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1 Sampling in variable space and cultivated area

Simulation sampling across the defined variable space is not uniform tn the GGCMI Phase II
experiment, with only some models providing all cases in the protocol. Figure S1 compares
the sampling density of the models used in the emulator analysis.

Figure S1: Heatmap illustrating the number of models providing simulations for each of the
scenarios in CTWN variable space. Black boxes mark the “baseline” cases for rainfed and irri-
gated simulations. The maximum number is 9, the number of models included in the emulator
analysis. (That is, we exclude here the three GGCMI Phase II models not included in the emu-
lator analysis.) For cases with N levels lower than 200 kg/ha, the maximum number of models is
6 since three models (CARAIB, JULES, and PROMET) do not represent varying N levels. One
model (GEPIC) provided additional simulations at T+5 not specified by the protocol; these are
not used in emulation. Normalized error calculations are run only over scenarios in which 9 mod-
els contribute simulations (pink boxes).
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Figure S2: Presently cultivated area in the real world for rainfed (left) and irrigated (right)
crops, from the MIRCA2000 dataset (Portmann, Siebert, and Doell, 2010). Data are taken di-
rectly from the MIRCA2000 dataset for maize, rice, and soy. Winter and spring wheat areas are
adapted from MIRCA2000 and sorted by growing season.
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2 Variability changes in future climate projections

Because the GGCMI Phase II simulation dataset does not sample across changes in climate
variability, large impacts to yields driven by future changing variability would decrease the
practical utility of the emulator for impacts assessments. We therefore assess the scale of
potential future changes in temperature variability, in RCP8.5 simulations from the five
climate models used in ISIMP (the Inter-Sectoral Impact Model Intercomparison Project;
Warszawski et al., 2014; Frieler et al., 2017). In manuscript section 4.3 we use one of these
climate simulations, that from HadGEM2-ES, to assess the ability of GGCMI emulators
to reproduce yield changes simulated under more realistic climate projections. We choose
the HadGEM2-ES model because it shows the largest variability changes, and therefore
provides a stricter test of the utility of a GGCMI emulator. Table S1 summarizes daily Tmax

variability changes for each crop and model weighted by production. Figures S3 and S4
below show changes in variability in minimum and maximum temperatures in the HadGEM2
simulation for each crop growing season and area, and Figure S5 shows changes in daily Tmax

variability for maize across the 4 additional ISIMIP climate simulations. (Compare to Figure
S3 upper left panel.) Most crop models included in GGCMI phase II take daily minimum and
maximum temperature as inputs, though PROMET and JULES take sub-daily temperature
inputs.

Table S1: Global production-weighted fractional change in growing season daily maximum tem-
perature variability under RCP8.5 for the five climate models included in the ISIMIP project
(a subset of the CMIP-5 archive). Value for each crop and model is mean within-growing sea-
son temperature standard deviation across 30 growing seasons of 2070-2099 relative to that for
1981-2010, with grid-cell values weighted by LPJmL model simulated yields and current culti-
vation area (MIRCA). Values in parenthesis are the change in variability by the same metric for
daily minimum temperature within the growing season. The HadGEM2-ES model is highlighted
in bold because this model is used for our emulator evaluation in manuscript Section 4.3. The
HadGEM2-ES model is chosen because it shows the highest changes in variability.

Model Maize % Soybean % Rice % S. Wheat % W. Wheat %

HadGEM2-ES 9.7 (2.1) 10.4 (-0.6) 10.1 (-3.3) 6.4 (4.7) 3.6 (1.7)

GFDL-ESM2M 3.6 (0.9) 3.4 (0.6) 2.7 (-0.3) 1.2 (-0.3) 2.0 (1.0)

NorESM1-M 6.7 (-1.1) 6.5 (-4.0) 5.9 (-3.5) 4.5 (3.3) 2.4 (0.8)

IPSL-CM5A-LR 3.3 (3.3) 3.4 (0.6) 3.4 (1.4) 1.4 (2.3) 1.2 (1.3)

