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Abstract. Statistical emulation allows combining advantageous features of statistical and process-based crop models for un-

derstanding the effects of future climate changes on crop yields. We describe here the development of emulators for nine

process-based crop models and five crops using output from the Global Gridded Model Intercomparison Project (GGCMI)

Phase II. The GGCMI Phase II experiment is designed with the explicit goal of producing a structured training dataset for

emulator development that samples across four dimensions relevant to crop yields: atmospheric carbon dioxide (CO2) concen-5

trations, temperature, water supply, and nitrogen inputs (CTWN). Simulations are run under two different adaptation assump-

tions: that growing seasons shorten in warmer climates, and that cultivar choice allows growing seasons to remain fixed. The

dataset allows emulating the climatological mean yield response without relying on interannual variations; we show that these

1

https://doi.org/10.5194/gmd-2019-365
Preprint. Discussion started: 13 February 2020
c© Author(s) 2020. CC BY 4.0 License.



are quantitatively different. Climatological mean yield responses can be readily captured with a simple polynomial in nearly

all locations, with errors significant only in some marginal lands where crops are not currently grown. In general, emulation10

errors are negligible relative to differences across crop models or even across climate model scenarios. We demonstrate that the

resulting GGCMI emulators can reproduce yields under realistic future climate simulations, even though the GGCMI Phase

II dataset is constructed with uniform CTWN offsets, suggesting that the effects of changes in temperature and precipitation

distributions are small relative to those of changing means. The resulting emulators therefore capture relevant crop model re-

sponses in a lightweight, computationally tractable form, providing a tool that can facilitate model comparison, diagnosis of15

interacting factors affecting yields, and integrated assessment of climate impacts.

1 Introduction

Improving our understanding of the impacts of future climate change on crop yields is critical for global food security in the

twenty-first century. Projections of future yields under climate change are generally made with one of two approaches: either

process-based models, which simulate the process of photosynthesis and the biology and phenology of individual crops, or20

statistical models, which use historical weather and yield data to capture relationships between observed crop yields and major

drivers. Process-based crop models provide some advantages, including capturing the direct effects of CO2 fertilization and

allowing projections in areas where crops are not currently grown. However, they are computationally expensive, and can be

difficult or impossible to directly integrate into integrated climate change impacts assessments. Statistical crop models can only

capture crop responses under the range of current conditions, but have several advantages: they implicitly include management25

and behavioral practices that are difficult to model explicitly, and they are typically simple analytical expressions that are

easily implemented by downstream impact modelers. Both types of models are routinely used, and comparative studies have

concluded that when done carefully, both approaches can provide similar yield estimates (e.g. Lobell and Burke, 2010; Moore

et al., 2017; Roberts et al., 2017; Zhao et al., 2017; Liu et al., 2016a).

Statistical emulation allows combining some of the advantageous features of both statistical and process-based models.30

The approach involves constructing a “surrogate model” of numerical simulations by using their output as training data for a

statistical representation (e.g. O’Hagan, 2006; Conti et al., 2009). Emulation is particularly useful in cases where simulations

are complex and output data volumes are large, and has been used in a variety of fields, including hydrology (e.g. Razavi et al.,

2012), engineering (e.g. Storlie et al., 2009), environmental sciences (e.g. Ratto et al., 2012), and climate (e.g. Castruccio

et al., 2014; Holden et al., 2014). For agricultural impacts studies, emulation of process-based models allows capturing key35

relationships between input variables in a lightweight, flexible form that is compatible with economic studies. The resultant

statistical model can produce yield projections under arbitrary emissions scenarios and is an important diagnostic tool for

model comparison and model evaluation.

Interest is rising in applying statistical emulation to crop models, and multiple studies have developed crop model emulators

in the past decade. Early studies proposing or describing potential crop yield emulators include Howden and Crimp (2005);40

Räisänen and Ruokolainen (2006); Lobell and Burke (2010), and Ferrise et al. (2011). Studies developing single-model emula-
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tors include Holzkämper et al. (2012) for the CropSyst model, Ruane et al. (2013) for the CERES wheat model, and Oyebamiji

et al. (2015) for the LPJmL model. More recently, emulators have begun to be used in the context of multi-model intercom-

parison, with multiple authors (Blanc and Sultan, 2015; Blanc, 2017; Ostberg et al., 2018; Mistry et al., 2017) using them to

analyze the five crop models of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP). ISIMIP offers a relatively45

large training set – control, historical, and several Representative Concentration Pathway (RCP) scenarios using output from

up to five climate models (Warszawski et al., 2014; Frieler et al., 2017) – and choices of emulation strategy differ. Blanc and

Sultan (2015) and Blanc (2017) use historical and RPC8.5 scenarios, combine multiple climate model projections for RCP8.5,

and regress across soil regions. Ostberg et al. (2018) use global mean temperature change (and CO2) as regressors, and then

pattern-scales to emulate local yields. Mistry et al. (2017) compare emulated and observed historical yields, using local weather50

data and a historical crop simulation. The constraints of the ISIMIP experiment mean that all these efforts do share important

common features. All emulate annual crop yields along an entire scenario or scenarios, and all future climate scenarios are

non-stationary, with important covariates (temperature and precipitation for example) evolving simultaneously.

An alternative approach to emulation involves construction of a “parameter sweep” training set, a collection of multiple

stationary scenarios that systematically cover a range of input parameter values. A parameter sweep offers several important55

advantages for emulation over an experiment in which climate evolves over time. First, it allows separating the effects of

different variables that affect yields but that are highly correlated in realistic future scenarios like those used in ISIMIP (e.g.

CO2 and temperature). Second, it allows making a distinction between year-to-year yield variations and climatological changes,

which may involve different responses to the particular climate regressors used (e.g. Ruane et al., 2016). For example, if year-

to-year yield variations are driven predominantly by variations in the distribution of temperatures throughout the growing60

period, and long-term climate changes are driven predominantly by additive mean shifts, then regressing on the mean growing

period temperature will produce different yield responses at annual vs. climatological timescales.

Systematic parameter sweeps have begun to be used in crop model evaluation and emulation, with early efforts in 2014 and

2015 (Ruane et al., 2014; Makowski et al., 2015; Pirttioja et al., 2015), and several recent studies in 2018 and 2019 (Fronzek

et al., 2018; Ruiz-Ramos et al., 2018; Snyder et al., 2019). These three studies sample multiple perturbations to temperature65

and precipitation, and two of the three add CO2 as well, for a total of 132, 99, and 220 different combinations, respectively.

All take advantage of the structured training set to construct emulators (“response surfaces”) of climatological mean yields,

omitting year-to-year variations. All the 2018–2019 papers have some limitations, however, for assessing global agricultural

impacts, including that none evaluate responses in every grid cell globally. Two involve many crop models but only one crop

(wheat) (Fronzek et al., 2018; Ruiz-Ramos et al., 2018) and cover only 1–4 individual sites. Snyder et al. (2019) analyzes70

five crops over ∼1000 sites with individual site-specific crop models, and extrapolates in space to estimate mean latitudinal

responses.

