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Referee 1: 

1. The study is a step forward in crop model emulation and is in principle a useful contribution to the 
literature. The paper contains a lot of excellent technical work. I focus here on areas for 
improvement, which I describe as major simply because I think a re-framing is needed in order to 
ensure that the paper is used well, and is not mis-used in the future. 

Thank you for the assessment. We have added text in accordance with suggestions below. 

2. The uses stated in the abstract for the emulators are: “providing a tool that can facilitate model 
comparison, diagnosis of interacting factors affecting yields, and integrated assessment of 
climate impacts.” It would be good to understand more from the paper about how these different 
usages are envisaged. In particular, the suggestion that the emulator might be used for integrated 
assessment lacks evidence. It is far from clear that this would be a sensible step to take, because 
study is subject to a number of important limitations. Whilst the authors are cognisant of these 
limitations, not enough attention is paid to them in the way that the work is framed and 
interpreted. 

We have added text in line with these suggestions; see responses below.  

3. One limitation is the use of mean yields. “We emulate the climatological mean response, because 
that is the response of interest in assessments of climate change impacts. . .. Emulation then 
becomes relatively straightforward, since changes in time- averaged yields are also considerably 
smoother than those in year-to-year yield response.” – L108. Why is mean yield the response of 
interest? Perhaps it is because it is relatively straightforward, rather than because it is useful per 
se. Climate variation explains a third of global crop yield variability – Ray et al. (2015) Nature 
communications. Why do the authors think that mean yields are interesting? There would need to 
be a clear rationale in the paper. 

We believe that changes in multi-annual averages are actually the most useful measure of future interest. 
While changes to year-to-year variability in crop yields would be important to farmers if they change 
significantly, the shift that is most relevant to overall economic impacts, and to decisions on choice of 
crops and planting locations, is that in mean yields. Many climate change impact assessments therefore 
focus on multi-annual means as the central metric for climate change impacts. In economic assessments 
that use crop model outputs to inform IAMs or agro-economic land-use models, crop model outputs are 
also typically aggregated to multi-annual means (Nelson et al. 2014, Wiebe et al. 2015), because 
land-use changes (in terms of expanding or abandoning cropland) are driven not by short-term 
(year-to-year) yield variability, but by changes in average conditions. Finally, it is clear that year-to-year 
variability in yields is only loosely related to mean growing season temperatures, which are the dominant 
changes in the underlying dataset. In process-based crop models, changes in mean yields are tightly 
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related to mean temperatures, so we can provide a reliable emulator of these changes. We therefore 
have focused our efforts on prediction of changes in mean yields. 

The reviewer’s comment shows that we have not adequately discussed these considerations, and so we 
have added text along these lines. We have also clarified that the application of our emulators is 
constrained to research questions in which long-term dynamics are the relevant feature and that 
short-term dynamics need to work with other tools. We have also added in our concluding sections more 
discussion of what would be needed to analyze and emulate changes in crop yield variability, for those 
working with a focus on these time-scales (e.g. Schewe et al. 2017).  

Additional text pertaining to the choice of mean yields has been added to Section 2.2, Lines 118 - 125. 

Additional text addressing the issue of Ray et al added to line 400. 

4. Assuming a rationale exists for assessing mean yields, over what lead times might the emulators 
be usefully used? As the authors point out, the emulators cannot be used out of sample, thus 
implying relatively short lead times, before climate changes significantly. However, over the next 
couple of decades, changes in mean yields are unlikely to be important relative to extremes. 

We agree that year-to-year variability is likely more interesting over the next decade (or two). The 
emulator is designed to provide projections at the decadal or multidecadal timescale to the end of the 
century (following  in line with the RCP-IPCC framework). While it is true that some areas of the globe will 
exceed 6 degrees at the high end of climate change (e.g. RCP8.5) by the end of the century, this is not 
the case for many regions or scenarios with lower radiative forcing, especially when considering changes 
in multi-annual averages. The projection to the end of the 21st century with assumed fixed management, 
such as the growing season is unrealistic anyway and needs to be interpreted with care (Minoli et al. 
2019, Iizumi et al. 2019). 

We have added additional language to the discussion to clarify this timescale of  interest, the problems 
with extrapolation, and the limitations with the fixed growing season. 

Additional text pertaining to the choice of mean yields has been added to Section 2.2, Lines 118 - 125. 

Additional cautions about extrapolation have been added to Section 6, lines 544-547. 

Additional notes about the fixed growing season have been added to Section 6, lines 551-553. 

5. Assuming a focus on mean yields can be justified for an appropriate lead time, there remains the 
question of why an emulator is a valid method to use. Two issues need to be addressed here: 

6. i. Whether or not the emulator is fit for purpose. Does it reproduce observed yields well? The link 
to observed yields is tenuous. Error (which should actually be termed “deviation” – since it is not a 
true error) is defined relative to yields simulated by the underlying crop models. If the emulators 
are to be used, then one would need to be sure it captures real historical climate impacts. The 
language on this is imprecise in many places. For example, in the abstract: “... suggesting that 
effects of changes in temperature and precipitation distributions are small relative to those of 
changing means.” This statement is true only of model space; indeed, it is untrue of observations 
as Ray et al. (2015) and others have pointed out. 
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The purpose of the emulators is to reproduce the output of the process-based models, to provide a 
lightweight substitute for the computationally expensive calculations. We therefore do not focus on 
validation of those process models in this paper. Extensive model validation exercises were carried out as 
part of GGCMI Phase I (Müller et al. 2017 ), and we address model validation of GGCMI Phase II in the 
“experiment description” GMD paper (Franke et al 2020a). The emulator is therefore fit for purpose if it 
captures the output of the process-based models, which we cover here extensively in Section 4.1. 

We agree absolutely that variability in growing-season conditions is critical for year-over-year yield 
variations. This was shown with historical yields in the Ray 2015 study, and is also true for the 
process-based models here (see Franke et al 2020a). However, we are unaware of any studies showing 
that changes  in variability under climate change are important compared to changes in climate means. 
Capturing the effects of changing variability in climate projections would be problematic in any case 
because climate models show very little agreement about future changes in variability (compared to their 
agreement in the change in means), and often struggle to represent historical variability. 

Our statement about the ability of our emulators to capture mean yields in a process-based model under 
a climate model projection, inclusive of any variability changes, is a demonstrably true statement for the 
GGCMI simulations. It remains an interesting question whether the process-based models are less 
sensitive to potential future changes in temperature and precipitation distributions than are real-world 
crops. Some suggestions along these lines were made by Müller et al 2017, which is cited in the 
manuscript, but we have now clarified the finding. 

In general, these comments suggest that we have inadequately discussed the underlying differences 
between the process-based models used in GGCMI and statistical models based on historical crop yields. 
We have therefore now better emphasized these points in the manuscript. 

Additional notes about the application of the emulator have been added to Section 6, lines 495-530. 

7. ii. Is there a better method? Statistical regressions would by definition capture to some extent 
observed yield responses to weather and climate. The resulting emulators [are] lightweight, 
computationally tractable “ – but so are statistical models. Reasons to use an emulator over a 
statistical model are presented in the introduction. However, neither the lack of observed yields in 
calculating skill, nor the lack of model calibration (another limitation; see below), are brought into 
this discussion. Similarly, what does the focus on yield changes, rather than yields per se, mean 
for the robustness of the methodology? 

Statistical models are being developed by many different research groups and consist of a separate and 
somewhat distinct approach to process-based modeling. Statistical models have the obvious problem of 
little data in many geographic regions and no data under future climate change that has not yet 
happened. Statistical models can only be evaluated on ‘held-out’ historical data. It is unclear (and perhaps 
impossible to test) whether statistical models or process-based models are better for future projections.  

The emulator is a statistical model, only it is trained on simulated data instead of ‘real’ data. It has the 
obvious advantage of leveraging the body of science behind crop models to provide ‘data’ where none 
exist in the real world, both in space (where crops are not currently grown) and time (under climate 
change that hasn't happened yet). Better forms of emulation may be possible within the GGCMI phase II 
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framework. We hope the simulation output dataset can become a test-bed for investigating different 
statistical functional forms.  

While we do fit an intercept (historical mean yield),  the emulator is intended to be coupled with a dataset 
of actual yields since models are uncalibrated. We therefore stand by the focus on yield change as a 
better use of the emulator for impact assessment. We feel this is a more robust application of the 
emulator.  

We have added some additional text to the text to discuss these issues. 

Additional notes about calibration added to lines 111-113. 

8. The other option discussed briefly in the introduce is the use of process based models. The full 
set of GGCMI simulations is available; surely the emulators are not expected to outperform their 
masters? Presumably the “lightweight” approach is deemed to be an advantage for integrated 
assessment. If this is so then the advantage should be clearly presented. 

Correct, the emulator cannot be better than the model it is trained on.The advantage of the emulators is 
that by providing an analytical form for yield based on climate and nutrients, they allow simulating yields 
quickly under arbitrary climate forcing scenarios, as would be needed in a study of optimal policies 
addressing climate change, or in an assessment exercise using non-standard climate projections. Even 
large sets of pre-computed crop model outputs lack the flexibility to be adjusted to the applications’ 
needs. 

The GGCMI Phase II simulations would not typically be used in assessments directly, since they consist 
of non-physical combination of parameters and non-physical spatial distributions in climate changes. No 
single simulation represents a plausible future world, but in combination they allow production of an 
emulator that can capture yield response under many plausible future scenarios. 

We have added some additional discussion on this topic. 

Additional notes have been added to Section 6, line 528 - 531. 

9. The major revisions needed for the paper will follow on naturally from framing it more clearly to 
demonstrate the uses the emulators can be put to. As is no doubt clear, I think that the rationale 
for their use in integrated assessment is extremely difficult to demonstrate; but perhaps I am 
wrong. It would be worth thinking about the conditions (data availability, crop knowledge, model 
skill, input data availability, ..) under which the emulators might be a preferred option. 

We have added text discussing their use in Integrated Assessment Models (IAMs). As described above, 
an emulation of climatological mean yield is the appropriate input for IAMs and other economics-based 
land-use models whose land-use dynamics are always, to our knowledge, based on multi-annual mean 
yields. It would in fact be incoherent for an IAM to make decisions about land-use changes based on 
yearly yields, since most IAMs we are aware of utilize climatological mean temperature changes as their 
climate inputs (sometimes only the global average). As mentioned above, mean temperature change is 
closely related to mean yield change but only very loosely related to yearly yield variations. 

The emulators presented here are developed in collaboration with IAM modelers to meet their needs; 
please note that the co-author list includes IAM modelers. We recognize though that the submitted 
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manuscript did not sufficiently emphasize the expected end uses, and so have now worked with our 
co-authors to add new text describing the several projects currently in development integrating these 
emulators into IAMs.  

Text added to section 2.2, line 119 and section 6, line 533 - 535 to address IAM integration. 

10.  Model comparison and diagnosis are easier to justify – but even here some work is needed to 
explain how the emulators could be used. The emulators could be used to highlight areas of 
CTWN-A where there is consensus and where there is not, thus providing clear evidence of 
where model improvement, and associated observational datasets, are needed. 

Indeed, model comparison and diagnosis is one of the primary intended applications.Several publications 
are currently in preparation that use the emulators described here for just these purposes: studies that 
diagnose differences in model responses to particular climate and management inputs, or clarify the 
interactions between parameters (e.g temperature and precipitation, or temperature and nitrogen 
addition). These studies are not possible using statistical models fit on historical yields, but require 
process models run over systematic parameter sweeps. We had discussed this in the Introduction, but as 
the paper is long we realize that it requires additional text in the Conclusions/Discussion describing these 
studies, and have added this. 

Text added to Section 6, lines 526, 531, 560. 

11. Methodology is not clearly separated from results More information on the skill of the models that 
go into emulators would aid rationale. Some models are more skilful than others. Do you expect 
the MME to be the most skilful simulation? If different models perform better in different regions, 
why not use this information in the emulators? 

The skill of the underlying crop models is described and discussed in the companion paper (Franke et al. 
2020a) and in earlier efforts to describe the crop models’ skill (Müller et al. 2017). The paper under review 
is intended as the “model description” paper describing the development of emulators, not a 
documentation of the process models themselves. The question of if and under which conditions the 
MME is the most skilful simulation is a question about the process models themselves. This paper 
focuses on validating the emulators, i.e. on showing that a simple functional form can capture the 
response of those process models. The emulators can then become a tool for answering exactly the 
question that the reviewer poses, and we appreciate the suggestion. Note that the emulators are 
designed for each crop model individually and can be combined and aggregated at the users’ choice and 
needs for specific applications. We have now added text suggesting that emulators can be used to 
examine regional model performance. 

Text added to Section 6, lines 560. 

12. Similarly, which processes are included vs not included in the underlying models. How good at 
threshold responses are these models? Cf "In general, emulator performance is poor anywhere 
that models show steep yield changes once some threshold has been reached, whether these 
are abrupt gains or complete crop failures" - I find these cases very important especially when 
looking at the end of the century. 

Indeed. These cases are important and the provision and publication of the emulators, that are described 
here, allows for making these analyses. Again, this paper is a model description paper, not the final 
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application of the emulators that could answer all questions that could be addressed by using the 
emulators. As discussed above and in the paper, one intended purpose of the emulators is to scrutinize 
model dynamics and identify options for model improvement (of the process-based crop models, not the 
emulators).  

The temperature response at the 30-year mean scale is very smooth in all but a few cases. 
Discontinuities (steep changes) in yield are more common when some models show no yield under 
present conditions and then transition to moderate yield under a certain amount of warming. While some 
thresholds may exist on the high end for temperature at the yearly scale, there are vanishingly few cases 
where the 30-year mean yield drops to zero under warming.  

We have added some text pointing out some of these cases to clarify the point.  

Text added to section 4.2, line 346-347. 

13. Why different numbers of perturbations used across different models? 

The complete set of simulations is computationally very demanding, and so modeling groups were offered 
a set of participation “tiers” involving different number of simulations. The protocol is described in detail in 
the companion “experiment description” paper (Franke et al. 2020a). We have added text here to point 
the reader to this documentation. 

Text added to section 2.1, line 112. 

14. Use of normalised “error” (should be “deviation” or similar) makes differences between models 
hard to see and makes results appear perhaps better than they are. 

We agree that the normalised error does not provide complete information, but it is a useful metric in the 
context of multi-model emulation, because it normalizes the errors in those regions where models 
disagree quite strongly anyway. Put another way, this metric emphasizes the need for faithful emulation of 
model output in those places where the models best agree.  

Note that we have included in the paper a separate metric that is not normalized across models: the 
“out-of-sample evaluation”. This test treats all models equally and as separate entities, and was included 
specifically to provide the kind of assessment the reviewer seeks.  

We have added language better clarifying the differences between the two separate evaluation methods 
and now clarify the difference between ‘errors’ and ‘deviations’. 

Text added to section 4, line 274. 

15. Be clear which data were used for calibration vs evaluation 

We assume that ‘calibration’ here refers to the emulator out-of-sample evaluation process. For 
out-of-sample validation, we use a 3-fold cross validation procedure where 90% of the data are used to 
train the emulator (calibration) and the held out 10% is used to evaluate. This is repeated two more times 
and the results are averaged. The exact simulation cases in each fold vary by model depending on which 
were provided, and would be quite exhaustive to list in detail. For example for a single model, this would 
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consist of three lists of 675 conditions that were included in training and 75 conditions that were evaluated 
against. We do not think such a table of 2200 different listed conditions would be very illustrative.  

