5 and CMIP6 generation scenarios (‘RCP’

and ‘SSP-based’ scenarios respectively) when these scenarios are run with identical models (Figure 3). In the selection of

models which have submitted all RCP, SSP-based scenario pairs, the SSP-based scenarios are 0.20�C (standard deviation

0.10�C across the available models) warmer than their corresponding RCPs (Figure 3(b)). This difference is driven by the 0.39285

±0.24 Wm�2 larger effective radiative forcing in the SSP-based scenarios (Figure 3(d)), which itself is driven by the 0.53

±0.44 Wm�2 larger CO2 effective radiative forcing in the SSP-based scenarios (Figure 3(f)). These results add to the work of

Wyser et al. (2020) which suggests that even when run with the same model (in a concentration-driven setup), the SSP-based

scenarios result in warmer projections than the RCPs. When we run one of the RCMs (MAGICC) with an AR5-consistent

stratospheric-adjusted radiative forcing definition (Myhre et al., 2013), the SSP-based and RCP scenarios are within 6% of290

each other in 2100 (albeit their AR5-consistent stratospheric-adjusted radiative forcing trajectories can differ by up to 15% at

different times over the 21st Century). Thus, we find that the update to effective radiative forcing (Forster et al., 2016), mainly

using the formulations presented in Etminan et al. (2016) plus any rapid adjustment terms (Smith et al., 2018b), increases the

total forcing in the SSP-based scenarios, because their generally higher CO2 concentrations are partially, but not fully, offset by

lower CH4 concentrations (see e.g. Fig. 11 in Meinshausen et al., 2020). There is a clear need for further, more comprehensive295

exploration of the differences between the RCP and SSP-based scenarios.

Finally, we present variations in the relationship between surface air temperature change and cumulative CO2 emissions from

the 1pctCO2 and 1pctCO2-4xext experiments (Figure 4). To date, only three models (GIR, MCE and OSCAR) have been able

to provide the required outputs (in particular deriving inverse emissions from these concentration-defined experiments). From

the available results, it is clear that the relationship between these two key variables varies over MCE’s parameter ensemble,300

from weakly sub-linear to weakly super-linear. Such variation can have notable implications for the remaining carbon budget

(Nicholls et al., 2020a). We also see that the MCE model’s parameter ensemble covers a large range, dwarfing the differences

between it and the GIR and OSCAR models, which are shown here in their 3�C climate sensitivity configurations. This suggests

that, at least for RCMs, the response of individual components and their configuration is more important than model structure,

although this conclusion is tempered by the paucity of available results.305

10

cmip6.science.unimelb.edu.au


6 Options for future RCMIP Phases

RCMIP Phase 1 provides proof of concept of the RCMIP approach to RCM evaluation, comparison and examination. However,

Phase 1 has been limited to a very specific set of questions and there is wide scope to use RCMs to examine other scientific

questions of interest. In this section we present a number of ways in which further research and phases of RCMIP could build

on the work presented in this paper.310

The first is an exploration of probabilistic outputs. Most RCMs can be calibrated, i.e. have their parameters adjusted, such

that they reproduce our best-estimate (typically median) observations. However, RCMs are also used in a probabilistic mode.

In this mode a parametric ensemble is run for a given RCM and set of climate forcers. The results are then used to capture the

likelihood that different climate changes will unfold, particularly the likelihood of reaching different warming levels. Given

the widespread use of probabilistic distributions, particularly for quantifying likely ranges of climate sensitivity and climate315

projections (see e.g. Meinshausen et al., 2009; Skeie et al., 2018; Vega-Westhoff et al., 2019), examining the differences

between existing probabilistic model setups is an obvious next step.

Secondly, there is a wide range of RCMs available in the literature. This variety can be confusing, especially to those who

are not intimately involved in developing the models. An overview of the different models, their structure and relationship to

one another (in the form of a genealogy) would help reduce the confusion and provide clarity about the implications of using320

one model over another.