MIROC-ESM 4.0 (1.2) 3.1 (0.1) 0.4 (-5.1) 2.2 (-0.3) 2.6 (2.3)
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Figure S3: Change in within-growing-season daily minimum temperature variability by the end
of century under RCP8.5 for the HadGEM2 model, computed for selected crops. Heatmap shows
the percentage change for 2070-2099 relative to 1981-2010 over currently cultivated areas, with
red indicating increases and blue decreases. To determine the change we compute the mean stan-
dard deviation of daily Tmin in each historical growing season and take the mean across all 30
years; this metric therefore includes changes both in seasonality and in short-term variations
but excludes interannual variability and longer-term trends. For winter wheat, growing-season
variability reductions reflect the dampening of the seasonal cycle (stronger warming in winter).
Strong percentage increases in the tropics reflect very low variability in the baseline. Production-
weighted mean changes across crops range from -3% for rice to +5% for spring wheat (Table S1).
Note that changes may differ if calculated using an ensemble of simulations rather than a single
projection as is done here.
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Figure S4: As in Figure S3 except now for daily maximum temperature. Changes in daily max-
imum temperature variability are generally higher than those for daily minimum temperature.

Figure S5: As in Figure S4, change in daily maximum temperature variability, except now for
maize only, for the remaining 4 ISIMIP climate simulations. Values are lower on average than for
HadGEM2-ES but patterns can differ.
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3 Yield response for A1 (growing season adaptation)

simulations

This section shows illustrations of emulator ability to capture yield changes in A1 simulations;
compare to main text Figures 5 and 6 showing A0 simulations. Responses to CWN factors
are similar in both but responses to T are substantially weaker in A1 simulations, in which
growing season length does not contract in warmer future conditions.

Figure S6: Illustration of spatial variations in yield response, which are successfully captured by
the emulator for the A1 simulations. Panels show simulations (points) and emulations (lines)
of rainfed maize in the pDSSAT model in six example locations selected to represent high-
cultivation areas around the globe. Legend includes hectares cultivated in each selected grid cell.
Each panel shows variation along a single variable, with others held at baseline values.

Figure S7: Illustration of variations in yield response across models for A1 simulations, again
successfully captured by the emulator. Panels show simulations and emulations from six rep-
resentative GGCMI models for rainfed maize in the same Iowa grid cell shown above, with the
same plot conventions. Three models (PROMET, JULES, and CARAIB) that do not simulate
the nitrogen dimension are omitted for clarity.
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4 Normalized error for other cases

In manuscript Figure 7 we show normalized error for the A0 emulators over all rainfed crops,
models, and T and W values for baseline CO2 and nitrogen levels (360 ppm and 200 kg
ha-1). Here we show normalized error in some alternate cases for comparison: Figure S6:
A0 emulators of rainfed crops at higher CO2, Figure S7: A1 emulators of rainfed crops at
baseline values, Figure S8): A0 emulators of irrigated crops at baseline values. Results are
generally similar, with a few exceptions. Normalized errors at higher CO2 are generally lower
because model disagreement is larger, lowering the denominator. Some model emulators for
irrigation water demand are under-performing: LPJ-GUESS and CARAIB for some crops.
A1 errors are larger than A0 errors for several crops and models: LPJmL rice, pDSSAT
spring wheat, and PROMET winter wheat.

Figure S8: Fraction of currently cultivated hectares with normalized emulation error less than
1 for the CO2=810 ppm and 200 kg N ha−1 yr−1 case for the temperature and precipitation per-
turbations scenarios provided by all 9 models included in the emulator analysis. Figure conven-
tion as in main text Figure 7. The yield response is generally easy to emulate over currently cul-
tivated areas (black regions).
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Figure S9: Fraction of currently cultivated hectares with normalized emulation error less than 1
for A1 yield emulation for CO2=310 ppm and 200 kg N ha−1 yr−1 case. Figure convention as in
main text Figure 7.