We have updated the text to make the cross-validation procedure more clear. 

Text added to clarify the procedure section 4.2, lines 373-379. There was an error in our original response 
letter. The cross validation is 90% - 10%, not 2/3 - 1/3 as originally stated. The manuscript was correct. 

16.  "Emulator performance is generally good relative to model spread in areas where crops are 
currently cultivated and in temperate zones in general" - probably not hard giving that the crop 
models are not calibrated. I think the whole study should have been done with calibrated crop 
models. 

As with so many things, there are pros and cons with calibration, especially if no suitable calibration target 
is available. Calibration would be needed if the intent of the exercise were to produce absolute yields. 
However, we are focused here on understanding model responses to different climate and management 
inputs, and in forecasts of fractional changes. We feel that those are adequately and perhaps better 
addressed with uncalibrated models. In the previous Phase of GGCMI (Elliott et al. 2015, Müller et al. 
2017), the harmonization of management conditions appeared to lead to very different model behavior in 
some models. Note also that global-scale crop model calibration poses tremendous challenges given the 
lack of calibration targets (see e.g. Müller et al. 2017). 

The lack of calibration may make our ‘normalised error’ metric less stringent than it might be, since 
calibration would likely (but not necessarily) reduce the spread between models. (See e.g. Müller et al. 
2017 for discussion of the effects on future projections of calibration to present-day yields.) But, the 
normalised error is only one means of assessing emulators, and we conduct the second, non-normalised 
‘out of sample’ validation exercise to provide an assessment independent of the inter-model spread. 

We have expanded the text on the rationale for using uncalibrated models, and implications for the 
application and interpretation of the emulators.  

Text added to section 2, lines 111- 113. 

17. line 115 - put info for figure in caption as not helpful in main text. And in Fig.1 , cannot see 
advertised labels of a, b, c, d (although perhaps journal adds these later). 

Modified as suggested. 

Text removed, as suggested, from lines 129- 131. 

18. line 195 onwards - would model features that are able to be dropped be the same if the 
procedure was repeated including non-cultivated land? i.e. in marginal areas, are different factors 
important for determining yields? This is mentioned below (line 223). 

The suggestion of doing feature selection over non-cultivated land was not tested in this study, but it is an 
interesting question and could be pursued in follow-up studies, since we provide the full and the reduced 
form of the emulators. We hope that others will extend on the work shown here.  
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We have added this point to the Discussion. 

Text added to line 560.  

 

Referee 2: 

Overview: 

1. Understanding crop yield response to environmental changes is crucial for food security. 
Statistical crop models are easier for calculation but the projection capability is constrained by the 
range of current conditions. The process based crop models aim to capture the yield response to 
different environmental changes but computational expensive compared to statistical crop 
models. This study developed statistical emulators for 9 process based crop models using 
GGCMI phase II simulations. The author well validated the statistical emulators and discussed 
the caveats and the potential usage, such as provide an alternate approach for impact 
assessment. The manuscript is generally well written and I only have several minor comments on 
the method and results. 

Thank you for the assessment.  

Minor comments: 

2. The whole section 2.2 discussed why there are differences in climatological and year-to-year 
response. This part is very interesting but somehow could divert the readers who are eager to 
know how the study uses the training data to develop emulators. It could be a better flow if put the 
section into the discussion section or supplementary. 

We know the paper is very long, but we felt this section was necessary here to explain the rationale for 
developing our emulators at the climatological mean level. This is a key feature of the study and is a point 
of confusion for other reviewers and readers. We hoped that by separating this discussion into its own 
sub-section, readers would feel free to skip it if they do not feel that the choice of the climatological mean 
yield requires justification. We have tried to add a little more structure to the introduction to allow readers 
to better pick and choose which sections to focus on, and following another reviewer’s suggestion, have 
now tried to better recap the main points of the paper in the Discussion. 

Text added to section 1, lines 83 - 86. 

Recap added to section 6, lines 496 - 527. 

3. The authors need to refine the section 3.1 to give more information on Y and regressors (what 
temporal and spatial scale). Line 161 mentioned that “Emulating at the grid cell level”. So I think 
equation 1 was fitting at grid cell level. My understanding is that Y is a vector of 30-year averaged 
crop yields across different uniform changes scenarios (a total of 756 scenarios?) in one GGCMI 
model. There are 34 terms in equation 1, aren't there over fitting problems when you have a small 
number of Y (some models did not done all required scenarios) but a large number of regressors. 
Please comment. 
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Indeed, the equation was fitted at grid cell level. Overfitting can be a problem, and some models could not 
be emulated if they provided too few simulations to the GGCMI Phase 2 simulation data set. We felt that 
the number of simulations provided was sufficiently important that we repeat Table 3 from the companion 
paper Franke et al. 2020a that describes the GGCMI Phase 2 experimental protocol. 

In the best case, the training domain consists of 756 elements in Y, which is more than sufficient for fitting 
34 parameters, according to a “one in ten rule”. Not all models have provided the full sample, but we use 
a Bayesian regularization scheme (that probabilistically weights parameters towards zero) that mitigates 
overfitting in the cases with fewer samples. The out-of-sample validation is our test of whether overfitting 
is a problem - we show that the emulators fit with the Bayesian scheme can predict yields not included in 
the training set even in the model cases with lower sampling, but that overfitting would be a problem with 
standard OLS. We have expanded the text in this section to better explain the overfitting concerns and 
why we think they are addressed. 

Text added to section 3.1, lines 185 - 189. 

4. Line 138: “in the the”. Double the here. 

Thanks for the catch. Removed. 

5. Equation 2. Some terms are gray in equation 2. Are those the dropped terms? If so, just delete 
them. 

Terms in gray here are dropped. We left them for clarity of comparison. We have added some language 
to make this more clear.  

Text added to line 215. 

6. Figure 10 caption. “the five GCCMI Phase II crops”, the authors used this terms several times, but 
this sounds like there are five special crops that was created by GGCMI Phase II. I think just say 
five crops is fine. They are common crops. And how many individual models are incorporated 
here? I guess it is nine. But there are not nine color lines, is that because some lines are 
underneath the black thick line? If so, please mention that. 

We will modify the language to remove the GGCMI designation as suggested.  

All models are included in this figure, but not all models provided simulations for all crops and not all 
models provided simulations across the nitrogen dimension, so the number of lines is less than 9 in some 
cases. We now state this explicitly in the figure caption. 

Text modified in the Figure 10 caption.  

7. Figure 11. In the figure legend, the uniform T sounds like each process model was forced with 
global uniform T. But I think it means the uniform increase of T, uniform DT is better. 

Agreed, this is an excellent point. Modified as suggested.  

‘Delta’ added to figure 11 caption as suggested.  
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8. Figure 11. In the caption, “Circles are emulated yearly global production changes”, those are 
dots, not circles. 

Agreed. Modified as suggested.  

“Circles” changed to “dots” in figure 11 caption and where referenced in the text. 

9. Figure 11. Why there are no open squares on plot b? And in plot c, open squares for 2 and 4 
increasing of T is missing. All the three plots showed emulated uniform T lines, why not show 
emulated uniform T+W for plot b, and emulated uniform T+W+C for plot c? 

To clarify: the open squares are not emulations, they are the actual simulation output. The emulated 
responses are the solid dots.  

Note that this figure does not involve process model simulations of yield under future climate projections. 
Instead, it shows emulations of yields under climate projections, and compares these emulated yields to 
the uniform-offset simulations of the GGCMI phase II dataset. 

In the case where only temperature is allowed to change, we can show a simulation that is a direct 
analogue for an emulation of a climate projection. In the T and W case, both temperature and 
precipitation are changing in the climate projection, and we have no equivalent uniform-offset crop 
simulations. We cannot match the simultaneous values of T and W changes.) 

We recognize that this figure is complex and the caption is not as clear as it could be. We have adjusted 
the language to try to better explain what is being shown. 

Text added to Figure 11 caption. 

In the SI: 

10. Page 2. First line “is not uniform tn the GGCMI Phase II”, what is tn? Should be in? 

Should be ‘in’. Corrected.  

Correction made in supplement. 

11. Figure S6: there are no gray lines (Ontario), why? I want to know if Ontario has the same failure 
in A1 as in A0. 

Good suggestion; the requested line has been added to the figure. 

PROMET (ontario) line added to Figure S6 in the supplement. 

12. Figure S21: The simulated RCP8.5 (open triangle ) were not found on the graph. 

This was in error. Caption modified.  

Legend modified in Figure S21 in the supplement. 
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Referee 3: 

1. The authors present a highly detailed description and evaluation of newly-developed statistical 
emulators for global gridded crop model simulations (as being contributed to the GGCMI Phase 
II), specifically targeting emulation of mean yield changes due to changed climate conditions. The 
authors construct these emulators by varying over carbon dioxide concentrations, temperature, 
water, and nitrogen inputs, and also test the effects of adaptation. In general, this paper is highly 
useful contribution to the emerging work of global grid- ded crop modeling primarily due to 
providing a very well tested, relatively low-error, computationally economical, and low data-input 
means of reproducing and/or running GGCM experiments (again, as related to GGCMI Phase II). 
Given the computational expense and large data requirements of the GGCMs, it is worthwhile to 
have an option to run climate-crop experiments with comparatively less “overhead” and relatively 
high confidence that the emulators overall faithfully represent specific model and (thus en- 
semble?) sensitivities. I also think that the authors generally did well to note some key 
uncertainties both in the GGCMs and how these influence the emulators, although a couple of 
aspects could be addressed a bit more (and I note these below). Ultimately, one of the key 
strengths of this work is to provide a comparable and easier means of representing geospatial 
crop responses relative to the GGCMs (which certainly have other uses as full process-models). 
Thus, with a few minor revisions, this paper makes an interesting and useful contribution to the 
field, and I anticipate these emulators being put to good use by many researchers exploring mean 
climate-crop interactions. 

Thank you for the assessment.  

I do have just a few questions and remarks that may be useful to the authors as they think about some 
minor revisions and next steps: 

2. Section 3.2, Lines 215 onward: I found it interesting that several of the carbon-terms dropped out 
due to their relatively negligible contributions. [CO2] effects on crops (and ecosystems!), and their 
nonlinear interactions with other changing climate parameters, are still highly uncertain. Crop 
models also display much variability in their respective [CO2] responses. I noticed that for the 
simulations emulating HadGEM responses [CO2] was held fixed or not varying with other 
parameters. Since the authors are emulating, and evaluating against, GGCM outputs, if the 
GGCMs do not display [CO2], then it follows that neither will the emulators I suppose. However, I 
wonder if the authors could further comment on this: the fact that [CO2] was negligible for the 
emulation does not necessarily mean the effects are negligible in reality, correct? I don’t see this 
discussed much elsewhere in the manuscript, so having a bit more commentary on this, with 
respect to [CO2] and/or more generally, would be useful as readers consider the terms of your 
model emulator. 

We agree that it is highly interesting that the higher-order interaction terms could be dropped for most 
models, and hope that this will be the subject of a follow-up paper. This type of finding is part of what 
makes emulators powerful as a diagnostic tool of model behavior. Two models (PROMET and JULES) 
required the higher order CO2 interactions for accurate emulation, and it would be interesting to 
understand why.  
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Note that the magnitude of the pure CO2 terms is very large. The CO2 response is critical and results in 
large yield changes. (See Figure 10 for example).  

In the HadGEM simulations shown in Figure 9, we held out CO2 precisely because the crop CO2 
response is large and the purpose of this exercise was to examine the fidelity of the emulators’ 
temperature / precipitation response. Figure 9 examines whether an emulator trained on the GGCMI 
Phase II database, which allows for no changes in climate variability, can accurately reproduce crop 
yields under actual climate model output, that may involve some changes in variability as well as means. 
We agree that this issue is under-discussed and have now added text to explain this more carefully. We 
now explicitly note that the CO2 response in LPJmL is so large that it almost completely negates the 
damages caused by higher temperatures, and that we hold it out to isolate the temperature-driven 
response.  

Text added to section 4.3, line 396 - 415.  

3. Section 4 and elsewhere: This comment is not just relegated to Section 4, but I’m more generally 
trying to parse out the relative contributions of climate variability and mean climate change, and 
the arguments provided in the paper that support emulation of the latter. I think there are two 
types of “variability” (admittedly not the best word, perhaps more “characteristics” other than the 
climatological mean yield) that the authors address that might be clarified just a bit more in the 
Discussion to avoid any confusion. Firstly, in Section 2.2, the authors make the case that 
year-to-year variability is structurally different than simulation of the climatological mean yields, 
and that the former doesn’t preclude the latter, correct? The authors also highlight (I think) that 
the emulators are not suitable for a full interpretation of interannual variability and extremes, 
particularly highly non-linear interactions between climate (and other) parameters, despite the 
higher order terms of the emulation (which, as the authors note, are geared towards emulating 
climatological means). 

Correct. Climatological mean yields are closely related to climatological mean temperature. Year-to-year 
yields are driven by weather factors other than (or in addition to) mean temperature. We show in Figure1 
that regressing on growing-season mean temperature and climatological yield responses does not allow 
capturing the year-to-year variations. Presumably capturing both effects simultaneously in a single 
statistical model would require different regressors than growing-season mean temperature. We have 
added language to clarify this point and to clarify that the emulators should not be used in the study of 
responses to short-term extremes within the growing season. 

Additional text pertaining to the choice of mean yields has been added to Section 2.2, Lines 118 - 125. 

4. Secondly, in Section 4.3, the authors demonstrate that potential shifts in the distributions of 
climate parameters do not impact the climatological yield emulations and the results still compare 
well with the GGCMs (Figure 9). This fact – this shift in distribution and potential changes in 
variability that result from it (which is where the readers’ mind might go, as mine certainly did) – is 
I believe distinct from the discussion of year-to-year variability discussed above. 

This is a separate but related point. Because our emulators are trained on climate simulations with 
uniform offsets and no change in the other moments of the distribution, we felt the need to show that the 
emulation could still faithfully capture the response of crop models when driven by a climate model 
projection, which includes some changes in variability. Because our emulator is not trained on any aspect 
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of year-over-year variability, it was important to ask whether changes in variability in climate models might 
be so large and impactful for crops that they dominated the effects of mean changes and made the 
GGCMI  emulators not useful. By showing that the emulated yield change is equal to the change 
simulated under a climate projection with the same mean temperature shift, we demonstrate that any 
variability changes in climate projections are not large/impactful enough to invalidate the GGCMI 
emulators. We have added language to our discussion to clarify this point. 

Text modified in section 4.3, lines 396 - 415. 

5. I appreciate that the authors have provided detailed explanations of their approach, treatment, 
and findings wrt to considering these variability and distributional changes. Still, there’s a lot of 
material here to keep track of, and I think it may be useful to reiterate each of the above points 
clearly in the Discussion (particularly if I’ve mistakenly represented it, as I think this may be an 
example of reader confusion!). For example, there is a sentence in the Discussion that minimizes 
the impact of future variability (par- ticularly at the aggregate level – around Line 445), particularly 
in the area aggregate, and I think this is in reference to the findings in Section 4.3 However, this 
doesn’t mean that interannual variability, or extremes or nonlinear interactions, won’t be impactful 
tofuture (or current) crop impacts. 