In this paper we describe a set of globally-gridded crop model emulators developed from the new parameter-sweep dataset of

the Global Gridded Crop Model Intercomparison (GGCMI) Phase II effort. GGCMI Phase II, a part of the Agricultural Model

Intercomparison and Improvement Project (AgMIP) (Rosenzweig et al., 2013, 2014), provides the first near-global-coverage75

systematic parameter sweep of multi-model crop simulations consisting of up to 756 combinations in CO2, temperature, water
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supply, applied nitrogen, and two different assumptions on growing season adaptation (“A0”: none and “A1”: retaining growing

season length) (CTWN-A, Franke et al., 2019; Minoli et al., 2019). The experiment is designed to allow diagnosing the

impacts on crop yields of both individual factors and their joint effects, and to allow construction of crop model emulators. In

the following, we describe the training dataset (Section 2), the statistical model used for emulation (Section 3), measures of80

emulator fidelity (Section 4), and examples of preliminary results (Section 5).

2 Training dataset

2.1 The GGCMI Phase II dataset

Table 1. Crop models included in GGCMI Phase II emulators and the number of CTWN-A (Carbon, Temperature, Water, Nitrogen, Adapta-

tion ) simulations performed for each model. The maximum number is 756 for A0 (no adaptation) experiments, and 648 for A1 (maintaining

growing length) experiments, since T0 is not simulated under A1. “N-Dim.” indicates whether the models are able to represent varying ni-

trogen levels. Each model provides the same set of CTWN simulations across all its modeled crops, but some models omit individual crops.

Table adapted from Franke et al. (2019). For clarity, three simulation models included in Phase II are not shown here, those that provided a

training set too small to be used in emulation.

Model (Key Citations) Maize Soybean Rice Winter

wheat

Spring

wheat

N dim. Sims per crop

(A0 / A1)

CARAIB, Dury et al. (2011); Pirttioja et al.

(2015)

X X X X X – 252 / 216

EPIC-TAMU, Izaurralde et al. (2006) X X X X X X 756 / 648

JULES, Osborne et al. (2015); Williams and

Falloon (2015); Williams et al. (2017)

X X X – X – 252 / 0

GEPIC, Liu et al. (2007); Folberth et al. (2012) X X X X X X 430 / 181

LPJ-GUESS, Lindeskog et al. (2013); Olin

et al. (2015)

X – – X X X 756 / 648

LPJmL, von Bloh et al. (2018) X X X X X X 756 / 648

pDSSAT, Elliott et al. (2014); Jones et al.

(2003)

X X X X X X 756 / 648

PEPIC, Liu et al. (2016b, c) X X X X X X 149 / 121

PROMET, Hank et al. (2015); Mauser et al.

(2015); Zabel et al. (2019)

X X X X X – 261 / 232
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Table 2. GGCMI Phase II input levels for the parameter sweep. Values for temperature and water supply are perturbations from the historical

climatology. For water supply, perturbations are fractional changes to historical precipitation, except in the irrigated (W∞) simulations,

which are all performed with the maximum beneficial levels of water. Bold font indicates the ‘baseline’ historical level. The full protocol

samples across all parameter combinations for a total of 756 cases. Table repeated from Franke et al. (2019).

Input variable Tested range Unit

[CO2] (C) 360, 510, 660, 810 ppm

Temperature (T) -1, 0, 1, 2, 3, 4, 6 ◦C

Precipitation (W) -50, -30, -20, -10, 0, %

10, 20, 30, (and W∞)

Applied nitrogen (N) 10, 60, 200 kg ha−1

Adaptation (A) A0: none, A1: new cultivar to maintain original growing season length -

The GGCMI Phase II simulations are described in detail in Franke et al. (2019), but we summarize briefly here. The exper-

iment involves nine different globally gridded crop models, each simulating multiple crops (maize, rice, soybean, and spring85

and winter wheat) across a systematic parameter sweep of as many as 756 combinations, each driven by a historical climate

timeseries with systematic perturbations to CO2, temperature, water supply, and nitrogen application (CTWN). The simulation

protocol involves 4 levels of atmospheric CO2, 7 of temperature, 9 of water supply, and 3 of applied nitrogen, and simulations

are repeated for two adaptation scenarios: “A0” simulations assume no adaptation in cultivar choice, so that growing seasons

shorten in warmer climates, and “A1” simulations assume that adaptation in cultivar choice maintains fixed growing seasons.90

The complete protocol for each modeling group involves up to 43,524 years of global simulated output for each crop. Because

the computational demand is high, modeling groups were allowed to submit at various specified levels of participation, with the

lowest recommended level of participation consisting of 20% of the maximum possible simulations. The mean participation

level is 65%, but three models (APSIM-UGOE, EPIC-IIASA, and ORCHIDEE-crop) contributed data below the recommended

threshold (< 5% of the full protocol) and are excluded here since they could not be robustly emulated. Table 1 shows the partic-95

ipating models and the number of simulation scenarios that each provides, and Supplemental Figure S1 shows model sampling

density. Table 2 shows the specified input values; we sample across all parameter combinations.

Each individual crop model simulation is run for 31 years over historic weather for the period of 1981-2010, with added

uniform perturbations to any of the CTWN variables. Historical weather is taken for most models from the AgMERRA (Ruane

et al., 2015) historical daily climate data product, but the PROMET model uses the ERA-Interim reanalysis (Dee et al., 2011)100

and the JULES model uses a bias-corrected version of ERA-Interim, WFDEI (WATCH-Forcing-Data-ERA-Interim, Weedon

et al., 2014) as these groups have specific sub-daily input data requirements. Temperature perturbations are applied as additive

mean shifts, water supply as fractional multipliers to precipitation (except in the irrigated W∞ case), and CO2 and nitrogen
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application levels are specified as fixed values. Models provide near-global output at 0.5 degree latitude and longitude resolution

for each simulation year, including areas not currently cultivated. In analyses where we distinguish yields over currently105

cultivated land, we use the masks of Portmann et al. (2010). (See Supplemental Figure S2 for maps of cultivated area.)

2.2 Climatological vs. year-to-year response

We emulate the climatological mean response, because that is the response of interest in assessments of climate change impacts.

The year-to-year response can be significantly different from the forced climatological one, so we do not use information from

year-to-year variability but instead emulate the aggregated mean yield in each 30-year simulation. Emulation then becomes110

relatively straightforward, since changes in time-averaged yields are also considerably smoother than those in year-to-year

yield response.

In the GGCMI Phase II simulation output dataset, year-to-year responses to weather are often quantitatively distinct from

responses to climatological shifts, with the discrepancy especially strong in wheat and rice. The difference in behavior is

illustrated in Figure 1, which shows irrigated and rainfed maize and wheat in representative locations; open circles and black115

lines show the climatological mean response, and solid circles and colored lines the responses for the 30 individual years in

individual scenarios. When discrepancies are large, year-to-year responses are generally stronger than climatological ones, but

exact responses differ by crop and region and even by model within GGCMI Phase II.

While differences in responses at different timescales can arise for many reasons, including memory in the crop model or

lurking covariates, the most likely explanation here is that the regressors used, mean growing-season temperature or precip-120

itation, do not fully describe the conditions that affect crop yields. The mean growing-season value is only a proxy for the

distribution of daily climatic conditions that crops are sensitive to, and present-day variations between years can be very differ-

ent from future forced changes. That is, present-day variations in growing-season means from year to year may be associated

with changes in growing-season distributions that are unrelated to any changes in future warmer climates: a warm year at

present may be quite different from a warm year in the future (e.g. Ruane et al., 2016). Changes in temperature distributions125

have been shown to strongly affect crop yields (e.g. Hansen and Jones, 2000; Gadgil et al., 2002), though precipitation effects

should be smaller since crops respond not to rainfall but to soil moisture, which integrates over weeks or even months (e.g.