Figure S10: Fraction of currently cultivated hectares with normalized emulation error less than
1 for irrigated water demand emulation for CO2=310 ppm and 200 kg N ha−1 yr−1 case. Figure
convention as in main text Figure 7.
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5 Emulation of yields in a realistic climate simulation

at high latitude

In manuscript Section 4.3 we test the emulator against crop model simulations driven by a
more realistic future climate projection to evaluate the impact of future variability changes
that are not captured by the emulator. Figure S11 below isolates the mid- and high latitudes;
compare to manuscript Figure 9 that shows global currently cultivated land. Results are
generally unchanged by the restriction in latitude except for rice, which is typically grown
in tropics and subtropics: only 20% of global rice production is grown north of 30N and 1%
north of 45N, with even less in the Southern hemisphere, only 0.8% south of 30S and none
south of 45S.

Figure S11: Illustration of the ability of the emulator to capture a more realistic future climate
simulation, as in main text Figure 9 but here restricted to latitudes north of 30N.
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6 Emulator products

This section amplifies on manuscript Section 5 with additional figures analogous to manuscript
Figures 10 and 11.

Figure S12: As in main text Figure 10 except now each model is shown in color. Not all models
simulate every crop (JULES does not simulate winter wheat, and LPJ-GUESS does not simulate
rice or soy) and three do not simulate the N response (CARAIB, JULES, and PROMET). For
crops simulated, JULES and LPJ-GUES are often the outliers in strong CO2 responses. LPJmL
has the weakest N response for all crops, and pDSSAT has the strongest T response for maize.
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Figure S13: Emulated damage functions for rainfed crops for A1 (growing season adaptation)
simulations, with conventions as in main text Figure 10 showing A0. Temperature responses are
generally flatter than for A0 simulations, but responses to other factors are similar. Note that
JULES does not provide A1 simulations.
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Figure S14: Illustration of the factors affecting yields in more realistic climate scenarios for
rainfed and irrigated (current mix) spring wheat. Conventions as in main text Figure 11. Large
emulator errors in PROMET spring wheat temperature response (panel a, compare open squares
to line) are driven by Southern China, where discontinuities in yield responses make emulation
problematic. (See Supplemental Material Section S11).

Figure S15: Illustration of the factors affecting yields in more realistic climate scenarios for
rainfed and irrigated (current mix) soy. Conventions as in main text Figure 11. The split in
PROMET soybean temperature response (panel a, note distinct groups of points) results from
the model’s sensitivity to differences in spatial patterns of temperature change across climate
models.
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7 Reduced specification (23-term) emulator examples

In this section we present analogous figures to those in the main text for the reduced-form
(23-term) emulator. Issues with the reduced-form model are most prominent in PROMET
for rice and soy, and JULES soy and spring wheat. We identify several potential factors that
may in some way contribute to these models showing qualitatively different responses that
require additional terms for emulation.

• PROMET and JULES do not allow nitrogen variation. (However, CARAIB also cannot
vary N and is readily emulatable with the 23-term specification.)

• Both JULES and PROMET models are land system process models, originally devel-
oped with a broad focus, which have been adapted for managed vegetation (agriculture)
only recently (2015). (CARAIB, by contrast, was originally developed as a vegetation
model in the early 90’s and has a longer history of agricultural focus.)

• Both PROMET and JULES have anomalously strong responses to individual factors
in those crops problematic to emulate. PROMET is the most sensitive model of all
the models for rice in C, T, and W, and JULES for soybeans in C, T, and W. For
spring wheat, JULES is a high outlier in C, the most sensitive model in W and T, and
shows an extra inflection point in the global temperature response not seen in any of
the other models.

• PROMET is the quantitatively lowest-performing model for soybeans when compared
to the historical FAO data for the top 10 producing countries.