We agree that a recap would be very helpful; thank you for the suggestion. We have expanded the 
discussion as suggested.  

Recap added to section 6, lines 496 - 527. 

6. Discussion: Lastly, I think the major point of this paper is to provide these emulator frameworks 
as an alternative to climate-crop assessments with the full process- based GGCMs. I therefore 
understand the authors’ approach to evaluate the emulators against the GGCMs – this is quite 
reasonable. 

It might be helpful, though, to take one step beyond this and compare to some observed historical 
yield changes. I would not expect this to be better than the GGCMs, and such evaluations have 
already been done for the GGCMs, so I would expect to see a similar response (and this is 
notwithstanding the applicability and veracity of comparison products). However, I don’t think I’ve 
seen such an evaluation for GGCMI Phase 2 yet (I expect one is planned), and so pre-empting 
this with a comparison of the emulators may just be useful to have on hand. If this could be done 
and stuck into Supplementary, it would be a useful figure for the community moving forward, 
rather than having to show an intermediary figure of emulator-GGCM comparisons. 

Unfortunately this type of validation is impossible with our current approach. On the decadal timescale, 
changes in management outweigh the effects of climate, and climate-driven mean yield changes in the 
historical record are impossible to disentangle from management changes. On the yearly timescale, as 
discussed above, the emulators are not appropriate for reproducing short-term variations, and so we also 
cannot use them to faithfully represent historical yearly yield anomalies (detrended from management 
changes).  

The performance of the GGCMI Phase 2 crop models is addressed in the GMD companion paper (Franke 
et al. 2020a), using the standard evaluation approach based on the year-over-year time-series correlation 
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with FAO statistics (see Müller et al. 2017). However, this time-scale is not addressed by the emulators of 
the crop models, and so the emulators cannot be treated similarly. 
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Additional modifications not directly related to reviewer comments: 

● Phase II changed to Phase 2 (throughout) 
● carbon changed to carbon dioxide (throughout) 
● soy changed to soybean (throughout) 
● Some spelling errors fixed 
● Substantial re-ordering of Section 6 to more clearly address the reviewer comments and 

provide a recap as suggest by reviewers 
● Some light language editing for clarity throughout 
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Abstract. Statistical emulation allows combining advantageous features of statistical and process-based crop models for un-

derstanding the effects of future climate changes on crop yields. We describe here the development of emulators for nine

process-based crop models and five crops using output from the Global Gridded Model Intercomparison Project (GGCMI)

PhaseII.
::
2.

:
The GGCMI PhaseII

:
2
:
experiment is designed with the explicit goal of producing a structured training dataset

for emulator development that samples across four dimensions relevant to crop yields: atmospheric carbon dioxide (CO2)5

concentrations, temperature, water supply, and nitrogen inputs (CTWN). Simulations are run under two different adaptation

assumptions: that growing seasons shorten in warmer climates, and that cultivar choice allows growing seasons to remain
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fixed. The dataset allows emulating the climatological mean yield response without relying on interannual variations
::
of

:::
all

::::::
models

::::
with

:
a
::::::
simple

::::::::::
polynomial

::
in

:::::
mean

:::::::::::::
growing-season

::::::
values.

:::::::::::::
Climatological

:::::
mean

:::::
yields

:::
are

:
a
::::::

central
::::::

metric
::
in

:::::::
climate

::::::
change

::::::
impact

:::::::
analysis; we show that these are quantitatively different. Climatological mean yield responses can be readily10

captured with a simple polynomial in nearly all locations, with errors significant only in some marginal lands where crops are

not currently grown.
:::
here

::::
that

::::
they

:::
can

:::
be

:::::::
captured

:::::::
without

::::::
relying

::
on

::::::::::
interannual

:::::::::
variations. In general, emulation errors are

negligible relative to differences across crop models or even across climate model scenarios;
::::::

errors
:::::::
become

:::::::::
significant

::::
only

::
in

::::
some

::::::::
marginal

:::::
lands

:::::
where

:::::
crops

:::
are

:::
not

::::::::
currently

:::::
grown. We demonstrate that the resulting GGCMI emulators can repro-

duce yields under realistic future climate simulations, even though the GGCMI PhaseII
::
2
:
dataset is constructed with uniform15

CTWN offsets, suggesting that the effects of changes in temperature and precipitation distributions are small relative to those

of changing means. The resulting emulators therefore capture relevant crop model responses in a lightweight, computation-

ally tractable form, providing a tool that can facilitate model comparison, diagnosis of interacting factors affecting yields, and

integrated assessment of climate impacts.

1 Introduction20

Improving our understanding of the impacts of future climate change on crop yields is critical for global food security in the

twenty-first century. Projections of future yields under climate change are generally made with one of two approaches: either

process-based models, which simulate the process of photosynthesis and the biology and phenology of individual crops, or

statistical models, which use historical weather and yield data to capture relationships between observed crop yields and major

drivers. Process-based crop models provide some advantages, including capturing the direct effects of CO2 fertilization and25

allowing projections in areas where crops are not currently grown. However, they are computationally expensive, and can be

difficult or impossible to directly integrate into integrated climate change impacts assessments. Statistical crop models can only

capture crop responses under the range of current conditions, but have several advantages: they implicitly include management

and behavioral practices that are difficult to model explicitly, and they are typically simple analytical expressions that are

easily implemented by downstream impact modelers. Both types of models are routinely used, and comparative studies have30

concluded that when done carefully, both approaches can provide similar yield estimates (e.g. Lobell and Burke, 2010; Moore

et al., 2017; Roberts et al., 2017; Zhao et al., 2017; Liu et al., 2016a).

Statistical emulation allows combining some of the advantageous features of both statistical and process-based models.

The approach involves constructing a “surrogate model” of numerical simulations by using their output as training data for a

statistical representation (e.g. O’Hagan, 2006; Conti et al., 2009). Emulation is particularly useful in cases where simulations35

are complex and output data volumes are large, and has been used in a variety of fields, including hydrology (e.g. Razavi et al.,

2012), engineering (e.g. Storlie et al., 2009), environmental sciences (e.g. Ratto et al., 2012), and climate (e.g. Castruccio

et al., 2014; Holden et al., 2014). For agricultural impacts studies, emulation of process-based models allows capturing key

relationships between input variables in a lightweight, flexible form that is compatible with economic studies. The resultant

2



statistical model can produce yield projections under arbitrary emissions scenarios and is an important diagnostic tool for40

model comparison and model evaluation.

Interest is rising in applying statistical emulation to crop models, and multiple studies have developed crop model emulators

in the past decade. Early studies proposing or describing potential crop yield emulators include Howden and Crimp (2005);

Räisänen and Ruokolainen (2006); Lobell and Burke (2010), and Ferrise et al. (2011). Studies developing single-model emula-

tors include Holzkämper et al. (2012) for the CropSyst model, Ruane et al. (2013) for the CERES wheat model, and Oyebamiji45

et al. (2015) for the LPJmL model. More recently, emulators have begun to be used in the context of multi-model intercom-

parison, with multiple authors (Blanc and Sultan, 2015; Blanc, 2017; Ostberg et al., 2018; Mistry et al., 2017) using them to

analyze the five crop models of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP). ISIMIP offers a relatively

large training set – control, historical, and several Representative Concentration Pathway (RCP) scenarios using output from

up to five climate models (Warszawski et al., 2014; Frieler et al., 2017) – and choices of emulation strategy differ. Blanc and50

Sultan (2015) and Blanc (2017) use historical and RPC8.5 scenarios, combine multiple climate model projections for RCP8.5,

and regress across soil regions. Ostberg et al. (2018) use global mean temperature change (and CO2) as regressors, and then

pattern-scales to emulate local yields. Mistry et al. (2017) compare emulated and observed historical yields, using local weather

data and a historical crop simulation. The constraints of the ISIMIP experiment mean that all these efforts do share important

common features. All emulate annual crop yields along an entire scenario or scenarios, and all future climate scenarios are55

non-stationary, with important covariates (temperature and precipitation for example) evolving simultaneously.

An alternative approach to emulation involves construction of a “parameter sweep” training set, a collection of multiple

stationary scenarios that systematically cover a range of input parameter values. A parameter sweep offers several important

advantages for emulation over an experiment in which climate evolves over time. First, it allows separating the effects of

different variables that affect yields but that are highly correlated in realistic future scenarios like those used in ISIMIP (e.g.60

CO2 and temperature). Second, it allows making a distinction between year-to-year yield variations and climatological changes,

which may involve different responses to the particular climate regressors used (e.g. Ruane et al., 2016). For example, if year-

to-year yield variations are driven predominantly by variations in the distribution of temperatures throughout the growing

period, and long-term climate changes are driven predominantly by additive mean shifts, then regressing on the mean growing

period temperature will produce different yield responses at annual vs. climatological timescales.65

Systematic parameter sweeps have begun to be used in crop model evaluation and emulation, with early efforts in 2014 and

2015 (Ruane et al., 2014; Makowski et al., 2015; Pirttioja et al., 2015), and several recent studies in 2018 and 2019 (Fronzek

et al., 2018; Ruiz-Ramos et al., 2018; Snyder et al., 2019). These three studies sample multiple perturbations to temperature

and precipitation, and two of the three add CO2 as well, for a total of 132, 99, and 220 different combinations, respectively.

All take advantage of the structured training set to construct emulators (“response surfaces”) of climatological mean yields,70

omitting year-to-year variations. All the 2018–2019 papers have some limitations, however, for assessing global agricultural

impacts, including that none evaluate responses in every grid cell globally. Two involve many crop models but only one crop

(wheat) (Fronzek et al., 2018; Ruiz-Ramos et al., 2018) and cover only 1–4 individual sites. Snyder et al. (2019) analyzes
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five crops over ⇠1000 sites with individual site-specific crop models, and extrapolates in space to estimate mean latitudinal

responses.75

In this paper we describe a set of globally-gridded crop model emulators developed from the new parameter-sweep dataset

of the Global Gridded Crop Model Intercomparison (GGCMI) PhaseII
::
2 effort. GGCMI PhaseII

::
2, a part of the Agricultural

Model Intercomparison and Improvement Project (AgMIP) (Rosenzweig et al., 2013, 2014), provides the first near-global-

coverage systematic parameter sweep of multi-model crop simulations consisting of up to 756 combinations in CO2, tem-

perature, water supply, applied nitrogen, and two different assumptions on growing season adaptation (“A0”: none and “A1”:80

retaining growing season length) (CTWN-A, Franke et al., 2020; Minoli et al., 2019b). The experiment is designed to allow

diagnosing the impacts on crop yields of both individual factors and their joint effects, and to allow construction of crop

model emulators. In the
::::::
Section

:
2
:
following, we describe the training dataset(Section 2) , the

:
,
::::::::
including

:::
the

:::::::
GGCMI

:::::
Phase

::
2

::::::::::
experimental

::::::::
protocol

:::
and

:::::
model

:::::::::::
participation

:::::::
(Section

::::
2.1)

:::
and

:::
the

:::::::
models’

:::::::
differing

:::::::::::::
year-over-year

:::
and

::::::::::::
climatological

:::::
mean

::::::::
responses

:::::::
(Section

::::
2.2).

:::::::
Section

:
3
::::::::
describes

:::
the statistical model used for emulation(Section 3), ,

:::::::
Section

:
4
::::::::
evaluates measures85

of emulator fidelity(Section 4), and ,
::::
and

::::::
Section

::
5

:::::
shows

:
examples of preliminary results(Section 5).

2 Training dataset

2.1 The GGCMI PhaseII
::
2 dataset

The GGCMI PhaseII
::
2 simulations are described in detail in Franke et al. (2020), but we summarize briefly here. The exper-

iment involves nine different globally gridded crop models, each simulating multiple crops (maize, rice, soybean, and spring90

and winter wheat) across a systematic parameter sweep of as many as 756 combinations, each driven by a historical climate

timeseries with systematic perturbations to CO2, temperature, water supply, and nitrogen application (CTWN). The simulation

protocol involves 4 levels of atmospheric CO2, 7 of temperature, 9 of water supply, and 3 of applied nitrogen, and simulations

are repeated for two adaptation scenarios: “A0” simulations assume no adaptation in cultivar choice, so that growing seasons

shorten in warmer climates, and “A1” simulations assume that adaptation in cultivar choice maintains fixed growing seasons.95

The complete protocol for each modeling group involves up to 43,524 years of global simulated output for each crop. Because

the computational demand is high, modeling groups were allowed to submit at various specified levels of participation, with the

lowest recommended level of participation consisting of 20% of the maximum possible simulations. The mean participation

level is 65%, but three models (APSIM-UGOE, EPIC-IIASA, and ORCHIDEE-crop) contributed data below the recommended

threshold (< 5% of the full protocol) and are excluded here since they could not be robustly emulated. Table 1 shows the partic-100

ipating models and the number of simulation scenarios that each provides, and Supplemental Figure S1 shows model sampling

density.
:::
See

:::::::::::::::::
Franke et al. (2020)

::
for

:::
the

:::::::::
parameter

:::::::::::
combinations

::::::::
included

::
by

:::::
each

::::::
model. Table 2 shows the specified input

values; we sample across all parameter combinations.

Each individual crop model simulation is run for 31 years over historic weather for the period of 1981-2010, with added

uniform perturbations to any of the CTWN variables. Historical weather is taken for most models from the AgMERRA (Ruane105

et al., 2015) historical daily climate data product, but the PROMET model uses the ERA-Interim reanalysis (Dee et al., 2011)

4



Table 1. Crop models included in GGCMI PhaseII
::
2 emulators and the number of CTWN-A (Carbon

:::::
dioxide, Temperature, Water, Nitrogen,

Adaptation) simulations performed for each model. The maximum number is 756 for A0 (no adaptation) experiments, and 648 for A1

(maintaining growing
:::::
season

:
length) experiments, since T0 is not simulated under A1. “N-Dim.” indicates whether the models are able to

represent varying nitrogen levels. Each model provides the same set of CTWN simulations across all its modeled crops, but some models

omit individual crops. Table adapted from Franke et al. (2020). For clarity, three simulation models included in
:::
that

:::::::
submitted

::::
data

::
to

:::
the

::::::
GGCMI

:
PhaseII

:
2
:::::::::
experiment

:::::::::::::::
(Franke et al., 2020) are not shown here, those that

::
as

:::
they

:
provided a training set too small to be used in

emulation.

Model (Key Citations) Maize Soybean Rice Winter

wheat

Spring

wheat

N dim. Sims per crop

(A0 / A1)

CARAIB, Dury et al. (2011); Pirttioja et al.

(2015)

X X X X X – 252 / 216

EPIC-TAMU, Izaurralde et al. (2006) X X X X X X 756 / 648

JULES, Osborne et al. (2015); Williams and

Falloon (2015); Williams et al. (2017)

X X X – X – 252 / 0

GEPIC, Liu et al. (2007); Folberth et al. (2012) X X X X X X 430 / 181

LPJ-GUESS, Lindeskog et al. (2013); Olin

et al. (2015)

X – – X X X 756 / 648

LPJmL, von Bloh et al. (2018) X X X X X X 756 / 648

pDSSAT, Elliott et al. (2014); Jones et al.