Potter et al., 2005; Glotter et al., 2014; Challinor et al., 2004).

A second factor of importance is that any nonlinearity in crop responses will itself lead to a distinction between climato-

logical and year-to-year fits, even if distributional differences are negligible. Given the interannual variations in the climate130

timeseries, the mean annual yield response to a perturbation is not the same as the response of the climatological mean yield.

The effect of nonlinearity may be particularly relevant for precipitation, since model crop yields drop steeply and nonlinearly

with increasing dryness. (Crop yields should drop under excess precipitation as well, but process-based models do not capture

losses in saturated conditions well (Glotter et al., 2015; Li et al., 2019).)

In the GGCMI Phase II experiment, the imposed perturbations involve no changes in underlying distributions. The choice135

is reasonable, since climate models do not agree on distributional changes. Most models do project small mean increases in

growing-season temperature variability in cultivated areas, and can produce substantial local changes, but models disagree on
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Figure 1. Example showing distinction between crop yield responses to year-to-year and climatological mean shifts in climate variables,

showing representative high-yield regions for maize in pDSSAT (northern Iowa, top row) and winter wheat in EPIC-TAMU (France, bottom

row). Left column (a & c) shows irrigated crops, all temperature cases with other variables held at baseline values, and right column (b

& d) shows rainfed crops, all precipitation cases. Figure shows A0 output, in which growing seasons shift under future climate, so local

growing-season temperature changes can differ from prescribed uniform offsets: for example, a 6 K applied uniform warming results in a

growing season temperature warmer by ∼7 K for maize in Iowa (top right), but by less than 6 K for wheat in France (bottom right). Open

black circles mark climatological mean yields and bold black lines show a 3rd order polynomial fit through them. Colored lines show linear

regressions (by orthogonal distance regression) through the 30 annual yields of each parameter case. Colored circles show annual yields for

selected cases. Differences in slopes of colored and black lines mean that responses to year-to-year fluctuations differ from those to longer-

term climate shifts. Differences are generally stronger for wheat (bottom) than maize (top). Note that for rain-fed crops, slope differences in

this representation could also result from correlated precipitation and temperature fluctuations in the baseline timeseries, but P-T correlations

do not contribute to the effects shown here. Such correlations would complicate emulations based on year-to-year yields but would not

necessarily bias them.

spatial patterns. For example, in models of the Coupled Model Intercomparison Project Phase 5 (CMIP-5) archive, in the the

high-end RCP (Representative Concentration Pathway) 8.5 climate projections to the year 2100 (Riahi et al., 2011), growing

season daily maximum temperature variability over currently cultivated rice areas (weighted by production) increases by 10%140
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in HadGEM2-ES but only by 0.4% in MIROC-ESM-CHEM. (See Supplemental Section S2.) We therefore explicitly test the

assumption that distributional changes are not consequential for climatological mean yields: in Section 4.3, we confirm that

an emulator trained on the GGCMI Phase II dataset can successfully reproduce yield changes under a full climate model

projection.

Figure 2. Example showing results of increased crop yield sensitivity to year-to-year climate variations under climate stress. Yield distri-

butions are from examples of Figure 1, top row, of maize in Iowa, (left) for irrigated maize in scenarios of altered temperature and (right)

for rainfed maize in scenarios of altered precipitation. Because yield sensitivities rise under strong warming or drying, distributions of year-

to-year crop yields widen in T+6 and P-50% scenarios relative to present-day simulations, even though all input climate timeseries have

identical variance for temperature. Note: precipitation changes have different variance since the perturbations are fractional.

Note that even though distributions of climate variables are unchanged in the GGCMI Phase II simulations, the spread in145

annual yields still becomes wider in highly impacted climate states, because of the nonlinearity of yield responses (Figure

2). In the GGCMI Phase II dataset, all crops except rice show greater year-to-year yield variance in conditions of extreme

climate stress. (Rice is typically irrigated and experiences no water stress in simulations.) Increased variance has been noted

in previous studies. For example, Urban et al. (2012) used statistical models trained on present-day yields to find a projected

future increase in yield variance of U.S. maize of 20% per degree K temperature rise. While the authors do not diagnose a150

specific cause of that increase, they discuss multiple potential mechanisms, including nonlinearity in responses.

3 Emulation

Emulation involves fitting individual regression models from GGCMI Phase II output for each crop and model and 0.5 degree

geographic pixel; the regressors are the applied perturbations in CO2, temperature, water, and nitrogen (CTWN). We discuss

here largely emulations of climatological mean crop yields with no growing season adaptation (A0 scenarios), but note that155
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any output of the crop models can potentially be emulated. We provide separate emulations of irrigated and rainfed yields and

applied irrigation water (pirrww in mm yr−1) in both A0 and A1 scenarios, meaning that each model and crop combination

results in six sets of regressions. See Supplemental Material Sections 3, 4, and 6 for these additional emulation cases.

3.1 Statistical model

For the statistical model of crop yields as a function of CTWN, we choose a relatively simple parametric model with a 3rd-order160

polynomial basis function. If the climatological mean response is relatively smooth, then a simpler form provides a reasonable

fit that allows for some interpretation of resultant parameter weights. A relativity simple parametric form also allows fast model

emulation at the grid cell level, rather than requiring spatial aggregation. Emulating at the grid cell level preserves the spatial

resolution of the parent models, and means that emulators indirectly includes any yield response to geographically distributed

factors such as soil type, insolation, and the baseline climate.165

The 3rd-order polynomial CTWN model contains 34 terms (Equation 1), since the N3 term is omitted, as it cannot be fitted

in a training set sampling only three nitrogen levels. To facilitate comparing emulators parameter by parameter, we hold this

functional form across locations, crops, and models, other than several necessary distinctions: regressions for irrigated crops

do not contain W terms, and regressions for models that do not sample the nitrogen levels omit the N terms.

Y = K1 (1)170

+ K2C +K3T +K4W +K5N +K6C
2

+ K7CT +K8CW +K9CN +K10T
2 +K11TW

+ K12TN +K13W
2 +K14WN +K15N

2

+ K16C
3 +K17C

2T +K18C
2W +K19C

2N

+ K20CT
2 +K21CTW +K22CTN +K23CW

2175

+ K24CWN +K25CN
2 +K26T

3 +K27T
2W

+ K28T
2N +K29TW

2 +K30TWN +K31TN
2

+ K32W
3 +K33W

2N +K34WN2 +K∗N
3

Results shown throughout the paper use this full specification, but we also investigate (in Section 3.2 below) whether some

terms can be dropped without significant reduction in emulator fidelity. In general, both higher-order and interaction terms180

are expected to be important for representing crop yields. Higher order terms are needed because crop yield responses to

weather are well-documented to be nonlinear: e.g. Schlenker and Roberts (2009) for T perturbations and He et al. (2016) for W

(precipitation). Interaction terms are needed since the yield response is expected to depend on interactions between the major

inputs. For example, Lobell and Field (2007) and Tebaldi and Lobell (2008) showed that in real-world yields (with C and N

fixed), the joint distribution in T and W is needed to explain observed yield variance. Other observation-based studies have185

shown the importance of the interaction between W and N (e.g. Aulakh and Malhi, 2005), and between N and C (Osaki et al.,

1992; Nakamura et al., 1997).
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We do not focus in this study on comparing other functional forms or non-parametric models. Some prior studies have used

other statistical specifications in crop model emulation: for example, Blanc and Sultan (2015) and Blanc (2017) use a 39 term

fractional polynomial and “borrow information across space” by fitting grid points simultaneously across soil region in a panel190

regression. The GGCMI Phase II dataset allows fitting our simple 3rd order polynomial form independently at each grid cell

while still providing a satisfactory emulation for all models and crops. (See Section 4 for evaluation of the fidelity of emulators

constructed with Equation 1.)