Figure S16: As in manuscript Figure 4, simulated (a.) and emulated (b.) yield under historical
conditions for rainfed LPJmL maize, but here for the reduced (23-term) emulator specification.
Emulator performance is worse primarily where crops are not currently grown.
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Figure S17: As in manuscript Figure 5, emulator performance in selected high-yield regions
for rainfed pDSSAT maize (and one region for PROMET), but now with the reduced (23-term)
emulator specification. Emulator performance is similar.

Figure S18: As in manuscript Figure 6, emulator performance across models for rainfed maize
in one grid cell in Iowa, but now with the 23-term emulator specification. Note that JULES and
PROMET are not shown.
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Figure S19: As in manuscript Figure 7, normalized error of all 9 models emulated on currently
cultivated land, over all crops and all sampled T and W inputs, with CO2 and nitrogen held
fixed at baseline values, now with the reduced (23-term) emulator specification. Degradation of
performance is most evident in JULES soy and spring wheat and PROMET rice and soy.

Figure S20: As in manuscript Figure 8, normalized error for rainfed crops in CARAIB for the
T+4 scenario, but here with the reduced (23-term) emulator specification. Degradation of perfor-
mance is most evident in marginal lands where crops are not currently grown.
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Figure S21: As in manuscript Figure 11, rainfed maize on currently cultivated land, but here
with the reduced (23-term) emulator specification. Note that strong C response for PROMET is
different here than with the full-form emulator, because higher order C (C3, C2∗T ...) interaction
terms are needed for accurate emulation.
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Figure S22: Example of emulator failure, showing failure induced because of strongly interact-
ing terms. Simulated and emulated values for JULES soybeans in Southern Germany. RMSE
= 41% of baseline yield for the reduced form (23-term) emulator. The downturn in yields as C
and W increase can only be captured by the higher order C interaction terms of the full 34-term
specification.
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Figure S23: Example of emulator failure, showing failure induced by abrupt changes in yields.
Simulated and emulated values for PROMET rice in India (Arunachal Pradesh). RMSE = 132%
of baseline yield for red (reduced fit). The step change in the yields around 0 K at higher wa-
ter specifications cannot be captured by any third order polynomial. Both 23- and 34- emulator
specifications fail in this example.

19



8 Yield responses for other crops and models

Spatial patterns of yields are well captured for all crops and models. Manuscript Figure
4 illustrated this using LPJmL maize; for reference, we show here yield response spatial
patterns for other crops and models.

Figure S24: Spatial yield response and emulator error for LPJmL for all 5 GGCMI Phase II
crops. Convention as in manuscript Figure 4.
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Figure S25: Spatial yield response and emulator error for pDSSAT for maize. Convention as in
manuscript Figure 4. pDSSAT absolute yields are significantly higher than those in LPJmL but
spatial patterns are similar.
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9 Cross validation error for all models

In this section we present maps of cross validation error (values found in main text Table 3
are aggregated up from the grid cell level). Errors are generally low as a percentage of yield
change in each grid cell. Errors above 10% of yield change in the out-of-sample test occur
very rarely; the only significant instance is spring wheat in southern China in the PROMET
model.

Figure S26: Root mean squared error for cross validation for the pDSSAT model for rainfed
crops. Values shown as a percentage of yield change in each grid cell.
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Figure S27: Map of root mean squared error for cross validation process for the PROMET
model for rainfed crops. Values shown as a percentage of yield change in each grid cell.

Figure S28: Map of root mean squared error for cross validation process for the JULES model
for rainfed crops. Values shown as a percentage of yield change in each grid cell.
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Figure S29: Map of root mean squared error for cross validation process for the EPIC-TAMU
model for rainfed crops. Values shown as a percentage of yield change in each grid cell.

Figure S30: Map of root mean squared error for cross validation process for the GEPIC model
for rainfed crops. Values shown as a percentage of yield change in each grid cell.
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Figure S31: Map of root mean squared error for cross validation process for the PEPIC model
for rainfed crops. Values shown as a percentage of yield change in each grid cell.
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