(2003)

X X X X X X 756 / 648

PEPIC, Liu et al. (2016b, c) X X X X X X 149 / 121

PROMET, Hank et al. (2015); Mauser et al.

(2015); Zabel et al. (2019)

X X X X X – 261 / 232

and the JULES model uses a bias-corrected version of ERA-Interim, WFDEI (WATCH-Forcing-Data-ERA-Interim, Weedon

et al., 2014) as these groups have specific sub-daily input data requirements. Temperature perturbations are applied as additive

mean shifts, water supply as fractional multipliers to precipitation (except in the irrigated W1 case), and CO2 and nitrogen

application levels are specified as fixed values. Models provide near-global output at 0.5 degree latitude and longitude resolution110

for each simulation year, including areas not currently cultivated.
::::
Crop

::::::
models

::::::::
included

::::
here

:::
are

:::
not

:::::::
formally

:::::::::
calibrated,

:::::
given

:::
that

:::::
there

::
is

::
no

::::::::
adequate

::::::::::
calibration

:::::
target

:::
for

:::::::
gridded

::::::::::
global-scale

::::
crop

::::::
model

::::::::::
simulations.

:::::
This

::::
may

::
be

::
a
:::::::::::
shortcoming

::
if

:::::::
targeting

:::::::
absolute

:::::
yield

:::::
levels,

:::
but

:::::
when

:::::::
focusing

:::
on

::::::
relative

:::::
yield

:::::::
changes,

:::::::::
calibration

:::
can

::::
also

::::
have

:::::::
negative

::::::
effects

::
on

::::::
model
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Table 2. GGCMI PhaseII
::
2 input levels for the parameter sweep. Values for temperature and water supply are perturbations from the historical

climatology. For water supply, perturbations are fractional changes to historical precipitation, except in the irrigated (W1) simulations, which

are all performed with the maximum beneficial levels of water. Bold font indicates the ‘baseline’ historical level. The full protocol samples

across all parameter combinations for a total of 756 cases. Table repeated from Franke et al. (2020).

Input variable Tested range Unit

[CO2] (C) 360, 510, 660, 810 ppm

Temperature (T) -1, 0, 1, 2, 3, 4, 6 �C

Precipitation (W) -50, -30, -20, -10, 0, %

10, 20, 30, (and W1)

Applied nitrogen (N) 10, 60, 200 kg ha�1

Adaptation (A) A0: none, A1: new cultivar to maintain original growing season length -

:::
skill

:::::::::::::::::
(Müller et al., 2017)

:
. In analyses where we distinguish yields over currently cultivated land, we use the

::::::::
harvested

::::
area

masks of Portmann et al. (2010). (See Supplemental Figure S2 for maps of cultivated area.)115

2.2 Climatological vs. year-to-year response
::::::::
responses

We emulate the climatological mean response, because that is the response of interest
:::
The

::::::
central

:::::
metric

:
in assessments of cli-

mate change impacts . The
::
on

::::
crop

:::::
yields

::
is

:::
the

::::::
change

::
in

::::::::::
multi-annual

::::::
means

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Schlenker and Roberts, 2009; Challinor et al., 2014; Rosenzweig et al., 2014; Müller et al., 2015; Zhao et al., 2016; Hsiang et al., 2017)

:
.
::::::::::
Agricultural

::::::
impacts

::::::::::
assessments

:::::
work

::::
with

::::::::::
multi-annual

::::::
yields,

::
as

::::
their

:::::::
analysis

::::::::::
frameworks

::::::
require

::::::::::
information

::
on

::::::::
long-term

:::::
effects

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Nelson et al., 2014b; Stevanović et al., 2016; Wiebe et al., 2015; Hasegawa et al., 2018; Snyder et al., 2019).

::::::::
Changes120

::
in

::::::::
extremes

::
or

:
year-to-year response can be significantly different from the forced climatological one, so we do not use

information from year-to-year variability but instead emulate the
::
are

:::::
other

:::::::
metrics

::
of

::::::::
potential

:::::::
interest,

:::
but

:::
are

:::::
often

::::
not

::::::::
explicitly

:::::::::
considered

::
in

:::::::::
integrated

:::::::
climate

::::::
change

::::::
impact

:::::::::::
assessments

::
or

::::::::
land-use

::::::
change

::::::::::
projections.

::::
For

::::
this

::::::
reason

:::
we

::::::
emulate

:::
the

:::::::::::::
climatological

:::::
mean

::::::::
response,

:::
i.e.

:::
the

::::::
change

:::
in aggregated mean yield in each 30-year simulation. Emulation

then becomes relatively straightforward, since changes in time-averaged yields are also considerably smoother than those in125

year-to-year yield response.

In the GGCMI PhaseII
::
2 simulation output dataset, year-to-year responses to weather are

:::
also

:
often quantitatively distinct

from responses to climatological shifts, with the discrepancy especially strong in wheat and rice. The difference in behavior is

illustrated in Figure 1, which shows irrigated and rainfed maize and wheat in representative locations; open circles and black

lines show the climatological mean response, and solid circles and colored lines the responses for the 30 individual years in130

individual scenarios. When discrepancies are large, year-to-year responses are generally stronger than climatological ones, but

exact responses differ by crop and region and even by model within GGCMI PhaseII.
::
2.
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Figure 1. Example showing distinction between crop yield responses to year-to-year and climatological mean shifts in climate variables,

showing representative high-yield regions for maize in pDSSAT (northern Iowa, top row) and winter wheat in EPIC-TAMU (France, bottom

row). Left column (a & c) shows irrigated crops, all temperature cases with other variables held at baseline values, and right column (b

& d) shows rainfed crops, all precipitation cases. Figure shows A0 output, in which growing seasons shift under future climate, so local

growing-season temperature changes can differ from prescribed uniform offsets: for example, a 6 K applied uniform warming results in a

growing season temperature warmer by ⇠7 K for maize in Iowa (top right), but by less than 6 K for wheat in France (bottom right). Open

black circles mark climatological mean yields and bold black lines show a 3rd order polynomial fit through them. Colored lines show linear

regressions (by orthogonal distance regression) through the 30 annual yields of each parameter case. Colored circles show annual yields for

selected cases. Differences in slopes of colored and black lines mean that responses to year-to-year fluctuations differ from those to longer-

term climate shifts. Differences are generally stronger for wheat (bottom) than maize (top). Note that for rain-fed crops, slope differences in

this representation could also result from correlated precipitation and temperature fluctuations in the baseline timeseries, but P-T correlations

do not contribute to the effects shown here. Such correlations would complicate emulations based on year-to-year yields but would not

necessarily bias them.

While differences in responses at different timescales can arise for many reasons, including memory in the crop model or

lurking covariates, the most likely explanation here is that the regressors used, mean growing-season temperature or precip-

itation, do not fully describe the conditions that affect crop yields. The mean growing-season value is only a proxy for the135
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distribution of daily climatic conditions that crops are sensitive to, and present-day variations between years can be very differ-

ent from future forced changes. That is, present-day variations in growing-season means from year to year may be associated

with changes in growing-season distributions that are unrelated to any changes in future warmer climates:
:::
that

::
is,

:
a warm year

at present may be quite different from a warm year in the future (e.g. Ruane et al., 2016). Changes in temperature distributions

have been shown to strongly affect crop yields (e.g. Hansen and Jones, 2000; Gadgil et al., 2002), though precipitation effects140

should be smaller since crops respond not to rainfall but to soil moisture, which integrates over weeks or even months (e.g.

Potter et al., 2005; Glotter et al., 2014; Challinor et al., 2004).

A second factor of importance is that any nonlinearity in crop responses will itself lead to a distinction between climato-

logical and year-to-year fits, even if distributional differences are negligible. Given the interannual variations in the climate

timeseries, the mean annual yield response to a perturbation is not the same as the response of the climatological mean yield.145

The effect of nonlinearity may be particularly relevant for precipitation, since model crop yields drop steeply and nonlinearly

with increasing dryness. (Crop yields should drop under excess precipitation as well, but process-based models do not capture

losses in saturated conditions well (Glotter et al., 2015; Li et al., 2019).)

In the GGCMI PhaseII
:
2
:
experiment, the imposed perturbations involve no changes in underlying distributions. The choice

is reasonable, since climate models do not agree on distributional changes. Most models do project small mean increases in150

growing-season temperature variability in cultivated areas, and can produce substantial local changes, but models disagree on

spatial patterns. For example, in models of the Coupled Model Intercomparison Project Phase 5 (CMIP-5
::::::
CMIP5) archive, in

the the high-end RCP (Representative Concentration Pathway) 8.5 climate projections to the year 2100 (Riahi et al., 2011),

growing season daily maximum temperature variability over currently cultivated rice areas (weighted by production) increases

by 10% in HadGEM2-ES but only by 0.4% in MIROC-ESM-CHEM. (See Supplemental Section S2.) We therefore explicitly155

test the assumption that distributional changes are not consequential for climatological mean yields: in Section 4.3, we confirm

that an emulator trained on the GGCMI PhaseII
::
2 dataset can successfully reproduce yield changes under a full climate model

projection.

Note that even though distributions of climate variables are unchanged in the GGCMI PhaseII
:
2
:

simulations, the spread

in annual yields still becomes wider in highly impacted climate states, because of the nonlinearity of yield responses (Figure160

2). In the GGCMI PhaseII
::
2 dataset, all crops except rice show greater year-to-year yield variance in conditions of extreme

climate stress. (Rice is typically irrigated and experiences no water stress in simulations.) Increased variance has been noted

in previous studies. For example, Urban et al. (2012) used statistical models trained on present-day yields to find a projected

future increase in yield variance of U.S. maize of 20% per degree K temperature rise. While the authors do not diagnose a

specific cause of that increase, they discuss multiple potential mechanisms, including nonlinearity in responses.165

3 Emulation

Emulation involves fitting individual regression models from GGCMI PhaseII
::
2 output for each crop and model and 0.5 degree

geographic pixel; the regressors are the applied perturbations in CO2, temperature, water, and nitrogen (CTWN). We discuss

8



Figure 2. Example showing results of increased crop yield sensitivity to year-to-year climate variations under climate stress. Yield distri-

butions are from examples of Figure 1, top row, of maize in Iowa, (left) for irrigated maize in scenarios of altered temperature and (right)

for rainfed maize in scenarios of altered precipitation. Because yield sensitivities rise under strong warming or drying, distributions of year-

to-year crop yields widen in T+6 and P-50% scenarios relative to present-day simulations, even though all input climate timeseries have

identical variance for temperature. Note: precipitation changes have different variance since the perturbations are fractional.

here largely emulations of climatological mean crop yields with no growing season adaptation (A0 scenarios), but note that

any output of the crop models can potentially be emulated. We provide separate emulations of irrigated and rainfed yields and170

applied irrigation water (pirrww in mm yr�1) in both A0 and A1 scenarios, meaning that each model and crop combination

results in six sets of regressions. See Supplemental Material Sections 3, 4, and 6 for these additional emulation cases.

3.1 Statistical model

For the statistical model of crop yields as a function of CTWN, we choose a relatively simple parametric model with a 3rd-order

polynomial basis function
::::::::
(Equation

::
1). If the climatological mean response is relatively smooth, then a simpler form provides175

a reasonable fit that allows for some interpretation of resultant parameter weights. A relativity
:::::::
relatively

:
simple parametric

form also allows fast model emulation at the grid cell level, rather than requiring spatial aggregation. Emulating at the grid cell

level preserves the spatial resolution of the parent models, and means that emulators indirectly includes any yield response to

geographically distributed factors such as soil type, insolation, and the baseline climate.

The 3rd-order polynomial CTWN model
:
of

::::::::
Equation

::
1 contains 34 terms(Equation 1), since the N3 term is omitted, as it180

cannot be fitted in a training set sampling only three nitrogen levels. To facilitate comparing emulators parameter by parameter,

we hold this functional form across locations, crops, and models, other than several necessary distinctions: regressions for

irrigated crops do not contain W terms, and regressions for models that do not sample the nitrogen levels omit the N terms.
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Results shown throughout the paper use this full specification, but we also investigate
::::
show (in Section 3.2 below) whether

some
:::
that

:::
for

:::
all

:::
but

::::
two

:::::::
models,

:::
11

:
terms can be dropped without significant reduction in emulator fidelity.

:::
The

::::::
higher185

::::::::::
specification

:::
of

:::
the

::
34

:::::
term

::::::
model

::::
aids

::::::::
primarily

::
in

:::::::
regions

:::::
where

::::::
crops

:::
are

:::
not

::::::::
currently

::::::
grown.

:::::
Most

:::::::::
modeling

::::::
groups

::::::::
submitted

:
a
::::::::::

sufficiently
:::::
large

:::::::
training

::
set

::::
that

:::
the

:::::::
34-term

::::::
model

:::
can

:::
be

::
fit

::::
with

::::::::
standard

:::::::
ordinary

:::::
least

::::::
squares

:::::::
(OLS),

:::
but

::
for

:::::::
models

::::
with

:::::
lower

::::::::
sampling,

::
it

::::
must

:::
be

::
fit

::::
with

::
a

:::::::
Bayesian

::::::
Ridge

:::::::::
regression

:::::::
method.

::::
(See

::::::
Section

::
4
:::
for

:::::::::
evaluation

::
of

:::
the

::::::
fidelity

::
of

::::::::
emulators

::::::::::
constructed

::::
with

::::::::
Equation

::
1.)

:

Y = K1 (1)190

+ K2C +K3T +K4W +K5N +K6C
2

+ K7CT +K8CW +K9CN +K10T
2 +K11TW

+ K12TN +K13W
2 +K14WN +K15N

2

+ K16C
3 +K17C

2T +K18C
2W +K19C

2N

+ K20CT 2 +K21CTW +K22CTN +K23CW 2195

+ K24CWN +K25CN2 +K26T
3 +K27T

2W

+ K28T
2N +K29TW

2 +K30TWN +K31TN
2

+ K32W
3 +K33W

2N +K34WN2 +K⇤N
3

:::
We

::
do

:::
not

:::::
focus

::
in

::::
this

::::
study

:::
on

:::::::::
comparing

:::::
other

::::::::
functional

:::::
forms

:::
or

::::::::::::
non-parametric

:::::::
models.

:
In general, both higher-order

and interaction terms are expected to be important for representing crop yields. Higher order terms are needed because crop200

yield responses to weather are well-documented to be nonlinear: e.g. Schlenker and Roberts (2009) for T perturbations and He

et al. (2016) for W (precipitation). Interaction terms are needed since the yield response is expected to depend on interactions

between the major inputs. For example, Lobell and Field (2007) and Tebaldi and Lobell (2008) showed that in real-world yields

(with C and N fixed), the joint distribution in T and W is needed to explain observed yield variance. Other observation-based

studies have shown the importance of the interaction between W and N (e.g. Aulakh and Malhi, 2005), and between N and C205

(Osaki et al., 1992; Nakamura et al., 1997).

We do not focus in this study on comparing other functional forms or non-parametric models. Some prior studies have

used other
::::
even

::::
more

::::::::
complex

:
statistical specifications in crop model emulation: for example, Blanc and Sultan (2015) and

Blanc (2017) use a 39 term fractional polynomial and “borrow information across space” by fitting grid points simultaneously

across soil region in a panel regression. The GGCMI PhaseII
::
2 dataset allows fitting our simple 3rd order polynomial form210

independently at each grid cell while still providing a satisfactory emulation for all models and crops. (See Section 4 for

evaluation of the fidelity of emulators constructed with Equation 1.)