3.2 Feature importance and reduced statistical model

Because a simpler statistical model may improve the interpretability of its parameter weights, we also develop a reduced version195

that is satisfactory for most models and crops (Equation 2). To identify terms that can be omitted, we apply a feature selection

cross-validation process in which terms in the polynomial are tested for importance. Higher-order and interaction terms are

successively added to the regression model, and in each case we calculate an aggregate mean absolute error (weighted by by

currently cultivated area) and eliminate those terms that do not contribute significantly to reducing error. The procedure is

illustrated in Figure 3. We develop our reduced statistical model by considering yields over currently cultivated land in three200

models: two that provided the complete set of 672 rainfed simulations, i.e. without the W∞ simulations, (pDSSAT, EPIC-

TAMU), and one that provided the smallest training set (121 input combinations, PEPIC). Although models exhibit different

absolute levels of error, all three agree remarkably well on feature importance, i.e. on which terms reduce error and which

provide no predictive benefit. (Agreement means that line slopes match in Figure 3.)

Results of the feature selection process suggest that 11 terms can be omitted with negligible impact on emulator fidelity,205

producing the 23-term statistical model of Equation 2.

Y = K1 (2)

+ K2C +K3T +K4W +K5N +K6C
2

+ KaCT +K7CW +K8CN +K9T
2 +K10TW

+ K11TN +K12W
2 +K13WN +K14N

2210

+ K∗C
3 +K∗C

2T +K∗C
2W +K∗C

2N

+ K∗CT
2 +K∗CTW +K∗CTN +K∗CW

2

+ K∗CWN +K15CN
2 +K16T

3 +K17T
2W

+ K∗T
2N +K18TW

2 +K19TWN +K20TN
2

+ K21W
3 +K22W

2N +K23WN2 +K∗N
3215

The eliminated terms include many of those in C: the cubic; the CT, CTN, CTW, and CWN interaction terms; and all higher

order interaction terms in C. Finally, we eliminate one 2nd-order interaction term in W and two in T. Implications of this choice

include that nitrogen interactions are complex and important, and that water interaction effects are more nonlinear than those

in temperature. Note that some terms that did not reduce the aggregate error must still be included if a higher order version
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Figure 3. Illustration of results from the polynomial feature selection process for three different crop models (colors), for all grid cells with

more than 1000 ha cultivated for maize (left) and rice (right). Solid lines are Bayesian Ridge regression results and dashed lines those for

standard OLS. Rows show four metrics of fit quality and x axes the terms successively tested in the statistical model, sequentially added to

the model in order from left to right. Terms that do not reduce the aggregate error are marked in gray and are not included in the final model.

a & b: log mean absolute error between emulated yield and simulated values calculated with a three fold cross validation process, where the

emulator is trained on two thirds of the data and predicts the remaining third. c & d: log mean standard parameter error. The Bayesian Ridge

method strongly reduces parameter error and results in more stable estimates. e & f: adjusted R2 score for the fit at each model specification.

g & h: distribution of the residuals. Skewness is low at the high model specifications tested in all model cases other than EPIC-TAMU maize.

of that term provides benefit: for example, including the T 3 term requires also retaining T 2 and T terms. The reduced-form220

emulator is acceptable across currently cultivated land for all model and crop combinations other than JULES soy and spring

wheat and PROMET soy and rice. These cases involve yield responses that benefit strongly from inclusion of higher order

carbon interaction terms. Additional terms in the statistical model also help emulation in some geographic locations outside of

currently cultivated regions, where yield responses are often non-standard. (See Supplemental Material Section 7 for evaluation

of the fidelity of emulators constructed with Equation 2 and for more details on JULES and PROMET.)225
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3.3 Model fitting

To fit the parameters K, we use a Bayesian Ridge regularization method (MacKay, 1991) rather than standard ordinary least

squares (OLS). The Bayesian Ridge method reduces volatility in parameter estimates when the sampling is sparse, by weighting

parameter estimates towards zero, allowing the use of a consistent functional form across all models and locations. The choice

slightly reduces mean absolute error for some of the high-order interaction terms in the model (Figure 3, top row) but drastically230

reduces standard parameter error in the model by stabilizing the estimates (Figure 3, third row). The estimation method scores

relatively lower on adjusted R2 for the simplest parameter specifications, but quickly reaches parity with the OLS. We use

adjusted R2 as a metric because additional terms are penalized (Equation 3, where n is the number of samples and k is the

number of features):

R2
adj = 1− (n− 1) · (1−R2)

n− k (3)235

We use the implementation of the Bayesian Ridge estimator from the scikit-learn package in Python (Pedregosa et al., 2011).

An additional diagnostic of fit quality is the distribution of residuals: normally or near-normally distributed residuals imply

that errors around the fit are random and unbiased. When fitting Equation 1 to the GGCMI Phase II dataset, the distribution of

the residuals depends on the number of features included in the regression, the method for estimating the parameters, and the

target distribution in the training set. The residuals are only normally distributed (pvalue > 0.05 in the Shapiro–Wilk test) for a240

single model, PEPIC, for any specification tested here, but their skew is relatively small except in a single case, EPIC-TAMU

maize (Figure 3, fourth row). While including higher-order terms in the statistical model generally reduces residual skew, for

EPIC-TAMU maize it increases skew instead, but also reduces the error in cross-validation, which we consider more important

in the context of emulation. The residual distribution suggests that projections using the EPIC-TAMU maize emulator will tend

to be biased high, but in practice the overall magnitude of these errors is below 2% of yield changes. (See Section 4.2.)245

4 Emulator evaluation

In this section we show illustrations of GGCMI model yield responses to climate perturbations and evaluate the ability of

our emulators to reproduce them. Model emulation with the parametric method used here requires that crop yield responses

be sufficiently smooth and continuous to allow fitting with a relatively simple functional form; in Section 4.1 we show that

this condition largely holds in the GGCMI Phase II simulations. In section 4.2 we evaluate metrics of emulator performance250

and show that emulation errors – discrepancies between emulation and simulation – are generally small, especially when

compared to the differences across crop models or to projected yield changes. Emulation errors become problematic only in

certain, limited geographic locations, usually where crops are not currently grown. We analyze here results using the 34-term

polynomial of Equation 1; see Supplemental Material Section 7 for analogous analysis of the 23-term polynomial of Equation

2. Finally, in Section 4.3, we assess the emulator’s ability to reproduce crop yields in a more realistic future simulation driven255

by a climate model projection, and find that any effects of changes in climate variability not included in the GGCMI Phase II

training set are generally small relative to the effects of mean changes.
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4.1 Yield response

Crop yields show strong spatial differentiation across geographic regions, and emulators are able to readily reproduce these.