Thirdly, emulation results have generally only been submitted for a limited set of experiments. Hence it is still not clear

whether the emulation performance seen in idealised experiments also carries over to scenarios, particularly the SSP-based

scenarios. As the number of available CMIP6 results continues to grow, this area is ripe for investigation and will lead to

improved understanding of the limits of the reduced complexity approach. The development of a common resource (see cmip6.325

science.unimelb.edu.au, Nicholls et al., 2020b) for RCM calibration will greatly aid this effort by ensuring that each group has

access to the same set of calibration data.

Finally, while evaluating RCMs is a useful exercise, the root causes of these differences may not be clear. This can be

addressed by performing experiments which specifically diagnose the reasons for differences between models e.g. simple pulse

emissions of different species or prescribed step changes in atmospheric greenhouse gas concentrations. Such experiments330

could build on existing research (van Vuuren et al., 2011b; Schwarber et al., 2019) and would allow even more comprehensive

examination and understanding of RCM behaviour. This would require custom experiments, particularly for the carbon cycle,

which is strongly coupled to other parts of the climate system. However, unlike ESMs, adding extra RCM experiments adds

relatively little technical or human burden, because RCMs are computationally cheap and because RCMIP’s standardised

formats facilitate highly automated experiment pipelines.335

7 Conclusions

RCMs are used in many applications, particularly where computational constraints prevent other techniques from being used.

Due to their importance in climate policy assessments, in carbon budget calculations, as well as applicability to a wide range of
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scientific questions, understanding the behaviour and output from RCMs is highly relevant and requires continuous updating

with the latest science. Here we have presented the Reduced Complexity Model Intercomparison Project (RCMIP), an effort to340

facilitate the evaluation and understanding of RCMs in a systematic, standardised and detailed way. We hope this can greatly

improve ease of use of, and familiarity with, RCMs.

We have performed RCMIP Phase 1, which provides an initial database of experiments conducted with 15 participating

models from the RCM community. RCMIP Phase 1 focused on basic comparisons of RCMs with observed global-mean tem-

perature changes, comparisons of RCMs with the global-mean temperature response of more complex models, the difference345

between the SSP-based and RCP scenarios and an exploration of the relationship between cumulative CO2 emissions and

surface air temperature change in the RCMs. These initial comparisons demonstrate that RCMIP’s infrastructure is a useful

tool for such intercomparisons and that the RCM community is able to perform such intercomparisons on timescales of the

order of months. Further work will examine the relationship between different RCMs, RCMs’ probabilistic projections and the

cause of differences between RCMs.350

RCMIP fills a gap in our understanding of RCM behaviour, in particular, how different RCMs perform relative to each

other as well as how they compare with observations. This gap is particularly important to fill given the widespread use

of RCMs throughout the integrated assessment modelling community and in large-scale climate science assessments. We

welcome requests, suggestions and further involvement from throughout the climate modelling research community. With our

efforts, we aim to increase understanding of and confidence in RCMs, particularly for their many users at the science-policy355

interface.

Code and data availability. RCMIP input timeseries and results data along with processing scripts as used in this submission are available

from the RCMIP GitLab repository at https://gitlab.com/rcmip/rcmip and archived by Zenodo (https://doi.org/10.5281/zenodo.3593569).

The ACC2 model code is available upon request.

The implementation of the AR5IR model used in this study is available in the OpenSCM repository: https://github.com/openscm/openscm/360

blob/ar5ir-notebooks/notebooks/ar5ir_rcmip.ipynb

The model version of ESCIMO used to produce the RCMIP runs can be downloaded from http://www.2052.info/wp-content/uploads/

2019/12/mo191107%202%20ESCIMO-rcimpfrom%20mo160911%202100%20ESCIMO.vpm. The vpm extension allows you to view, ex-

amine and run the model, but not save it. The original model with full documentation is available from http://www.2052.info/escimo/.

FaIR is developed on GitHub at https://github.com/OMS-NetZero/FAIR and v1.5 used in this study is archived at Zenodo (Smith et al.,365

2019).