3.2 Feature importance and reduced statistical model

Because a simpler statistical model may improve the interpretability of its parameter weights, we also develop a reduced

::::::
23-term

:
version that is satisfactory for most models and crops (Equation 2

:
,
::::
with

:::
the

:::
11

:::::::
removed

::::::
terms

:::::
shown

:::
in

::::
gray). To215
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identify terms that can be omitted, we apply a feature selection cross-validation process in which terms in the polynomial

are tested for importance. Higher-order and interaction terms are successively added to the regression model, and in each

case we calculate an aggregate mean absolute error (weighted by by currently cultivated area) and eliminate those terms that

do not contribute significantly to reducing error. The procedure is illustrated in Figure 3. We develop our reduced statistical

model by considering yields over currently cultivated land in three models: two that provided the complete set of 672 rainfed220

simulations, i.e. without the W1 simulations, (pDSSAT, EPIC-TAMU), and one that provided the smallest training set (121

input combinations, PEPIC). Although models exhibit different absolute levels of error, all three agree remarkably well on

feature importance, i.e. on which terms reduce error and which provide no predictive benefit. (Agreement means that line

slopes match
:::::::::
Agreement

::
is

:::::::
indicated

:::
by

::::::::
matching

:::
line

::::::
slopes in Figure 3. )

Results of the feature selection process suggest that 11 terms can be omitted with negligible impact on emulator fidelity,225

producing the 23-term statistical model of Equation 2.

Y = K1 (2)

+ K2C +K3T +K4W +K5N +K6C
2

+ KaCT +K7CW +K8CN +K9T
2 +K10TW

+ K11TN +K12W
2 +K13WN +K14N

2230

+ K⇤C
3 +K⇤C

2T +K⇤C
2W +K⇤C

2N

+ K⇤CT 2 +K⇤CTW +K⇤CTN +K⇤CW 2

+ K⇤CWN +K15CN2 +K16T
3 +K17T

2W

+ K⇤T
2N +K18TW

2 +K19TWN +K20TN
2

+ K21W
3 +K22W

2N +K23WN2 +K⇤N
3235

The eliminated terms include many of those in C: the cubic; the CT, CTN, CTW, and CWN interaction terms; and all higher

order interaction terms in C. Finally, we eliminate one 2nd-order interaction term in W and two in T. Implications of this choice

include that nitrogen interactions are complex and important, and that water interaction effects are more nonlinear than those

in temperature. Note that some terms that did not reduce the aggregate error must still be included if a higher order version

of that term provides benefit: for example, including the T 3 term requires also retaining T 2 and T terms. The reduced-form240

emulator is acceptable across currently cultivated land for all model and crop combinations other than JULES soy
::::::
soybean

:
and

spring wheat and PROMET soy
:::::::
soybean and rice. These cases involve yield responses that benefit strongly from inclusion of

higher order carbon
::::::
dioxide

:
interaction terms. Additional terms in the statistical model also help emulation in some geographic

locations outside of currently cultivated regions, where yield responses are often non-standard. (See Supplemental Material

Section 7 for evaluation of the fidelity of emulators constructed with Equation 2 and for more details on JULES and PROMET.245

)
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Figure 3. Illustration of results from the polynomial feature selection process for three different crop models (colors), for all grid cells with

more than 1000 ha cultivated for maize (left) and rice (right). Solid lines are Bayesian Ridge regression results and dashed lines those for

standard OLS. Rows show four metrics of fit quality and x axes the terms successively tested in the statistical model, sequentially added to

the model in order from left to right. Terms that do not reduce the aggregate error are marked in gray and are not included in the final model.

a & b: log mean absolute error between emulated yield and simulated values calculated with a three fold cross validation process, where the

emulator is trained on two thirds of the data and predicts the remaining third. c & d: log mean standard parameter error. The Bayesian Ridge

method strongly reduces parameter error and results in more stable estimates. e & f: adjusted R2 score for the fit at each model specification.

g & h: distribution of the residuals. Skewness is low at the high model specifications tested in all model cases other than EPIC-TAMU maize.

3.3 Model fitting

To fit the parameters K, we use a Bayesian Ridge regularization method (MacKay, 1991) rather than standard ordinary least

squares (OLS). The Bayesian Ridge method reduces volatility in parameter estimates when the sampling is sparse, by weighting

parameter estimates towards zero, allowing the use of a consistent functional form across all models and locations. The choice250

slightly reduces mean absolute error for some of the high-order interaction terms in the model (Figure 3, top row) but drastically

reduces standard parameter error in the model by stabilizing the estimates (Figure 3, third row). The estimation method scores
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relatively lower on adjusted R2 for the simplest parameter specifications, but quickly reaches parity with the OLS. We use

adjusted R2 as a metric because additional terms are penalized (Equation 3, where n is the number of samples and k is the

number of features):255

R2
adj = 1� (n� 1) · (1�R2)

n� k
(3)

We use the implementation of the Bayesian Ridge estimator from the scikit-learn package in Python (Pedregosa et al., 2011).

An additional diagnostic of fit quality is the distribution of residuals: normally or near-normally distributed residuals imply

that errors around the fit are random and unbiased. When fitting Equation 1 to the GGCMI PhaseII
::
2 dataset, the distribution of

the residuals depends on the number of features included in the regression, the method for estimating the parameters, and the260

target distribution in the training set. The residuals are only normally distributed (pvalue > 0.05 in the Shapiro–Wilk test) for a

single model, PEPIC, for any specification tested here, but their skew is relatively small except in a single case, EPIC-TAMU

maize (Figure 3, fourth row). While including higher-order terms in the statistical model generally reduces residual skew, for

EPIC-TAMU maize it increases skew instead, but also reduces the error in cross-validation, which we consider more important

in the context of emulation. The residual distribution suggests that projections using the EPIC-TAMU maize emulator will tend265

to be biased high, but in practice the overall magnitude of these errors is below 2% of yield changes. (See Section 4.2.)

4 Emulator evaluation

In this section we show illustrations of GGCMI model yield responses to climate perturbations and evaluate the ability of our

emulators to reproduce them. Model emulation with the parametric method used here requires that crop yield responses be

sufficiently smooth and continuous to allow fitting with a relatively simple functional form; in Section 4.1 we show that this270

condition largely holds in the GGCMI PhaseII
:
2
:
simulations. In section 4.2 we evaluate metrics of emulator performance and

show that emulation errors – discrepancies between emulation and simulation – are generally small, especially when compared

to the differences across crop models or to projected yield changes. Emulation errors become problematic only in certain,

:::
We

:::
use

:::
the

::::
term

:::::
error

:::::::
because,

:::::
under

:::
the

::::::::
“perfect”

::::::
model

::::::::
emulation

:::::::::
approach,

:::
we

::::
take

:::
the

:::::::::
simulation

::::::
output

::
to

:::
be

::::::
perfect

::::::
ground

:::::
truth.

:::
We

:::::::
evaluate

::::
two

:::::::
separate

:::::
error

:::::::
metrics,

::::
one

:::::
more

:::::
loose

:::
that

:::::::::::
incorporates

::::::::::
information

:::::
about

::::
the

::::::::::
inter-model275

:::::::::
uncertainty,

::::
and

::::
one

::::
more

::::::::
stringent

::::
that

::::
tests

:::
out

:::
of

::::::
sample

:::::::::
prediction

:::::
error

:::::
within

:::
an

:::::::::
individual

::::::
model.

:::
For

:::::
both

:::::::
metrics,

::::::::
emulation

::::
error

::
is
::::::::
generally

:::::
small

:::::
other

::::
than

::
in limited geographic locations, usually where crops are not currently grown. We

analyze here results using the 34-term polynomial of Equation 1; see Supplemental Material Section 7 for analogous analysis

of the 23-term polynomial of Equation 2. Finally, in Section 4.3, we assess the emulator’s ability to reproduce crop yields in a

more realistic future simulation driven by a climate model projection, and find that any effects of changes in climate variability280

not included in the GGCMI Phase II training set are generally small relative to the effects of mean changes
::
its

:::::::::::
performance

::::::
remains

::::::::::
satisfactory.

::::
We

::::::
analyze

::::
here

::::::
results

:::::
using

:::
the

:::::::
34-term

:::::::::
polynomial

::
of

::::::::
Equation

::
1;

:::
see

::::::::::::
Supplemental

:::::::
Material

:::::::
Section

:
7
:::
for

::::::::
analogous

:::::::
analysis

:::
of

::
the

:::::::
23-term

::::::::::
polynomial

::
of

::::::::
Equation

:
2.
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4.1 Yield response

Crop yields show strong spatial differentiation across geographic regions, and emulators are able to readily reproduce these285

::::::
patterns. Figure 4 illustrates the spatial yield pattern

:::::
shows

::::
one

::::::::
example

::
of

:::::::::
simulated

:::
and

::::::::
emulated

::::::
yields

:
under current

climatefor one crop and model (,
:::::
using

:
maize in LPJmL). Absolute emulation errors

:::
for

:::
this

::::::::::
model-crop

::::::::::
combination

:
are low

– 99.8% of grid cells have errors below 0.5 tons ha�1 – but emulation errors as a percentage of baseline yield can be large in

areas with low potential yield and no current cultivation in the real world (e.g. the Sahara, Patagonia). These regions are not

currently viable for agriculture and may never become viable even under extreme climate change. Emulator spatial skill varies290

across models and crops, with maize being the quantitatively easiest to emulate across all models and locations.

Yield responses to the four main drivers considered here (C, T, W, and N) are also quite diverse across locations, crops,

and models, but in nearly all cases the local climatological mean responses are smooth enough to permit emulation with the

functional form used here. Figure 5 illustrates the geographic diversity of responses within a single crop and model, for rainfed

maize in pDSSAT. While the CO2 responses (in ton ha�1 /ppm
::::::
ppm�1) are quite similar, the precipitation response is stronger295

in more arid locations and the nitrogen responses appear strongly location-dependent. The heterogeneity in response supports

the choice of emulating at the grid cell level. In regions with current cultivation, yields evolve smoothly across the space

sampled, and the polynomial fit captures the climatological-mean response to perturbations well. Emulators do perform poorly

in a few regions that involve discontinuous or irregular yield responses. Poor performance is illustrated here with PROMET

maize in northern Canada, which is too cold for maize at present in PROMET (0 ton ha�1 yield), but which shows an abrupt300

rise to moderate yields once temperature rises by 4 degrees. Under these conditions, the 3rd order polynomial cannot fit the

response, and errors are high. See Section 4.2 for additional discussion.

Crop yield responses in all models generally follow similar functional forms at any given location, though with a spread in

magnitude (Figure 6, which shows rainfed maize in northern Iowa in a selection of GGCMI models). Absolute yield differences

between models can be substantial because some models are uncalibrated. In general, models are most similar in their responses305

to temperature perturbations, and least similar to changes in CO2. That is, CO2 fertilization effects within a single model are

consistent across locations, but CO2 effects differ strongly across models.

Note that while the nitrogen dimension is important, it is also the most troublesome to emulate in the GGCMI PhaseII
::
2

experiment because of its limited sampling. The GGCMI PhaseII
::
2 protocol specified only three nitrogen levels (10, 60 and

200 kg N y�1 ha�1), so a third-order fit would be over-determined but a second-order fit can result in potentially unphysical310

::::::::::
non-physical

:
results. Steep and nonlinear declines in yield with lower nitrogen levels mean that some regressions imply a peak

in yield between the 100 and 200 kg N y�1 ha�1 levels (Figure 6, right). While reduced yields under high nitrogen levels

are physically possible and could reflect over-application at particular times in the growing period, they are implausible at the

magnitude shown here and likely an artifact of the fit. The Bayesian Ridge estimator mitigates the ‘peak-decline effect’ in the

nitrogen dimension relative to ordinary least squares, but does not entirely remove it. The polynomial fit also cannot capture315

the well-documented saturation effect of nitrogen application (e.g. Ingestad, 1977) as accurately as would be possible with a

non-parametric model.
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Figure 4. Illustration of spatial pattern in baseline yield successfully captured by the emulator: simulated (a.) and emulated (b.) yield under

historical (1981-2010) conditions for rainfed maize from the LPJmL model. Absolute yield differences (c.) are less than 0.5 ton ha�1 in

almost all (99.8%) grid cells across the globe. Percent difference (from simulated baseline, d.) is below 5% in most (75%) grid cells currently

cultivated in the real world. Approximately 7% of all grid cells, but only 3% of currently cultivated grid cell, have emulated yields that differ

from the baseline simulation by more than 20%. Notable exceptions include areas with very low simulated baseline yield, including for

example the Sahara, the Andes, and northern Quebec. Percent error weighted by cultivation area globally is essentially zero (see also Table

3). Performance varies by crop and model. See Supplemental Figures in Section 8 for more examples.

4.2 Emulator performance metrics

Our emulators collectively consist of nearly 3 million individual regressions, so developing concise performance metrics poses

a challenge. No general agreed-upon criteria exist for defining an acceptable crop model emulator, so we present two differ-320

ent metrics below, one relatively loose and one more stringent. Both metrics assess the ability of the emulator to reproduce

simulated crop yields in the GGCMI PhaseII
:
2
:
experiment. In this section we show only results from emulators based on

the 34-term Equation 1; see Supplemental Material Section 7 for analogous assessment of emulators based on the 23-term

Equation 2.
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Figure 5. Illustration of spatial variations in yield response, which are successfully captured by the emulator. Panels show simulations (points)

and emulations (lines) of rainfed maize in the pDSSAT model in six example locations selected to represent high-cultivation areas around the

globe. Legend includes hectares cultivated in each selected grid cell. Each panel shows variation along a single variable, with others held at

baseline values. Dots show climatological mean yields and lines the results of the full 4D emulator of Equation 1. In general the climatological

response surface is sufficiently smooth that it can be represented within the sampled variable space by the simple polynomial used in this

work. In some cases extrapolation would produce misleading results, and the emulator fails in conditions where yield response changes

abruptly. Failure is illustrated here by rainfed maize in north-central Ontario for the PROMET model (in gray), which shows present-day

yields of zero rising abruptly if temperature warms by 4 degrees.

Figure 6. Illustration of variations in yield response across models, again successfully captured by the emulator. Panels show simulations

and emulations from six representative GGCMI models for rainfed maize in the same Iowa grid cell shown in Figure 5, with the same plot

conventions. Three models (PROMET, JULES, and CARAIB) that do not simulate the nitrogen dimension are omitted for clarity. Models

are uncalibrated, producing spread in absolute yields. While most model responses can readily emulated with a simple polynomial, some

response surfaces diverge slightly from the polynomial form, producing emulation error (e.g. pDSSAT here, for water), but resulting error

generally remains small relative to differences across models.