Figure 4 illustrates the spatial yield pattern under current climate for one crop and model (maize in LPJmL). Absolute emulation260

errors are low – 99.8% of grid cells have errors below 0.5 tons ha−1 – but emulation errors as a percentage of baseline yield can

be large in areas with low potential yield and no current cultivation in the real world (e.g. the Sahara, Patagonia). These regions

are not currently viable for agriculture and may never become viable even under extreme climate change. Emulator spatial skill

varies across models and crops, with maize being the quantitatively easiest to emulate across all models and locations.

Figure 4. Illustration of spatial pattern in baseline yield successfully captured by the emulator: simulated (a.) and emulated (b.) yield under

historical (1981-2010) conditions for rainfed maize from the LPJmL model. Absolute yield differences (c.) are less than 0.5 ton ha−1 in

almost all (99.8%) grid cells across the globe. Percent difference (from simulated baseline, d.) is below 5% in most (75%) grid cells currently

cultivated in the real world. Approximately 7% of all grid cells, but only 3% of currently cultivated grid cell, have emulated yields that differ

from the baseline simulation by more than 20%. Notable exceptions include areas with very low simulated baseline yield, including for

example the Sahara, the Andes, and northern Quebec. Percent error weighted by cultivation area globally is essentially zero (see also Table

3). Performance varies by crop and model. See Supplemental Figures in Section 8 for more examples.
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Figure 5. Illustration of spatial variations in yield response, which are successfully captured by the emulator. Panels show simulations (points)

and emulations (lines) of rainfed maize in the pDSSAT model in six example locations selected to represent high-cultivation areas around the

globe. Legend includes hectares cultivated in each selected grid cell. Each panel shows variation along a single variable, with others held at

baseline values. Dots show climatological mean yields and lines the results of the full 4D emulator of Equation 1. In general the climatological

response surface is sufficiently smooth that it can be represented within the sampled variable space by the simple polynomial used in this

work. In some cases extrapolation would produce misleading results, and the emulator fails in conditions where yield response changes

abruptly. Failure is illustrated here by rainfed maize in north-central Ontario for the PROMET model (in gray), which shows present-day

yields of zero rising abruptly if temperature warms by 4 degrees.

Yield responses to the four main drivers considered here (C, T, W, and N) are also quite diverse across locations, crops,265

and models, but in nearly all cases the local climatological mean responses are smooth enough to permit emulation with the

functional form used here. Figure 5 illustrates the geographic diversity of responses within a single crop and model, for rainfed

maize in pDSSAT. While the CO2 responses (in ton ha−1/ppm) are quite similar, the precipitation response is stronger in

more arid locations and the nitrogen responses appear strongly location-dependent. The heterogeneity in response supports the

choice of emulating at the grid cell level. In regions with current cultivation, yields evolve smoothly across the space sampled,270

and the polynomial fit captures the climatological-mean response to perturbations well. Emulators do perform poorly in a few

regions that involve discontinuous or irregular yield responses. Poor performance is illustrated here with PROMET maize in

northern Canada, which is too cold for maize at present in PROMET (0 ton ha−1 yield), but which shows an abrupt rise to

moderate yields once temperature rises by 4 degrees. Under these conditions, the 3rd order polynomial cannot fit the response,

and errors are high. See Section 4.2 for additional discussion.275

Crop yield responses in all models generally follow similar functional forms at any given location, though with a spread in

magnitude (Figure 6, which shows rainfed maize in northern Iowa in a selection of GGCMI models). Absolute yield differences

between models can be substantial because some models are uncalibrated. In general, models are most similar in their responses

to temperature perturbations, and least similar to changes in CO2. That is, CO2 fertilization effects within a single model are

consistent across locations, but CO2 effects differ strongly across models.280
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Figure 6. Illustration of variations in yield response across models, again successfully captured by the emulator. Panels show simulations

and emulations from six representative GGCMI models for rainfed maize in the same Iowa grid cell shown in Figure 5, with the same plot

conventions. Three models (PROMET, JULES, and CARAIB) that do not simulate the nitrogen dimension are omitted for clarity. Models

are uncalibrated, producing spread in absolute yields. While most model responses can readily emulated with a simple polynomial, some

response surfaces diverge slightly from the polynomial form, producing emulation error (e.g. pDSSAT here, for water), but resulting error

generally remains small relative to differences across models.

Note that while the nitrogen dimension is important, it is also the most troublesome to emulate in the GGCMI Phase II

experiment because of its limited sampling. The GGCMI Phase II protocol specified only three nitrogen levels (10, 60 and 200

kg N y−1 ha−1), so a third-order fit would be over-determined but a second-order fit can result in potentially unphysical results.

Steep and nonlinear declines in yield with lower nitrogen levels mean that some regressions imply a peak in yield between the

100 and 200 kg N y−1 ha−1 levels (Figure 6, right). While reduced yields under high nitrogen levels are physically possible285

and could reflect over-application at particular times in the growing period, they are implausible at the magnitude shown here

and likely an artifact of the fit. The Bayesian Ridge estimator mitigates the ‘peak-decline effect’ in the nitrogen dimension

relative to ordinary least squares, but does not entirely remove it. The polynomial fit also cannot capture the well-documented

saturation effect of nitrogen application (e.g. Ingestad, 1977) as accurately as would be possible with a non-parametric model.

4.2 Emulator performance metrics290

Our emulators collectively consist of nearly 3 million individual regressions, so developing concise performance metrics poses

a challenge. No general agreed-upon criteria exist for defining an acceptable crop model emulator, so we present two different

metrics below, one relatively loose and one more stringent. Both metrics assess the ability of the emulator to reproduce simu-

lated crop yields in the GGCMI Phase II experiment. In this section we show only results from emulators based on the 34-term

Equation 1; see Supplemental Material Section 7 for analogous assessment of emulators based on the 23-term Equation 2.295

1. Normalized error. We take as our first metric what we term the “normalized error”, which compares the fidelity of an

emulator to the inter-model spread. For a multi-model comparison exercise like GGCMI Phase II, a reasonable though loose

emulator criterion is that its errors be small relative to inter-model differences. The normalized error e is defined separately
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Figure 7. Assessment of emulator performance over currently cultivated areas based on normalized error (Equations 5). We show perfor-

mance of all 9 models emulated, over all crops and all sampled T and W inputs (“ir.” indicates the irrigated W∞ setting), but with CO2 and

nitrogen held fixed at baseline values. Large columns are crops and large rows models; squares within are T, W scenario pairs. Colors denote

the fraction of currently cultivated hectares (“area frac”) for each crop with normalized area e less than 1 indicating the the error between

the emulation and simulation less than one standard deviation of the ensemble simulation spread. Of the possible 63 scenarios at a single

CO2 and N value, we consider only those for which all 9 (8 for rice, soybean, and winter wheat) models submitted data (Figure S1) so the

model ensemble standard deviation can be calculated uniformly in each case. JULES did not simulate winter wheat and LPJ-GUESS did not

simulate rice and soybean. Emulator performance is generally satisfactory, with some exceptions. Emulator failures (significant areas of poor

performance) occur for individual crop-model combinations, with performance generally degrading for colder and wetter scenarios.