The GREB model source code used is available, upon request, on Bitbucket: https://bitbucket.org/rcmipgreb/greb-official/src/official-rcmip/.

The last stable versions are available on GitHub at https://github.com/christianstassen/greb-official/releases.

The Held two layer model implementation used in this study is available in the OpenSCM repository: https://github.com/openscm/

openscm/blob/ar5ir-notebooks/notebooks/held_two_layer_rcmip.ipynb370
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Hector is developed on GitHub at https://github.com/JGCRI/hector. The exact version of Hector used for these simulations can be found at

https://github.com/ashiklom/hector/releases/tag/rcmip-phase-1. The scripts for the RCMIP runs are available at https://github.com/ashiklom/

hector-rcmip.

MAGICC’s Python wrapper is archived at Zenodo (https://doi.org/10.5281/zenodo.1111815) and developed on GitHub at https://github.

com/openclimatedata/pymagicc/.375

OSCAR v3 is available on GitHub at https://github.com/tgasser/OSCAR.

WASP’s code for the version used in this study is available from the supplementary material of Goodwin (2018): https://doi.org/10.1029/

2018EF000889. See also the WASP website at http://www.waspclimatemodel.info/download-wasp.

The other participating models are not yet available publicly for download or as open source. Please also refer to their respective model

description papers for notes and code availability.380
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Figure 1. Historical global-mean annual mean surface air temperature (GSAT) simulations. Thick black line is observed GSAT (Richardson

et al., 2016; Rogelj et al., 2019). Medium thickness lines are default configurations for RCMIP models. Thin grey solid lines are CMIP6

models. In order to provide timeseries up until 2019, we have used data from the combination of historical and ssp585 simulations.
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Figure 2. Emulation of CMIP6 models by RCMs. The thick transparent lines are the target CMIP6 model output (here from IPSL-CM6A-LR

r1i1p1f1). The thin lines are emulations from different RCMs. Panel (a) shows results for scenario based experiments while panels (b) - (e)

show results for idealised CO2-only experiments (note that panels (b) - (e) share the same legend). See the Supplementary Information for

other target CMIP6 models.
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Table 2. Model emulation scores over all emulated models and scenarios. Here we provide root-mean square errors over the SSPs plus

four idealised CO2-only experiments (abrupt-2xCO2, abrupt-4xCO2, abrupt-0p5xCO2, 1pctCO2). As the models have not all provided

emulations for the same set of target models and scenarios, the model emulation scores are indicative only and are not a true, fair test of skill.

For target model by target model emulation scores, see Table S1.

Model (number of emulated scenarios) Surface Air Temperature Change (GSAT aka tas) root-

mean square error (indicative only)

MAGICC-v7-1-0-beta (131) 0.21 K

MCE-v1-1 (44) 0.19 K

ar5ir-2box (36) 0.24 K

ar5ir-3box (36) 0.28 K

hector (64) 0.28 K

held-two-layer-uom (34) 0.18 K
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a) b)

c) d)

e) f)

g) h)

Figure 3. Output from the RCPs and SSP-based scenarios up until 2100. The left-hand column shows raw model output. The right-hand

column shows the difference between RCP SSP-based scenario pairs for a given model’s output. The shaded range shows one standard

deviation about the median (solid lines). Output is shown for surface air temperature change (GSAT, (a) and (b)), effective radiative forcing

((c) and (d)), CO2 effective radiative forcing ((e) and (f)) and aerosol effective radiative forcing ((g) and (h)). The results here are based on a

limited set of models: CICERO-SCM, MAGICC, OSCAR, GIR and FaIR. Only these models have performed the required RCP, SSP-based

scenario pair experiments.
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Figure 4. Surface air temperature change against cumulative CO2 emissions in the 1pctCO2 and 1pctCO2-4xext experiments. Thin lines are

used for the MCE model’s family of emulation setups. Thick lines are used for the GIR and OSCAR 3�C climate sensitivity setups.
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