1. Normalized error. We take as our first metric what we term the “normalized error”, which compares the fidelity of an325

emulator to the inter-model spread. For a multi-model comparison exercise like GGCMI PhaseII
::
2, a reasonable though loose
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Figure 7. Assessment of emulator performance over currently cultivated areas based on normalized error (Equations 5). We show perfor-

mance of all 9 models emulated, over all crops and all sampled T and W inputs (“ir.” indicates the irrigated W1 setting), but with CO2 and

nitrogen held fixed at baseline values. Large columns are crops and large rows models; squares within are T, W scenario pairs. Colors denote

the fraction of currently cultivated hectares (“area frac”) for each crop with normalized area e less than 1 indicating the the error between

the emulation and simulation less than one standard deviation of the ensemble simulation spread. Of the possible 63 scenarios at a single

CO2 and N value, we consider only those for which all 9 (8 for rice, soybean, and winter wheat) models submitted data (Figure S1) so the

model ensemble standard deviation can be calculated uniformly in each case. JULES did not simulate winter wheat and LPJ-GUESS did not

simulate rice and soybean. Emulator performance is generally satisfactory, with some exceptions. Emulator failures (significant areas of poor

performance) occur for individual crop-model combinations, with performance generally degrading for colder and wetter scenarios.

emulator criterion is that its errors be small relative to inter-model differences. The normalized error e is defined separately

for each C,T,W,N scenario s as the difference between emulated and simulated fractional yield changes, normalized by the

standard deviation in simulated changes across all models:

e s =
Fem, s �Fsim, s

�sim, s
(4)330

where F is the fractional change in yields Y between scenario s and baseline b:

F s =
Ys �Yb

Yb
(5)

We calculate the mean error for each grid cell, model, and crop in each C,T,W,N scenario by comparing emulated and simulated

yields. A normalized error e < 1 means that any deviation of the emulation from the simulation is less than 1 standard deviation

of the inter-model spread.

Evaluation of this metric implies that GGCMI PhaseII
:
2
:

emulators are generally satisfactory. Emulator performance is335

illustrated in Figure 7, which shows all models and crops crops over currently cultivated area. Over all crops and models,
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Figure 8. Illustration of our first test of emulator performance, applied to the CARAIB model for the T+4 scenario for rainfed crops. Colors

indicate the normalized emulator error e, where e > 1 means that emulator error exceeds the multi-model standard deviation. For consistency,

we show e only for geographic areas simulated by at least six models and where baseline yields are greater than 0.5 ton ha�1. Emulator

performance is generally good relative to model spread in areas where crops are currently cultivated (compare to Figure S2-S3) and in

temperate zones in general; emulation issues occur primarily in marginal areas with low yield potentials.

the average normalized error e < 1 over 95% of currently cultivated area. For maize, the most tractable crop to emulate, all

9 models return e < 1 over 97% of currently cultivated area. Only three crop-model combinations are problematic, returning

e < 1 over less than 90% of cultivated area even when using the 34-term statistical model: PROMET and CARAIB for soybeans

(79% and 83%), and JULES for spring wheat (85%). Misfits typically occur when models show strong discontinuities in yield340

response (as shown in Figure 5), or when carbon
::::::
dioxide

:
fertilization gains interact nonlinearly with changes in temperature

or water. Including higher-order C terms helps in the latter case but does not reduce emulator errors to zero. See Supplemental

Figures S22-S23 for examples of worst-case emulator failures.

While Figure 7 shows only currently cultivated land, performance can be worse in locations where crops are not currently

cultivated, or on marginal lands where current potential yields are low. (In general, emulator performance is poor anywhere345

that models show steep yield changes once some threshold has been reached, whether these are abrupt gains or .
:::::
Some

:::
of

::::
these

::::
case

::::::
involve

:
complete crop failures .)

:
in

::
a

:::::::
changed

:::::::
climate,

:::
but

::::
most

::::::
involve

:::::
yield

::::::::::::
improvements:

::::::
abrupt

::::
gains

::
in
:::::::
regions
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:::
that

:::
are

:::
too

::::
cold

:::
or

:::
dry

:::::
under

:::::::
current

:::::::::
conditions

:::
but

:::
that

:::::::
become

::::::
viable

:::::
given

::::::::
warming

::
or

:::::::
wetting.

:
Figure 8 illustrates this

effect for CARAIB in the T+4 scenario, showing normalized error over all simulated area with non-zero baseline yield and

at least 6 models providing simulations. CARAIB emulator performance is generally good where crops are grown but can be350

poor (e > 2) in arid or mountainous zones, e.g. the edges of the Sahara, Inner Mongolia, South Africa and Southern Australia.

::::::
Effects

:::
will

::::
vary

:::
by

:::
crop

::::::
model

::
as

::::
they

:::::
differ

::
in

::::::
process

::::::::::::::
implementations;

:::
see

:::
the

:::::::
different

::::::
model

:::::::::
description

::::::
papers

:::::::::
referenced

::
in

::::
Table

::
1
:::
for

:::::
more

::::::
details. Note that the choice of statistical model for emulation involves a trade-off in the spatial pattern of

errors: adding terms to the statistical model increases
:
.
:::
The

:::::::
34-term

::::::::
statistical

::::::
model

::::
used

::::
here

:::::::::
maximally

::::::::
improves

:
emulator

fidelity in problematic “fringe” areaswhere crops are currently not cultivated, but reduces
:
,
:
at
:::
the

:::::::
expense

::
of

::::::::
lowering it slightly355

over high-yield areas. For example,
:::
over

::::::::
currently

::::::::
cultivated

::::
land,

:
CARAIB maize emulators have normalized error e < 1 over

98.8% of currently cultivated land with the reduced 23-term Equation 2 but only 98.5
:::::
98.5%

:::
of

::::
area

::::
with

:::
the

::::
full

:::::::
34-term

:::::::
Equation

::
1
:::
but

::::
over

::::
98.8% with the 34-term Equation 1. Over simulated

:::::::
reduced

:::::::
23-term

::::::::
Equation

::
2.

:::
The

:::::
effect

::
is
::::::::

reversed

:::
over

:
uncultivated land,

:::
with

:
CARAIB maize emulators have

:::::::
showing e < 1 for only 88.7

:::
over

::::
93.7% of area with the reduced

Equation 2 but 93.7% with the full Equation 1
:
1
:::
but

::::
only

::::
over

::::::
88.7%

::
of

::::
area

::::
with

:::
the

::::::
reduced

::::::::
Equation

::
2.360

Note that the
:::
The normalized error assessment is relatively forgiving for several reasons. First, it is an in-sample validation,

with the emulation evaluated against the simulations actually used to train the emulator. Had we used a spline interpolation,

the error would necessarily be zero. Second, the metric scales emulator fidelity not by the magnitude of yield changes in the

evaluated model but by the spread in yield changes across models. The normalized error e for a given model then depends

on the particular suite of other models considered in the intercomparison exercise. The rationale for the choice is to relate the365

fidelity of the emulation to the true uncertainty, which we take as the multi-model spread, but the metric then has the property

that where models differ more widely, the standard for emulators becomes less stringent, and vice versa. In GGCMI PhaseII

::
2 the effect is manifested in the higher normalized errors for soybeans across all models, which result not because soybean

yields are difficult to emulate but because models agree more closely on yield changes for soybeans than for the other crops.

2. Out-of-sample validation. We provide a second, more stringent test of emulator performance via a
:::::
3-fold cross validation370

(also termed an out-of-sample validation). In this test the GGCMI PhaseII
:
2
:
dataset is split randomly into two parts, with

90% of the data used to train
::::::::
(calibrate) the model and the held-out 10% used to test

::::::::
(evaluate)

:
the fidelity of the resulting

emulator. We
:::
The

:::::::::
procedure

:
is
::::::::
repeated

::::
three

::::::
times;

::
in

::::
each

::::
case

::
we

:
calculate the root mean square error (RMSE) between

:::
the

emulated (predicted) and actual simulated values across the test set , repeat the process twice, and average the results of the

two splits.
::
test

:::
set

::::::
values,

::::
and

:::
then

:::::::
average

:::
the

::::
three

:::::::
results.

:::
The

:::::
result

::
is

:
a
::::::
single

:::::
metric

:::
for

::::
each

::::
grid

:::
cell

:::
for

::::
each

::::::::::
model-crop375

::::::::::
combination.

:
As a last step, we normalize the RMSE in

::::
error

:::::
metric

:::
for

:
each grid cell by dividing by the simulated yield change

.
::
its

:::::::::
maximum

::::
yield

:::::::
change

::::
over

:::
the

:::::
entire

::::::
CTWN

:::::::
dataset.

::::::
(Since

::
all

:::::::
models

::::
have

::::::::
submitted

::::
the

:::::::
extreme

:::
T+6

::::::::
scenario,

::::
this

:::::::::::
normalization

::::::
choice

::
is

:::
not

:::::::::::
problematic.)

:::::
Note

:::
that

:::
this

:::::::::
validation

:::::::
exercise

::
is

::::::::::
independent

::
of

:::
the

:::::::::
procedure

:::
for

:::::::::
generating

:::
the

::::
final

::::::::
published

:::::::
emulator

:::::::
values,

:::::
which

:::
are

::::::::
generated

:::::
using

:::
the

:::
full

:::::::
CTWN

::::::
dataset.

:

The resulting error metric is generally low. Table 3 shows the yield-change-normalized RMSE for rainfed crops in all models380

over currently cultivated land, both in selected major producing regions and in the global average. (We include all simulations

in
:::
the CTWN space and take

:::::
report the average error value .) Mean

::
in

:::::
Table

::
3.

::::::
Global

:::::
mean grid cell RMSE is below 5% of

19



::::::::
maximum

:
yield changes in all cases, or in absolute terms less than 0.2 ton ha�1 for all except JULES soy, which is

:::::::
soybean

:::::::::
simulations

:
(0.36 ton ha�1in the global mean. For irrigated crops , absolute emulator errorsare generally lower

:
).
:::::::::
Emulators

:::
for

::::::
rainfed

:::
and

:::::::
irrigated

:::::
crops

::::
have

::::::
similar

::::::::
fractional

:::::
errors, but since irrigated crops experience lower yield changes the fractional385

errorsare similar
:::::
across

:::
the

:::::::
CTWN

::::::::
scenarios,

:::::
they

:::
also

:::::
have

:::::
lower

:::::::
absolute

:::::
errors. See Supplemental Material Section 9 for

maps of cross validation RMSE for each crop and model.

Table 3. RMSE of emulator replication of simulated yields of rainfed crops, stated as a percentage of simulated yield change. Values are

the mean grid cell error as a percentage of simulated yield change, over all currently cultivated grid cells weighted by cultivation area, for

selected major regions (NA: North America, SA: South America). For comparison, global mean values are show in parentheses. Errors are

calculated using the 90-10 cross validation scheme described in text, with the model trained on 90% of the data and validated on the held-out

10% (repeated twice). All fits are made with the Bayesian Ridge method; for context we mark with * those cases where the Bayesian Ridge

is required because the OLS linear model fails (e.g. PEPIC, which has the lowest number of samples at n=121).

Model NA Maize% SA Soybean% SE Asian Rice% NA S. Wheat% European W. Wheat%

CARAIB 0.7 (0.9) 2.4 (2.4) 2.4 (2.4) 1.3 (1.4) 2.7 (1.9)

EPIC-TAMU 2.4 (1.8) 1.8 (2.6) 1.6 (1.6) 1.8 (1.9)* 1.1 (1.1)

JULES 2.6 (2.6) 4.6 (4.0) 1.6 (1.7) 2.0 (2.2) NA

GEPIC 2.1 (2.4) 1.0 (1.2) 2.0 (2.1) 3.7 (3.3) 4.0 (2.9)

LPJ-GUESS 1.0 (1.1) NA NA 1.0 (1.3) 1.0 (1.2)

LPJmL 1.8 (1.8) 1.1 (1.3) 1.2 (1.1) 0.8 (1.1) 1.5 (1.3)

pDSSAT 1.9 (1.7) 1.2 (1.1) 1.7 (1.6) 1.1 (1.3) 1.4 (1.5)

PROMET 3.4 (2.7)* 2.0 (2.7)* 2.1 (1.8)* 4.3 (3.7)* 4.6 (3.4)*

PEPIC 1.8 (1.8)* 1.4 (1.9)* 1.4 (1.4)* 2.3 (2.3)* 4.9 (2.9)*

Note that this metric is relatively simple and
::::::::
relatively

::::::
simple

::::::
metric may be over-conservative. The randomized sampling

protocol for dividing training and test sets can mean that a training set omits edge simulations at the highest or lowest value

in CTWN space. The test prediction then involves extrapolating out of the training set range (e.g. predicting a T+6 case when390

the training set extends only to T+4), an improper use of an emulator. Values
:::::
RMSE

::::::
values would be lower under a different

sampling strategy
:
if
:::
we

::::
had

::::
used

::
a
:::::
more

::::::
careful

::::::::
sampling

:::::::
strategy

::::
that

::::::::
precluded

:::::::::::
extrapolation

:
(e.g. “leave-one-out”). For

additional discussion of more detailed potential evaluation metrics, see e.g. Castruccio et al. (2014).

4.3 Emulation of realistic climate projections

Finally, we test the ability of an emulator based on the GGCMI PhaseII
:
2 perturbed mean training set to reproduce the response395

of a crop model driven by a realistic evolving climate scenario. The goal is
::::
Our

::::::::
emulators

:::
are

::::::
trained

::::
only

:::
on

:::::::::::::
growing-season

::::::
means,

:::
and

:::
the

:::::::
GGCMI

:::::
Phase

::
2

::::::
exercise

::::::::
involved

::::
only

:::::::
changes

::
in

::::::
means.

:::
We

:::::::
therefore

::::
seek

:
to assess whether effects of future

changes in
:::::::
changes

::
in

:::
the

::::::
higher

::::::::
moments

::
of

:
temperature and precipitation distributions are strong enough to

::
in

:
a
:::::::
climate

::::::::
projection

:::::
might

::::
have

::::::
effects

::::
that

:::
lead

::
to

:::::::::
significant

::::::::
emulator

::::
error.

:::::
Note

:::
that

:::
we

:::
are

:::
not

:::::
asking

:::::::
whether

::::::::::::
year-over-year

:::::::
climate
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::::::::
variability

:::::::
matters

::
to

::::
crop

::::::
yields;

:::
this

:::::
point

::
is
::::::::::::::
well-established

::::::::::::::
(Ray et al., 2015)

:
.
::::
The

:::::::
question

::::::
instead

::
is
:::::::
whether

::
a
:::::::
realistic400

:::::
future

::::::
climate

:::::::::
projections

::::::::
involves

::::::
changes

:
in
:::::::::
variability

::::
large

:::::::
enough

:::
that

::::
they

:
compromise an emulator based on the GGCMI

PhaseII dataset. We first drive
::
2
::::::
dataset.