for each C,T,W,N scenario s as the difference between emulated and simulated fractional yield changes, normalized by the

standard deviation in simulated changes across all models:300

e s =
Fem, s−Fsim, s

σsim, s
(4)

where F is the fractional change in yields Y between scenario s and baseline b:

F s =
Ys−Yb

Yb
(5)

We calculate the mean error for each grid cell, model, and crop in each C,T,W,N scenario by comparing emulated and simulated

yields. A normalized error e < 1 means that any deviation of the emulation from the simulation is less than 1 standard deviation

of the inter-model spread.305

Evaluation of this metric implies that GGCMI Phase II emulators are generally satisfactory. Emulator performance is il-

lustrated in Figure 7, which shows all models and crops crops over currently cultivated area. Over all crops and models, the
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Figure 8. Illustration of our first test of emulator performance, applied to the CARAIB model for the T+4 scenario for rainfed crops. Colors

indicate the normalized emulator error e, where e > 1 means that emulator error exceeds the multi-model standard deviation. For consistency,

we show e only for geographic areas simulated by at least six models and where baseline yields are greater than 0.5 ton ha−1. Emulator

performance is generally good relative to model spread in areas where crops are currently cultivated (compare to Figure S2-S3) and in

temperate zones in general; emulation issues occur primarily in marginal areas with low yield potentials.

average normalized error e < 1 over 95% of currently cultivated area. For maize, the most tractable crop to emulate, all 9 mod-

els return e < 1 over 97% of currently cultivated area. Only three crop-model combinations are problematic, returning e < 1

over less than 90% of cultivated area even when using the 34-term statistical model: PROMET and CARAIB for soybeans310

(79% and 83%), and JULES for spring wheat (85%). Misfits typically occur when models show strong discontinuities in yield

response (as shown in Figure 5), or when carbon fertilization gains interact nonlinearly with changes in temperature or water.

Including higher-order C terms helps in the latter case but does not reduce emulator errors to zero. See Supplemental Figures

S22-S23 for examples of worst-case emulator failures.

While Figure 7 shows only currently cultivated land, performance can be worse in locations where crops are not currently315

cultivated, or on marginal lands where current potential yields are low. (In general, emulator performance is poor anywhere

that models show steep yield changes once some threshold has been reached, whether these are abrupt gains or complete crop

failures.) Figure 8 illustrates this effect for CARAIB in the T+4 scenario, showing normalized error over all simulated area
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with non-zero baseline yield and at least 6 models providing simulations. CARAIB emulator performance is generally good

where crops are grown but can be poor (e > 2) in arid or mountainous zones, e.g. the edges of the Sahara, Inner Mongolia,320

South Africa and Southern Australia. Note that the choice of statistical model for emulation involves a trade-off in the spatial

pattern of errors: adding terms to the statistical model increases emulator fidelity in problematic “fringe” areas where crops are

currently not cultivated, but reduces it slightly over high-yield areas. For example, CARAIB maize emulators have normalized

error e < 1 over 98.8% of currently cultivated land with the reduced 23-term Equation 2 but only 98.5% with the 34-term

Equation 1. Over simulated uncultivated land, CARAIB maize emulators have e < 1 for only 88.7% of area with the reduced325

Equation 2 but 93.7% with the full Equation 1.

Note that the normalized error assessment is relatively forgiving for several reasons. First, it is an in-sample validation,

with the emulation evaluated against the simulations actually used to train the emulator. Had we used a spline interpolation,

the error would necessarily be zero. Second, the metric scales emulator fidelity not by the magnitude of yield changes in the

evaluated model but by the spread in yield changes across models. The normalized error e for a given model then depends330

on the particular suite of other models considered in the intercomparison exercise. The rationale for the choice is to relate the

fidelity of the emulation to the true uncertainty, which we take as the multi-model spread, but the metric then has the property

that where models differ more widely, the standard for emulators becomes less stringent, and vice versa. In GGCMI Phase II

the effect is manifested in the higher normalized errors for soybeans across all models, which result not because soybean yields

are difficult to emulate but because models agree more closely on yield changes for soybeans than for the other crops.335

2. Out-of-sample validation. We provide a second, more stringent test of emulator performance via a cross validation (also

termed an out-of-sample validation). In this test the GGCMI Phase II dataset is split randomly into two parts, with 90% of the

data used to train the model and the held-out 10% used to test the fidelity of the resulting emulator. We calculate the root mean

square error (RMSE) between emulated (predicted) and actual simulated values across the test set, repeat the process twice,

and average the results of the two splits. As a last step, we normalize the RMSE in each grid cell by dividing by the simulated340

yield change.

The resulting error metric is generally low. Table 3 shows the yield-change-normalized RMSE for rainfed crops in all models

over currently cultivated land, both in selected major producing regions and in the global average. (We include all simulations

in CTWN space and take the average error value.) Mean grid cell RMSE is below 5% of yield changes in all cases, or in

absolute terms less than 0.2 ton ha−1 for all except JULES soy, which is 0.36 ton ha−1 in the global mean. For irrigated crops,345

absolute emulator errors are generally lower, but since irrigated crops experience lower yield changes the fractional errors are

similar. See Supplemental Material Section 9 for maps of cross validation RMSE for each crop and model.

Note that this metric is relatively simple and may be over-conservative. The randomized sampling protocol for dividing

training and test sets can mean that a training set omits edge simulations at the highest or lowest value in CTWN space. The

test prediction then involves extrapolating out of the training set range (e.g. predicting a T+6 case when the training set extends350

only to T+4), an improper use of an emulator. Values would be lower under a different sampling strategy (e.g. “leave-one-out”).

For additional discussion of more detailed potential evaluation metrics, see e.g. Castruccio et al. (2014).
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Table 3. RMSE of emulator replication of simulated yields of rainfed crops, stated as a percentage of simulated yield change. Values are

the mean grid cell error as a percentage of simulated yield change, over all currently cultivated grid cells weighted by cultivation area, for

selected major regions (NA: North America, SA: South America). For comparison, global mean values are show in parentheses. Errors are

calculated using the 90-10 cross validation scheme described in text, with the model trained on 90% of the data and validated on the held-out

10% (repeated twice). All fits are made with the Bayesian Ridge method; for context we mark with * those cases where the Bayesian Ridge

is required because the OLS linear model fails (e.g. PEPIC, which has the lowest number of samples at n=121).

Model NA Maize % SA Soybean % SE Asian Rice % NA S. Wheat % European W. Wheat %

CARAIB 0.7 (0.9) 2.4 (2.4) 2.4 (2.4) 1.3 (1.4) 2.7 (1.9)

EPIC-TAMU 2.4 (1.8) 1.8 (2.6) 1.6 (1.6) 1.8 (1.9)* 1.1 (1.1)

JULES 2.6 (2.6) 4.6 (4.0) 1.6 (1.7) 2.0 (2.2) NA

GEPIC 2.1 (2.4) 1.0 (1.2) 2.0 (2.1) 3.7 (3.3) 4.0 (2.9)

LPJ-GUESS 1.0 (1.1) NA NA 1.0 (1.3) 1.0 (1.2)

LPJmL 1.8 (1.8) 1.1 (1.3) 1.2 (1.1) 0.8 (1.1) 1.5 (1.3)

pDSSAT 1.9 (1.7) 1.2 (1.1) 1.7 (1.6) 1.1 (1.3) 1.4 (1.5)

PROMET 3.4 (2.7)* 2.0 (2.7)* 2.1 (1.8)* 4.3 (3.7)* 4.6 (3.4)*

PEPIC 1.8 (1.8)* 1.4 (1.9)* 1.4 (1.4)* 2.3 (2.3)* 4.9 (2.9)*

4.3 Emulation of realistic climate projections

Finally, we test the ability of an emulator based on the GGCMI Phase II perturbed mean training set to reproduce the response

of a crop model driven by a realistic evolving climate scenario. The goal is to assess whether effects of future changes in355

temperature and precipitation distributions are strong enough to compromise an emulator based on the GGCMI Phase II

dataset. We first drive the LPJmL crop model (representative of GGCMI models) with climate model output under the high-

end RCP 8.5 scenario. We choose for this purpose a climate model (HadGEM2-ES) with relatively large changes in growing-

season temperature variability (Supplemental Table S1) among members of the Coupled Model Intercomparison Project Phase

5 (CMIP-5) archive (Jones et al., 2011; Martin et al., 2011; Taylor et al., 2012). We then drive the LPJmL emulator with360

the HadGEM2-ES yearly-growing season anomalies, and evaluate how well the resulting emulated yields reproduce those

simulated under the full climate scenario. The comparison suggests that globally, the results of future distributional shifts on

climatological yields are small relative to the effects of mean changes (Figure 9). In the LPJmL example of Figure 9, emulated

and simulated global production in the last decade of the simulation are identical to within 1.5% for all crops. Emulators

also reproduce decadal variations in yields, which are especially strong in spring wheat grown in northern latitudes, and even365

capture much of the residual year-to-year yield variability. (R2 of emulated vs. simulated annual yield anomalies relative to the

10-year running mean is 0.8 for spring wheat and ∼0.3 for all other crops.)

Distributional effects might be expected to be stronger at high latitudes, because temperature and precipitation variability are

larger there, so that changes in variability can be correspondingly more important. However, most crops (spring wheat, winter

wheat, and maize) show no emulator bias that grows with latitude. Rice is the exception: the climatological-mean emulator370
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Figure 9. Test of emulator performance in reproducing yield simulations made with a realistic climate projection. Panels show simulated

(black) and emulated (red) global production for four crops from the LPJmL model, driven with temperature and precipitation outputs from

the HadGEM2-ES climate model for the RCP8.5 scenario. In both cases nitrogen and CO2 are held fixed, at 200 kg ha−1 and 360 ppm.

Points show yearly global production change from the 1981-2010 baseline, and lines show a 10-year running mean. See text for discussion of

relating the HadGEM2-ES temperature timeseries to the appropriate offset used in emulation. Emulators trained on uniform climatological

offsets reproduce well the simulated production response under a realistic climate scenario: yields at end of century match to within 1.5%.

slightly over-predicts yield losses in the tropics and under-predicts losses at higher latitudes (where little rice is currently

grown). Poleward of 30 degrees latitude, the LPJmL simulation under the HadGEM2 RCP scenario shows a 49% reduction

in rice yields by end-of-century (without growing-season adaptation), but the GGCMI-based emulator produces a reduction

of only 39% (Supplemental Figure S11). These losses are concentrated in the lower mid-latitudes: only 21% of global rice is

cultivated poleward of 30 degrees, and only 1% poleward of 45 degrees.375

It is worth noting two complications involved in comparing emulated to simulated yields under a realistic climate change

scenario, as in Figure 9. First, it is not trivial to choose how to relate temperature or precipitation in the evolving climate scenario

to the T and P offsets used as regressors to the emulator. Using growing-season mean temperature can lead to complications

if crop models assume that growing season lengths shift under climate change. For consistency, we match the temperature

changes in the climate scenario to their equivalent emulator regressors by calculating means over the fixed baseline growing380

season. This choice ensures that the emulation is appropriately matched to the simulation. Second, while the emulator outputs

an estimated yield change, the baseline from which that yield change is calculated will be different between simulation and

emulation, because the historical climate timeseries are not identical. For example, the baseline (1981-2010) yield of winter

wheat simulated by LPJmL using the AgMERRA timeseries as part of GGCMI Phase II is 7% lower than that simulated using

the HadGEM2-ES timeseries. To minimize the effects of different historical climate assumptions, we drive the emulator with385

the anomaly of the climate scenario from its own 1981-2010 mean. Bias in the historical climate timeseries could in theory

produce discrepancies between emulated and simulated yield changes because of the nonlinearities discussed in Section 2.2,

but the effect appears to play little role in the LPJmL comparison of Figure 9.
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5 Emulator results and products

Figure 10. Emulated global damage functions for the five GCCMI Phase II crops over the four CTWN dimensions varied. Black line shows

the multi-model mean and shaded area and colored lines the individual models. Each panel shows response to one covariate for rainfed crops,

with all others held constant at baseline values (e.g. C = 360 ppm, N = 200 kg ha−1). Damages are reported as percent change in global

production over currently cultivated land relative to the 1981-2010 baseline. Note that y-axis ranges are not uniform. As expected, the N

response is smallest in soybeans, which are nitrogen fixers, and the C response smallest in maize, which is a C4 crop. See Supplemental

Figure S12 for an analogous figure identifying each crop model, and Supplemental Figure S13 for damage functions for the A1 (adpative

growing season) emulators, which have reduced temperature responses.

The crop model emulators developed here can be used for a variety of applications, because the emulator transforms the390

discrete simulation samples into a continuous response surface at any geographic scale. One use is construction of continuous

agricultural damage functions in a flexible format. As an example, we present in Figure 10 global damage functions over each

of the four dimensions tested in this study, constructed from the 4D emulation of each crop model.
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These damage functions are useful in diagnosing commonalities and differences in the responses of crop models. In most

cases, models agree on the sign of responses to individual factors, but the spread in model responses is comparable to the395

median response. Inter-model spreads are largest for spring wheat and smallest for soybeans, as also shown in Figure 7. Model

responses to individual factors conform to expectations. As expected, the CO2 response is smallest for maize, which is a C4

grass, and the nitrogen response is smallest for soybeans, which are efficient fixers of atmospheric nitrogen. Nitrogen responses

in crops other than soybeans are relatively similar, and most models show saturation beginning at values less than 200 kg ha−1.

In nearly all crop models and for all crops except spring wheat, damages from reduced precipitation exceed benefits from400

increased precipitation. Spring wheat is the exception, likely because it is grown in high latitudes where rainfall may be

limiting. Rice, by contrast, which is generally grown in locations with abundant water, shows nearly no benefit from increased

precipitation. Note that these damage functions do not consider whether increased precipitation might permit cultivation in

new areas, and also that crop models generally do represent damages from excess soil moisture well (Li et al., 2019).

The GGCMI Phase II emulators are also intended as a tool for impacts assessments. The T and W functions presented in405

Figure 10 are not true global projections, because they emulate the consequences of uniform shifts across the globe. However,

the emulator allows building analogous damage functions based on climate model output, which has more realistic spatial

patterns of changes in temperature and precipitation. In Figure 11, we show emulated maize responses for 3 crop models

under the RCP8.5 scenario, using output from 5 climate models from the CMIP-5 archive. Losses are shown as a function of

mean growing-season temperature over currently cultivated land. While these damages functions aggregate over all currently410

cultivated land, the global coverage of GGCMI Phase II allows impacts modelers to develop damage functions for any desired

geopolitical or geographic region larger than 0.5 degrees in latitude and longitude.