:

::
To

:::::
assess

::::
this

:::::::
potential

:::::
error,

::
we

::::::::
generate

:::
new

::::
crop

::::::
model

:::::::::
simulations

:::::
using the LPJmL crop model (

::::
taken

::
as

:
a
:
representative

of GGCMI models)with climate model output under the high-end RCP 8.5 scenario. We choose for this purpose ,
::::::
driven

::
by

::
a

::::::
climate

:::::::::
simulation

::::
from

:::
the

:::
the

:::::::
Coupled

:::::
Model

::::::::::::::
Intercomparison

::::::
Project

:::::
Phase

:
5
::::::::
(CMIP5)

::::::
archive

:::::::::::::::::::::::::::::::::::::::::::::::
(Jones et al., 2011; Martin et al., 2011; Taylor et al., 2012)405

:
.
::
To

:::::::::
maximize

:::
any

::::::::
potential

::::
bias,

:::
we

::::::
choose

:
a climate model (HadGEM2-ES) with

:::
that

:::::::
exhibits relatively large changes in

growing-season temperature variability
:::::
among

:::::::
CMIP5

::::::::
members

:
(Supplemental Table S1)among members of the Coupled

Model Intercomparison Project Phase 5 (CMIP-5) archive (Jones et al., 2011; Martin et al., 2011; Taylor et al., 2012),
::::
and

:::
use

::
the

::::::::
high-end

:::::
RCP

:::
8.5

::::::::
scenario.

:::
We

::::
also

::::
hold

::::
CO2:::::

fixed
::
to

:::::::::
emphasize

:::
the

::::::
results

:::
of

::::::::::
temperature

:::
and

:::::::::::
precipitation

::::::::
changes,

::
in

:::
the

:::::::
absence

::
of

:::
the

:::::::::
beneficial

::::::
effects

::
of
:::::::::

increased
::::
CO2. We then drive the LPJmL emulator with

:::::::
compare

:::
the

::::::::
resulting410

::::::::
simulated

:::::
yields

::
to

:::
the

::::::
output

::
of

:::
the

:::::::
GGCMI

::::::
LPJmL

::::::::
emulator

:::::
driven

:::
by the HadGEM2-ES yearly-growing season anomalies,

and evaluate how well the resulting emulated yields reproduce those simulated under the full climate scenario. The comparison

suggests
:::::
yearly

:::::::::::::
growing-season

::
T

::::
and

:
P
:::::::::

anomalies
:::::::

(Figure
:::
9).

::::
The

:::::::
GGCMI

:::::::
LPJmL

::::::::
emulator

::
is

::::
able

::
to

:::::::
capture

:::
the

:::::
yield

::::::
changes

:::::
well:

:::
for

:::
all

:::::
crops,

:::::::::
emulated

:::
and

:::::::::
simulated

:::::
global

::::::::::
production

::
in

:::
the

::::
last

::::::
decade

::
of

::::
the

:::::::::
simulation

:::
are

:::::::
identical

:::
to

:::::
within

:::::
1.5%.

::::::
These

:::::
results

:::::
imply

:
that globally, the results of future distributional shifts on climatological yields are small rela-415

tive to the effects of mean changes (Figure 9). In the LPJmL example of Figure 9, emulated and simulated global production in

the last decade of the simulation are identical to within 1.5% for all crops. Emulators
:::
The

:::::::
GGCMI

:::::::
LPJmL

::::::::
emulators

:
also re-

produce decadal variations in yields, which are especially strong in spring wheat grown in northern latitudes ,
::::::
(Figure

::
9,
::::::
right),

and even capture much of the residual year-to-year yield variability. (:
:
R2 of emulated vs. simulated annual yield anomalies

relative to the 10-year running mean is 0.8 for spring wheat
:
(and ⇠0.3 for all other crops.)

:
).
:

420

Distributional effects might be expected to be stronger at high latitudes, because temperature and precipitation variability

are larger there, so that changes in variability can be correspondingly more important. However,
::
We

::::
find

::::::::
however

:::
that

:
most

crops (spring wheat, winter wheat, and maize) show no emulator bias that grows with latitude. Rice is the exception: the

climatological-mean emulator slightly over-predicts yield losses in the tropics and under-predicts losses at higher latitudes

(where little rice is currently grown). Poleward of 30 degrees latitude, the LPJmL simulation under the HadGEM2 RCP scenario425

shows a 49% reduction in rice yields by end-of-century (without growing-season adaptation), but the GGCMI-based emulator

produces a reduction of only 39% (Supplemental Figure S11). These losses are concentrated in the lower mid-latitudes: only

21% of global rice is cultivated poleward of 30 degrees, and only 1% poleward of 45 degrees.

It is worth noting two complications involved in comparing emulated to simulated yields under a realistic climate change

scenario, as in Figure 9. First, it is not trivial to choose how to relate temperature or precipitation in the evolving climate scenario430

to the T and P offsets used as regressors to the emulator. Using growing-season mean temperature can lead to complications

if crop models assume that growing season lengths shift under climate change. For consistency, we match the temperature

changes in the climate scenario to their equivalent emulator regressors by calculating means over the fixed baseline growing

season. This choice ensures that the emulation is appropriately matched to the simulation. Second, while the emulator outputs
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Figure 9. Test of emulator performance in reproducing yield simulations made with a realistic climate projection. Panels show simulated

(black) and emulated (red) global production for four crops from the LPJmL model, driven with temperature and precipitation outputs from

the HadGEM2-ES climate model for the RCP8.5 scenario. In both cases nitrogen and CO2 are held fixed, at 200 kg ha�1 and 360 ppm.

Points show yearly global production change from the 1981-2010 baseline, and lines show a 10-year running mean. See text for discussion of

relating the HadGEM2-ES temperature timeseries to the appropriate offset used in emulation. Emulators trained on uniform climatological

offsets reproduce well the simulated production response under a realistic climate scenario: yields at end of century match to within 1.5%.

an estimated yield change, the baseline from which that yield change is calculated will be different between simulation and435

emulation, because the historical climate timeseries are not identical. For example, the baseline (1981-2010) yield of winter

wheat simulated by LPJmL using the AgMERRA timeseries as part of GGCMI PhaseII
::

2
:
is 7% lower than that simulated

using the HadGEM2-ES timeseries. To minimize the effects of different historical climate assumptions, we drive the emulator

with the anomaly of the climate scenario from its own 1981-2010 mean. Bias in the historical climate timeseries could in theory

produce discrepancies between emulated and simulated yield changes because of the nonlinearities discussed in Section 2.2,440

but the effect appears to play little role in the LPJmL comparison of Figure 9.

5 Emulator results and products

The crop model emulators developed here can be used for a variety of applications, because the emulator transforms the

discrete simulation samples into a continuous response surface at any geographic scale. One use is construction of continuous

agricultural damage functions in a flexible format. As an example, we present in Figure 10 global damage functions over each445

of the four dimensions tested in this study, constructed from the 4D emulation of each crop model.

These damage functions are useful in diagnosing commonalities and differences in the responses of crop models. In most

cases, models agree on the sign of responses to individual factors, but the spread in model responses is comparable to the

median response. Inter-model spreads are largest for spring wheat and smallest for soybeans, as also shown in Figure 7. Model

responses to individual factors conform to expectations. As expected, the CO2 response is smallest for maize, which is a450

C4 grass
::::
crop, and the nitrogen response is smallest for soybeans, which are efficient fixers of atmospheric nitrogen. Nitrogen

responses in crops other than soybeans are relatively similar, and most models show saturation beginning at values less than 200
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Figure 10. Emulated global damage functions for the five GCCMI Phase II crops over the four CTWN dimensions varied .
::
in

::::::
GGCMI

:::::
Phase

:
2.
:

Black line shows the multi-model mean and shaded area and colored lines the individual models.
:::
The

::::::
number

::
of
::::::

models
::
in

::::
each

::::
case

:::::
varies,

::::::
because

::::
some

::::::
models

:::
did

::
not

::::::
provide

:::
all

::::
crops

::
or

:::::::
simulate

::
the

::
N

::::::::
dimension.

:
Each panel shows response to one covariate for rainfed

crops, with all others held constant at baseline values (e.g. C = 360 ppm, N = 200 kg ha�1). Damages are reported as percent change in

global production over currently cultivated land relative to the 1981-2010 baseline. Note that y-axis ranges are not uniform. As expected, the

N response is smallest in soybeans, which are nitrogen fixers, and the C response smallest in maize, which is a C4 crop. See Supplemental

Figure S12 for an analogous figure identifying each crop model, and Supplemental Figure S13 for damage functions for the A1 (adpative

::::::
adaptive growing season) emulators, which have reduced temperature responses.

kg ha�1. In nearly all crop models and for all crops except spring wheat, damages from reduced precipitation exceed benefits

from increased precipitation. Spring wheat is the exception, likely because it is grown in high latitudes where rainfall may be

limiting. Rice, by contrast, which is generally grown in locations with abundant water, shows nearly no benefit from increased455
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precipitation. Note that these damage functions do not consider whether increased precipitation might permit cultivation in

new areas, and also that crop models generally do represent damages from excess soil moisture well (Li et al., 2019).

The GGCMI PhaseII
::
2 emulators are also intended as a tool for impacts assessments. The T and W functions presented in

Figure 10 are not true global projections, because they emulate the consequences of uniform shifts across the globe. However,

the emulator allows building analogous damage functions based on climate model output, which has more realistic spatial460

patterns of changes in temperature and precipitation. In Figure 11, we show emulated maize responses for 3 crop models under

the RCP8.5 scenario, using output from 5
:
3
:
climate models from the CMIP-5

::::::
CMIP5

:
archive. Losses are shown as a function of

mean growing-season temperature over currently cultivated land. While these damages functions aggregate over all currently

cultivated land, the global coverage of GGCMI PhaseII
:
2
:
allows impacts modelers to develop damage functions for any desired

geopolitical or geographic region larger than 0.5 degrees in latitude and longitude.465

The emulated responses of Figure 11 allow diagnosing the factors of greatest importance to projected yield changes under

future climate change. In the maize example here, temperature is the overwhelmingly dominant factor for pDSSAT, but CO2

responses are far larger in PROMET. (CO2 is important across models for spring wheat, see Figure S14. ) For all crop models,

the aggregated effects of precipitation changes are negative, exacerbating yield losses (compare T and T+W cases), because

precipitation in HadGEM2 actually declines over maize cultivation regions, especially in Central and S. America. Precipitation470

effects are relatively small, however, as manifested in two ways: as only a small mean shift in yield projections for individual

crop models (compare T and T+W cases), and as a relatively small increase in the spread of points here at a given temperature,

despite the fact that the climate projections used involve different relationships between temperature and precipitation change.

By contrast, the carbon
::::::
dioxide fertilization response for PROMET is so large that projections from climate models of different

sensitivities (�T/�CO2) become clearly separated in Figure 11. PROMET yield responses would be more similar if plotted as475

a function of CO2 than they are when plotted as in Figure 11 as a function of temperature change.

Disaggregating the factors driving crop yield changes also highlights the fact that errors of emulation are much smaller than

the spread across crop models or even across different climate simulations. PROMET is the most quantitatively difficult model

to emulate for maize, but its comparatively large emulation error (compare open squares to lines in T case) is still smaller than

the spread simply due to different T patterns across climate simulations (Figure 11, left, compare differences between open480

squares and line with the spread in circles
:::
dots

:
for a given temperature value). Uncertainties in the yield damage function due

to projected patterns of temperature change are in turn smaller than spread due to differing model relationships of W and T

changes (Figure 11, middle), and for PROMET are enormously outweighed by uncertainty in climate sensitivity (Figure 11,

right). While emulator fidelity is important to ensure, it is important to recognize that these other uncertainties will dominate

any impacts assessment exercise. Note that the pattern-related yield effects are actually relatively small for maize. (In Figure485

11, left, compare lines, which show yield changes under uniform temperature shifts, to circles
:::
dots, which show changes under

realistic warming scenarios). Pattern-related yield effects can be larger for other crops, and the uncertainties due to climate

projection differences correspondingly larger: see for example soybeans in Supplemental Figure S15.
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Figure 11. Illustration of the
:::
use

::
of

:::
the

::::::
emulator

::
to
:::::
study

:::
the factors affecting yields in more realistic climate scenarios, for three different

crop models
::::::
scenario. Figure shows emulated yield changes (relative to 1981-2010) for maize (both rainfed and irrigated) on currently

cultivated land under RCP8.5 climate projections from 5
:
3 representative CMIP-5

:::::
CMIP5

:
climate models

::::::::::::
((HadGEM2-ES,

::::::::::::
GFDL-ESM2M,

:::
and

::::::::::::::
IPSL-CM5A-LR), using changes to T only (a), to T and W (b), and to T, W, and C (c). X-axis

:::
The

:::::
x-axis

:
is the mean growing-

season temperature change over cultivated land, computed using the historical growing season; note
:::
that these values will be higher than

the corresponding global mean temperature change. Circles
:::
Dots

:
are emulated yearly global production changes to 2100 (90 years ⇥ 5

climate timeseries = 450 per crop model), with x-axis the mean historical growing-season T shift over all grid cells where maize is grown

(unweighted by within-cell cultivated area). a: Using only temperature changes allows comparing regional simulated and emulated values.

Open squares are
::::::
GGCMI

::::
Phase

::
2 simulated values for each T level, with CWN

::::
held at baseline; bold lines are emulated values over uniform

::
�T shifts (repeated in each panel). Emulation uncertainty (compare squares to lines) is small relative to differences across climate and crop

models, and mean yield changes are similar whether T changes are applied as a uniform shift or in a more realistic spatial pattern (compare

lines to circles
:::
dots). b: Adding in precipitation changes increases yield spread across climate projections and depresses yield slightly.

::
No

:::::
squares

:::
are

:::::
shown

::
in
::

b
:::::

because
:::
the

:::::::
GGCMI

::::::
uniform

:::::
offsets

::
of
::::
both

::
T

:::
and

::
W

:::
are

:::
not

::::::
directly

:::::::::
comparable

::
to

:::::::::::
GCM-specific

::::::
changes

::
of

::
T

:::
and

::
W

::
in

:
a
::::::
climate

::::::::
projection.

:
c: CO2 fertilization is small in pDSSAT, moderate in LPJmL, and very large in PROMET. The separation

of groups of points in PROMET (gold) results because CMIP-5
::::::
CMIP5 climate sensitivities differ by nearly a factor of two; points at far

right are under
::
the

::::::::::::::
highest-sensitivity

:::::
model,

:
HadGEM2-ES. In RCP8.5, the 30-year-average CO2 at end of century is 807 ppm (Riahi et al.,

2011). For comparison, open squares in c show GGCMI-II
::::::::
GGCMI-2 simulated production changes at T+6, W=0, C=810 ppm. (Note that

in these climate projections, mean CO2 levels when T > 5.8 degrees is 912 ppm.) See Supplemental Figures S14–15 for analogous figures

for other crops (spring wheat and soybeans).

6 Discussion and conclusions

In this work we describe a new class of global gridded crop model emulators for 5 crops (maize, soy
:::::::
soybean, rice and spring and490

winter wheat) and 9 process-based crop models, based on the GGCMI PhaseII dataset. The systematic parameter sampling of

the GGCMI Phase II experiment allows emulating
::
2
::::::
dataset,

::
a
::
set

:::
of

::::
crop

:::::
model

::::::::::
simulations

:::
run

::::
with

:::::::::
systematic

:::::::::::
perturbations
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::
to

::::::
carbon,

:::::::::::
temperature,

:::::::::::
precipitation,

::::
and

:::::::
nitrogen

:::::::::
(CTWN).

::::
The

::::
goal

::
of

::::
this

::::::
project

::
is
:::

to
:::::::
provide

:
a
::::::::::
lightweight

::::
tool

::::
that

:::::::::
reproduces

:::
the

::::::
output

::
of

::::
large

:::::::::
numerical

::::::::::
simulations

::
of

::::::::::::
process-based

::::
crop

:::::::
models.