The emulated responses of Figure 11 allow diagnosing the factors of greatest importance to projected yield changes under

future climate change. In the maize example here, temperature is the overwhelmingly dominant factor for pDSSAT, but CO2

responses are far larger in PROMET. (CO2 is important across models for spring wheat, see Figure S14.) For all crop models,415

the aggregated effects of precipitation changes are negative, exacerbating yield losses (compare T and T+W cases), because

precipitation in HadGEM2 actually declines over maize cultivation regions, especially in Central and S. America. Precipitation

effects are relatively small, however, as manifested in two ways: as only a small mean shift in yield projections for individual

crop models (compare T and T+W cases), and as a relatively small increase in the spread of points here at a given temperature,

despite the fact that the climate projections used involve different relationships between temperature and precipitation change.420

By contrast, the carbon fertilization response for PROMET is so large that projections from climate models of different sen-

sitivities (∆T/∆CO2) become clearly separated in Figure 11. PROMET yield responses would be more similar if plotted as a

function of CO2 than they are when plotted as in Figure 11 as a function of temperature change.

Disaggregating the factors driving crop yield changes also highlights the fact that errors of emulation are much smaller than

the spread across crop models or even across different climate simulations. PROMET is the most quantitatively difficult model425

to emulate for maize, but its comparatively large emulation error (compare open squares to lines in T case) is still smaller

than the spread simply due to different T patterns across climate simulations (Figure 11, left, compare differences between

open squares and line with the spread in circles for a given temperature value). Uncertainties in the yield damage function due
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Figure 11. Illustration of the factors affecting yields in more realistic climate scenarios, for three different crop models. Figure shows

emulated yield changes (relative to 1981-2010) for maize (both rainfed and irrigated) on currently cultivated land under RCP8.5 climate

projections from 5 representative CMIP-5 climate models, using changes to T only (a), to T and W (b), and to T, W, and C (c). X-axis is

the mean growing-season temperature change over cultivated land, computed using the historical growing season; note these values will be

higher than the corresponding global mean temperature change. Circles are emulated yearly global production changes to 2100 (90 years ×
5 climate timeseries = 450 per crop model), with x-axis the mean historical growing-season T shift over all grid cells where maize is grown

(unweighted by within-cell cultivated area). a: Using only temperature changes allows comparing regional simulated and emulated values.

Open squares are simulated values for each T level, with CWN at baseline; bold lines are emulated values over uniform T shifts (repeated

in each panel). Emulation uncertainty (compare squares to lines) is small relative to differences across climate and crop models, and mean

yield changes are similar whether T changes are applied as a uniform shift or in a more realistic spatial pattern (compare lines to circles). b:

Adding in precipitation changes increases yield spread across climate projections and depresses yield slightly. c: CO2 fertilization is small in

pDSSAT, moderate in LPJmL, and very large in PROMET. The separation of groups of points in PROMET (gold) results because CMIP-5

climate sensitivities differ by nearly a factor of two; points at far right are under HadGEM2-ES. In RCP8.5, the 30-year-average CO2 at end

of century is 807 ppm (Riahi et al., 2011). For comparison, open squares in c show GGCMI-II simulated production changes at T+6, W=0,

C=810 ppm. (Note that in these climate projections, mean CO2 levels when T > 5.8 degrees is 912 ppm.) See Supplemental Figures S14–15

for analogous figures for other crops (spring wheat and soybeans).

to projected patterns of temperature change are in turn smaller than spread due to differing model relationships of W and T

changes (Figure 11, middle), and for PROMET are enormously outweighed by uncertainty in climate sensitivity (Figure 11,430

right). While emulator fidelity is important to ensure, it is important to recognize that these other uncertainties will dominate

any impacts assessment exercise. Note that the pattern-related yield effects are actually relatively small for maize. (In Figure

11, left, compare lines, which show yield changes under uniform temperature shifts, to circles, which show changes under

realistic warming scenarios). Pattern-related yield effects can be larger for other crops, and the uncertainties due to climate

projection differences correspondingly larger: see for example soybeans in Supplemental Figure S15.435
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6 Discussion and conclusions

In this work we describe a new class of global gridded crop model emulators for 5 crops (maize, soy, rice and spring and winter

wheat) and 9 process-based crop models, based on the GGCMI Phase II dataset. The systematic parameter sampling of the

GGCMI Phase II experiment allows emulating climatological-mean crop yield responses with a relatively simple statistical

model and isolating long-term impacts from confounding factors that lead to different year-to-year responses. Across all mod-440

els, emulation errors over currently cultivated land never exceed 5% of yield changes at either global or regional scale. The

systematic sampling provides information on the influence of multiple interacting factors in a way that realistic climate model

simulations cannot, and the use of a parametric statistical model allows physical interpretation of parameter values. While

emulators based on the GGCMI Phase II protocol of uniform perturbations to historical climate will not reproduce any effects

of changing variability in future climate projections (any temperature variability changes or precipitation variability changes445

other than multiplicative mean shifts), in practice these effects appear to be small, at least on the regionally aggregated level.

Emulators provide powerful tools for both model comparison and impacts assessments by capturing the responses of process-

based crop models in a lightweight form. The emulators provide over three orders of magnitude reduction in data storage: the

yield output for a single crop model that simulates all GGCMIP Phase II scenarios for 5 crops is ∼12.5 GB; equivalent global

gridded emulator parameters are only ∼20 MB and allow emulation of arbitrary future scenarios. Computational requirements450

are nearly negligible: a thousand years of global 0.5 degree yields, i.e ∼40,000,000 individual yield projections, can be emu-

lated in 20 seconds on a laptop computer. The emulators can be used to develop standalone damage functions at any geographic

scale larger that 0.5 degrees, or can be integrated directly into a larger integrated assessment model (IAM) framework.

Several cautions should be noted when using the emulators presented here. First, extrapolation outside the GGCMI Phase II

sample space should be avoided. Second, while the emulators are valuable for understanding the shape of yield responses and455

the factors that drive them, the absolute values of emulated yields should be treated with caution. Because the GGCMI Phase

II experiment was designed to focus on yield changes and not on replicating real-world yields, most models are not formally

calibrated, and their emulators should be used for absolute impacts projections only in combination with historical yield data.

The GGCMI Phase II dataset and emulators invite a broad range of potential future avenues of analysis. Future studies

using the emulators described here could include a detailed examination of interaction terms, robust quantification of model460

sensitivities to input drivers, and evaluation of geographic shifts in optimal growing regions. Studies of yield responses to

changes in growing-season variability would require new simulations, but the emulators presented here provide a ready means

of testing the null hypothesis that such effects are small. Similar structured training sets could be constructed to directly study

responses to variability changes: see e.g. Poppick et al. (2016); Haugen et al. (2018) for methods of constructing synthetic

climate timeseries with altered variability. The GGCMI Phase II dataset can be used as a testbed for examining the ability of465

statistical models using more detailed within-season regressors to capture both year-over-year and climatological changes, and

for more systematic studies of emulation itself, including evaluation of alternate specifications or machine learning methods. In

general, the GGCMI Phase II experiment demonstrates the promise and utility of systematic parameter sweeps for improving

understanding of the factors driving crop responses and for evaluating and improving process-based crop models.
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