::::
The

::::::::
resulting

::::::::
emulators

::::::
should

:::::::
provide

:::::
useful

::::
tools

::::
both

:::
for

:::::::::
diagnosing

::::
crop

::::::
model

:::::::
behavior

::::
and

:::
for

::::::
climate

:::::::
impacts

::::::::::
assessment,

:
at
:::::
least

::
of

:::::::::
large-scale

::::::::::::
time-averaged495

::::::::
responses.

:::::::
Specific

:::::::
findings

::
of

::::
this

::::
work

:::::::
include

::::
that:

–
::
In

::::
crop

:::::::
models,

:::
the

::::::::::::
climatological

::::
mean

:::::
yield

::::::::
responses

::
to
:::::::
uniform

:::::::::::
perturbations

:::
in

:::::::::::::
growing-season

:::::
mean

::::::::::
temperature

:::
and

:::::::::::
precipitation

:::
are

::::
very

:::::::
distinct

:::::
from

::::::::
responses

:::
to

::::::::
historical

:::::::
weather

::::::::::
fluctuations

:::::::::
associated

::::
with

::::
the

:::::
same

:::::
mean

:::::::::
differences.

:::::
This

:::::
result

:::::::
suggests

::::
that

:::::
when

:::::::::
emulating

:::::
crop

:::::::
models,

::::
care

::::
must

:::
be

:::::
taken

::
if
::::::::::

considering
:::::::::

responses
:::
on

::::
both

::::
short

::::
and

::::
long

:::::::::
timescales.

::::
The

:::::
large

:::::::
GGCMI

:::::
Phase

::
2

:::::::::
experiment

::::::
allows

::
us

:::
to

:::::::
emulate climatological-mean crop500

yield responses with a relatively simple statistical model
::::::
without

::::::
relying

:::
on

:::
the

:::::::
“natural

::::::::::
experiment”

:::
of

::::::::::::
year-over-year

::::::::
variations.

:

–
::::::::::::
Climatological

:::::
mean

::::::::
responses

::
in

::
all

::::::
models

:::
can

:::
be

::::::
well-fit

::::
with

:
a
::::::
simple

::::
third

:::::
order

:::::::::
polynomial

::
in

:::::
mean

:::::::::::::
growing-season

::
C,

::
T,

:::
W,

::::
and

::
N.

::::
The

:::::
large

:::::::
GGCMI

:::::::
training

:::
set

::::::
allows

:::::
fitting

:::
in

::::
most

:::::
cases

:::::
with

:::::
OLS,

:::
but

:::
use

:::
of

:
a
::::::::
Bayesian

::::::
Ridge

::::::::
regression

::::::::
provides

::::::::
additional

:::::::
stability

:::
and

::::::::
prevents

:::::::::
overfitting.

:::
For

::::
most

::::
crop

:::::::
models,

:::::::::
emulation

::
is

:::
also

:::::::
possible

::::
with

::
a505

::::::::
simplified

::::::
version

:::
of

::
the

:::::::::
statistical

:::::
model

::::
with

::::
only

:::
23

:::::
terms.

:

–
:::
The

::::::::
resulting

:::::::::
emulators

:::
are

::::::
highly

:::::::
flexible:

::::
they

:::::::
capture

:::
the

::::::
strong

:::::::::
geographic

:::::::::
difference

:::
in

::::
crop

::::::
yields

:::
and

::::::
yields

::::::::
responses,

::::
can

:::::::
perform

::::
well

:::
on

:::::::
models

::::
with

:::::
quite

:::::::
different

:::::::::::
sensitivities

::
to

:::::::
climate

::
or

::::
CO2::::::::

changes.
:::::::::
Emulators

::::
can

:::::::
faithfully

:::::::::
reproduce

:::
the

:::::
output

::
of

::::::::::::
process-based

::::
crop

::::::
models

::
in

::::
both

::
in-

:
and isolating long-term impacts from confounding

factors that lead to different year-to-year responses. Across all models , emulation
:::::::::::
out-of-sample

::::
tests.

:::::::::
Emulation

:::::
error510

:
is
::::::::
generally

:::::
small

:::::
other

::::
than

::
in

::::::::
localized

::::::
regions

::::::
where

::::
crops

:::
are

:::
not

::::::::
currently

::::::
grown:

::::::
across

::
all

:::::::
models

:::
and

:::::::::
scenarios,

errors over currently cultivated land never exceed 5% of yield changes at either global or regional scale. The systematic

sampling provides information on the influence of multiple interacting factors in a way that realistic climate model

simulations cannot, and the use of a parametric statistical model allows physical interpretation of parameter values.

While emulators based on the GGCMI PhaseII protocol of uniform perturbations to historical climate will not reproduce515

any effects of changing variability in future climate projections (any temperature variability changes or precipitation

variabilitychanges other than multiplicative mean shifts) , in practice these effects appear to be small

–
::::::::
Emulators

::::::
trained

:::
on

:::
the

:::::::
GGCMI

::::::
Phase

:
2
:::::::

dataset,
::::::
which

:::::::
samples

::::
over

:::::::
uniform

:::::::
climate

:::::::::::
perturbations,

::::
can

:::::::::
effectively

::::::::
reproduce

:::
the

::::::::
behavior

::
of

:::::
crop

::::::
models

::::::
driven

:::
by

:::::::
realistic

:::::
future

::::::::::
projections

::
of

::::::
future

::
T

::::
and

:
P
::::::::

changes.
:::::
This

:::::
result

:::::::
suggests

:::
that

::::
any

::::::::
projected

:::::::
changes

::
in

:::::::
weather

:::::::::::
distributions

:::::::::::
(temperature

:::
and

:::::::::::
precipitation

:::::::::
variability)

:::::
have

::::::::
relatively520

::::
little

:::::
effect

::
on

::::
crop

::::::
model

::::
yield

::::::::
responses

:::::::
relative

::
to

:::::::
changes

::
in

::::::
means, at least on the regionally aggregated level.

Emulators provide

–
:::
The

:::::::
GGCMI

::::::::
emulators

::::::
should

:::::::
provide

:
a powerful tools for both model comparison and impacts assessmentsby capturing

the responses of
:
.
:::
The

:::::::::
emulators

:::
can

::
be

:::::
used

::
to

::::::
develop

:::::::::
standalone

:::::::
damage

::::::::
functions

::
at

:::
any

::::::::::
geographic

::::
scale

:::::
larger

::::
that

:::
0.5

:::::::
degrees,

::
or

:::
can

:::
be

:::::::::
integrated

::::::
directly

::::
into

::
a

:::::
larger

:::::::::
integrated

:::::::::
assessment

::::::
model

::::::
(IAM)

:::::::::
framework.

:::::::::
Emulators

::::
can525
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:::
also

:::
be

::::
used

::
to

:::::
study

::::::::::
differences

:::::
across

::::
crop

:::::::
models

::
in

::::::::
responses

::
to

:::::::::
individual

::::::
drivers

::
of

:::::
yield

::::::::
changes,

::::::
making

:::::
them

:::::
useful

:::
for

:::::
model

::::::::::
comparison

:::
and

::::::::::::
improvement.

:

:::::
While

::
an

::::::::
emulator

::::
that

:::::::
captures

:::
the

:::::::
response

:::
of

:
a
:
process-based crop models

:::::
model in a lightweight form . The emulators

provide over
:::
will

:::::
never

::
be

:::::
more

:::::::
accurate

:::
then

:::
its

:::::
parent

::::::
model,

::
it
:::
can

:::::
have

:::::::
multiple

:::::::::
advantages

::::
over

::
a

::::::::
numerical

::::::::::
simulation.

::::::::
Emulation

::::
over

:::
the

:::::::::
systematic

::::::::
sampling

::
of

:::
the

:::::::
GGCMI

::::::
Phase

:
2
::::::::::
experiment

:::::::
provides

::::::::::
information

:::
on

::
the

::::::::
influence

:::
of

:::::::
multiple530

:::::::::
interacting

::::::
factors

::
in

::
a

::::
way

:::
that

::::::::::
individual,

:::::
more

:::::::
realistic

::::::::::::
process-based

:::::
model

::::
runs

:::::::
cannot.

:::::::
Because

:::
we

::::
use

:
a
::::::::::

parametric

::::::::
statistical

::::::
model,

::::
fitted

:::::::::
parameter

:::::
values

::::
can

::
be

:::::::
physical

:::::::::
interpreted

::
to
::::
help

::::::::::
understand

:::::::::
differences

:::::::
between

::::
crop

:::::::
models.

::::
The

::::::::
flexibility

:::
and

::::
low

:::::::::::
computational

:::::::::::
requirements

:::
of

::::::::
emulators

::::
also

::::
make

:::::
them

::::::::::
particularly

::::::
suitable

:::
for

::::::::::
applications

::
in

:::::::::
integrated

::::::
climate

::::::
change

::::::
impact

::::::::::
assessments

::::
and

:::::::::
projections

:::
of

:::::::
land-use

::::::
change

:::::::::::::::::::::
(e.g. Nelson et al., 2014a)

:
.
::::
Data

:::::::
storage

:::::::::::
requirements

::
are

:::::::
reduced

:::
by three orders of magnitudereduction in data storage: the yield output for a single crop model that simulates all535

GGCMIP PhaseII
:::::::::
simulating

::
all

::::::::
GGCMI

:::::
Phase

::
2 scenarios for 5 crops is ⇠12.5 GB; ,

:::::
while

:::
the

:
equivalent global gridded

emulator parameters are only ⇠20 MBand allow emulation of arbitrary future scenarios. Computational requirements are

nearly negligible: a thousand years of global 0.5 degree yields, i.e ⇠40,000,000 individual yield projections, can be emulated

in 20 seconds on a laptop computer. The emulators can be used to develop standalone damage functions at any geographic

scale larger that 0.5 degrees, or can be integrated directly into a larger integrated assessment model (IAM) framework
:::::::
resulting540

::::
suite

::
of

:::::::::
emulators

::::::
should

:::
find

:::::::::::
considerable

:::
use

:::
in

::::::
climate

:::::::
impacts

::::::::
analyses

:::::::::::::::::::::::
(e.g. Stevanović et al., 2016)

:
,
:::
and

:::::
allow

:::::::
explicit

::::::::
evaluation

::
of

:::
the

::::::::::
uncertainty

:::::::::
embedded

::
in

:::
the

:::::
choice

::
of

:::::::
climate

:::
and

::::
crop

:::::::
models

::::::::::::::::
(Müller et al., 2017).

Several cautions should be noted when using the emulators presented here. First, extrapolation outside the GGCMI PhaseII

::
2 sample space should be avoided.

:::::::::
Polynomial

:::
fits,

:::::
while

:::::::
faithful

:::::
within

:::::::
sample,

:::::::
quickly

::::::
become

:::::::::::
non-physical

:::::::
outside

::
of

:::
the

:::::
tested

:::::
range.

:::::
This

::::::::
constraint

::
is

:::::::::
important

:::::
given

:::
the

:::::
strong

::::::::
warming

::::::::
expected

:::::
under

::::::::
high-end

::::::::::
greenhouse

:::
gas

::::::::::::
concentration545

:::::::
scenarios

:::::
(e.g.

::::::::
RCP8.5):

:
if
:::::::
growing

:::::::
seasons

:::
are

::::
held

:::::
fixed,

::::::
climate

::::::
model

:::::::::
projections

:::::
yield

:::::
mean

:::::::::::
temperatures

::::::
changes

::::::
above

::
6K

:::
by

::::
end

::
of

:::::::
century

::
in

:::::
many

::::::::::
agricultural

:::::::
regions.

:
Second, while the emulators are valuable for understanding the shape

of yield responses and the factors that drive them, the absolute values of emulated yields should be treated with caution.

Because the GGCMI PhaseII experiment was designed to focus on yield changes and not on replicating real-world yields,

most
:::
The

:::::::
GGCMI

:::::
Phase

::
2
:
models are not formally calibrated , and their

::
and

:::
so

:::
the

:
emulators should be used for absolute550

impacts projections only in combination with historical yield data. The GGCMI Phase II
::::
data.

::::::
Third,

::::::
neither

:::::::
growing

::::::
season

::::::::::
specification

:::::
tested

::
in
::::::::
GGCMI

:::::
Phase

:
2
::::
(A0

:::
and

::::
A1)

:::::::
accounts

:::
for

::
a
:::::
major

:::::::
potential

:::::::::
adaptation

::::::::
pathway

:::::
under

::::::
climate

:::::::
change,

:
a
::::
shift

::
to

::::::
earlier

::
or

::::
later

:::::::
planting

:::::
dates

::::::::::::::::
(Waha et al., 2012)

::
or

::::::::
generally

::::::::
different

:::::::
growing

:::::::
seasons

:::::::::::::::::
(Minoli et al., 2019a)

:
.
::::
And

:::::
finally,

::::
the

:::::::
emulator

::::::
should

:::
not

:::
be

::::
used

::
to

::::::
predict

:::::::::
individual

::::::
yearly

::::::
yields,

::
as

:::
the

::::::
forced

::::::::::::
climatological

:::::
mean

::::
yield

::::::::
response

:::
will

:::
not

::::::
match

:::
the

::::::::
response

::
to

:::::
mean

::::::::
growing

::::::
season

:::::::
weather

::
in

::
a

:::::
single

:::::
year.

::::
The

:::::::
emulator

::::::
cannot

:::::::
provide

::
a
:::::::
measure

:::
of555

:::::::
changing

:::::
yield

::::::::
variance,

:::
and

::::::
should

:::
not

::
be

::::
used

::
to
::::::::
evaluate

::::::::
extremes.

::
In

::::::::
summary,

:::
the

:::::::
GGCMI

:::::
Phase

::
2 dataset and emulators invite a broad range of potential future avenues of analysis. Future

studies using the emulators described here could include a detailed examination of interaction terms, robust quantification of

model sensitivities to input drivers, and evaluation of geographic shifts in optimal growing regions.
:::
The

:::::
large

::::
suite

:::
of

::::
crop

::::::
models

::::::::
emulated

::::
lends

:::::
itself

:::::::::
particularly

::::
well

::
to

::::::
model

::::::::::
comparison

::::::
efforts,

::::::::
including

:::::::::
identifying

::::::::
locations

::
of

:::::
model

:::::::::
consensus560
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::
(or

::::
lack

:::::::
thereof)

::::
and

:::::
causes

:::
of

:::::
model

::::::::::
differences.

:
Studies of yield responses to changes in growing-season variability would

require new simulations, but the emulators presented here provide a ready means of testing the null hypothesis that such effects

are small. Similar structured training sets could be constructed to directly study responses to variability changes: see e.g.

Poppick et al. (2016); Haugen et al. (2018) for methods of constructing synthetic climate timeseries with altered variability. The

GGCMI PhaseII
:
2
:
dataset can be used as a testbed for examining the ability of statistical models using more detailed within-565

season regressors to capture both year-over-year and climatological changes, and for more systematic studies of emulation

itself, including evaluation of alternate
:::::::
statistical

:
specifications or machine learning methods. In general, the GGCMI PhaseII

:
2
:
experiment demonstrates the promise and utility of systematic parameter sweeps for improving understanding of the factors

driving crop responses and for evaluating and improving process-based crop models.
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